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Abstract 
Batteries represent a sustainable energy storage technology for the integration of 

renewable resources into the electrical grid. The first part of my research focused on the 

development of metal complexes as redox active materials for non-aqueous redox flow 

batteries. Flow batteries are rechargeable batteries based on solvated electroactive 

species that are flowed between storage tanks and electrochemical conversion cells to 

store or release electrical energy.  

Chapter 2 describes a systematic study on the impact of the bipyridine ligand 

structure on the solubility and electrochemistry of [Cr(bpy)3] complexes that afford six 

reversible redox couples over ∼2 V and solubilities approaching 1 M. These studies 

reveal that solubility is highly dependent on the oxidation state of the metal complex 

with solubility differences up to 4 orders of magnitude between the Cr(0) and the Cr(III) 

complexes.  In contrast, modifications to the metal complex have minimal impact on the 

electrochemical properties. Furthermore, this investigation led to the identification of a 

promising Cr complex that was evaluated in charge/discharge experiments affording a 

two-electron transfer at each of the electrodes with efficiencies of 70%.  

The second part of my research is focused on the development of C–H 

functionalization methodologies. The conversion of carbon–hydrogen (C–H) bonds into 

new functional groups represents a powerful strategy for the synthesis of organic 

molecules. The advent of C–H functionalization has enabled medicinal chemists to 

utilize a late-stage functionalization approach to efficiently convert the C–H bonds in 

drug candidates to new chemical entities. Despite tremendous progress in the field, 

selective C–H functionalization of N-heterocycles remains challenging. 

Chapter 3 describes a room-temperature photoredox-catalyzed method for the 

C–H amination of hetero(arenes). This chapter describes the design and development 

of N-trifluoroacyloxyphthalimide as precursor to nitrogen-centered radical intermediates. 

N-trifluoroacyloxyphthalimide is proposed to undergo a single electron reduction by the 
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photocatalyst leading to an imidyl radical. The C–H amination protocol addresses 

several limitations from previous methods such as the need for expensive oxidants and 

elevated temperatures. The mild reaction conditions enabled the preparation of several 

N-heterocyclic amine products, which are common motifs in bioactive molecules. 

Furthermore, the synthesis of N-trifluoroacyloxysaccharine afforded highly electrophilic 

N-radicals, thereby permitting further reaction optimization to lower the photocatalyst 

and hetero(arene) loading.  

Chapter 4 describes the development of a Pd-catalyzed transannular C–H 

arylation of alicyclic amines. A key design principle is the use of the nitrogen atom in 

these substrates to direct the Pd-catalyst to remote C–H bonds in the ring. This 

approach leverages the high-energy boat conformer species to achieve transannular C–

H activation and subsequent C–C bond formation. The reaction exhibits high 

compatibility with a wide range of hetero(aryl) iodides in the diversification of 3-

azabicyclo[3.1.0]hexane. Several alicyclic amines undergo C–H arylation in modest to 

good yields. The methodology was employed for the late-stage functionalization of 

bioactive molecules including amitifadine, varenicline and cytisine. Furthermore, several 

directing groups were synthesized which showed a wide range of reactivity toward the 

C4–H arylation of piperidine. 

Chapter 5 describes the identification of pyridinecarboxylic acid ligands for the 

Pd-catalyzed C–H functionalization of azabicycloalkanes. The ligand additives were 

found to dramatically improve the reactivity. Kinetic studies reveal that the role of the 

ligand is to rescue deactivated Pd species. Reaction optimization enables the 

challenging distal C–H functionalization of diverse alkaloids such as tropane.  
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Chapter 1. Introduction 

This dissertation explores the design and development of metal complexes for 

electrical energy storage devices (Chapter 2) and C–H functionalization methodologies 

(Chapter 3-5). Both projects utilize fundamental organic synthesis and physical organic 

chemistry concepts to optimize physical, electrochemical and chemical parameters. 

Furthermore, the use of electrochemical techniques enabled the rapid assessment of 

the redox properties of metal complexes and organic molecules across both areas of 

research.  

 
1.1 Redox Flow Batteries 

Electrical Energy Storage 

The worldwide demand for electrical energy is expected to double by 2050.1 This 

projection indicates that the production of electricity in the upcoming decades must 

become inexpensive, sustainable and reliable. As such, new strategies for energy 

production are being explored to minimize the dependence on dwindling fossil-fuel 

derivatives. A potential solution at the grid-level is to incorporate more renewable 

sources such as wind and solar power. However, the intermittent nature of renewable 

sources (e.g. day/night cycles) renders these technologies impractical. The combination 

of renewable energies with electrical energy storage devices (EES) offers a potential 

solution. EES devices are technologies capable of storing energy at high-energy 

production times and delivering it when the demand rises.1,2 EES systems are classified 

based on the fundamental method to store energy dividing them in five categories: 

mechanical storage (i.e. pump hydroelectric, compressed air, flywheels), 

electromagnetic storage (i.e. supercapitors), chemical storage (i.e. batteries), biological 

storage, and thermal energy storage (i.e. water tanks, aquifers, molten salt).3  
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In the U.S., pump hydroelectric storage (PHS) systems constitutes over 95% of 

energy storage capacity.4 These systems have been widely popularized due to the low-

cost in infrastructure and reliable technology. However, PHS systems demand specific 

geographical conditions, as these systems are based on two interconnected water 

reservoirs at different elevations. At moments when electricity is inexpensive (off-peak 

hours) water is pumped to the high-elevation reservoir. Then, at peak electricity 

demand, water is released through a turbine to produce electricity with an overall round-

trip efficiency of 70-80%. 5  The remaining 5% of EES technologies comprises of 

compressed air, batteries, flywheels and thermal energy storage.  

The fast-growing battery field possesses several advantages over other 

technologies including high round-trip efficiencies, long cycle-life, fast response time 

and low-pollution emissions. Batteries represent a suitable energy storage technology 

for the integration of renewable resources due to their compact size, low geographical 

requirements, and energy and power storage/delivery flexibility. The principal battery 

technologies for large-scale energy storage are sodium/sulfur, lead-acid, lithium-ion, 

and flow batteries.1,3 Of these, Na/S and Pb-acid batteries are mature technologies with 

several commercial applications. A major drawback in both systems is their temperature 

constraints. 6  In the case of Pb-acid batteries, the ideal working temperature is 

approximately 27 ºC; even a 5 ºC change in temperature could lead to a 50% reduction 

in the battery life. In the case of Na/S, the device must be kept at temperatures above 

270 ºC, which is an energy-demanding process and represents a significant safety 

concern. 

 

Flow Batteries 

Redox flow batteries (RFBs) are rechargeable batteries based on one or two 

solvated electroactive species that undergo redox chemistries to hold or release 

electrical energy. The major advantage of RFBs over the conventional batteries is that 

the storage of the redox active species is decoupled from the electrodes, which allows 

for independent scaling of energy and power. As a result, these systems can achieve 

steady performance since the electrodes do not undergo physical or chemical changes. 

Consequently, the energy density is dependent on the volume and concentration of 
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active species in solution, while the power density is dependent on the electrode 

surface area, size, and electrochemical connection.  

As shown in Figure 1.1, a RFB consists of three main components: a conversion 

cell, electrolyte tanks, and a flow system. An electrical power source (e.g. solar panels, 

wind turbines) is used to charge the RFB. During operation of the battery, the electrolyte 

solutions (A/A– and B/B+) are pumped in and out the reservoirs through the conversion 

cell where the electrochemical reactions occur. The storage reservoirs are usually larger 

than the cell in which electron transfer events occur. The conversion cell is comprised of 

high surface area inert electrodes and an ion-exchange membrane that allows passage 

of ions to maintain chemical balance, but prevents the catholyte and anolyte solutions 

from mixing. Electrons flow through the electrodes when a voltage difference is imposed 

driving redox reactions of the solvated active species. The electrolyte solution flow rate 

is a key factor that also contributes to the performance of the RFB as high flow rates 

increase battery capacity, but decrease the system efficiency by the increased pump 

consumption.7  

 

Figure 1.1. General schematic of a RFB. 

 
 

The liquid electrolyte is comprised of three main components: redox active 

species, supporting electrolyte, and solvent. The active species undergo oxidation state 

changes to store and deliver the energy. The nature of the active materials dictates the 
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cell potential, reversibility, and stability of the system. The electrolyte solutions are 

based on mixtures of high (catholyte) and low (anolyte) potential redox active materials 

such as zinc/bromine, iron/chromium, vanadium/vanadium and bromine/polysulfide.8,9 

The overall cell potential of the battery is determined by the standard electrode potential 

of both half-cell reactions (equations 1.1-1.3). 

 
The supporting electrolyte is the source of ions in the given solvent. These 

spectator ions enhance the conductivity of the electrolyte solution. Finally, the solvent is 

an important parameter that dictates the ionization capacity, maximum cell potential, 

and the solubility of the active species.  

 

Aqueous RFBs 

NASA developed the earliest redox flow batteries comprised of water-based 

electrolytes.10 One notable application of the aqueous chemistry is the zinc/bromine 

RFB. This battery system has good energy efficiency (80 %), low cost of materials, and 

well-developed technology to avoid active species crossover. In the catholyte, Br– ions 

are converted to Br3
–, and the anolyte, Zn2+ ions are deposited on a Zn electrode during 

the charging cycle. Due to the irreversible crossover of Br2, quaternary ammonium salts 

are circulated with the electrolyte to intercept Br2, which prevents crossover to the Zn 

electrode.9a However, many of the aqueous technologies suffer from irreversible 

crossover, which leads to loss in battery efficiency. To overcome irreversible crossover, 

a single active species RFB was developed based on vanadium salts. 11  This all-

vanadium aqueous RFB constitutes the state-of-the-art in the flow battery field with 

several commercial applications worldwide.12,13 At the positive electrode, V4+ is oxidized 

to V5+ releasing an electron during charge (eq. 1.4). The electron travels through an 

external circuit to the negative electrode, where V3+ is reduced to V2+ (eq. 1.5). In order 

B B  +  e–E0catholyte

E0anolyte A  +  e– A–

(charge cycle)    (1.1)

(charge cycle)    (1.2)

E0cell = E0catholyte + E0anolyte   (1.3)
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to maintain chemical balance, protons pass through the ion-selective membrane from 

the positive to the negative electrode. 

 
These systems can achieve solubility up to 2M, 14  with 80-90% coulombic 

efficiencies and 60-70% energy efficiencies at a 1.5 V charge/discharge potential in 

static H-cell set-ups (eq. 1.6).9a The major disadvantage of the aqueous RFBs is the 

narrow potential window dictated by water electrolysis (~1.23 V), resulting in low energy 

densities of ~25 Wh L-1.1 Furthermore, the vanadium RFBs require the use of high 

concentrations of extremely corrosive supporting electrolytes such as sulfuric acid, 

hydrobromic acid, hydrochloric acid, or nitric acid.15 
 

Non-aqueous RFBs 

Non-aqueous systems have been proposed to alleviate some of the challenges 

associated with aqueous RFBs.16 Organic solvents offer dramatically wider voltage 

windows (~5 V for acetonitrile)17 and permit the use of a large number of organic and 

organometallic redox active species with tunable solubilities and redox properties. This 

offers exciting opportunities to improve the overall RFB energy efficiency.   

The conceptual idea of a non-aqueous redox flow battery was introduced by 

Singh in 1984,16 but not demonstrated experimentally until Matsuda and coworkers 

reported the first non-aqueous RFB systems based on Ru(bpy)+2, Ru(acac)3 and 

Fe(bpy)+2.18 Several reports on non-aqueous RFBs have been disclosed in the literature 

during the past two decades.19 The vast majority of publications focus on transition 

metal complexes bearing simple bipyridine 20 , β-diketonate 21 , dithiolate 22 , 

cyclopentadienyl23, and bipyridylimino isoindoline ligands24. To date, the most soluble 

organometallic systems are in the range of 0.8 M to 1.0 M. Organic-based electrolytes 

have allowed the development of low equivalent weight catholyte and anolyte species 

with high performance and solubilities.25  

VO2+ + 2H+VO2+ + H2O – e– Eº = 1.00 V vs SHE    (1.4)

Eº = 0.26 V vs SHE    (1.5)V3+ + e–

VO2+ + H2O + V3+

V2+

VO2+ + 2H+ + V2+ Eº = 1.26 V vs SHE    (1.6)
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Despite their promise, non-aqueous systems remain largely underdeveloped due to the 

limited development of compatible cell components and membranes with organic 

solvents and high-performing redox active species with large potential window, high 

solubility, and long cycle-life stability. 

Fundamental studies on the factors that affect redox-active electrolytes could 

provide valuable information toward the design and development of non-aqueous 

chemistries. Chapter 2 focuses on the systematic investigation of Cr3+ and Cr0 

complexes bearing functionalized bipyridine ligands to establish a series of solubility-

electrochemistry-structure relationships with insights into chemical design principles for 

future classes of metal coordination complexes for non-aqueous RFBs. 

 

1.2 C–H Functionalization of Nitrogen Heterocycles   
Nitrogen heterocycles are ubiquitous molecules in nature with several classes of 

plant-derived natural products including alkaloids, benzoxazinoids, and glucosinolates 

(Figure 1.2). 26  In addition, biological processes within living organisms utilize N-

heterocycles (vitamins, hormones, and enzymes). Given their prominence and bioactive 

properties, many N-heterocycles have been synthetically or biosynthetically prepared in 

pharmaceutical and agrochemical settings. As of 2014, 59% of U.S. FDA approved 

drugs had a nitrogen heterocycle in their structure.27 This has led to significant interest 

in the development of new reactions to efficiently construct these amine cores. Classical 

approaches for the synthesis of saturated and aromatic N-heterocycles have focused on 

the development of 1) synthetic methodologies for the construction of amine scaffold28 

and 2) total synthesis of N-heterocyclic-based complex natural products. 29  Such 

approaches represent an iterative and resource-intensive strategy to prepare 

functionalized N-heterocycles. Furthermore, the production of libraries of compounds 

can be challenging, as N-heterocycles are often difficult to derivatize with traditional 

reactions.30 
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Figure 1.2. Representative N-heterocycles in nature. 

 
 

A more direct and efficient strategy is the C–H functionalization of N-

heterocycles. 31 , 32  This approach has enabled 1) the development of late-state 

functionalization approaches for complex heteroarene diversification and 2) the increase 

in the synthetic scope of N-heterocycles.33 Strategies to selectively C–H functionalize 

these molecules rely on 1) the innate properties of the substrate (activated C–H bonds, 

formation of stable radical intermediates, steric hindrance) or 2) directing groups (target 

nearby C–H bonds).  

 

Radical aromatic substitution in N-heterocycles 

One of the first reports of radical additions to heteroaromatic bases was the 

addition of phenyl radicals to ortho- and para-positions of pyridine by the thermal 

decomposition of phenyl diazonium chloride.34 Following this seminal work, several C–H 

functionalization methods that proceed via radical addition have been explored to 

elaborate important aromatic heterocyclic derivatives. One of the most utilized methods 

for radical heteroaromatic substitution is the Minisci reaction (Figure 1.3).35 This reaction 

commonly employs mixtures of silver nitrate and ammonium persulfate in acid to 

oxidatively decarboxylate aliphatic carboxylic acids to generate alkyl radicals that further 

react with the heteroaromatic unit affording functionalized products with high-selectivity 

toward the electron-deficient C–H sites on the ring.  
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Figure 1.3. Example of a Minisci reaction.35 

 
 

Despite the great affinity of radical species for heteroarenes, it is quite difficult to 

control regioselectivity and reactivity. Combined with the limited exploration of radical 

sources aside from carbon radicals, this lack of control has largely prevented their use 

in industrial settings.35 For example, the use of nitrogen centered radicals have been 

under utilized in C(sp2)–H functionalization.36 Some of the first examples on the use of 

N-radicals was reported by Lidgett and co-workers where N-chlorosulfonylphthalimide 

was refluxed in biphenyl with added copper chloride to afford a mixture of C–H 

aminated products (Figure 1.4).37 Other reports have employed analogous methods with 

the use of N-halo-amides and imides.38 Since then, C(sp2)–H amination employing N-

radicals has remained largely dormant.39 In contrast, other methods for C–H amination 

employing transition metals 40  or metal-free oxidative couplings 41  have seen great 

developments. However, these methods require reaction high temperatures, 

superstoichiometric oxidants, and specialized ligand scaffolds.  

 

Figure 1.4. Lidgett’s C–H amination of biphenyl. 

 
  

Recently, visible light photoredox catalysis has gained interest due to the ability 

to control the generation, reactivity and selectivity of the radical species.42 The most 

commonly employed photocatalysts are homoleptic polypyridyl complexes of ruthenium 

and iridium, and aromatic organic molecules (acridiniums, eosin Y).43 Upon exposure to 

visible light, the photocatalyst absorbs a photon, promoting an electron to a high-energy 
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excited state from the metal center to a ligand-based orbital (metal to ligand charge 

transfer; MLCT). The initial singlet excited species (1MLCT) undergoes a rapid 

intersystem crossing to afford a long-lived triplet excited state species (3MLCT; Figure 

1.5 A). Although several other deactivation pathways can occur along the way 

(fluorescence, internal conversion, phosphorescence), the triplet excited state species 

can engage in bimolecular single-electron-transfer reactions with organic substrates 

(Figure 1.5 B). Notably, the triplet excited state is long-lived due to the spin-forbidden 

decay to the singlet ground state. 

 
Figure 1.5. A) Generic Jablonski diagram of a photoredox catalyst. B) Graphical 

illustration of the triplet excited state species for Ru(bpy)3
2+*. 

 
 

The nature of the organic or organometallic photocatalyst is key to reactivity. 

First, the lifetime of the excited species must be sufficiently long to engage in outer 

sphere bimolecular electron-transfer reactions. In general, iridium catalysts tend to have 

the longest lifetimes (~2000 ns), whereas the organic photoredox catalysts are in the 

range of 2-20 ns.42,43 Second, the redox potential of the photocatalyst excited state 

([PC]*) is important as it can provide an estimate of the ability to engage oxidative or 

reductive quenching cycles with organic substrates (Figure 1.6). Reductive quenching 

reactions employ the photocatalyst ([PC]*) as the oxidant of electron-donating species 

(A). The reduced [PC]n–1 can then serve as a reductant of electron-accepting species 

(B) and regenerate the [PC]. A similar mechanism applies to the oxidative quenching 

cycle, except that the catalyst initially functions as a reductant. Common organic 

reductive quenchers (A species) are tertiary amines, and oxidative quenchers (B 
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species) are aryl diazonium salts. Importantly, the redox potentials associated with the 

excited states cannot be directly measured, but a good approximation is obtained from 

cyclic voltammetry (CV) and the maximum emission wavelength of the catalyst.44  

 
Figure 1.6. Reductive and oxidative quenching cycles in photoredox catalysis. 

 
 

Chapter 3 describes our efforts in the C–H amination of a wide range of N-

heteroarenes and other arenes using visible light photoredox catalysis. Our method 

employs an iridium photocatalyst to engage with N-acyloxyphthalimides in an oxidative 

quenching cycle to produce nitrogen-centered radial intermediates. These N-radicals 

then react with hetero(arenes) to afford imide products. 

 

Transition metal catalyzed C–H functionalization of saturated N-Heterocycles 

The C–H functionalization of saturated N-heterocycles (alicyclic amines) at C–H 

bonds in the ring or at adjacent alkyl chains remains challenging. This is in part due to 

the electron-rich properties of alicyclic amines, which have rendered them incompatible 

with metal catalysts (catalyst inhibition) 45  or strong oxidants (amine oxidation). 46 

Furthermore, the selective activation of C(sp3)–H bonds is inherently more challenging 

than the activation of C(sp2)–H bonds, which has been attributed to the M–C bond 

strength differences in the C–H activated intermediate.47  

Traditional methods to C–H functionalize alicyclic amines have focused on the 

functionalization of the activated α-C–H bonds to the nitrogen atom. Strategies for α-C–

H bond functionalization include deprotonation/functionalization of protected amines,48 

[PC]n [PC]n*
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B•–

B

B•–
A

A•+



 
	

11 

metal-carbenoid insertions,49 transition metal directing groups,50 and the use of reactive 

intermediates such as α-carbon radicals.51 Other approaches to functionalize remote C–

H bonds in alicyclic amines include 1) the use of directing groups in the ring structure, 2) 

the use of non-directed strategies and 3) the use of innate functionalities in the amine 

scaffold. The use of directing groups within the ring structure has enabled the 

functionalization of several distal C–H bonds in alicyclic amines.52  Interestingly, the 

work by Maes functionalized the C5–H bond of piperidine through a ligand-directed 

approach (Figure 1.7).52C 

 

Figure 1.7. C5–H functionalization of piperidine. 

 
 

 Non-directed strategies have been developed to functionalize terminal C–H sites 

in alkanes.53  Recently this approach has been used for the remote functionalization of 

aliphatic cyclic and acyclic amines with the use of [Ir] and [Rh] catalysts.54 Our group 

has recently explored the non-directed functionalization of aliphatic amines by the 

electrophilic activation of C–H bonds (Figure 1.8).55a The use of protonated amines 

allowed the selective terminal C–H functionalization of several linear and cyclic alkyl 

amines by deactivation of reactive α-C–H bonds.  

 

Figure 1.8. Representative example of non-directed C–H functionalization of alicyclic 
amines. 

 
 

In contrast, the use of the native nitrogen atom on alicyclic amines to guide transition 

metals to selective C–H bonds has only been recently explored. Professor Matthew 

Gaunt at the University of Cambridge employed this strategy for the C–H 

functionalization of aliphatic amines at sites proximal to the nitrogen atom (Figure 1.9).56  
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Figure 1.9. Representative example on the use of native functionalities. 

 
  

Chapter 4 describes our work in the Pd-catalyzed transannular C–H arylation of 

variety of aliphatic cyclic and bicyclic amines (Figure 1.10). Our approach harnesses the 

strongly coordinating ability of the nitrogen atom to guide the Pd-catalyst to distal C–H 

bonds from the boat conformer. Chapter 5 describes the use of this transannular 

strategy for the functionalization of tropane and other azabicycloalkanes employing 

ligand additives for the Pd-catalyst. 

 

Figure 1.10. Transannular C–H arylation of alicyclic amines. 
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Chapter 2. Structure-Solubility-Electrochemistry 
Relationships of Bipyridine Chromium Complexes for 

Redox Flow Battery Applications1 

2.1 Introduction 

Redox flow batteries (RFBs) are among the most promising electrical energy 

storage devices.2 In these systems, external tanks store the energy in the form of 

soluble reduced and oxidized redox active species, thereby minimizing cross-

contamination and self-discharge. The active species are circulated through a 

conversion cell to perform charging and discharging cycles. The physical separation of 

the active species and the electrodes allows for the independent scaling of energy 

capacity and power output. The energy density (E) in a RFB dictates the amount of 

energy that the device can store in Wh/L of electrolyte solution. The energy density (E) 

is directly proportional to the number of transferable electrons (n), the solubility (Cactive) 

and the potential (Vcell) between the electro-active species (eq. 2.1).3  

                                          E α n × Cactive × Vcell × 0.5 × F                           (Eq. 2.1) 

State-of-the-art aqueous vanadium redox flow batteries have reached 

commercial and prototype applications. These flow batteries contain water-soluble 

vanadium salts of oxidation states (V2+/V3+) and (V4+/V5+) in aqueous acidic supporting 

electrolyte (HCl or H2SO4). These V-RFBs enable a storage system with one 

transferable electron per vanadium ion, high solubility of the active species, long-term 

cycling, and no detrimental capacity loss from crossover due to the use of vanadium in 

both half-cells.3a However, aqueous-based electrolytes are limited by the 

electrochemical stability window of water (~1.23 V), rendering the overall battery energy 

density to ~25 Wh/L. The low energy density of these batteries translates to the need of 
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large infrastructures that can accommodate large amounts of redox active species, 

solvent and supporting electrolyte to achieve high-energy capacity. 

Recently, a number of strategies have been employed to improve the energy 

density of these systems.2c Our focus has been to improve the battery energy density 

by utilizing non-aqueous solvents that provide a wider electrochemical stability window 

(~5 V) in combination with metal coordination complex (MCCs, Figure 2.1) based 

electrolytes that have higher cell voltages (>2 V). Optimal redox active materials for 

RFBs should possess the following properties: (1) fast and reversible redox events that 

exceed the potential window of water; (2) robust chemical and electrochemical stability; 

(3) high solubility across multiple oxidation states. At the start of our investigation, non-

aqueous RFB systems remained underexplored. Several MCCs have been developed 

bearing acetylacetonate (acac),4 dithiolate,5 cyclopentadienyl (Cp)6 and bipyridine (bpy)7 

ligand scaffolds. However, these systems fell short for non-aqueous redox active 

materials, as the majority of the complexes only undergo a single electron transfer event 

(2 redox couples accessed during battery cycling) and demonstrate very low solubility. 

Although, a ferrocene derivative demonstrates high solubility (1.7 M in alkylcarbonate 

solvent mixtures), it possesses a low oxidation potential that is within the range of 

aqueous systems.6b We reasoned that to fullfill all the requirements of ideal redox active 

material for non-aqueous RFBs, an initial survey of factors that impact solubility and 

electrochemistry of MCCs as a function of their structure could provide design principles 

for future generation electro-active materials. 

Figure 2.1. Selected examples of MCCs used in non-aqueous RFBs. 
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This chapter focuses on the design, synthesis and electrochemical evaluation of 

chromium metal complexes bearing synthetic derivatives of the bpy scaffold to provide a 

number of structure-solubility-electrochemistry relationships that can be beneficial to the 

development of new MCCs for non-aqueous redox flow batteries. Our investigation led 

to the experimental demonstration that solubility as a function of oxidation state must be 

considered during the development of new electroactive materials. Finally, our 

investigation led to the identification of a promising MCC with multiple reversible redox 

events and good solubility across multiple oxidation states and its applicability to RFBs 

was demonstrated through charge/discharge cycling.  

2.2 Results and Discussion  

Studies with Bipyridine Cr-Complexes 

 Our laboratory, in partnership with the Thompson Lab of chemical engineering at 

The University of Michigan, first sought to identify a class of redox active metal 

complexes that were readily accessible by simple synthetic routes bearing earth-

abundant transition metals. In addition, it was important that the ligands were modular, 

such that a variety of derivatives could be explored. Finally, we targeted redox active 

ligands that could serve as reservoirs for multiple electron transfer events in 

combination with the metal center. With these design criteria in mind, we selected bpy 

Cr complexes of the general class [Cr(bpy)3]3+. Cr is an earth abundant first-row metal 

and the bpy ligand can be readily synthesized, modified, and scaled. 

Cr has been previously used in other redox flow battery and electrochemical 

systems.8 In 2010, Shores and co-workers reported the synthesis and characterization 

of 4,4’-disubstituted-bipyridine chromium(III) complexes for application to 

photosensitizers.9 They demonstrated that the incorporation of an ester functional group 

at the 4,4’-position of the bipyridine ligand resulted in a chromium complex capable of 

six reversible electron transfers in acetonitrile, two more than the unsubstituted tris-

bipyridine chromium(III) analogue (Figure 2.2). Such a redox active material is a 

desirable candidate for battery applications. As a result, these ester-substituted bpy Cr 

complexes represent an ideal target for a systematic study and optimization of the 

factors affecting solubility and electrochemistry.   
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Figure 2.2. Cr-complex with electron-withdrawing ester bpy ligands and the 
corresponding cyclic voltammogram. 

 

 
 

Our work commenced by synthesizing known bpy Cr complexes in order to 

thoroughly examine their solubility. The investigation of different organic solvents to 

improve on solubility and stability of redox active species is an important strategy to 

improve the energy density of a flow battery. In general, non-aqueous solvents for flow 

batteries must fulfill the following requirements: low viscosity, high dielectric constant 

and solvating properties, large electrochemical window, wide working temperature 

range and low toxicity. These parameters have led to the use of a limited number of 

organic solvents including acetonitrile, N,N-dimethylformamide, propylene carbonate, 

and 1,2-dimethoxyethane. Our investigation focused on the use of acetonitrile as it is 

the most commonly used solvent in non-aqueous RFBs and provides a high 

electrochemical window of ~5 V and suitable conductivity for our chromium 

complexes.10 The complexes were prepared by mixing 3 equiv of the corresponding 

ligand with [Cr(CH3CN)4](BF4)2, followed by an in situ oxidation with AgBF4 to afford the 

desired Cr(III) products (Figure 2.3).9 The compounds were characterized by elemental 

analysis and high-resolution mass spectrometry. Given that solubility is an important 

aspect of the overall energy density of a flow battery system (eq. 2.1), we sought to 

develop a reliable method to analyze the solubility of these benchmark molecules. UV-

Vis spectroscopy proved to be a good method for determining the solubility of the 

complexes [Cr(L1)3]3+, [Cr(L2)3]3+, [Cr(L3)3]3+ (details of the method are provided in the 

experimental section). As shown in Figure 2.3, [Cr(L1)3]3+ and [Cr(L2)3]3+ demonstrated 

reasonable solubility (0.31 M and 0.55 M in acetonitrile, respectively); however, these 
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complexes are limited to only 4 reversible redox couples.11  In contrast, [Cr(L3)3]3+ 

possesses 6 reversible redox couples but a relative low solubility (0.13 M in acetonitrile). 

Figure 2.3. Solubility of literature Cr complexes. 

          
Given that [Cr(L3)3]3+ had limited solubility, we sought to modify the ligand 

backbone to (1) understand the factors that impact solubility and electrochemistry in 

these systems and (2) identify a Cr complex that could be used for charge/discharge 

cycling experiments.  

Synthesis of a New Library of Bpy-derived Cr(III) Complexes 

A series of ester-substituted bipyridine Cr(III) complexes was designed and 

synthesized with the aim of determining solubility and electrochemistry trends. The 

ester-bipyridine ligands were prepared in two synthetic steps from commercially 

available 4,4′-dimethylbipyridine with yields ranging from 31% to 67% (Figure 2.4 A). In 

addition, we targeted the synthesis of electron-donating alkoxy-substituted bipyridine 

Cr-complexes to gain insights on the impact of electronic effects in solubility and 

electrochemistry. As such, several 4,4′-alkoxy-substituted bipyridine ligands were 

prepared by a two-step sequence starting from the commercially available 4,4′-

dimethoxybipyridine with yields ranging from 37% and 65% (Figure 2.4 B). 
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Figure 2.4. Synthetic routes to the ester- and alkoxy-bpy ligands. 

 
These series of bpy ligands were reacted with [Cr(CH3CN)4](BF4)2 followed by 

1e– oxidation with AgBF4 to afford the desired Cr(III) complexes (Figure 2.5). The ester-

bpy Cr complexes ([Cr(L4)3]3+ to [Cr(L14)3]3+) were prepared in yields ranging from 45% 

to 99% and were characterized by elemental analysis and high-resolution mass 

spectrometry. Similarly, the alkoxy-bpy complexes ([Cr(L15)3]3+ to [Cr(L17)3]3+) were 

obtained in high yield and purity. The solid-state structure of [Cr(L15)3]3+ was utilized to 

further determine the structure of the complexes.  

Figure 2.5. Synthesis of ester- and alkoxy-bpy [Cr(Ln)3]3+ complexes. ORTEP of 
[Cr(L15)3]3+, hydrogen atoms and BF4

– counterions are omitted for clarity. 
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Solubility of the Synthetic Bpy Cr(III) Complexes 

Non-aqueous RFBs have been limited by the low conductivity of organic solvent 

electrolytes, which can result in high overpotentials. In addition, the use of these non-

aqueous solvents has limited the solubility of the electroactive species and supporting 

salts, which translates to low energy densities (eq 2.1). In the vanadium aqueous RFBs 

a typical battery includes redox active species with solubilities of ~2 M. This is because 

water at room temperature alone has a maximum concentration of 55.6 M and a high 

dielectric constant (80.1 at 23 °C)10b, enabling high ionization and solvation of salts. In 

contrast, acetonitrile at room temperature has a maximum concentration of 19.2 M and 

dielectric constant of 37.510b This intrinsically lower absolute concentration and reduced 

capability of salt ionization and solvation can limit the solubility of redox species in this 

solvent.  

  While solubility of the MCCs is a complex phenomenon, we rationalized that 

increasing the chain length and branching could enhance solubility by disrupting 

packing in the solid state.12 In addition, we reasoned that replacing nonpolar methylene 

(−CH2−) groups with more polar atoms such as oxygen or nitrogen could enhance 

solubility by increasing solvent/solute interactions. The solubility of all new Cr(III) 

complexes in acetonitrile was determined using UV-Vis spectroscopy. As discussed 

below, the solubility of these complexes ranges from 0.05 to 0.71 M.  

 

Effect of Chain Length and Branching in the Ester-Bpy Cr(III) Complexes 

First, we investigated the role of chain length in the ester-bpy complexes (Figure 

2.6). We found that upon moving from methyl ester complex ([Cr(L3)3]3+) to the butyl 

ester analog ([Cr(L5)3]3+) the solubility increased by 0.6 M (from 0.13 M versus 0.71 M, 

respectively). [Cr(L5)3]3+ was a pseudo-solid at room temperature and the addition of 

small amounts of acetonitrile readily converted the complex into a highly viscous 

solution. We hypothesized that this butyl ester complex was reaching a maximum 

solubility (equivalent to the density of the molecule). Further increasing the alkyl chain to 

the heptyl ([Cr(L7)3]3+) and octyl ester ([Cr(L8)3]3+) led to a decrease in solubility 

compared to the butyl ester (0.39 M for both MCCs). The identical solubility of these two 

complexes suggests that the observed solubility is a result of a lipophilic shell around 
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the complex, which offsets the effect of increasing chain length. We then looked at the 

effect of chain branching (Figure 2.6). Comparing the butyl ([Cr(L5)3]3+) and sec-butyl 

ester derivatives ([Cr(L6)3]3+), the sec-butyl chain showed a diminished solubility 

compared to the linear butyl ester complex (0.6 M versus 0.71 M). This result indicates 

that chain length has a more significant influence in solubility than branching in the 4-

carbon chain compounds. Similarly, the isopropyl ester derivative ([Cr(L4)3]3+) did not 

show a large increase in solubility despite the increase in chain branching compared to 

the methyl ester [Cr(L3)3]3+ (0.34 versus 0.13 M). Finally, the benzyl ester complex 

([Cr(L9)3]3+) displayed very low solubility (0.05 M in acetonitrile). We hypothesize that 

the stabilizing π−π interactions of the aryl group offset the impact of chain length and 

branching in this benzyl complex.  In addition, the low polarity of the phenyl ring could 

be contributing to the low solubility of complex [Cr(L9)3]3+. As such, we next investigated 

the impact of polar functional groups in solubility.  

Figure 2.6. Solubility of complexes with ligands L3-L9. 
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ether chain of [Cr(L11)3]3+ resulted in increased solubility of 0.54 M, compared to the 

analogous 7-membered all carbon chain complex ([Cr(L7)3]3+, 0.39 M, Figure 2.6).  

However, increasing the chain branching in the tetrahydrofuranyl complex ([Cr(L12)3]3+) 
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had minimal impact in solubility when compared to the linear ethylene glycol ether 

chains in ([Cr(L10)3]3+ and ([Cr(L11)3]3+ (0.56 M versus 0.62 M and 0.54 M, respectively).  

While we were surprised about the small changes in solubility across these polar 

functionalities, we hypothesized that these complexes were reaching an absolute 

maximum solubility. This hypothesis is further supported when comparing the four atom 

ester chains. For example, the butyl ester complex [Cr(L5)3]3+ and the ether complex 

[Cr(L10)3]3+, where the –CH2– unit is replaced for a polar –O–, have similar solubilities 

(0.71 versus 0.62 M, respectively). In addition, the incorporation of other electronegative 

groups such as CN– and CF3– resulted in solubilities within the range of the most 

soluble complexes (0.58 and 0.61 M, respectively), suggesting that our ligand 

derivatization has reached an absolute maximum solubility of approximately 0.6 to 0.7M 

in acetonitrile. 

Figure 2.7. Solubility of complexes with ligands L10-L14. 
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Figure 2.8. Solubility of the alkoxy-bpy Cr(III) complexes. 

 
Synthesis and Solubility of Cr(0) Complexes 

 During the course of our investigation, we noticed in the literature that there is 

limited information about the solubility of redox active species for non-aqueous RFBs, 

despite the fact that this is a key parameter for the development of high-energy storage 

flow batteries. In addition most of the solubility information available was on the redox 

active starting materials.6b However, this electroactive species undergoes a series of 

changes in oxidation state during the battery cycling. In our case as shown in Figure 2.9, 

the Cr(III) species will undergo 6 formal oxidation state changes. It is noted that these 

are formal oxidation states, as it has been reported by Wieghardt and co-workers that 

the Cr metal center remains Cr(III) and the redox chemistry occurs at the ligand (redox 

non-innocence).13 We hypothesized that many of these species would have drastically 

different solubilities due to their varying ionic character. In particular, the neutral species, 

which represent the active species of a fully discharged battery, were expected have a 

much lower solubility than the trications, due to the lack of ionic character. 

Figure 2.9. Redox actives species in a bpy Cr complex non-aqueous RFB.
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solubility of these air sensitive compounds was determined inside a N2 glove-box using 

UV-Vis spectroscopy. As expected, these complexes had dramatically different 

solubilities than their Cr(III) analogues (Figures 2.6 and 2.7). As shown in Figure 2.10, 

the Cr(0) complexes afforded solubilities from insoluble (i.e. below spectrometer 

detection limit) to 210 mM. The alkyl ester derivatives (those of ligands L3, L5-L7) 

showed very poor solubilities in the milimolar range. Chain length effects were observed. 

For example, moving from the methyl ester complex [Cr(L3)3]0 to the butyl ester 

[Cr(L5)3]0 the solubility improved 8-fold (0.48 versus 3.9 mM, respectively). Similar to 

the Cr(III) complexes, extending the chain length to heptyl ester resulted in a decrease 

in solubility (0.0018 mM). Additionally, chain branching led to diminished solubility when 

comparing the butyl ([Cr(L5)3]0) and iso-butyl ([Cr(L6)3]0) ester complexes (3.9 mM 

versus 0.089 mM, respectively). Finally, the benzyl ester derivative yielded solubilities 

below the spectrometer detection limit (0.0015 mM). 

Figure 2.10.  Synthesis and solubility of Cr(0) bpy complexes. 
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([Cr(L11)3]0) afforded the highest solubility from the series (210 mM). As shown in 

Figure 2.11, the most soluble complexes from the Cr(III) and Cr(0) series were those 

derived from the butyl ester ligand L5 and the methoxy(ethoxy)ethyl ligand L11, 

respectively. When comparing the solubilities at both oxidation states, it is clear that 

[Cr(L11)3]n is a particularly promising candidate for further battery experimentation. 

However, prior to advancing some of these complexes to battery cycling experiments, it 

was important to understand the effect of structural modifications on the electrochemical 

properties of the MCCs. 

Figure 2.11. Solubility comparison of [Cr(L5)3] and [Cr(L11)3] across oxidation states. 
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this chapter, peaks with a positive current response that appear when the voltage is 

swept towards the upper vertex potential correspond to oxidation reactions. When the 

voltage is swept towards the lower vertex potential, peaks with a negative current 

response correspond to reduction reactions (Figure 2.12). 

Figure 2.12. Representative cyclic voltammogram. 

 
 Our systems utilized a three-electrode system with a working electrode (glassy 

carbon disk), a counter electrode (platinum) and a reference electrode (Ag/Ag+). The 

supporting electrolyte for the experiments was TBABF4 (tetrabutyl ammonium 

tetrafluoroborate). TBABF4 is used as a conductivity-enhancing additive, and it was 

used in 10-fold excess to the concentration of the redox active species to prevent 

migration mass-transfer limitations at the double-layer electrode surface. In the present 

work, CV allowed us to obtain information about half-wave potentials, reversibility, and 

stability of chemical species. A ratio between the height of the anodic and cathodic 

peaks of a redox event close to 1 is indicative of a redox couple that is chemically 

reversible on the time scale of the CV experiment. Experimentally, the peak height 

ratios varied between 0.7 to 1.2. This is attributed to the error introduced by the 

assignment of the redox couple baseline. An irreversible peak indicates slow oxidation 

or reduction kinetics, or that upon electrochemical oxidation or reduction a subsequent 

irreversible chemical reaction occurs at the electrode surface. 

 Table 2.1 shows that the bipyridine [Cr(L1)3]3+ and dimethylbipyridine [Cr(L2)3]3+ 

complexes exhibit six well-defined redox couples across 2.3 and 2.1 V, respectively. 
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These values are consistent with those reported in the literature. As determined by the 

peak height current ratios, the first five redox couples are reversible. The 6th redox 

couple deviates significantly from unity with values of 1.62 and 2.11, respectively. 

Additionally, when the complexes are measured to potentials below –2.5 V, a new 

shoulder at –1.4 V is observed (Figure 2.13). We attribute this new peak to irreversible 

decomposition of the complexes. One possible pathway for decomposition is ligand 

shedding. This has been previously observed in literature reports.11 As such, if these 

complexes were to be used in a symmetrical non-aqueous RFB (same compound in 

both half-cells) only the first four redox couples would be reversibly accessible. As 

reported, [Cr(L3)3]3+ with the ester-substituted bipyridine shows six couples within the 

acetonitrile solvent window. The electron-withdrawing nature of the ligands shifts the 

first redox couple to more positive potentials as compared to the parent [Cr(L1)3]3+ and 

[Cr(L2)3]3+ complexes (-0.20 V versus -0.56 V and -0.72 V, respectively). The six peaks 

are reversible and stable (CV time scale) even at low negative potentials (~ 2 V vs 

Ag/Ag+).  

 

Figure 2.13. CV of [Cr(L1)3]3+ in acetonitrile. Decomposition shoulder observed at -1.4 
V when complex scanned to the most negative redox couple. CVs were taken in 0.1 M 
TBABF4 in acetonitrile. Reference is Ag/Ag+ with AgBF4 (0.01M); working electrode is 

glassy carbon disk; counter electrode is platinum wire; scan rate is 100 mV s−1; 
temperature is 23 °C. 
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Table 2.1. Potentials, peak current ratios and peak separations for [Cr(L1)3]3+, 
[Cr(L2)3]3+, [Cr(L3)3]3+ in acetonitrile. Reference is Ag/Ag+ with AgBF4 (0.01 M); 

supporting electrolyte is TBABF4 (0.1 M); working electrode is glassy carbon disk; 
counter electrode is platinum wire; scan rate is 100 mV s-1; temperature is 23 °C. 

Compound 
 

1st 2nd 3rd 4th 5th 6th 

[Cr(L1)3]3+ E1/2 (V) -0.56 -1.08 -1.65 -2.27 -2.58 -2.81 

 
ipred/ipox 1.03 1.19 0.91 1.04 1.02 1.62 

 
ΔEp (V) 0.084 0.077 0.077 0.077 0.084 0.084 

[Cr(L2)3]3+ E1/2 (V) -0.72 -1.22 -1.75 -2.34 -2.62 -2.84 

 ipred/ipox 0.94 0.98 0.94 1.04 1.05 2.11 

 ΔEp (V) 0.070 0.077 0.077 0.077 0.091 0.056 

[Cr(L3)3]3+ E1/2 (V) -0.20 -0.61 -1.14 -1.67 -1.86 -2.03 

 ipred/ipox 1.02 1.04 1.04 1.03 0.94 0.95 

 ΔEp (V) 0.070 0.070 0.077 0.063 0.056 0.056 

 
 

As shown in Table 2.2, most modifications to the ester backbone had minimal 

effect on the electrochemistry of the complexes. The complexes show an average 

voltage window of 1.8 V. The first three redox couples have a larger voltage spacing of 

0.5 V, whereas the last three couples are closer in potential. Widely spaced redox 

events are desirable for RFB applications, since the potential window of the cell (Vcell) is 

determined by the spacing between the highest and lowest potential redox couple. 

In general, high electrochemical reversibility is observed for most of the ester-bpy 

Cr(III) complexes. Therefore, these complexes should enable the design of a 

symmetrical RFB that stores a total of 3 electrons (n = 3, eq 2.1). Most notably, 

[Cr(L11)3] displays excellent electrochemical properties as shown in the cyclic 

voltammogram (Figure 2.14). This complex was of interest as it afforded the highest 

solubility across different oxidation states. A small peak at approximately –0.8 V shows 

that a side electrochemical reaction has occurred. However, the relatively small side 

reaction is negligible with respect to the dominant electrochemical processes and when 

compared to the background double-layer charging at the electrode surface. 
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Table 2.2. Potentials, peak current ratios and peak separations for the ester- and 
alkoxy-bpy Cr(III) complexes in acetonitrile. Reference is Ag/Ag+ with AgBF4 (0.01 M); 

supporting electrolyte is TBABF4 (0.1 M); working electrode is glassy carbon disk; 
counter electrode is platinum wire; scan rate is 100 mV s-1; temperature is 23 ºC. 
Compound  1st 2nd 3rd 4th 5th 6th 

[Cr(L4)3]3+ E1/2 (V) -0.17 -0.59 -1.22 -1.65 -1.85 -2.02 

 ipred/ipox 0.99 0.99 1.00 0.98 0.97 0.95 

 ΔEp (V) 0.060 0.060 0.065 0.060 0.045 0.050 

[Cr(L5)3]3+ E1/2 (V) -0.20 -0.61 -1.14 -1.67 -1.86 -2.04 

 ipred/ipox 0.99 0.96 0.99 0.94 0.97 1.02 

 ΔEp (V) 0.072 0.078 0.080 0.071 0.066 0.069 

[Cr(L9)3]3+ E1/2 (V) -0.17 -0.57 -1.11 -1.64 -1.82 -1.99 

 ipred/ipox 1.01 0.91 0.58 0.24 0.63 0.87 

 ΔEp (V) 0.078 0.078 0.070 0.083 0.066 0.072 

[Cr(L10)3]3+ E1/2 (V) -0.14 -0.57 -1.13 -1.67 -1.89 -2.07 

 ipred/ipox 0.58 1.11 0.95 1.29 0.87 0.52 

 ΔEp (V) 0.13 0.11 0.11 0.12 0.12 0.14 

[Cr(L11)3]3+ E1/2 (V) -0.17 -0.58 -1.12 -1.63 -1.82 -2.00 

 ipred/ipox 1.06 0.90 0.98 0.98 1.02 1.06 

 ΔEp (V) 0.084 0.070 0.084 0.063 0.056 0.070 

[Cr(L12)3]3+ E1/2 (V) -0.21 -0.61 -1.15 -1.68 -1.87 -2.04 

 ipred/ipox 0.99 0.96 1.01 0.95 0.96 0.99 

 ΔEp (V) 0.093 0.094 0.10 0.093 0.092 0.096 

[Cr(L13)3]3+ E1/2 (V) -0.17 -0.59 -1.12 -1.63 -1.83 -2.02 

 ipred/ipox 0.99 0.96 1.01 0.95 0.96 0.99 

 ΔEp (V) 0.14 0.13 0.13 0.14 0.14 0.14 

[Cr(L15)3]3+ E1/2 (V) -0.92 -1.36 -1.74 -2.30 -2.57 -2.80 

 ipred/ipox 0.70 0.79 0.65 0.75 0.92 0.47 

 ΔEp (V) 0.090 0.095 0.10 0.10 0.12 0.076 

[Cr(L16)3]3+ E1/2 (V) -0.94 -1.38 -1.76 -2.31 -2.57 -2.79 

 ipred/ipox 0.98 0.98 1.00 0.97 1.00 0.25 

 ΔEp (V) 0.077 0.063 0.070 0.070 0.063 0.042 
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[Cr(L17)3]3+ E1/2 (V) -0.93 -1.37 -1.76 -2.30 -2.55  

 ipred/ipox 0.87 1.03 0.90 1.01 0.73  

 ΔEp (V) 0.070 0.070 0.077 0.063 0.077  

 
Figure 2.14. CV of [Cr(L11)3]3+ in acetonitrile. CV was taken in 0.1 M TBABF4 in 

acetonitrile. Reference is Ag/Ag+ with AgBF4 (0.01M); working electrode is glassy 
carbon disk; counter electrode is platinum wire; scan rate is 100 mV s−1; temperature is 

23 °C. 

 
 

Complexes bearing sec-butyl ([Cr(L6)3]3+), heptyl ([Cr(L7)3]3+), octyl ([Cr(L8)3]3+) 

and trifluoromethyl ([Cr(L14)3]3+) chains exhibited irreversible electrochemistry (Figure 

2.15). The high anodic currents observed around –2 V could be a result of free ligand 

reduction in solution. The cyclic voltammograms of the free bpy ligands show quasi-

reversible peaks between – 2 V and – 2.5 V (Figure 2.15 D shows the CV of the free 

dimethyl ester-bpy ligand, L3). In the case of the perfluorinated complex, literature 

reports indicate that fluorinated alkyl chains decompose at highly reducing potentials.15  
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Figure 2.15. A) CV of [Cr(L6)3]3+; B) CV of [Cr(L14)3]3+; C) CV of [Cr(L8)3]3+; D) CV of 
free ligand L3. CVs were taken in 0.1 M TBABF4 in acetonitrile. Reference is Ag/Ag+ 
with AgBF4 (0.01M); working electrode is glassy carbon disk; counter electrode is 

platinum wire; scan rate is 100 mV s−1; temperature is 23 °C. 

 
Finally, the alkoxy-bpy Cr(III) complexes show an initial reduction peak at around 

–0.9 V. This shift toward negative potentials is a reflection of the electron-donating 

properties of the ether substituent. These compounds exhibit four stable quasi-

reversible redox events. Highly reducing potentials (beyond –2.5 V) resulted in 

decomposition of the complexes, as multiple small additional shoulders appeared 

(Figure 2.16 A). Additionally, the fifth peak in all the alkoxy-bpy Cr complexes showed a 

large cathodic and anodic current. The increase in current could be attributed to free 

ligand in solution. Indeed, CV of the free dimethoxy-bpy ligand (L15) shows a reversible 

redox couple around –2.6 V (Figure 2.16 B). Finally, the electron rich complex 

[Cr(L17)3]3+ exhibited only five redox couples within the voltage window of acetonitrile.  
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Figure 2.16. A) CV of [Cr(L15)3]3+; B) CV of free ligand L15. CVs were taken in 0.1 M 
TBABF4 in acetonitrile. Reference is Ag/Ag+ with AgBF4 (0.01M); working electrode is 

glassy carbon disk; counter electrode is platinum wire; scan rate is 100 mV s−1; 
temperature is 23 °C. 

 
 

Cyclic Voltammetry of Bpy Cr(0) Complexes 

Cyclic voltammetry of Cr(0) complexes showed similar electrochemical behavior 

to the Cr(III) analogues. Six reversible redox couples were observed and summarized in 

Table 2.3. The first three redox couples were widely spaced, whereas the last three 

couples were closer in voltage. Unlike the Cr(III) species, the sixth redox event showed 

a large increase in the peak current (Figure 2.17). The reason for this electrochemical 

response is unclear with the available information on these complexes. One possibility 

is that the neutral species has lower chemical stability in solution, thus leading to ligand 

shedding. In addition, the redox peaks reversibility in these complexes is reduced as 

determined by their corresponding current peak height ratio. Due to the poor solubility of 

the complexes most of the CVs were run at very low concentration, which led to low 

currents as compared to the background current. Complexes Cr(L6)3]0 , [Cr(L7)3]0 and 

[Cr(L9)3]0 ) could not be characterized by CV due to poor solubility. 
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Table 2.3. Potentials, peak current ratios and peak separations for the ester-bpy Cr(0) 
complexes in acetonitrile. Reference is Ag/Ag+ with AgBF4 (0.01 M); supporting 
electrolyte is TBABF4 (0.1 M); working electrode is glassy carbon disk; counter 

electrode is platinum wire; scan rate is 100 mV s-1; temperature is 23 ºC. 
 

Compound  1st 2nd 3rd 4th 5th 6th 

[Cr(L3)3]0 E1/2 (V) -0.18 -0.59 -1.12 -1.65 -1.83 -2.01 

 ipred/ipox 1.56 0.95 1.02 1.12 0.34 1.20 

[Cr(L5)3]0 E1/2 (V) -0.18 -0.58 -1.13 -1.66 -1.85 -2.02 

 ipred/ipox 0.99 0.83 0.98 0.96 1.08 0.96 

[Cr(L10)3]0 E1/2 (V) -0.17 -0.58 -1.12 -1.64 -1.82 -2.00 

 ipred/ipox 0.92 1.04 0.91 0.71 1.00 0.89 

[Cr(L11)3]0 E1/2 (V) -0.18 -0.58 -1.14 -1.66 -1.86 -2.01 

 ipred/ipox 1.3 1.22 1.13 1.06 0.98 1.32 

 
Figure 2.17. A) CV of [Cr(L5)3]0; B) CV of [Cr(L5)3]3+. CVs were taken in 0.1 M TBABF4 

in acetonitrile. Reference is Ag/Ag+ with AgBF4 (0.01M); working electrode is glassy 
carbon disk; counter electrode is platinum wire; scan rate is 100 mV s−1; temperature is 

23 °C. 

 
 

Summary of Solubility and Electrochemistry of Bpy Cr Complexes 

In summary, our studies enabled us to establish trends in solubility and 

electrochemistry as function of the structure of the redox active species.   

With regard to the solubility:  
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1) We identified drastic changes in solubility (~ 4 orders of magnitude) between 

two different oxidation states (Cr(III) versus Cr(0)) for MCCs bearing the same ligand 

framework.  

2) Modification of the ligand backbone in the MCCs has a major impact on 

solubility. However, the solubility of these complexes is ultimately limited by the overall 

density and molecular weight of the complex itself. Therefore, the solubility of Cr(III) 

species was found to to be relatively insensitive to chain substitution (maximum 

solubility resulted in ~0.6 M in acetonitrile).  

3) The overall charge in the metal complexes dominates solubility. The 3+ charge 

of the Cr(III) complexes generally results in much higher solubility than that of the 

neutral Cr(0) analogues.  

4) Cr(0) complexes showed that incorporation of polar functional groups (glycol 

ethers) in the ester backbone resulted in favorable increase in solubility compared to 

non-polar alkyl chains.  

With regard to electrochemistry: 

1) Changes in the structure of the MCC can impact the electrochemical 

properties and stability. The incorporation of highly aliphatic alkyl and perfluorinated 

chains resulted in irreversible electrochemical behavior and poor stability.  

2) The electronic properties of the ligand (electron-donating or electron-

withdrawing) can impact electrochemical stability, number of redox couples accessed, 

and cell voltage. In general, complexes bearing bpy ligands with electron-donating 

alkoxy substituents show lower stability and a lower number of reversible redox couples 

(four stable redox couples) over a 1.4 V window. In contrast, the ester-substituted 

complexes display enhanced electrochemical stability and six reversible redox couples 

over a 2 V window. 
 
Charge and Discharge Cycling of [Cr(L11)3]0 

The systematic study on the solubility and electrochemistry of the Cr complexes 

bearing bpy ligands demonstrated the energy density of a flow battery containing these 

complexes to be directly related to solubility and the number of reversible redox states 

of Cr(0) complexes. We selected [Cr(L11)3]0 as a promising candidate to move forward 

for charge/discharge experiments. The charge/discharge cycling in a static (non-flowing 
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cell) H-cell is an important electrochemical tool to preliminarily assess how these redox 

active species would perform in a practical RFB over long periods of time.  

The experiments were performed in collaboration with the Thompson group in 

chemical engineering. H-cell charge/discharge experiments are designed to 

approximate the conditions of a battery while requiring a smaller quantity of material. An 

image of the cell is shown in Figure 2.18.4e The charging step represents the input of 

energy in the form of electrical current to the system, while the discharge step involves 

the removal of this energy. The test can be performed under constant potential, 

constant current, or constant resistive load. Our experiments were performed in a N2-

filled glovebox under constant current in which the voltage response was recorded over 

time. A 4 electrode setup was used, with a graphite working electrode and Ag/Ag+ 

reference electrode placed in each compartment in order to record the absolute 

potential profiles at the positive and negative electrode during cycling. These 

correspond to the potentials of the redox couples observed in the cyclic voltammogram. 

A microporous plastic separator (Celgard) was employed to separate the two half cells. 

Stirring is extremely important in both compartments of the cell to minimize mass-

transfer limitations at the electrodes. A large solution resistivity is observed in these H-

cell experiments due to the large physical separation between the working and counter 

electrodes.  

 

Figure 2.18. Photograph of an H-cell employed for charge and discharge experiments. 
Each compartment contains a graphite electrode and a Ag/Ag+ electrode. The 

compartments are divided by a Celgard microporous separator. 
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In collaboration with Dr. Xingyi Yang and Dr. Krista Hawthorne from the 

Thompson lab, we performed charge/discharge experiments with [Cr(L11)3]0. Our initial 

design was to target multi-electron transfers given the attractive electrochemical profile 

of the Cr complex (6 reversible redox couples) to enable three-electron transfers 

between the electrode and metal complex. The objective was to add Cr(0) species in 

both compartments of the H-cell and allow the catholyte to undergo 3e– oxidation to 

generate Cr(III) species, while in the anolyte the species would undergo a 3e– reduction 

to generate Cr(3-) species. The discharging process is the reverse to regenerate the 

initial Cr(0) species in both half cells. As such, cutoff voltages were set to allow access 

to all redox couples. During charging, a voltage cutoff of 0 V (cathode) and –2.3 V 

(anode) was placed to avoid decomposition from accessing high potentials. During the 

discharge process a voltage cutoff of –1.2 V (cathode) and –1.35 V (anode) was placed. 

These voltage cutoffs were strategically placed based on the observed redox couples in 

the cyclic voltammogram in order to regenerate the Cr(0) complex (Figure 2.19).  

 
Figure 2.19. CV of [Cr(L11)3]0. CV was taken in 0.1 M TBABF4 in acetonitrile. Reference 

is Ag/Ag+ with AgBF4 (0.01M); working electrode is glassy carbon disk; counter 
electrode is platinum wire; scan rate is 100 mV s−1; temperature is 23 °C. 

 

  
Overall, the experiment demonstrated that when the voltage reached the 

charging cutoffs the complex underwent decomposition, as it could not be subsequently 

discharged and cycled. This is an example of the importance of not only assessing 

stability by CV but also by bulk electrolysis and/or charge/discharge cycling. The 
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reactivity of the charged bulk solution can result in irreversible decomposition that 

during a CV experiment, due to the short time period, cannot be observed. 

Given this preliminary result, we hypothesized that increasing the charging 

current could slow down degradation of the MCC as it would reside in the charged state 

for a shorter period of time. A charging current of 4.0 C enabled access to four of the six 

redox couples (two-electron transfers) as shown in Figure 2.20 A. The potential curve 

during charging exhibits two plateaus (1.1 and 1.7 V) that are indicative of two-electron 

charging. Discharge occurs smoothly without noticeable plateaus in the voltage curve to 

0 V. Each of these plateaus corresponds to a single electron transfer process and can 

be understood by analyzing the individual potential profiles at the catholyte and anolyte 

(Figure 2.20 B and C, respectively). During charging two cathodic plateaus are 

observed at –0.6 and –0.2 V. These potentials are consistent with the 1st and 2nd redox 

couples in the CV (Figure 2.19). Similarly, the anolyte shows two subtle plateaus at 

voltages of –1.7 and –1.9 V. These potentials are consistent with the 4th and 5th redox 

couples in the CV. Overall, this electrochemical behavior demonstrates the first example 

of multi-electron cycling of MCCs in a symmetrical H-cell. The average coulombic 

efficiency for the cell was 68%. The energy density after charging the cell is 0.15 W h 

L−1 at ∼27% state of charge (SOC). For the maximum [Cr(L11)3]0 concentration (0.21 

M), the total energy density would be 10.2 W h L−1 at the full state of charge (SOC).  

The charge and discharge cycling could be repeated for only ten cycles. 

Inefficiencies of this un-optimized cycling experiment can be attributed to crossover of 

the active species through the Celgard separator, causing self-discharge. Additionally, it 

is likely that ligand shedding from the metal complex is reducing the capacity of the 

overall system. This problem is consistent with observations made during the CV 

studies. Finally, corrosion of the electrodes by the chemical and electrochemical 

interactions between the actives species and supporting electrolyte could be another 

cause of degradation. Electrochemical decomposition of the redox active species is 

unlikely, as the mild voltage cutoffs protect the compound from high potentials; 

however, chemical degradation is still a possibility. 
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Figure 2.20. Charge/discharge cycling at ±0.64 mA for [Cr(L11)3]0 in a H-cell. Cycle 2 
through 5 are shown. A) the total cell voltage; B) Catholyte potential; C) Anolyte 
potential. All potential curves are referenced verus Ag/Ag+ electrode. Experiment 

performed with a graphite electrodes. Separator: Celgard 2325. Electrolyte: 0.01 M 
[Cr(L11)3]0 and 0.5 M TBABF4 in acetonitrile. 

 

 

2.3 Conclusion 

In conclusion, we have developed a series of chromium bipyridine complexes 

that undergo multiple redox events. The solubilities of these complexes can be 

significantly enhanced via ligand modification. These studies show that solubility in the 

Cr(0) state is currently the limiting factor for achieving high energy densities. However, 

this solubility can be enhanced by 4 orders of magnitude through the incorporation of 

polar substituents in the ligand backbone. These substituents have minimal impact on 

the electrochemical behavior (as measured by cyclic voltammetry). These investigations 

led to the identification of complex [Cr(L11)3]0 which was analyzed by charge/discharge 

cycling. The charge/discharge experiments are in agreement with the cyclic 

voltammetry, and demonstrate the accessibility of two redox couples at both the 

negative and positive electrodes in an H-cell. A symmetric, multielectron RFB offers 

opportunities to enhance the energy density of an RFB and to mitigate performance 

losses associated with crossover of the active species.  

The advantages associated with complexes of general structure [Cr(L11)3]0 and 

the outlined structure-solubility-electrochemistry relationship studies should prove useful 

for the development of new MCCs for non-aqueous flow batteries.  

  

2 4 6 8 10 12 14

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

C

B

V
ol

ta
ge

 v
s.

 A
g/

A
g+  [V

]

Time [hr]

A



 
	

41 

2.4 Perspective and Outlook 
Challenges remain for non-aqueous RFBs to reach commercial prototypes. To 

further advance this field, it is important to continue the design and synthesis of robust 

redox active materials based on fundamental physical, organic and inorganic, 

properties. Using a single redox active species that acts both as catholyte and anolyte 

in a symmetric battery puts many requirements on the material. In my opinion, the 

independent development of catholyte and anolyte materials is more promising. This 

enables the independent optimization of the chemistry and electrochemistry of each 

half-cell. However, the final challenge will be to prove that both molecules are 

compatible in a full cell. Additionally, advances in cell design and engineering will 

provide opportunities to minimize mass transport issues, internal cell resistance, and 

combat the inherent poor conductivity of organic electrolytes. Finally, the development 

of organic-compatible membranes that allow passage of small ions in organic solvents 

across half-cells to maintain chemical balance, while preventing cross-over of redox-

active species, will be a critical advance needed to move the field forward.  

Our laboratory continues the development of new redox active materials through 

two different strategies: 1) the development of multidentate metal complexes and 2) the 

development of small redox-active organic molecules. To this end, we have shown that 

a combination of metal centers with less propensity for ligand exchange and tridentate 

non-innocent ligands afford stable multi-electron MCCs that can be charged and 

discharged for over 200 cycles. 16  In addition, our lab continues exploring alkyl 

pyridinium and cyclopropenium cations as robust all-organic redox active materials for 

flow batteries.17 

2.5 Experimental 

Materials and Methods 

  All syntheses were conducted under an oxygen-free atmosphere in either a 

nitrogen filled glovebox or using standard Schlenk line techniques unless stated 

otherwise. Dichloromethane and diethyl ether were purified using an Innovative 

Technologies solvent purification system consisting of a copper catalyst, 

activated alumina, and molecular sieves. Triethylamine was purified by distillation 
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from CaH2. The molecules [2,2’-bipyridine]-4,4’-dicarboxylic acid (1), 18  [2,2’-

bipyridine]-4,4’-dihydroxyl (2), 19  4,4’-dimethylester-2,2’-bipyridine (L3), 20 

tetrakis(acetonitrile)chromium (II) tetrafluoroborate (3), 21  tris(2,2'-

bipyridine)chromium(III) tetrafluoroborate ([Cr(L1)3]3+)9 and tris(4,4'-

dimethylester-2,2'-bipyridine)chromium(III) tetrafluoroborate ([Cr(L2)3]3+)9 were 

prepared according to published procedures. All remaining reagents were 

purchased from commercial sources and used as received. NMR spectra were 

obtained on Varian VNMRs 700, Varian VNMRs 500, Varian Inova 500, or Varian 

MR400 spectrometers. 1H and 13C chemical shifts are reported in parts per 

million (ppm) relative to tetramethylsilane (Si(CH3)4), with the residual solvent 

peak used as an internal reference. NMR multiplicities are reported as follows: 

singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), broad signal (br). 

Coupling constants (J) are reported in hertz (Hz). Infrared (IR) spectroscopy on 

the Cr3+ complexes was performed with a Perkin-Elmer Spectrum BX FT-IR 

spectrometer using an ATR attachment. IR spectroscopy on the Cr0 complexes 

was performed with a Thermo Scientific Nicolet iS-10 spectrometer using KBr 

pellets. Melting points were determined with a Mel-Temp 3.0, Laboratory Devices 

Inc, USA instrument. Mass spectral data was obtained on a Micromass magnetic 

sector mass spectrometer in electrospray ionization mode. Elemental analyses 

were carried out at Atlantic Microlab in Norcross, GA. UV-Vis absorption data for 

Cr3+ complexes was collected on a Shimadzu UV-1601 UV-VIS spectrometer. 

UV-Vis absorption data for Cr0 complexes was collected on an Implen 

NanoPhotometer® P 300 UV/Vis spectrophotometer. Centrifugation was 

performed on a Sorval ST 16 centrifuge from ThermoScientific.  

Electrochemical Analysis 

All electrochemical analyses were carried out in an argon-filled or nitrogen-filled 

glovebox (MBraun). The supporting electrolyte was electrochemical grade 

tetrabutylammonium tetrafluoroborate (Sigma-Aldrich). The solvent was acetonitrile 

(Sigma-Aldrich, anhydrous 99.8%). Cyclic voltammetry was performed with an Autolab 

PGSTAT302N Potentiostat/Galvanostat (Ecochemie, Netherlands) and a 600D 



 
	

43 

Potentiostat (CH Instruments, US). Cyclic voltammetry was carried out in a three 

electrode electrochemical cell, consisting of a glassy carbon disk working electrode 

(0.07 cm2, BASi), a Ag/Ag+ quasi-reference electrode (BASi) with 0.01 M AgBF4 (Sigma-

Aldrich) in acetonitrile separated by a glass frit, and a platinum wire counter electrode 

(23 cm, ALS). The glassy carbon disk electrode was polished using micron aluminum 

oxide polishing paper (9 micron and 0.3 micron, Fiber Instrument) and then sonicated in 

deionized water. All experiments were ran at a scan rate of 100 mV s-1 in an acetonitrile 

electrolyte containing 10 mM chromium complex and 0.1 M TBABF4, unless otherwise 

noted. Charge/discharge measurements were carried out with a Maccor 4000 Series 

Battery Tester in an H-cell. The H-cell was purchased from Adam’s & Chittenden. A 

Celgard 2325 separator was soaked in 0.5 M TBABF4 in acetonitrile for 24 h prior to cell 

assembly. For Cr complexes: The electrolyte contained 0.01 M chromium complex and 

0.5 M TBABF4. Cells were charged at a current of 0.64 mA, with voltage cutoffs set on 

both the anode and cathode, referenced to a Ag/Ag+ reference electrode placed in each 

side of the cell. The voltage cutoff during charging for the cathode was 0 V, and the 

voltage cutoff for the anode was –1.35 V. A charge limit of 0.001 Ah (4.0 Coulombs) 

was placed on the cell to protect the complex from overcharging. The discharge 

conditions were similar, with a discharge current of 0.64 mA, and voltage cutoffs of –1.2 

V and –1.35 V for the cathode and anode, respectively.  

General Procedures 

 
General Procedure 1: An oven dry three-necked flask was charged with [2,2’-

bipyridine]-4,4’-dicarboxylic acid (1) (1.0 g, 4.09 mmol, 1.0 equiv), which was 

suspended in dry dichloromethane (30 mL). Triethylamine (3.44 mL, 24.54 mmol, 6.0 

equiv) and DMF (50 uL, 0.65 mmol, 0.16 equiv) were subsequently added, followed by 

dropwise addition of oxalyl chloride (12.28 mmol, 3 equiv) under a nitrogen atmosphere. 

The reaction mixture was vigorously stirred for 6 h, then the corresponding alcohol 
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O
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i) Oxalyl Chloride
Et3N, DMF, DCM 

6h, RT

ii) ROH, reflux, overnight N N

O
RO

O
OR

(1) (Ln)



 
	

44 

(12.28 mmol, 3.0 equiv) was added. The reaction mixture was refluxed for 12 h or until 

completion as indicated by thin layer chromatography. The reaction mixture was cooled 

to room temperature, a small amount of silica gel or basic aluminum oxide Brockmann I 

was added, and the volatiles were removed in vacuo. The ligands were then purified as 

described below.  

Caution: Addition of the highly corrosive oxalyl chloride leads to an exothermic reaction 

and evolution of gasses. The reactions should remain under nitrogen atmosphere in a 

well-ventilated fume-hood.  

 
General Procedure 2: An oven dried Schlenk flask was charged with [2,2’-bipyridine]-

4,4’-dihydroxyl (2) (1.0 g, 5.31 mmol, 1.0 equiv) and anhydrous K2CO3 (4.41 g, 31.9 

mmol, 6.0 equiv). This mixture was suspended in dry DMF (80 mL, 0.07 M) and heated 

to 80 °C. After 1 h, the alkyl bromide (11.7 mmol, 2.2 equiv) and KI (1.94 g, 11.7 mmol, 

2.2 equiv) were added. The resulting mixture was vigorously stirred overnight (~14 h) at 

80 °C. The reaction was cooled to room temperature, and the solvent was removed 

under reduced pressure. The solid residue was suspended in chloroform (50 mL) and 

washed with water (4 × 25 mL). The organic layer was dried over anhydrous sodium 

sulfate, filtered and concentrated in vacuo. The ligands were purified as described 

below. 

Caution: Handling of highly toxic alkyl halides should be performed inside a well-

ventilated fume-hood. 

 

N N

HO OH
i) K2CO3, DMF, 80 oC, 1h

ii) RBr, KI, 80 oC, overnight N N

RO OR

(2) (Ln)
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General Procedure 3: Synthesis of [Cr(L)3]3+ complexes. In a nitrogen-filled 

glovebox, a Schlenk tube containing a suspension of the appropriate bipyridine ligand 

(1.39 mmol, 3.3 equiv) in acetonitrile (14 mL, 0.03 M) was charged with 

[Cr(CH3CN)4](BF4)2 (3) (0.16 g, 0.42 mmol, 1.0 equiv). The reaction mixture was 

vigorously stirred for 15 min until a dark green (for ester-bipyridine complexes) or a dark 

purple (for alkoxy-bipridine complexes) solution formed. Silver tetrafluoroborate (0.08 g, 

0.42 mmol, 1.0 equiv) was added in one portion, and the reaction mixture was stirred for 

10 min to afford a light yellow/green solution and silver solid. The reaction was removed 

from the glovebox, and the solid was separated by centrifugation. The supernatant was 

decanted, concentrated, and filtered through glass fiber to remove any remaining silver 

solid. Each complex was further purified as described below. 

 
General Procedure 4: Synthesis of [Cr(L)3]0 Complexes. The neutral Cr0 complexes 

were synthesized using a modification of a literature procedure.1 A Schlenk flask was 

charged with the appropriate bipyridine ligand (2.22 mmol, 3 equiv), Cr(CO)6 (0.74 

mmol, 1 equiv), and mesitylene (36 mL, 0.02 M solution in Cr(CO)6). The reaction 

mixture was degassed for 30 min by purging with N2, and then refluxed at 180 ºC under 
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an inert atmosphere overnight. The dark purple mixture was allowed to cool to room 

temperature, and the mesitylene was removed in vacuo with heating. The remaining 

purple solid was dried in vacuo at 60 ºC for 12 h to afford the desired complex as an air-

sensitive dark purple solid. 

Caution: While Cr(VI) is the most toxic oxidation state for chromium, the chromium (III) 

and (0) bipyridine complexes should be handled with appropriate personal protective 

equipment in a well-ventilated hood or inside of an inert atmosphere glove-box.  

 

General Procedure 5: Solubility Determination of [Cr(L)3]3+ Complexes. Stock 

solutions (2.0 mM) of each complex were prepared in acetonitrile, in triplicate, from 

which standard solutions of 0.5 mM, 1.0 mM, and 1.5 mM concentration were prepared 

by sequential dilution. A UV-Vis spectrum of the 2.0 mM stock solution was recorded 

and used to determine a suitable wavelength for absorbance measurements. 

Absorbances of the standard solutions were then measured at the determined 

wavelength and used to prepare an absorbance versus concentration calibration curve.  

Saturated solutions were then prepared by portion-wise addition of the desired 

compound to 300 µL of acetonitrile, with stirring, until a persistent suspension remained. 

The solution was filtered through cotton wool to remove any undissolved material, and 

three aliquots were diluted in acetonitrile to afford absorbances within the range of the 

calibration curve. Solubility studies were performed on the benchtop. 

 

General Procedure 6: Solubility Determination of [Cr(L)3]0 Complexes. Stock 

solutions (0.2 mM) of each complex were prepared in acetonitrile, in triplicate, from 

which standard solutions of 0.15 mM, 0.1 mM and 0.05 mM concentration were 

prepared by sequential dilution. A UV-vis spectrum of the 0.2 mM stock solution was 

recorded and used to determine a suitable wavelength for absorbance measurements. 

Absorbances of the standard solutions were then measured at the determined 

wavelength and used to prepare an absorbance versus concentration calibration curve. 

Saturated solutions were then prepared by portion-wise addition of the desired 

compound to 1 mL of acetonitrile, with stirring, until a persistent suspension remained. 

The solution was filtered through glass fiber to remove any undissolved material, and 
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three aliquots were diluted in acetonitrile to afford absorbances within the range of the 

calibration curve. These solubility studies were performed inside a nitrogen-filled 

glovebox. 

 

General Procedure 6a: Solubility Approximation of [Cr(L6)3]0 and [Cr(L7)3]0. Due to 

the low solubility of the metal complexes [Cr(L6)3]0 and [Cr(L7)3]0, a modified procedure 

was employed. Saturated solutions were prepared in acetonitrile with vigorous stirring 

until a persistent suspension resulted. The solution was filtered through glass fiber to 

remove any undissolved material. The filtered solution was analyzed without any further 

dilution by UV-vis spectrometer. The solubility is obtained using Beer-Lambert’s 

equation (see example for Cr3+ below). The highest and lowest molar extinction 

coefficients for analogous Cr0 complexes (10,000 L mol-1 cm-1 and 4,000 L mol-1 cm-1, 

respectively) are employed, affording an upper and lower solubility value with a path 

length cuvette of 1 cm, through which the average solubility is obtained. 

 

Synthesis and Characterization 

Synthesis of Ligands 

 
L4. Ligand L4 was synthesized from iso-propanol (1.10 g, 1.41 mL, 18.43 mmol, 3 

equiv) following General Procedure 1. Purification via flash column chromatography 

(basic aluminum oxide Brockmann I, 1:1 EtOAc:Hex) furnished a red solid that was 

further recrystallized from CHCl3/MeOH (1:1) to afford L4 as a light yellow solid (1.10 g, 

3.35 mmol, 55% yield).  

Rf: 0.77 (basic Al2O3, 1:1 EtOAc:Hex) 

IR (thin film, cm-1): 2989, 1716, 1593, 1557, 1462, 1354, 1282, 1238, 1085, 916, 762. 

MP: 116-117 °C 

HRMS: ESI+ (m/z): [M+H]+ calcd. for C18H21N2O4: 329.1496; found: 329.1490. 

N N

O
O

O
O
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NMR: 1H NMR (CDCl3, 700 MHz): � 8.91 (app s, 2H), 8.85 (dd, J = 0.8, 4.8 Hz, 2H), 

7.89 (dd, J = 1.6, 4.8 Hz, 2H), 5.31 (septet, J = 6.4, 2H), 1.41 (d, J = 6.4 Hz, 12H). 13C 

NMR (CDCl3, 175.97 MHz): � 164.6, 156.5, 150.0, 139.3, 123.1, 120.5, 69.6, 21.8. 

 

 

 

 

L5. Ligand L5 was synthesized from n-butanol (1.4 g, 1.7 mL, 18.43 mmol, 3 equiv) 

following General Procedure 1. Purification via flash column chromatography (basic 

aluminum oxide Brockmann I, 1:1 EtOAc:Hex) furnished an orange solid that was 

further recrystallized from CHCl3/MeOH (1:1) to afford L5 as a white solid (1.10 g, 3.09 

mmol, 50% yield).  

Rf: 1.00 (basic Al2O3, 1:1 EtOAc:Hex) 

IR (thin film, cm-1): 2959, 1716, 1557, 1458, 1364, 1288, 1246, 1142, 959, 763. 

MP: 104-106 °C 

HRMS: ESI+ (m/z): [M+H]+ calcd. for C20H25N2O4, 357.1809; Found, 357.1814. 

NMR: 1H NMR (CDCl3, 400 MHz): � 8.94 (dd, J = 0.8, 1.6 Hz, 2H), 8.87 (dd, J = 0.8, 

5.2 Hz, 2H), 7.91 (dd, J = 1.6, 5.2 Hz, 2H), 4.40 (t, J = 6.8 Hz, 4H), 1.80 (m, 4H), 1.50 

(m, 4H), 1.00 (t, J = 7.6 Hz, 6H). 13C NMR (CDCl3, 175.97 MHz): � 165.4, 156.7, 150.2, 

139.1, 123.3, 120.7, 65.9, 30.8, 19.3, 13.9. 

 

 
L6. Ligand L6 was synthesized from racemic sec-butanol (1.37 g, 1.7 mL, 18.43 mmol, 

3 equiv) following General Procedure 1. Purification via column chromatography (silica 

gel, 100% Hexanes to 2:3 EtOAc:Hex) afforded L6 as a white solid (1.2 g, 3.37 mmol, 

55% yield).  

Rf: 0.76  (silica gel, 2:3 EtOAc:Hex) 
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IR (thin film, cm-1): 2976, 1716, 1700, 1558, 1281, 1254, 1109, 889, 756, 722. 

MP: 41-43 °C 

HRMS: ESI+ (m/z): [M+H]+ calcd. for C20H25N2O4: 357.1809 ; found: 357.1809. 

NMR: 1H NMR (CDCl3, 700 MHz): � 8.93 (app br s, 2 H), 8.86 (d, J = 4.9 Hz, 2H), 7.91 

(dd, J = 1.4, 4.9 Hz, 2H), 5.16 (sextet, J = 6.3 Hz, 2H), 1.81 (app septet, J = 7 Hz, 2H), 

1.71 (app septet, 2H), 1.38 (d, J = 6.3 Hz, 6H), 0.99 (t, J = 6.3 Hz, 6H). 
13C NMR (CDCl3, 175.95 MHz): � 164.9, 156.7, 150.2, 139.6, 123.4, 120.7, 74.4, 29.0, 

19.7, 10.0. 

 

 
L7. Ligand L7 was synthesized by refluxing [2,2’-bipyridine]-4,4’-dicarboxylic acid (S1) 

(2.5 g, 10.24 mmol) in n-heptanol (75.3 g, 92.0 mL, 0.65 mol) with catalytic sulfuric acid 

(1 mL) for 2 days. The reaction mixture was cooled to room temperature and the excess 

alcohol was removed by vacuum distillation. The residue was diluted in DCM (100 mL) 

and was extracted with 2M NaOH (3 x 25 mL) and water (20 mL). The aqueous layer 

was washed with DCM (2 x 25 mL). The combined organic extracts were dried over 

Na2SO4, filtered, and concentrated in vacuo. The residue was purified via column 

chromatography (silica gel, 100% Hexanes to 2:3 EtOAc:Hex) affording a colorless oil 

that was dried in vacuo overnight. A white solid formed and was collected on a fritted 

filter and washed with cold MeOH (3 x 5 mL). The resulting solid was then recrystallized 

from hot diethyl ether and acetonitrile to afford L7 as a white solid (2.75 g, 6.24 mmol, 

61% yield).  
Rf: 0.84 (silica gel, 2:3 EtOAc:Hex) 

IR (thin film, cm-1): 2928, 2856, 1724, 1558, 1472, 1363, 1286, 1252, 1139, 953, 762, 

721. 

MP: 55-56 °C 

HRMS: ESI+ (m/z): [M+H]+ calcd. for C26H37N2O4: 441.2748 ; found: 441.2756. 

N N

O
O

O
O 55



 
	

50 

NMR: 1H NMR (CDCl3, 700 MHz): � 8.94 (app br s, 2H), 8.86 (d, J = 4.9 Hz, 2H), 7.90 

(dd, J = 1.4, 4.9 Hz, 2H), 4.39 (t, J = 7 Hz, 4H), 1.81 (quintet, J = 7 Hz, 4H), 1.44 

(quintet, J = 7 Hz, 4H), 1.37 (quintet, J = 7 Hz, 4H), 1.33-1.28 (multiple peaks, 8H), 0.89 

(t, J = 7 Hz, 6H). 13C NMR (CDCl3, 176 MHz): � 165.4, 156.7, 150.2, 139.1, 123.4, 

120.7, 66.2, 31.9, 29.1, 28.8, 26.1, 22.7, 14.2. 

 
L8. Ligand L8 was synthesized from n-octanol (3.20 g, 3.87 mL, 24.57 mmol, 3 equiv) 

following General Procedure 1. Purification via column chromatography (silica gel, 1:4 

EtOAc:Hex) afforded L8 as a white solid (1.65 g, 3.52, 43% yield).  

Rf: 0.46 (silica gel, 1:4 EtOAc:Hex) 

IR (thin film, cm-1): 2958, 2918, 2853, 1724, 1557, 1474, 1285, 1254, 1140, 1128, 951, 

763, 722. 

MP: 44-45 °C 

HRMS: ESI+ (m/z): [M+H]+ calcd. for C28H41N2O4: 469.3061; found: 469.3065. 

NMR: 1H NMR (CDCl3, 700 MHz): � 8.96 (app br s, 2H), 8.87 (br d, J = 4.9 Hz, 2H), 

7.91 (dd, J = 1.4, 4.9 Hz, 2H), 4.39 (t, J = 7 Hz, 4H), 1.81 (apparent quintet, J = 7.2 Hz, 

4H), 1.45 (quintet, J = 7.5 Hz, 4H), 1.39-1.25 (multiple peaks, 16 H), 0.88 (t, J = 7.0 Hz, 

6H). 13C NMR (CDCl3, 175.95 MHz): � 165.3, 156.5, 150.2, 139.3, 123.4, 120.8, 66.3, 

31.9, 29.4, 29.3, 28.8, 26.1, 27.8, 14.2. 

 
L9. Ligand L9 was synthesized from benzyl alcohol (2.66 g, 2.55 mL, 24.6 mmol, 3 

equiv) following General Procedure 1. Purification via column chromatography (basic 

aluminum oxide, 3:1 EtOAc:Hex) afforded L9 as a white solid (1.98 g, 4.67, 57% yield).  

Rf: 0.9 (basic aluminum oxide, 3:1 EtOAc:Hex) 

IR (thin film, cm-1): 1712, 1590, 1558, 1360, 1282, 1242, 1128, 911, 760, 747. 

MP:  99-100 °C 
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HRMS: ESI+ (m/z): [M+H]+ calcd. for C26H21N2O4: 425.1496 ; found: 425.1508. 

NMR: 1H NMR (CDCl3, 700 MHz): � 8.97 (app. br s, 2H), 8.85 (dd, J = 4.9, 1.4 Hz, 2H), 

7.92 (dd, J = 4.9, 1.4 Hz, 2H), 7.48 (d, J = 7 Hz, 4H), 7.41 (t, J = 7 Hz, 4H), 7.37 (d, J = 

7 Hz, 2H), 5.44 (s, 4H). 13C NMR (CDCl3, 175.95 MHz): � 165.2, 156.6, 150.2, 138.8, 

135.5, 128.8, 128.73, 128.66, 123.5, 120.8, 67.7. 

 
L10. Ligand L10 was synthesized from 2-methoxyethanol (0.965 g, 1 mL, 12.28 mmol, 

3 equiv) following General Procedure 1. Purification via flash column chromatography 

(silica gel, 4:1 EtOAc:Hex) afforded L10 as a white solid (0.53 g, 1.47 mmol, 36% yield).  

Rf: 0.54 (silica gel, 4:1 EtOAc:Hex) 

IR (thin film, cm-1): 2903, 1725, 1555, 1458, 1373, 1360, 1283, 1253, 1119, 1024, 867, 

759. 

MP: 96-97 °C 

HRMS: ESI+ (m/z): [M+H]+ calcd. for C18H21N2O6: 361.1394; found: 361.1392. 

NMR: 1H NMR (CDCl3, 400 MHz): � 8.97 (app br s, 2H), 8.86 (br d, J = 4.8 Hz, 2H), 

7.92 (dd, J = 4.8, 1.6 Hz, 2H), 4.56 (m, 4H), 3.77 (m, 4H), 3.44 (s, 6H).  
13C NMR (CDCl3, 100.71 MHz): � 165.3, 156.7, 150.2, 138.7, 123.5, 120.8, 70.4, 64.9, 

59.2.  

 

 

 

 

 

L11. Ligand L11 was synthesized from 2-(2-methoxyethoxy)ethanol (2.97 g, 2.9 mL, 

24.57 mmol, 3 equiv) following General Procedure 1. Purification via flash column 

chromatography (basic aluminum oxide Brockmann I, 3:1 EtOAc/Hex to 100 % EtOAc) 

afforded L11 as a white solid (1.30 g, 2.90 mmol, 37% yield).  

Rf: 0.71 (basic aluminum oxide, 100% EtOAc) 
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IR (thin film, cm-1): 2891, 1726, 1556, 1460, 1249, 1108, 1027, 853, 760, 691. 

MP: 81-83°C 

HRMS: ESI+ (m/z): [M+H]+ calcd. for C22H29N2O8: 449.1918; found: 449.1917. 

NMR: 1H NMR (CDCl3, 400 MHz): � 8.97 (app br s, 2H), 8.86 (br d, J = 4.8, 2H), 7.92 

(dd, J = 4.8, 1.6 Hz, 2H), 4.57 (m, 4H), 3.89 (m, 4H) 3.72 (m, 4H), 3.59 (m, 4H), 3.39 (s, 

6H). 13C NMR (CDCl3, 100.71 MHz): � 165.3, 156.6, 150.2, 138.8, 123.5, 120.9, 72.1, 

70.8, 69.2, 65.0, 59.3. 

 

 

 

 

L12. Ligand L12 was synthesized from racemic tetrahydrofurfuryl alcohol (1.89 g, 1.79 

mL, 18.43 mmol, 3 equiv) following General Procedure 1. Purification via flash column 

chromatography (basic aluminum oxide Brockmann I, 3:1 EtOAc:Hex) afforded L12 as a 

light yellow solid (1.94 g, 4.70 mmol, 77% yield).  

Rf: 0.62 (basic aluminum oxide, 3:1 EtOAc:Hex) 

IR (thin film, cm-1): 2875, 1717, 1700, 1654, 1558, 1368, 1290, 1256, 1080, 765. 

MP: 103-105 °C 

HRMS: ESI+ (m/z): [M+H]+ calcd. for C22H25N2O6: 413.1707; found: 413.1706. 

NMR: 1H NMR (CDCl3, 700 MHz): � 8.96 (dd, J = 1.5, 0.7 Hz, 2H), 8.85 (dd, J = 4.9, 

0.7 Hz, 2H), 7.91 (dd, J = 4.9, 1.6 Hz, 2H), 4.43 (dd, J = 11.3, 3.7 Hz, 2H), 4.35 (dd, J = 

11.3, 6.7 Hz, 2H), 4.30 (app dq, J = 6.9, 3.7 Hz, 2H), 3.93 (app td, J = 8.3, 6.8 Hz, 2H), 

3.84 (ddd, J = 8.2, 7.5, 6.1 Hz, 2H), 2.10 (dddd, J = 12.5, 8.3, 7.2, 5.3 Hz, 2H), 2.02-

1.91 (multiple peaks, 4H), 1.73 (app tdd, J = 12.4, 8.6, 7.1 Hz, 2H). 13C NMR (CDCl3, 

175.95 MHz): � 165.3, 156.6, 150.2, 138.7, 123.4, 120.8, 76.5, 68.7, 67.8, 28.3, 25.9.  

 

 

 

 

L13. Ligand L13 was synthesized from 3-hydroxypropionitrile (0.87 g, 0.84 mL, 12.28 

mmol, 3 equiv) following General Procedure 1. Purification via flash column 
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chromatography (silica gel, 4:1 EtOAc:Hex). The residue was washed with 0.3 M 

potassium carbonate (3 × 50 mL) to afford L13 as a pale yellow solid (0.65 g, 1.86 mmol, 

45% yield). 

Rf: 0.54 (silica gel, 4:1 EtOAc:Hex) 

IR (thin film, cm-1): 1718, 1554, 1381, 1362, 1257, 1001, 858, 757, 691. 

MP: 153-155 °C 

HRMS: ESI+ (m/z): [M+H]+ calcd. for C18H15N4O4, 351.1088; found, 351.1092. 

NMR: 1H NMR (CDCl3, 400 MHz): � 8.98 (app br s, 2H), 8.90 (br d, J = 5.2 Hz, 2H), 

7.93 (dd, J = 4.8, 1.6 Hz, 2H), 4.62 (t, J = 6.4 Hz, 4H), 2.91 (t, J = 6.4 Hz, 4H). 13C NMR 

(CDCl3, 125.75 MHz): � 164.7, 156.6, 150.5, 137.7, 123.5, 120.7, 116.6, 60.1, 18.3.  

 

 

 

 

L14. Ligand L14 was synthesized from trifluoroethanol (1.24 g, 0.90 mL, 12.28 mmol, 3 

equiv) following General Procedure 1. Purification via flash column chromatography 

(silica gel, 1:2 EtOAc:Hex) afforded L14 as a light pink solid (0.85 g, 2.08 mmol, 51% 

yield).  

Rf: 0.46 (silica gel, 1:2 EtOAc:Hex) 

IR (thin film, cm-1): 2968, 1738, 1594, 1418, 1268, 1159, 960, 759, 704. 

MP: 137-138 °C 

HRMS: ESI+ (m/z): [M+H]+ calcd. for C16H11F6N2O4: 409.0618; found: 409.0618. 

NMR: 1H NMR (CDCl3, 400 MHz): � 9.01 (dd, J = 1.6, 0.8 Hz, 2H), 8.92 (dd, J = 4.8, 

0.8 Hz, 2H), 7.94 (dd, J = 4.8, 1.6 Hz, 2H), 4.78 (q, J = 8.4 Hz, 4H). 13C NMR (CDCl3, 

175.95 MHz): � 163.6, 156.4, 150.3, 136.9, 123.4, 122.8 (q, J = 277 Hz), 120.7, 61.3 (q, 

J = 37 Hz). 19F NMR (CDCl3, 376.87): � –73.50 (t, J  = 8.8 Hz).  
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L16. Ligand L16 was synthesized from n-bromobutane (0.41 g, 0.32 mL, 2.93 mmol, 2.2 

equiv) following General Procedure 2. Purification of the off-white residue via 

recrystallization from CHCl3:CH3OH (v/v 1:1) afforded L16 as a white solid (0.30 g, 1.00 

mmol, 75% yield). 

IR (thin film, cm-1): 2953, 2872, 1561, 1459, 1300, 1242, 1003, 841, 745. 

MP: 75-76 °C 

HRMS: ESI+ (m/z): [M+H]+ calcd. for C18H25N2O2: 301.1911; found: 301.1915. 

NMR: 1H NMR (CDCl3, 500 MHz): � 8.45 (d, J = 5.5 Hz, 2H), 7.95 (d, J = 2.5 Hz, 2H), 

6.82 (dd, J = 5.5, 2.5 Hz, 2H), 4.13 (t, J = 6.5 Hz, 4H), 1.80 (app quintet, J = 7.5 Hz, 4H), 

1.51 (app sextet, J = 7.5 Hz, 4H), 0.98 (t, J = 7.5 Hz, 6H). 13C NMR (CDCl3, 100.71 

MHz): � 166.3, 158.0, 150.2, 111.5, 106.8, 67.9, 31.2, 19.3, 14.0. 

 
L17. Ligand L17 was synthesized from 1-bromo-2-(2-methoxyethoxy)ethane (0.75 g, 

0.55 mL, 4.09 mmol, 2.2 equiv) following General Procedure 2. Purification of the off-

white residue via column chromatography (basic aluminum oxide Brockmann I, 4:1 

EtOAc:Hex) afforded L17 as a white solid (0.32 g, 0.82 mmol, 43% yield). 

Rf: 0.4 (basic aluminum oxide, 4:1 EtOAc:Hex) 

IR (thin film, cm-1): 2878, 1584, 1563, 1471, 1443, 1297, 1242, 1103, 823. 

MP: 48-50°C 

HRMS: ESI+ (m/z): [M+H]+ calcd. for C20H29N2O6: 393.2020; found: 393.2026. 

NMR: 1H NMR (CDCl3, 500 MHz): � 8.45 (d, J = 5.5 Hz, 2H), 7.98 (d, J = 2.5 Hz, 2H), 

6.86 (dd, J = 5.5, 2.5 Hz, 2H), 4.30 (m, 4H), 3.90 (m, 4H), 3.72 (m, 4H), 3.57 (m, 4H), 

3.38 (s, 6H). 13C NMR (CDCl3, 100.71 MHz): � 165.9, 157.9, 150.3, 111.6, 106.8, 72.1, 

71.0, 69.5, 67.6, 59.2. 
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Synthesis of [Cr(L)3]3+ Complexes 

 
[Cr(L2)3]3+. This complex was synthesized from 4,4’-dimethyl-2,2’-bipyridine (0.50 g, 

2.71 mmol) and 3 (0.32 g, 0.82 mmol) following General Procedure 3. The yellow 

solution was concentrated in vacuo and mixed with diethyl ether (200 mL), resulting in 

the precipitation of a yellow solid and a brown oil. The supernatant was decanted, and 

the remaining material was then dissolved in dichloromethane (10 mL) and precipitated 

with diethyl ether (200 mL). The bright yellow solid was collected by filtration, washed 

with diethyl ether (2 × 100 mL), and dried overnight in vacuo to afford [Cr(L2)3]3+ as a 

bright yellow powder (0.44 g, 0.52 mmol, 63% yield). 

IR (thin film, cm-1): 1618, 1555, 1029, 836. 

MP: 181 °C (Dec.)  

HRMS: ESI+ (m/z): [M – 3BF4]3+ calcd. for C36H36N6Cr: 201.4130; found: 201.4128. 

Elemental Analysis: Analysis (calcd., found for C36H36N6CrB3F12(CH2Cl2)0.5): C (48.30, 

48.52), H (4.11, 4.49), N (9.26, 9.39). 

 

 
[Cr(L4)3]3+. This complex was synthesized from L4 ( 0.90 g, 2.74 mmol) and 3 (0.32 g, 

0.83 mmol) following General Procedure 3. The yellow solution was concentrated in 

vacuo and the resulting residue was recrystallized from CH3CN:Et2O (v/v 1:10) to afford 
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a mixture of a yellow powder and a brown oily residue. The supernatant was decanted, 

and the remaining material was dissolved in dichloromethane (10 mL) and precipitated 

with diethyl ether (100 mL). The resulting yellow powder was collected by filtration, dried 

overnight in vacuo to afford [Cr(L4)3]3+ as a bright yellow solid (0.68 g, 0.51 mmol, 61% 

yield). 

IR (thin film, cm-1): 1719, 1559, 1261, 1029, 763. 

MP: 189 °C (Dec.) 

HRMS: ESI+ (m/z): [M – 3BF4]3+ calcd. for C54H60N6O12Cr: 345.4553; found: 345.4558. 

Elemental Analysis: Analysis (calcd., found for C54H60N6O12CrB3F12(CH2Cl2)0.5): C 

(48.85, 48.67), H (4.59, 4.98), N (6.27, 6.02). 

 

 
[Cr(L5)3]3+. This complex was synthesized from L5 ( 1.00 g, 2.81 mmol) and 3 (0.33 g, 

0.85 mmol) following General Procedure 3. The yellow/green solution was 

concentrated in vacuo, and the residue was recrystallized from CH3CN:Et2O (v/v 1:10). 

The supernatant was decanted, and the resulting yellow solid was washed with diethyl 

ether (3 × 50 mL) and dried in vacuo overnight to afford [Cr(L5)3]3+ as a bright yellow 

solid (0.53 g, 0.38 mmol, 45% yield). 

IR (thin film, cm-1): 1726, 1407, 1233, 1029, 762. 

MP: 167 °C (Dec.) 

HRMS: ESI+ (m/z): [M – 3BF4]3+ calcd. for C60H72N6O12Cr: 373.4866; found: 373.4870. 

Elemental Analysis: Analysis (calcd., found for C60H72N6O12CrB3F12): C (52.16, 51.73), 

H (5.25, 5.24), N (6.08, 6.14). 
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[Cr(L6)3]3+. This complex was synthesized from L6 ( 0.53 g, 1.49 mmol) and 3 (0.19 g, 

0.48 mmol) following General Procedure 3. The yellow solution was concentrated to a 

minimal amount of solvent, and Et2O (20 mL) was added to precipitate a yellow solid. 

The yellow solid was washed with Et2O (3 x 30 mL), and recrystallized by vapor 

diffusion of diethyl ether into an acetonitrile solution of the Cr complex. The product was 

dried overnight in vacuo to afford [Cr(L6)3]3+ as a yellow powder (0.39 g, 0.28 mmol, 

59% yield). 

IR (thin film, cm-1): 2975, 1717, 1559, 1407, 1259, 1234, 1033, 864, 763, 716. 

MP: 165 °C (Dec.) 

HRMS: ESI+ (m/z): [M – 3BF4]3+ calcd. for C60H72N6O12Cr: 373.4866; found: 373.4878. 

Elemental Analysis: Analysis (calcd., found for C60H72N6O12CrB3F12): C (52.16, 51.96), 

H (5.25, 5.27), N (6.08, 5.85). 

 
[Cr(L7)3]3+. This complex was synthesized from L7 ( 0.53 g, 1.20 mmol) and 3 (0.15 g, 

0.39 mmol) following General Procedure 3. The yellow solution was concentrated in 

vacuo to a sticky yellow solid. The solid was diluted in dichloromethane (10 mL), and 

the product was precipitated with diethyl ether. The supernatant was decanted, and the 

remaining yellow solid was washed with a small amount of diethyl ether. The product 
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was dried overnight in vacuo to afford [Cr(L7)3]3+ as a yellow solid (0.38 g, 0.23 mmol, 

60% yield). 

IR (thin film, cm-1): 2926, 2361, 1732, 1559, 1407, 1258, 1234, 1034, 763, 708. 

MP: 150-152 °C  

HRMS: ESI+ (m/z): [M – 3BF4]3+ calcd. for C78H108N6O12Cr: 457.5805; found: 457.5816. 

Elemental Analysis: Analysis (calcd., found for C78H108N6O12CrB3F12(CH2Cl2)0.5): C 

(56.24, 56.57), H (6.55, 6.51), N (5.01, 4.95). 

 
[Cr(L8)3]3+. This complex was synthesized from L8 (1.27 g, 2.71 mmol) and 3 (0.32 g, 

0.82 mmol) following General Procedure 3. The yellow solution was concentrated in 

vacuo to afford a sticky orange solid. This residue was diluted with dichloromethane (10 

mL), and the product was precipitated with diethyl ether (50 mL) to give a yellow solid, 

which was collected by filtration. The solid was washed with diethyl ether (3 × 50 mL) 

and dried overnight in vacuo to afford [Cr(L8)3]3+ as a dark yellow powder (0.77 g, 0.44 

mmol, 65% yield). 

IR (thin film, cm-1): 2924, 2855, 1731, 1560, 1257, 1036, 764. 

MP: 135 °C (Dec.) 

HRMS: ESI+ (m/z): [M – 3BF4]3+ calcd. for C84H120N6O12Cr: 485.6118; found: 485.6111. 

Elemental Analysis: Analysis (calcd., found for C84H120N6O12CrB3F12(CH2Cl2)0.75): C 

(57.12, 57.11), H (6.87, 7.10), N (4.72, 4.72). 
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[Cr(L9)3]3+. This complex was synthesized from L9 (0.75 g, 1.77 mmol) and 3 (0.27g, 

0.54 mol) following General Procedure 3. The orange solution was concentrated in 

vacuo, and the resulting residue was recrystallized by vapor diffusion of diethyl ether 

into an acetonitrile solution of the Cr complex. The resulting solid was collected by 

filtration and washed with diethyl ether (3 x 20 mL) and dried in vacuo overnight to 

afford [Cr(L9)3]3+ as a yellow solid (0.68 g, 0.43 mmol, 79% yield). 

IR (thin film, cm-1): 3094, 1731, 1624, 1410, 1258, 1234, 1053, 1036, 760. 

MP: 260 °C (Dec.) 

HRMS: ESI+ (m/z): [M – 3BF4]3+ calcd. for C78H60CrN6O12: 441.4553; found: 441.4569. 

Elemental Analysis: Analysis (calcd., found for C78H60B3CrF12N6O12): C (59.08, 58.94), 

H (3.81, 3.94), N (5.30, 5.39). 

 
[Cr(L10)3]3+. This complex was synthesized from L10 (0.50 g, 1.386 mmol) and 3 (0.16 

g, 0.42 mmol) following General Procedure 3. The yellow solution was concentrated to 

a minimal amount of solvent, and the diethyl ether (200 mL) was added, resulting in the 

precipitation of a yellow solid and a brown oil. The supernatant was decanted, the 

remaining material was dissolved in a small amount of dichloromethane (10 mL) and 

precipitated with diethyl ether (200 mL). The yellow solid was collected by filtration, 
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washed with diethyl ether (2 × 100 mL), and dried overnight in vacuo to afford 

[Cr(L10)3]3+ as a bright yellow powder (0.60 g, 0.41 mmol, 97% yield). 

IR (thin film, cm-1): 1734, 1559, 1261, 1024, 764. 

MP: 127 °C (Dec.) 

HRMS: ESI+ (m/z): [M – 3BF4]3+ calcd. for C54H60N6O18Cr: 377.4451; found: 377.4451. 

Elemental Analysis: Analysis (calcd., found for C54H60N6O18CrB3F12(CH2Cl2)): C (44.68, 

44.34), H (4.23, 4.17), N (5.68, 5.65). 

 
[Cr(L11)3]3+. This complex was synthesized from L11 (0.67 g, 1.49 mmol) and 3 (0.18 g, 

0.45 mmol) following General Procedure 3. The yellow solution was concentrated, and 

the resulting residue was dissolved in acetonitrile (5 mL) and layered with diethyl ether 

(15 mL), which resulted in separation of a dark yellow oil. The oil was diluted with 

dichloromethane (10 mL) and diethyl ether (100 mL) was added to precipitate a yellow 

residue. The residue was washed with diethyl ether (4 × 100 mL) to furnish a dark 

yellow powder. This powder was dried in vacuo overnight to afford [Cr(L11)3]3+ as a 

dark yellow solid (0.39 g, 0.22 mmol, 50% yield). 

IR (thin film, cm-1): 1730, 1562, 1258, 1030, 762. 

MP: 50-51 °C. 

HRMS: ESI+ (m/z): [M – 3BF4]3+ calcd. for C66H84N6O24Cr: 465.4975; found: 465.4982. 

Elemental Analysis: Analysis (calcd., found for C66H84N6O24CrB3F12(CH2Cl2)): C (46.18, 

46.19), H (4.97, 5.14), N (4.82, 5.09). 
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[Cr(L12)3]3+. This complex was synthesized from L12 (1.10 g, 2.67 mmol) and 3 (0.32 g, 

0.81 mmol) following General Procedure 3.The yellow solution was concentrated in 

vacuo. The residue was dissolved in acetonitrile (5 mL), and this solution was layered 

with diethyl ether (15 mL), which resulted in the separation of a dark yellow oil. The oil 

was diluted with dichloromethane (10 mL), and diethyl ether (100 mL) was added to 

precipitate the product. The residue was washed with diethyl ether (2 × 100 mL) to 

furnish a yellow powder. This powder was collected by filtration and dried in vacuo 

overnight to afford [Cr(L12)3]3+ as a yellow solid (1.32 g, 0.81 mmol, quantitative yield). 

IR (thin film, cm-1): 1729, 1563, 1254, 1030, 762. 

MP: 102 °C (Dec.) 

HRMS: ESI+ (m/z): [M – 3BF4]3+ calcd. for C66H72N6O18Cr: 429.4764; found: 429.4763.  

Elemental Analysis: Analysis (calcd., found for C66H72N6O18CrB3F12(CH2Cl2)): C (49.23, 

49.55), H (4.56, 4.77), N (5.14, 5.12). 

 
[Cr(L13)3]3+. This complex was synthesized from L13 (0.71 g, 2.01 mmol) and 3 (0.24 g, 

0.61 mmol) following General Procedure 3. The yellow/green solution was 

concentrated, and the residue was recrystallized by vapor diffusion of diethyl ether into 

an acetonitrile solution of the Cr complex. The solid was washed twice with CH2Cl2:Et2O 
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(v/v 1:3). The product was then dried overnight in vacuo to afford [Cr(L13)3]3+ as a dark 

orange powder (0.75 g, 0.53 mmol, 88% yield). 

IR (thin film, cm-1): 1732, 1563, 1029, 762. 

MP: 83 °C (Dec.) 

HRMS: ESI+ (m/z): [M – 3BF4]3+ calcd for C54H42N12O12Cr: 367.4145; found: 367.4134 

Elemental Analysis: Analysis (calcd., found for C54H42N12O12CrB3F12(CH2Cl2)0.5): C 

(46.56, 46.79), H (3.08, 3.21), N(11.96, 11.93). 

 
[Cr(L14)3]3+. This complex was synthesized from L14 (0.77 g, 1.88 mmol) and 3 (0.22 g, 

0.57 mmol) following General Procedure 3. The yellow solution was concentrated in 

vacuo, and the residue was purified by sequential crystallizations from dichloromethane 

(5 mL) and diethyl ether (15 mL). The resulting yellow powder was dried overnight in 

vacuo to afford [Cr(L14)3]3+ as a bright yellow powder (0.85 g, 0.52 mmol, 92% yield). 

IR (thin film, cm-1): 1750, 1410, 1163, 1034, 760. 

MP: 91 °C (Dec.) 

HRMS: ESI+ (m/z): [M – 3BF4]3+ calcd. for C48H30N6O12CrF18: 425.3674; found: 

425.3672. 

Elemental Analysis: Analysis (calcd., found for C48H30N6O12CrB3F30(CH2Cl2)): C (36.28, 

36.15), H (1.99, 2.11), N (5.18, 5.26).  
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[Cr(L15)3]3+. This complex was synthesized from 4,4'-dimethoxy-2,2'-bipyridine (0.55 g, 

2.54 mmol) and 3 (0.30 g, 0.77 mmol) following General Procedure 3. The orange 

solution was concentrated, and the crude mixture was recrystallized from CH3CN:Et2O 

(v/v 1:5). The resulting yellow solid was then washed with diethyl ether (2 × 50 mL) and 

dried in vacuo overnight to afford [Cr(L15)3]3+ as a bright yellow powder (0.56 g, 0.58 

mmol, 76% yield). 

IR (thin film, cm-1): 1609, 1498, 1023, 836. 

MP: 151°C (Dec.) 

HRMS: ESI+ (m/z): [M – 3BF4]3+ calcd. for C36H36N6O6Cr: 233.4028; found: 233.4026.  

Elemental Analysis: Analysis (calcd., found for C36H36N6O6CrB3F12): C (44.99, 44.84), H 

(3.78, 4.08), N (8.74, 8.46). 

 
[Cr(L16)3]3+. This complex was synthesized from L16 (1.00 g, 3.33 mmol) and 3 (0.39 g, 

1.01 mmol) following General Procedure 3. The yellow solution was concentrated in 

vacuo, and the residue was recrystallized by vapor diffusion of diethyl ether into an 

acetonitrile solution of the Cr complex. This crystalline product was dried overnight in 

vacuo to afford [Cr(L16)3]3+ as orange crystals suitable for analysis via single crystal X-

ray diffraction (0.83 g, 0.68 mmol, 68% yield)  

IR (thin film, cm-1): 2959, 1608, 1448, 1022, 842. 
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MP: 194-195 °C  

HRMS: ESI+ (m/z): [M – 3BF4]3+ calcd. for C54H72N6O6Cr: 317.4967; found: 317.4971.  

Elemental Analysis: Analysis (calcd., found for C54H72N6O6CrB3F12): C (53.44, 53.19), H 

(5.98, 5.93), N (6.92, 6.97). 

 
[Cr(L17)3]3+. This complex was synthesized from L17 (0.34 g, 0.858 mmol) and 3 (0.10 

g, 0.26 mmol) following General Procedure 3. The orange solution was concentrated to 

minimal amount of solvent (~5 mL), and the addition of diethyl ether (200 mL) resulted 

in the formation of a pale orange precipitate. This solid was washed with diethyl ether (3 

x 100 mL) and dried in vacuo overnight to afford [Cr(L17)3]3+ as a pale orange solid 

(0.24 g, 0.16 mmol, 62% yield). 

IR (thin film, cm-1): 2883, 1609, 1554, 1443, 1235, 1020, 843. 

MP: 49 °C (Dec.) 

HRMS: ESI+ (m/z): [M – 3BF4]3+ calcd. for C60H84N6O18Cr: 409.5077; found: 409.5078. 

Elemental Analysis: Analysis (calcd., found for C60H84N6O18CrB3F12): C (48.37, 48.16), 

H (5.68, 5.73), N (5.64, 5.61).  

  

Cr
N

N N
N

N N

RO
OR

RO

RO

OR

OR

3 BF4

3

R = O OMe



 
	

65 

Synthesis of Cr0-Complexes 

 
[Cr(L3)3]0. This complex was synthesized from L3 (0.50 g, 1.84 mmol) following the 

General Procedure 4 to afford [Cr(L3)3]0 as a dark purple solid (0.52 g, 0.60 mmol, 

98% yield).  

IR (KBr pellet, υ, cm-1): 2949, 1714, 1559, 1444, 1209, 946, 757, 543. 

MP: 159 °C (Dec.) 

HRMS: ESI+ (m/z): [M]+ calcd. for C42H36N6O12Cr: 868.1791; found: 868.1812. 

Elemental Analysis: Analysis (calcd., found for C42H36N6O12Cr(C9H12)0.25): C (59.13, 

58.98), H (4.37, 4.58), N (9.35, 9.19).  

 
[Cr(L5)3]0. This complex was synthesized from L5 (2.00 g, 5.61 mmol) following 

General Procedure 4. The purple solid was washed with dry pentane (60 mL), the 

supernatant was decanted by cannula filtration, and the residue was dried overnight to 

afford [Cr(L5)3]0 as a dark purple solid (1.5 g, 1.33 mmol, 72% yield).  

IR (KBr pellet, υ, cm-1): 2958, 1709, 1558, 1271, 1110, 939, 755. 

MP:  153-155 °C 

HRMS: ESI+ (m/z): [M]+ calcd. for C60H72N6O12Cr: 1120.4608; found: 1120.4572. 
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Elemental Analysis: Analysis (calcd., found for C60H72N6O12Cr): C (64.27, 63.99), H 

(6.47, 6.27), N (7.50, 7.44).  

 
[Cr(L6)3]0. This complex was synthesized from L6 (0.40 g, 1.11 mmol) following 

General Procedure 4. The purple solid was washed with dry acetonitrile (10 mL) and 

then dried in vacuo overnight to afford [Cr(L6)3]0 as a purple solid (0.18 g, 0.16 mmol, 

42% yield). 

IR (KBr pellet, υ, cm-1): 2971, 2934, 1697, 1554, 1459, 1270, 1204, 1091, 940, 755. 

MP: 115-117 °C (Dec.) 

Elemental Analysis: Analysis (calcd., found for C60H72CrN6O12): C (64.27, 64.31), H 

(6.47, 6.57), N (7.50, 7.46).  

 
[Cr(L7)3]0. This complex was synthesized from L7 (0.15 g, 0.34 mmol) following  

General Procedure 4 to afford [Cr(L7)3]0 as a light purple solid (0.153 g, 0.33 mmol, 

98% yield). 

IR (KBr pellet, υ, cm-1): 2956, 2929, 2856, 1727, 1594, 1395, 1254, 981, 763, 692. 

MP:   55-57 °C 

HRMS: ESI+ (m/z): [M]+ calcd. for C78H108CrN6O12: 1372.7425; found: 1372.7385. 
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Elemental Analysis: Analysis (calcd., found for C78H108CrN6O12): C (68.20, 68.11), H 

(7.92, 7.81), N (6.12, 6.16).  

 
[Cr(L9)3]0. This complex was synthesized from L9 (1 g, 2.36 mmol) following  General 

Procedure 4 to afford [Cr(L9)3]0 as a purple solid (0.92 g, 0.7 mmol, 88% yield). 

IR (KBr pellet, υ, cm-1): 3031, 1723, 1648, 1559, 1261, 1244, 1133, 949, 761, 697. 

MP: 228 °C (dec.) 

Elemental Analysis: Analysis (calcd., found for C78H60CrN6O12): C (70.69, 70.28), H 

(4.56, 4.75), N (6.34, 6.33).  

 
[Cr(L10)3]0. This complex was synthesized from L10 (0.8 g, 2.22 mmol) following  

General Procedure 4 to afford [Cr(L10)3]0 as a dark purple solid (0.83 g, 0.74 mmol, 

quantitative yield). 

IR (KBr pellet, υ, cm-1): 2921, 2824, 1711, 1558, 1374, 1321, 1203, 1119, 943, 764. 

MP:  75-77  °C 

HRMS: ESI+ (m/z): [M]+ calcd. for C54H60N6O18Cr: 1132.3364; found: 1132.3402. 

Elemental Analysis: Analysis (calcd., found for C54H60N6O18Cr): C (57.24, 57.28), H 

(5.34, 5.12 ), N (7.42, 7.37).  
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[Cr(L11)3]0. This complex was synthesized from L11 (1 g, 2.23 mmol) following General 

Procedure 4 to afford [Cr(L11)3]0 as a dark purple solid (1.03 g, 0.74 mmol, quantitative 

yield). 

IR (KBr pellet, cm-1): 2890, 1709, 1557, 1202, 1112, 972, 853, 761, 692. 

MP:  68-70 °C 

HRMS: ESI+ (m/z): [M]+ calcd. for C66H84N6O24Cr: 1396.4937; found: 1396.4871. 

Elemental Analysis: Analysis (calcd., found for C66H84N6O24Cr(C9H12)0.25): C (57.43, 

57.54), H (6.14, 6.00), N (5.89, 6.00).  

Solubility Studies of Metal Complexes 

Representative example of solubility studies (using General Procedure 4) 

([Cr(L1)3]+3) 

Serial dilutions were prepared in triplicate according to the formula !1!1 = !2!2 using 

calibrated volumetric glassware.  

Table 2.4. Standard serial solutions of complex [Cr(L1)3]+3 on acetonitrile. 
Concentration (mM) Vol. of CH3CN (mL) Mass/Vol. needed 

2.0 10 23.43 mg of [Cr(L1)3]+3 
1.5 5 3.75 mL of 2.0 mM stock solution 
1.0 5 2.50 mL of 2.0 mM stock solution 
0.5 5 2.50 mL of 1.0 mM standard solution 
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The quantitative analysis was carried on a Shimadzu UV-1601 spectrophotometer. The 

spectrum mode was used to obtain the UV-Vis absorbance spectrum of a 2.0 mM stock 

solution of [Cr(L1)3]+3 over a continuous range (300-1100 nm). This analysis was used 

to determine a suitable wavelength for absorbance measurements: λmax = 420 nm. 

Two rectangular spectrophotometer cells (Starna Cells, pathlength: 0.5 and 1.0 cm) 

were employed for the analysis. 

Once the suitable wavelength was chosen, the standard solution absorbances were 

determined by photometric mode, measuring the absorbances at the predetermined 

wavelength (in this case λ = 420 nm). Measurements were performed starting from the 

most dilute solutions through to the most concentrated.  

Table 2.5. Photometric measurements of stock solutions of [Cr(L1)3]+3 at �=420 nm. 
Exp. No. Concentration of Stock Solution (mM) Absorbance 

1 0.5 0.289 
2 0.5 0.293 
3 0.5 0.290 
4 1.0 0.541 
5 1.0 0.546 
6 1.0 0.537 
7 1.5 0.775 
8 1.5 0.788 
9 1.5 0.753 

10 2.0 0.958 
11 2.0 0.969 
12 2.0 0.961 

 
The acquired data was plotted such that absorbance vs. concentration is used to obtain 

a calibration curve equation for the indicated metal complex [Cr(L1)3]+3 (Figure 2.21). 

 
Figure 2.21.  Absorbance Vs. Concentration plot for compound [Cr(L1)3]+3. 
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The plot afforded a Beer-Lambert equation for compound [Cr(L1)3]+3,  

 

                                ! = 448.62! + 0.0789         (Eq. 2.2) 

 

Then, saturated solutions were prepared by portion-wise addition of the desired 

compound to 300 µL of acetonitrile, with stirring, until a persistent suspension resulted. 

The solution was then filtered through cotton wool to remove any insoluble material and 

three aliquots, of 60 µL each, were individually diluted in 5 mL of acetonitrile to afford 

absorbances within the range of the calibration curve (0.289-0.961 AU) at the 

predetermined wavelength (λ = 420 nm). The concentration of the diluted solution (X), 

which was prepared from the saturated solution aliquot, was determined by back-

calculation using the measured absorbance (Y) and Eq. 2.2. 

Lastly, the concentration of the dilute solutions was converted to the maximum solubility 

of the saturated solution in acetonitrile (Table 2.6). The average and the standard 

deviation of the runs were calculated to give the maximum solubility of [Cr(L1)3]+3 as 

0.1331 ± 0.0004 M. 

 
Table 2.6. Maximum solubility of complex 3 in acetonitrile. 

Experiment run Absorbance (Y 
from Eq. 1) 

Concentration 
of aliquot (X 
from Eq. 1) 

 

Maximum solubility 
of [Cr(L1)3]+3 in 
CH3CN (mM) 

Saturated solution 1 0.792 1.601 mM 133.5 
Saturated solution 2 0.790 1.597 mM 133.1 
Saturated solution 3 0.788 1.592 mM 132.7 

 
Solubility of Metal Complexes 

The following solubilities of the metal complexes on acetonitrile were determined using 

General Procedure 5.  Any deviations from this procedure are disclosed in each 

individual case. 
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Table 2.7. Solubility parameters and solubilities of metal complexes in acetonitrile. 
Complex λmax (nm) Standard Dilutions 

(mM) 
Saturated Solution 

Dilution 
Max. solubility in 

MeCN (M) 

[Cr(L1)3]
3+ 403 2.0, 1.5, 1.0, 0.5 30.0 µL to 5 mL 0.307 ± 0.001 

[Cr(L2)3]
3+ 418 2.0, 1.5, 1.0, 0.5 10.0 µL to 5 mL 0.553 ± 0.001 

[Cr(L3)3]
3+ 420 2.0, 1.5, 1.0, 0.5 60.0 µL to 5 mL 0.1330 ± 0.0004 

[Cr(L4)3]
3+ 419 2.0, 1.5, 1.0, 0.5 20.0 µL to 5 mL 0.341 ± 0.001 

[Cr(L5)3]
3+ 420 2.0, 1.5, 1.0, 0.5 10.0 µL to 5 mL 0.71 ± 0.09 

[Cr(L6)3]
3+ 419 1.5, 1.0, 0.5 10.0 µL to 5 mL 0.60 ± 0.01 

[Cr(L7)3]
3+ 418 2.0, 1.5, 1.0, 0.5 15.0 µL to 5 mL 0.39 ± 0.01 

[Cr(L8)3]
3+ 417 2.0, 1.5, 1.0, 0.5 10.0 µL to 5 mL 0.394 ± 0.003 

[Cr(L9)3]
3+ 419 2.0, 1.5, 1.0, 0.5 40 µL to 2 mL 0.0469 ± 0.0006 

[Cr(L10)3]
3+ 420 2.0, 1.5, 1.0, 0.5 10.0 µL to 5 mL 0.62 ± 0.02 

[Cr(L11)3]
3+ 420 2.0, 1.5, 1.0, 0.5 5.0 µL to 2 mL 0.539 ± 0.003 

[Cr(L12)3]
3+ 421 2.0, 1.5, 1.0, 0.5 10.0 µL to 5 mL 0.56 ± 0.02 

[Cr(L13)3]
3+ 421 2.0, 1.5, 1.0, 0.5 10.0 µL to 5 mL 0.58 ± 0.02 

[Cr(L14)3]
3+ 418 1.5, 1.0, 0.5, 0.25 10.0 uµL to 5 mL then 

2.0 mL to 5 mL 0.611 ± 0.006 

[Cr(L15)3]
3+ 462 1.5, 1.0, 0.5, 0.25 10.0 µL to 10 mL 0.61 ± 0.02 

[Cr(L16)3]
3+ 464 10.0, 7.5, 5.0, 2.5 50.0 µL to 2 mL, then 

0.5 mL to 1 mL 0.577 ± 0.001 

[Cr(L17)3]
3+ 462 10.0, 5.0, 2.5, 7.5 30.0 µL to 2 mL 0.289 ± 0.004 

[Cr(L3)3]
0 562 0.2, 0.15, 0.1, 0.05 200.0 µL to 1 mL 4.8 × 10-4  ± 

1.3 × 10-5 

[Cr(L5)3]
0 556 0.15, 0.1, 0.05, 

0.025 30.0 µL to 2 mL 0.0039 ± 
2.5 × 10-5 

[Cr(L6)3]
0 557 See General Procedure 6a 8.9 × 10-5 ± 

5.0 × 10-5 

[Cr(L7)3]
0 562 See General Procedure 6a 1.8 x 10-5 ± 

1.0 × 10-5 

[Cr(L9)3]
0 Solubility determined by the lower detection limit of Implen 

Nanodrop UV-vis (2 ng/µL) 1.5 × 10-6 
[Cr(L10)3]

0 561 0.2, 0.15, 0.1, 0.05 30.0 µL to 2 mL 0.010 ± 
4.2 × 10-6 

[Cr(L11)3]
0 566 0.2, 0.15, 0.1, 0.05 5.0 µL to 10 mL 0.21 ± 

1.4 ×10-3 
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Cyclic Voltammograms of Cr Complexes 

Cyclic voltammogram of [Cr(L12)3]3+ with added ferrocene as an internal and external 

reference. 

Figure 2.22. A) Black cyclic voltammogram of a 5 mM solution of [Cr(L12)3]3+. B) Blue 
cyclic voltammogram of a 10 mM solution of ferrocene. C) Red cyclic voltammogram is 
from a mixture of [Cr(L12)3]3+ (5 mM) and ferrocene (10 mM). CVs in 0.1 M TBABF4 in 

acetonitrile. Reference is Ag/Ag+ with AgBF4 (0.01M); Working electrode is glassy 
carbon disk; Counter electrode is platinum wire; CV conducted at 23 ºC at a scan rate of 

100 mV s-1. 

 
E1/2 ferrocene = 0.09 V vs. Ag/Ag+  with AgBF4 (0.01 M) in acetonitrile. 

Corrected values for the half wave potential of [Cr(L12)3]3+ versus Fc/Fc+:  

  1st 2nd 3rd 4th 5th 6th 

[Cr(L12)3]3+ E1/2 (V) -0.3 -0.61 -1.15 -1.68 -1.87 -2.04 

 

Note: In the following CVs bar indicates the starting potential and arrow indicates 

sweeping direction. The cyclic voltammograms correspond to one full scan of the 

complex (between the 2nd and 10th scan) in the shown potential window. All potential 

scans beyond the first scan overlay well. 
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Cyclic voltammogram of [Cr(L1)3]3+ 

 
Cyclic voltammogram of [Cr(L2)3]3+ 

 
Cyclic voltammogram of [Cr(L3)3]3+ 
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Cyclic voltammogram of [Cr(L4)3]3+ 

 

Cyclic voltammogram of [Cr(L5)3]3+ 

 
Cyclic voltammogram of [Cr(L6)3]3+ 
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Cyclic voltammogram of [Cr(L7)3]3+ 

 
Cyclic voltammogram of [Cr(L8)3]3+ 

 
Cyclic voltammogram of [Cr(L9)3]3+ 
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Cyclic voltammogram of [Cr(L10)3]3+ 

 
Cyclic voltammogram of [Cr(L11)3]3+ 

 
Cyclic voltammogram of [Cr(L12)3]3+ 

 

  

Cr
N

N N
N

N N
O

O OR
O

RO

O

O OR

OR

ORO

RO

3 BF4

3

R = OMe

Cr
N

N N
N

N N
O

O OR
O

RO

O

O OR

OR

ORO

RO

3 BF4

3

R = O OMe

Cr
N

N N
N

N N
O

O OR
O

RO

O

O OR

OR

ORO

RO

3 BF4

3

R = O



 
	

77 

Cyclic voltammogram of [Cr(L13)3]3+ 

 

Cyclic voltammogram of [Cr(L14)3]3+ 

 
Cyclic voltammogram of [Cr(L15)3]3+ 
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Cyclic voltammogram of [Cr(L16)3]3+ 

 
Cyclic voltammogram of [Cr(L17)3]3+ 
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Cyclic voltammogram of [Cr(L3)3]0 

Note: Red dotted CV is the 1st scan starting at the open circuit potential. Blue CV is the 

3rd scan. For the rest of Cr(0) complexes one full scan between 2nd and 10th are shown 

for clarity. All scans beyond the first one overlay well. 

 

Cyclic voltammogram of [Cr(L5)3]0 

 
Cyclic voltammogram of [Cr(L10)3]0 
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Cyclic voltammogram of [Cr(L11)3]0 
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Chapter 3. C–H Amination of Arenes and Heteroarenes 
Via Visible Light Photocatalysis1 

3.1 Introduction  

The selective conversion of C–H bonds into functional groups is a highly desired 

transformation in the manufacture of pharmaceuticals, agrochemicals and materials 

science (Figure 3.1). C–H amination, or the direct transformation of a C–H bond into a 

C–N bond, has become an area of increased interest due to the prevalence of nitrogen 

in natural products and materials.2 As of 2010, ~67% of the top 200 pharmaceuticals by 

US retail sales contained nitrogen atoms.3a  

Figure 3.1. Representative examples of arenes and heteroarenes bearing amine 
substituents. 

 
In particular, aromatic amines are widely prevalent in pharmaceutical agents, and 

58% of the small-molecule best-selling drugs contain a C(sp2)–N bond.3b As such, the 

development of methods to synthesize aryl amines is of high importance.  One of the 

most utilized methods for aromatic C–H amination is the nitration of arenes with nitric 
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heterogeneous hydrogenation catalyst (Pd/C, PtO2, Raney-Ni).4 Other methods for C–N 

bond formation such as nucleophilic aromatic substitution and cross coupling reactions 

(Buchwald-Hartwig,5 Ullman,6 Chan-Lam7) require pre-functionalized C–X bonds (e.g. X 

= halides, triflate, nitro) on the aromatic system (Figure 3.2 A).  

Recent efforts have focused on the direct amination of aromatic C–H bonds 

catalyzed by transition metals. Most of these methodologies employ directing groups to 

achieve ortho-C–H aminations8 or engineered systems that afford intramolecular C–H 

amination products.9 Non-directed intermolecular C–H amination reactions are much 

less common due to major challenges in selectivity. Recent reports on transition metal 

catalyzed intermolecular C–H amination by Hartwig 10  and Ritter, 11  and metal-free 

methods by Chang 12  and DeBoef 13  have demonstrated the feasibility of such 

transformations. However, these reactions typically require super stoichiometric 

amounts of oxidants, high temperatures, expensive nitrogen sources, and/or specialized 

catalyst scaffolds (Figure 3.2 B).  

Figure 3.2. Selected examples of aromatic C–H amination protocols. 

 

3.2 Background 

The in situ formation of nitrogen-centered radicals by traditional methods such as 

UV-photolysis, heat or radical initiators have usually focused on the use of halogenated 

amines and amides that can subsequently react with substrates.14 Lidget and coworkers 

first demonstrated the free-radical C–H amination of aromatic compounds utilizing N-

chlorosulphonylphthalimide at high temperatures (180-250 ºC) in the presence CuCl via 

phthalimido-radicals.15 Later, Cadogan16 and Abramovich17 showed that UV-photolysis 
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could be used for aromatic C–H aminations utilizing N-tosylphthalimide as the radical 

source. Skell subsequently demonstrated that UV-photolysis could also promote the C–

H amination of arenes utilizing N-bromophthalimide as the nitrogen source, but with 

competitive C–H bromination.18 All these reactions require harsh reaction conditions 

and solvent quantities of the arene. In addition, these methods led to competing side 

reactions (Figure 3.3 A).  

An underexplored method to generate nitrogen-centered radicals is through the 

use of visible light photocatalysis. This approach relies on the ability of metal complexes 

or organic dyes to undergo photoexcitation with visible light and facile intersystem 

crossing to access a long-lived triplet photoexcited state that undergoes single-electron 

transfer (SET) with organic substrates. 19  Photocatalysis offers several attractive 

features, as these reactions are commonly setup at room temperature and without the 

use of strong oxidants or reductants.19  

A seminal report by Okada demonstrated that the photocatalyst [Ru(bpy)3]2+ can 

reduce N-acyloxyphthalimides through an outer sphere single electron transfer (SET) 

releasing CO2, phthalimide, and alkyl radicals (Figure 3.3 B). The alkyl radicals were 

further reacted with H-atom sources, diphenyldiselenide, or vinylketones.20 Overman 

recently utilized this approach in the total synthesis of (–)-aplyviolene21a as well as in 

subsequent publications on the formation of quaternary carbon centers via conjugate 

addition of tertiary alkyl radicals to electron deficient alkenes.21b,c Overman’s work 

exemplifies the mild conditions and high selectivity that can be achieved using 

photoredox catalysis. These reports on the photocatazyzed reduction of N-

acyloxyphthalimides provided the basis for the studies described in this chapter. At the 

time we began our work, visible light photoredox catalysis for C(sp2)–H amination was 

not reported.  
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Figure 3.3. A) Selected methods for the generation of N-centered radicals. B) Okada’s 
work in photoredox reduction of N-acyloxyphthalimides. 

 
This chapter describes our work in the use of visible light photoredox catalysts to 

achieve the C–H amination of a range of arenes and heteroarenes. In addition, several 

modifications to the nitrogen radical source led to the development of saccharine-based 

N-radical precursors that displayed improved reactivity due to their highly electrophilic 

properties. 

3.3 Results and Discussion  

Development of Visible Light C–H Amination of Arenes and Heteroarenes Via 

Photoredox Catalysis 

Inspired by the work of Okada and the literature precedent for the generation of 

phthalimido-radicals by UV-photolysis, my colleague Dr. Laura Allen envisioned that 

modification of the electronic structure of N-acyloxyphthalmides by incorporation 

electron-withdrawing groups at the R position could alter the fragmentation process. 

Specifically, she hypothesized that enhancing the leaving group ability of the 

carboxylate would enable release of a carboxylate anion along with phthalimidyl radicals 

(Fig. 3.4).  

Figure 3.4. Proposed pathway to generate nitrogen radicals using visible light 
photocatalysis. 
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Dr. Allen prepared a range of N-acyloxyphthalimides with varying electronics in 

the R group (Table 3.1). These substrates were reacted with benzene in the presence 

of visible light and the strongly reducing photocatalyst tris[2-phenylpyridinato-

C2,N]iridium(III) (Ir(ppy3)). The incorporation of a CF3 group in the N-acyloxyphthalimide 

(1) afforded an 81% yield of the C–H amination product 2 (Table 3.1 entry 1). Other, N-

acyloxyphthalimides with less electron-withdrawing substituents bearing a perfluorinated 

arene and phenyl group (1a and 1b, respectively) resulted in lower yields of the C–H 

aminated product (53% and 8%, respectively; entries 2 and 3). This is particularly 

important because N-trifluoroacyloxyphthalimide (1) can be prepared from N-

hydroxyphthalimide and trifluoroacetic anhydride. Subsequent optimization 

demonstrated that the maximum yield of aminated product was obtained when 10 equiv 

of the arene, 1 equiv of N-trifluoroacyloxyphthalimide (1), and 5 mol % of Ir(ppy)3 were 

reacted in acetonitrile at room temperature for 24 h in the presence of visible light. 

Control experiments show that no product is formed in the absence of photocatalyst or 

visible light (Table 3.1 entries 4 and 5).  

Table 3.1. Evaluation of N-acyloxyphthalimides with varying R groups. 

 
Entry N-acyloxyphthalimide (R) Modification Yield of 2a 

1 1 (CF3) ------- 81% 

2 1a (C6F5) ------- 53% 

3 1b (Ph) ------- 8% 

4 1 (CF3) No Ir(ppy)3 not detected 

5 1 (CF3) No visible light not detected 
a Conditions: 1 equiv of 1, 5 mol% Ir(ppy)3, 10 equiv benzene, MeCN (0.1 M), visible light, room temperature, 24h. 
Calibrated GC yields.  
 

Substrate Scope of the Reaction 

We next examined the scope of arenes and heteroarenes that participate in this 

C–H amination reaction. A wide range of mono-, di- and tri-substituted arenes 
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products (Table 3.2). The site selectivity of these reactions is consistent with that 

anticipated for a radical aromatic substitution pathway.22 For instance, arene substrates 

bearing electron-donating substituents such as alkyl and alkoxy groups gave moderate 

to high levels of ortho/para selectivity (e.g., products 4 and 5). In contrast, electron-

withdrawing substituents, such as trifluoromethyl, provided mainly meta-functionalized 

aminated products (3). However, arenes bearing electron-withdrawing substituents 

afforded lower yields than those with electron-donating groups. This is further evidence 

for a pathway involving electrophilic nitrogen radicals. Finally, it is noteworthy that this 

reaction is high yielding and selective for C(sp2)–H bonds in the presence of benzylic 

C(sp3)–H bonds (cf, 4, 6, 8, 17, 18, 19). In addition, a variety of tri-substituted arenes 

afforded high yields of the desired product (8, 9, 10, 11, 19). This is particularly 

important as comparable transition- metal catalyzed C–H functionalization methods tend 

to be highly sensitive to sterics.  

Given the mild reaction conditions, we hypothesized our protocol could be 

compatible with a range of heterocycles. Gratifyingly, a variety of 5-membered 

heterocycles such as thiophene (13), furan (14), N-methylpyrrole (15) and caffeine (16) 

underwent selective C–H amination at the 2-position of the arene in moderate to high 

yields under our optimal conditions. In addition, pyridine derivatives are viable 

substrates for this transformation, providing meta-substituted products in high selectivity 

(products 17, 18). Furthermore, pyridine derivatives bearing halides were compatible 

with our reaction conditions (products 21 and 22 required 20 equiv of heteroarene). 

Finally, pyridine was functionalized in good yield generating the meta-aminated isomer 

as the major product (23). Notably, there does not appear to be any catalyst inhibition 

with these pyridine substrates, presumably because [Ir] contains strongly coordinated 

cyclometalated phenylpyridine ligands. 
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Table 3.2. Substrate scope in arene and heteroarene. 

 
Conditions: 1 (1 equiv), arene (10 equiv), Ir(ppy)3 (5 mol%), visible light, MeCN (0.1 M), room temperature, 24h. 
Isolated yields. For products 21-23, 20 equivalents of heteroarene and MeCN (0.2 M) were used. 

 

Next, we compared the site selectivity of this reaction to that of other C–H 

amination reactions reported in the literature using naphthalene as a representative 

substrate. As shown in Table 3.3 entry 1, our reaction conditions afforded isomer 12A 

as a major product with a 7 : 1 ratio (12A : 12B). In comparison, Chang and co-workers 

report that their reaction conditions (PhI(OAc)2/phthalimide) provide 68% yield of 

aminated naphthalene (12) with a 1 : 1 ratio (12A : 12B; entry 2).12 In our hands, 

Hartwig’s Pd-catalyzed conditions afforded a 23% yield of 12 with a 1 : 7 selectivity 

favoring isomer 12B (entry 3).10 Overall, these results demonstrate that our method is 

complementary to previously published methods.  
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Table 3.3 Selectivity in the C–H amination of naphthalene with different  C–H amination 
methods. 

 
Entry Conditions Yield 12A : 12B 

1a Our standard conditions 79% 7 : 1 

2b PhthNH, PhI(OAc)2 68% 1 : 1 

3c PhthNH, PhI(OAc)2, Pd(OAc)2, PtBu3 23% 1 : 7 
aConditions: 1 (1 equiv), Ir(ppy)3 (5 mol %), naphthalene (10 equiv), MeCN (0.1 M in 1), visible  
light, 24 h, rt. Yield determined by GC using neopentylbenzene as a standard. bReference 12. cConditions analogous 
to those in reference 10 were used as follows: Phthalimide (0.1 mmol, 1.0 equiv), Pd(OAc)2/PtBu3 (10 mol%), 
naphthalene (5 mL), PhI(OAc)2 (6.0 equiv total, 2.0 equiv at t = 0, 9, 24 h), 100 °C, 33 h. 
 

Proposed Reaction Mechanism 

A proposed catalytic cycle for the current transformation is shown in Figure 3.5. 

This cycle begins with visible light photoexcitation of Ir(ppy)3 to generate Ir(ppy)3* (step 

a). Single electron transfer from Ir(ppy)3
* to 1 then results in fragmentation of the N-

acyloxyphthalimide to generate an N-centered phthalimidyl radical (PhthN•), 

trifluoroacetate, and Ir(ppy)3
+ (step b). The arene intercepts the PhthN• forming a 

neutral radical intermediate (step c) which can be oxidized by Ir(ppy)3
+, returning the 

photocatalyst to its ground state (step d).  The trifluoroacetate anion, formed upon 

reductive cleavage of the N–O bond, deprotonates the cationic Wheland intermediate, 

providing 1 equiv of aminated product and trifluoroacetic acid (step e).  
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Figure 3.5. Proposed catalytic cycle for the C–H amination protocol. 

 
Analysis of the reduction potential of the N-trifluoroacyloxyphthalimide (-1.33 V vs 

SCE) by cyclic voltammetry indicated that the excited state of Ir(ppy)3 (-1.73 V vs 

SCE19) is sufficiently reducing to support the single electron transfer from Ir(ppy)3
* to 1 

(step b). This is in agreement with other literature reports of the reduction of N-

acyloxyphthalimides.20,23 In addition, we identified that light is essential for the reaction 

to proceed. Experiments when light is halted demonstrate that product formation stops, 

and reaction progress only recommences after light is turned back on. This is in 

agreement with visible light promoting photoexcitation of Ir(ppy)3 (step a). However, this 

experiment does not rule out the possibility of a radical chain mechanism.24 
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affinity for nucleophilic arenes and heteroarenes. To test this hypothesis, four different 

N-acyloxyimides were prepared from the corresponding N-hydroxyimide in high yields 

(81-96%; Table 3.4).  

Table 3.4. Synthesis of nitrogen radical sources. 

 
Initial screening revealed that 24 and 25 behaved very similar to 1, and no 

reaction improvement was observed, despite optimization. However, 26 and 27 showed 

more promising results. Subjecting these imides to the reaction conditions in the 

presence of mesitylene resuletd in good yields of the aminated product (Table 3.5). 

Although 26 and 27 led to lower isolated yields than 1, we were pleased to observe the 

formation of product. Given the high yield of aminated product 8b, we continued 

optimization with the N-acyloxysaccharine 27. 

Table 3.5. Evaluation of nitrogen sources with mesitylene as substrate. 

 
Entry N-source Yielda 

1 26 41% (8a) 

2 27 74% (8b) 

3 1 89% (8) 
aConditions: N-source (1 equiv), mesitylene (10 equiv), Ir(ppy)3 (5 mol%), MeCN (0.1 M), rt. Isolated yield. 8: NR2 is 
phthalimide, 8a: NR2 is tetrachlorophthalimide, 8b: NR2 is saccharine. 
 

We hypothesized that an optimal photocatalyst must be identified first, such that 

the photocatalyst and the amine source have a good potential match. As shown in 

Table 3.6, a variety of photocatalysts with varying redox potentials were tested (entries 
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reduction potential than Ir(ppy)3 due to its less electron-donating ligands. This yield 

improvement validates our hypothesis that substrate 27 and [Ru(dtbubpy)3)2+] have a 

better voltage match. Furthermore, the cyclic voltammograms of 27 and 1 show that N-

acyloxysaccharine 27 is easier to reduce, thus rendering the nitrogen radicals more 

electrophilic (compare onset redox potentials in Figure 3.6).  

Figure 3.6. Cyclic voltammograms of 27 (blue) and 1 (red). CVs done with 0.1 M  
TBABF4 in acetonitrile. Reference electrode Ag/Ag+, 100 mV/s scan rate, 23 °C. 

         
Further reaction optimization demonstrated that a good yield of 29 was 

maintained when the catalyst loading was lowered to 1 mol % (entry 7, 44% yield). 

Finally, we were able to decrease the arene substrate to 1 equiv in the presence of 2.5 

equiv of 27. Under these conditions, the desired aminated product 29 was obtained in 

65% isolated yield.  
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Table 3.6. Reaction optimization for N-acyloxysaccharine 27. 

 
Entry Photocatalyst Benzene (equiv) 27 (equiv) GC Yielda 

1 [Ru(bpy)3]2+ (5 mol%) 10 1 31% 

2 [Ru(dmbpy)3]2+ (5 mol%) 10 1 49% 

3 [Ru(dtBubpy)3]2+ (5 mol%) 10 1 49% 

4 [Ir(ppy)(bpy)2]+ (5 mol%) 10 1 31% 

5 [Ir(ppy)3] (5 mol%) 10 1 29% 

6 [Ru(dtBubpy)3]2+ (2.5 mol%) 10 1 34% 

7 [Ru(dtBubpy)3]2+ (1 mol%) 10 1 44% 

8 [Ru(dtBubpy)3]2+ (1 mol%) 5 1 51% 

9 [Ru(dtBubpy)3]2+ (1 mol%) 1 1 44% 

10 [Ru(dtBubpy)3]2+ (1 mol%) 1 2.5 61% 
aConditions: Reaction set up with the equivalents shown in each entry, MeCN (0.1 M), RT, 24h. GC yields based on a 
calibration curve for N-phenylphthalimide. 

3.4 Conclusions 

In summary, this chapter has described a mild visible light photocatalyzed method 

for the C–H amination of arenes and heteroarenes. The reaction employs N-

trifluoroacyloxyphthalimide as the nitrogen radical precursor. N-

Trifluoroacyloxyphthalimide is proposed to undergo a single electron reduction by the 

photocatalyst (Ir(ppy)3), leading to trifluoroacetate and the reactive imidyl radical. A wide 

range of arenes with different functionalities were compatible with the system. In 

addition, the mild reaction conditions allowed the use heteroarenes substrates, affording 

modest to excellent yields of the aminated product. Finally, several new nitrogen-

sources including an N-trifluoracyloxysaccharine were developed. The formation of 

highly electrophilic saccharine based radicals enabled further reaction optimization to 

lower the catalyst loading and reduce the amount of arene required.  
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3.5 Perspective and Outlook 

An important aspect of C–H amination of arenes and heteroarenes is the ability to 

control site-selectivity between similar C–H bonds. Due to the reactive nature of 

nitrogen radicals, they typically react to form multiple isomeric products. Since our 

methodology was published, we were pleased to see that several groups have 

published in the fields of C–H amination using nitrogen-centered radicals and also 

employing photocatalysis.25 However, many of them still afford isomeric mixtures of 

aminated products. Very recently a major breakthrough came from the lab of Professor 

Nicewicz at UNC, Chapel Hill. His method employs photoredox catalysis and a nitroxyl 

radical to achieve selective C–H amination of arenes and heteroarenes with a variety of 

amines including ammonia surrogate (Figure 3.7).26 

Figure 3.7. Recent example of visible light photoredox C–H amination method. 

 
However, the Nicewicz method only works on a moderate scope of substrates and 

several regioisomers are still observed. In general, selective C–H amination methods 

that employ radicals are rare. In order to improve the selectivity of this reaction, one 

avenue is to utilize nitrogen radicals with varying electronic or steric properties that 

could discriminate between C–H bonds. We began to explore this concept by the use of 

a N-acyloxysaccharine, which affords highly electrophilic radicals. We hypothesized that 

by decreasing the electron density of the nitrogen centered radical we could enhance its 

affinity for the most electron-rich C–H bond. Preliminary results suggest that with 

optimization of reaction conditions site selectivity can be improved through this strategy. 
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3.6 Experimental 

Materials and Methods 

All reagents were purchased from common suppliers and dried over P2O5 prior to 

use unless otherwise noted. Tris[2-phenylpyridinato-C2,N]iridium(III) (Ir(ppy3)) 

was purchased from Sigma Aldrich. Ethyl acetate (EtOAc) and hexanes for 

column chromatography were purchased from VWR. Silica gel for flash column 

chromatography was purchased from Dynamic Adsorbents. CDCl3 was 

purchased from Cambridge Isotope Laboratories, Inc. Thin layer chromatography 

(TLC) was performed on Merck TLC plates pre-coated with silica gel 60 F254. 

NMR spectra were recorded on a Varian 700 (699.76 MHz for 1H; 175.95 MHz for 
13C), Varian 500 (500.10 MHz for 1H; 125.75 MHz for 13C, 470.56 MHz for 19F), or 

Varian MR400 (400.52 MHz for 1H; 100.71 for 13C; 376.87 MHz for 19F) with the 

residual solvent peak (CDCl3: 1H: δ = 7.26 ppm, 13C: δ = 77.16 ppm) as the 

internal reference unless otherwise noted. Chemical shifts are reported in parts 

per million (ppm) (δ) relative to tetramethylsilane. Multiplicities are reported as 

follows: br (broad resonance), s (singlet), d (doublet), t (triplet), q (quartet), m 

(multiplet). Coupling constants (J) are reported in Hz. Infrared (IR) spectroscopy 

was performed on a Perkin-Elmer Spectrum BX FT-IR spectrometer and peaks 

are reported in cm-1. Melting points were determined with a Mel-Temp 3.0, a 

Laboratory Devices Inc, USA instrument and are uncorrected. High-resolution 

mass spectra were recorded on a Micromass AutoSpec Ultima Magnetic Sector 

mass spectrometer. Gas chromatography was carried out on a Shimadzu 17A 

using a Restek Rtx®-5 (Crossbond 5% diphenyl - 95% dimethyl polysiloxane; 15 

m, 0.25 mm ID, 0.25 µm df) column. All stock solutions were made using 

volumetric glassware. All reagents were weighed out in a nitrogen-filled drybox 

with exclusion of air and moisture, unless otherwise noted. 
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General Procedures 

 
General Procedure A: General procedure for optimization reactions. In a N2-

filled drybox, substituted N-acyloxyphthalimide 1 (0.05 mmol, 1.0 equiv) and 

Ir(ppy)3 (0.0025 mmol, 5 mol%) were weighed into a 4-mL scintillation vial 

equipped with a micro stir bar. Acetonitrile (0.5 mL, 0.1 M solution in 1) was then 

added followed by benzene (0.5 mmol, 44 µL 10.0 equiv). The reaction vial was 

sealed with a Teflon-lined cap, removed from the N2-filled drybox, and placed on 

a stir-plate. Two 26 W compact fluorescent light bulbs were placed on opposite 

sides of the vial at approximately 5 cm distance. The reaction mixture was stirred 

at room temperature for 24 h. It was then diluted with CH2Cl2 (3.0 mL) and an 

internal standard (neopentylbenzene, 0.0579 mmol, 10 µL, 1.16 equiv) was 

added. An aliquot (~0.6 mL) was removed for analysis, and yields were 

determined by GC. 

 
General procedure B:  Substrate scope isolation. In a N2-filled drybox, 

trifluoroacyloxyphthalimide (1) (0.25 mmol, 65 mg, 1.0 equiv) and Ir(ppy)3 (0.0125 mmol, 

8.0 mg, 0.05 equiv) were weighed into a 4-mL scintillation vial equipped with a micro stir 

bar. Acetonitrile (2.5 mL, 0.1 M solution 1) was then added followed by the arene 

substrate (2.5 mmol, 10.0 equiv). The reaction vial was sealed with a Teflon-lined cap, 

removed from the N2-filled drybox, and placed on a stir-plate. Two 26 W compact 

fluorescent light bulbs were placed on opposite sides of the vial at approximately 5 cm 

distance. The reaction mixture was stirred at room temperature for the indicated time. 
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General Procedure C: Stericaly controlled Pd-catalyzed C–H amination reaction. 

In a N2-filled drybox, Pd(OAc)2 (0.01 mmol, 0.10 equiv), PtBu3 (0.01 mmol, 0.1 equiv), 

phthalimide (0.1 mmol, 1 equiv) and PhI(OAc)2 (0.2 mmol, 2 equiv) were weighed into a 

4-mL scintillation vial equipped with a micro stir bar. Naphthalene (1.14 g, 8.90 mmol, 

89 equiv) was subsequently added, the vial was then sealed with a Teflon-lined cap, 

removed from the N2-filled drybox, and placed in a sand bath preheated to 100 ºC on 

the benchtop and vigorously stirred. At 9 h and 24 h, the reaction was cooled to RT, 

taken back into the N2-filled drybox, and more PhI(OAc)2 (0.2 mmol, 2 equiv) was added 

at each time point.  The reaction was again sealed with a Teflon-lined screwcap, and 

placed back in the pre-heated sand bath and vigorously stirred at 100 ºC for a total of 

33 h. The reaction mixture was then cooled down to RT, diluted with EtOAc (1.5 mL), 

and a GC standard (neopentylbenzene, 10 uL, 0.0579 mmol, 0.56 equiv) was added. 

An aliquot (~0.8 mL) was removed for analysis, and yields and isomeric ratios were 

determined based on a calibration curve of authentic samples by GC.  

 
General Procedure D: Synthesis of authentic samples. Phthalic anhydride (60 mg, 

0.40 mmol, 1.0 equiv) was added to a 20 mL vial equipped with a magnetic stir bar.  

Acetic acid (1.00 mL) was added via syringe followed by the appropriate aniline 

derivative (0.40 mmol, 1.0 equiv).  The reaction was heated at 100 ºC for 2-3 h, and 

then the reaction mixture was quenched with water, upon which time a white solid 

precipitated from solution. The precipitate was collected via vacuum filtration, washed 

with water, and dried in vacuo to give the desired product.   

 

General Procedure E: Synthesis of N-trifluoroacyloxy imides. The corresponding N-

hydroxyimide (1.0 equiv) was added to an oven-dried Schlenk flask equipped with a 

NH

O

O

1) Pd(OAc)2 (10 mol %)

    t-Bu3P (10 mol %)

    PhI(OAc)2 (2.0 eq.)
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2) Add 2.0 eq. PhI(OAc)2 

    at 9, 24h

N

O

O

O

O

O

+
R

NH2

AcOH
100 °C, 2-3 hr

R

N

O

O



 
	

98 

magnetic stir bar, and the flask was evacuated and back-filled with nitrogen. Dry 

acetonitrile (1 M in N-hydroxyimide) and trifluoroacetic anhydride (2.0 equiv) were then 

added via syringe, and the mixture was stirred at room temperature for 4 to 6 h. The 

volatiles were then removed in vacuo, and the remaining white solid was dried in vacuo 

for an additional 12 h. 

Characterization 

 
N-(trifluoromethyl)acyloxyphthalimide (1): General procedure E was followed using 

N-hydroxyphthalimide (1 g, 6.12 mmol). The product was obtained as a moisture 

sensitive white solid (1.16 g, 80% yield).  

NMR: 1H NMR (C6D6, 400 MHz): δ 7.09 (dd, J = 3.2, 5.6 Hz, 2H), 6.67 (dd, J = 2.8, 5.6 

Hz, 2H). 13C NMR (C6D6, 175.95 MHz): δ 160.2, 155.3 (q, J = 45 Hz), 134.6, 128.5, 

124.0, 114.7 (q, J = 286 Hz) 19F NMR (C6D6, 400 MHz):  δ –72.6.  

HRMS EI (m/z): M+ calcd for C10H4F3NO4:  259.0088; found: 259.0092. 

 
1,3-dioxoisoindolin-2-yl 2,3,4,5,6-pentafluorobenzoate (1a):  
In a 250 mL round bottom flask equipped with magnetic stir bar was added N-
hydroxyphthalimide (4.29 mmol, 700 mg, 1.0 equiv) and dicyclohexylcarbodiimide (4.29 
mmol, 885 mg, 1.0 equiv). Ethyl acetate (125 mL) was then added followed by 
pentafluorobenzoic acid (4.29 mmol, 910 mg, 1.0 equiv) and the reaction was stirred at 
room temperature, open to air for 3 h, during which time the reaction mixture became 
cloudy and a white solid precipitated from the solution. The white solid was removed via 
vacuum filtration and the filtrate was dried with MgSO4 and further dried in vacuo to give 
the crude product. Recrystallization of the crude solid from hot ethanol provided the pure 
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substituted N-acyloxyphthalimide. The product was obtained as a white solid (1127 mg, 
73% yield).  
NMR: 1H NMR (CDCl3, 700 MHz): δ 7.94 (dd, J = 5.6, 2.8 Hz, 2H), 7.84 (dd, J = 5.6, 2.8 
Hz, 2H). 13C NMR (CDCl3, 175.95 MHz): δ 161.3, 156.1 (m), 147.5-145.8 (m), 145.8-
144.2 (m), 139.0-137.3 (m), 135.2, 128.9, 124.4, 103.4 (td, J = 14, 5 Hz). 19F NMR 
(CDCl3, 376.87 MHz): δ -132.8 – -132.9 (m), -143.3 (tt, J = 21, 7 Hz), -158.8 – -158.9 
(m).   
HRMS EI (m/z): M+ calcd for C15H4F5NO4: 357.0060; found: 357.0058. MP: 111-112 °C. 

 
1,3-dioxoisoindolin-2-yl benzoate (1b): In a 250 mL round bottom flask equipped with 
magnetic stir bar was added N-hydroxyphthalimide (4.29 mmol, 700 mg, 1.0 equiv) and 
dicyclohexylcarbodiimide (4.29 mmol, 885 mg, 1.0 equiv). Ethyl acetate (125 mL) was 
then added followed by benzoic acid (4.29 mmol, 524 mg, 1.0 equiv) and the reaction 
was stirred at room temperature, open to air for 3 h, during which time the reaction 
mixture became cloudy and a white solid precipitated from the solution. The white solid 
was removed via vacuum filtration and the filtrate was dried with MgSO4 and further 
dried in vacuo to give the crude product. Recrystallization of the crude solid from hot 
ethanol provided the pure substituted N-acyloxyphthalimide. The product was obtained 
as a white solid (805 mg, 70% yield). The structure of 1b was confirmed by comparison 
of 1H and 13C NMR data to that reported in the literature.27  
NMR: 1H NMR (CDCl3, 700 MHz): δ 8.21-8.19 (m, 2H), 7.94-7.92 (m, 2H), 7.83-7.80 (m, 
2H), 7.70  (tt, J = 7.7, 1.4 Hz, 1H), 7.55-7.53 (m, 2H). 13C NMR (CDCl3, 175.95 MHz): δ 
162.9, 162.2, 135.0, 134.9, 130.8, 129.2, 129.0, 125.4, 124.2. 
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N-phenylphthalimide (2): General procedure B was followed using benzene (2.5 mmol, 

195 mg, 0.22 mL) as the arene substrate. After 24 h, the volatiles were removed in 

vacuo, and the crude mixture was purified by column chromatography to afford 2 as a 

white solid in 76% yield (95 mg). The structure of 2 was confirmed by comparison of 1H 

and 13C NMR data to that reported in the literature.28  

NMR: 1H (CDCl3, 700 MHz): δ 7.96 (dd, J = 4.9, 2.8 Hz, 2H), 7.79 (dd, J = 4.9, 2.8 Hz, 

2H), 7.51 (t, J = 7.7 Hz, 2H), 7.45-7.44 (m, 2H), 7.42-7.40 (m, 1H). 13C NMR (CDCl3, 

175.95 MHz): δ 167.4, 134.5, 131.9, 131.8, 129.2, 128.2, 126.7, 123.9.  

 
N-(trifluoromethylbenzene)phthalimide (3): General procedure B was followed using 

trifluorotoluene (2.5 mmol, 365 mg, 0.31 mL) as the arene substrate. After 24 h, the 

volatiles were evaporated in vacuo and the crude mixture was purified by column 

chromatography to give a mixture of 3a, 3b, and 3c as a white solid. The structures of 

3a, 3b, and 3c were determined by synthesis of  authentic samples (using general 

procedure D). Isomer ratios were determined by 19F NMR spectroscopy.  

Isolated Yield: 23% (17 mg, 1.0: 8.4: 2.8) 

Rf (isolated mixture of isomers): 0.47 (30% EtOAc/70% hexanes) 

IR (υ, cm-1); (isolated mixture of isomers):  2921, 2852, 1708, 1494, 1453, 1375, 1313, 

1109, 1062, 875, 804. 

HRMS (isolated mixture of isomers): EI (m/z) M+ calcd for C15H8F3NO2: 291.0507; 

found: 291.0514. 
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3a: NMR: 1H NMR (CDCl3, 700 MHz): δ 7.97-7.94 (m, 2H), 7.84 (d, J = 7.7 Hz, 1H), 

7.82-7.79 (m, 2H), 7.71 (t, J = 7.7 Hz, 1 H), 7.63 (t, J = 7.7 Hz, 1H), 7.37 (d, J = 7.7 Hz, 

1H). 13C NMR (CDCl3, 175.95 MHz): δ 167.2, 134.6, 133.3, 132.0, 131.8, 130.2, 129.9 

(q, J = 2 Hz), 129.7 (q, J = 31 Hz), 127.7 (q, J = 5 Hz), 124.1, 123.1 (q, J = 273 Hz), 19F 

NMR (CDCl3, 376.87 MHz):  δ –61.42 (s).   

mp: 103-105 °C.  

3b: NMR:  1H NMR (CDCl3, 700 MHz): δ 8.00-7.97 (m, 2H), 7.84-7.78 (m, 2H), 7.78 (br 

s, 1H), 7.67 (m, 3H). 13C NMR (CDCl3, 175.95 MHz): δ 167.1, 135.1, 132.7, 132.0 (q, J 

= 33 Hz), 131.8, 130.0, 129.9, 125.0 (q, J = 4 Hz), 124.3, 123.9 (q, J = 273 Hz), 123.7 (q, 

J = 4 Hz). 19F NMR (CDCl3, 376.87 MHz):  δ –62.69 (s).  

mp: 84-87 °C.  

3c: NMR:  1H NMR (CDCl3, 700 MHz): δ 8.00-7.97 (m, 2H), 7.84-7.81 (m, 2H), 7.78 (d, J 

= 8.4 Hz, 2H), 7.65 (d, J = 8.4 Hz, 2H). 13C NMR (CDCl3, 175.95 MHz): δ 166.9, 135.1, 

134.9, 131.7, 130.0 (q, J = 33 Hz), 126.6, 126.4 (q, J = 4 Hz), 124.2, 124.0 (q, J = 272 

Hz). 19F NMR (CDCl3, 470.56 MHz): δ –62.66 (s).  

mp: 216-218 °C. 

 
N-(tolyl)phthalimide (4): General procedure B was followed using toluene (2.5 mmol, 

230 mg, 0.27 mL) as the arene substrate. After 24 h, the volatiles were evaporated in 

vacuo and the crude mixture was purified by column chromatography to give a mixture 

of 4a, 4b, and 4c as a white solid. The structures of 4a, 4b, and 4c were confirmed by 

synthesis of authentic samples (using general procedure D) and isomer ratios were 

determined by 1H NMR spectroscopy.  

Isolated Yield: 80% (47 mg, 2.0: 1.0: 1.2) 

Rf (isolated mixture of isomers): 0.77 (30% EtOAc/70% hexanes) 

IR (υ, cm-1); (isolated mixture of isomers): 1708, 1465, 1377, 1110, 1080, 884, 770, 715. 
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HRMS (isolated mixture of isomers): EI (m/z) M+ calcd for C15H11NO2: 237.0790; found: 

237.0793.  

4a: NMR: 1H NMR (CDCl3, 700 MHz): δ 7.96 (dd, J = 4.9, 2.8 Hz, 2H), 7.80 (dd, J = 4.9, 

2.8 Hz, 2H), 7.38-7.32 (m, 3H), 7.21 (d, J = 7.7 Hz) 2.22 (s, 3H). 13C NMR (CDCl3, 

175.95 MHz): δ 167.5, 136.7, 134.5, 132.2, 131.3, 130.7, 129.6, 128.9, 127.0, 123.9, 

18.2.  

mp: 151-152 °C. 

4b: NMR: 1H NMR (CDCl3, 700 MHz): δ 7.96-7.95 (m, 2H), 7.79-7.78 (m, 2H), 7.40 (t, J 

= 7.7 Hz, 1H), 7.24-7.22 (m, 3H), 2.42 (s, 3H). 13C NMR (CDCl3, 175.95 MHz): δ 167.5, 

139.3, 134.5, 131.9, 131.6, 129.2, 129.1, 127.4, 123.9, 123.8, 21.6.  

mp: 146-147 °C. 

4c: NMR: 1H NMR (CDCl3, 700 MHz): δ 7.96-7.94 (m, 2H), 7.80-7.77 (m, 2H), 7.31 (s, 

4H), 2.41 (s, 3H). 13C NMR (CDCl3, 175.95 MHz): δ 167.6, 138.3, 134.5, 132.0, 129.9, 

129.1, 126.6, 123.8, 21.4.  

mp: 173-175 °C.  

 
N-(methoxybenzene)phthalimide (5): General procedure B was followed using anisole 

(2.5 mmol, 270 mg, 0.27 mL) as the arene substrate. After 24 h, the volatiles were 

evaporated in vacuo and the crude mixture was purified by column chromatography to 

give a mixture of 5a, 5b, and 5c as a white solid. The structures of 5a, 5b, and 5c were 

confirmed by synthesis of authentic samples (using general proceuure D) and isomer 

ratios were determined by 1H NMR spectroscopy.  

Isolated Yield: 81% (51 mg, 12: 1: 10.3) 

Rf (isolated mixture of isomers): 0.54 (100% CH2Cl2) 
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IR (υ, cm-1); (isolated mixture of isomers): 1703, 1505, 1384, 1251, 1113, 1021, 883, 

768, 712.  

HRMS: EI (m/z); (isolated mixture of isomers): M+ calcd for C15H11NO3: 253.0739; 

found: 253.0746 

5a: NMR: 1H NMR (CDCl3, 700 MHz): δ 7.95 (dd, J = 5.6, 2.8 Hz, 2H), 7.78 (dd, J = 5.6, 

2.8 Hz, 2H), 7.45-7.43 (m, 1H), 7.26 (dd, J = 7.7, 1.4 Hz, 1H), 7.08 (td, J = 7.7, 1.4 Hz, 

1H), 7.05-7.06 (m, 1H), 3.80 (s, 3H). 13C NMR (CDCl3, 175.95 MHz): δ 167.5, 155.6, 

134.2, 132.4, 130.8, 130.1, 123.8, 121.0, 120.4, 112.3, 56.0.  

mp: 129-130 °C.  

5b: NMR: 1H NMR (CDCl3, 700 MHz): δ 7.96 (dd, J = 5.6, 2.8 Hz, 2H), 7.80 (dd, J = 5.6, 

2.8 Hz, 2H), 7.41 (t, J = 7.7 Hz, 1H), 7.03 (ddd, J = 7.7, 2.1, 0.7 Hz, 1H), 6.99 (t, J = 2.1 

Hz, 1H) 6.96 (ddd, J = 7.7, 2.1, 0.7 Hz, 1H), 3.84 (s, 3H). 13C NMR (CDCl3, 175.95 

MHz): δ 167.4, 160.2, 134.6, 132.8, 131.9, 130.0, 123.9, 119.0, 114.3, 112.5, 55.6.  

mp: 92-94 °C.  

5c: NMR: 1H NMR (CDCl3, 700 MHz): δ 7.95 (dd, J = 5.6, 2.8 Hz, 2H), 7.78 (dd, J = 5.6, 

2.8 Hz, 2H), 7.34-7.33 (m, 2H), 7.03-7.01 (m, 2H), 3.85 (s, 3H). 13C NMR (CDCl3, 

175.95 MHz): δ 167.7, 159.4, 134.4, 132.0, 128.1, 124.4, 123.8, 114.6, 55.7.  

mp: 131-132 °C.  

 

1-N-phthalimido-2,4-dimethylbenzene (6): General procedure B was followed using 

1,4-dimethylbenzene (2.5 mmol, 265 mg, 0.31 mL) as the arene substrate. After 24 h, 

the reaction was diluted with EtOAc, and triethylamine (1 mL) was added to quench 

trifluoroacetic acid. The reaction mixture was concentrated in vacuo, and the residue 

was purified via column chromatography. The crude product was dissolved in EtOAc 

(~10 mL) and washed with 2M NaOH (3 x 10 mL). The organic layer was dried over 

Na2SO4, and the volatiles were evaporated in vacuo to give 6 as a white solid.   
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Isolated Yield: 88% (55 mg) 

Rf: 0.52 (50% hexane/50% Et2O) 

IR (υ, cm-1): 2921, 2851, 1716, 1507, 1370, 1238, 1112, 1082, 873, 819, 717. 

mp: 137-139 °C 

HRMS: ESI+ (m/z): [M+H]+ calcd for C16H14NO2: 252.1019; found: 252.1016. 

NMR: 1H (CDCl3, 700 MHz): δ 7.97-7.94 (m, 2H), 7.80-7.77 (m, 2H), 7.25 (d, J = 7.7 Hz, 

1H), 7.18 (dd, J = 7.7, 1.4 Hz, 1H), 7.03 (s, 1H), 2.36 (s, 3H), 2.16 (s, 3H). 13C NMR 

(CDCl3, 175.95 MHz): δ 167.5, 136.8, 134.4, 133.4, 132.2, 131.0, 130.5, 130.4, 129.3, 

123.8, 20.9, 17.6. 

 
1-N-phthalimido-2,4-dichlorobenzene (7): General procedure B was followed using 

1,4-dichlorobenzene (2.5 mmol, 370 mg) as the arene substrate. After 24 h, the reaction 

was diluted with EtOAc, and triethylamine (1 mL) was added to quench trifluoroacetic 

acid. The reaction mixture was concentrated in vacuo, and the residue was purified via 

column chromatography, followed by diluting the product in EtOAc (10 mL) and washing 

with 2M NaOH (3 x 10 mL). The organic layer was dried over Na2SO4, and the volatiles 

were evaporated in vacuo to give 7 as a white solid.   

Isolated Yield: 40% (29 mg) 

Rf: 0.41 (25% EtOAc/75% hexanes) 

IR (υ, cm-1): 1719, 1473, 1412, 1217, 1094, 1078, 864, 815, 710. 

mp: 177-179 °C 

HRMS: ESI+ (m/z) [M+H]+ calcd for C14H8Cl2NO2: 291.9927; found: 291.9923 

NMR: 1H (CDCl3, 700 MHz): δ 8.00-7.97 (m, 2H), 7.84-7.81 (m, 2H), 7.51 (d, J = 8.4 Hz, 

1H), 7.42 (dd, J = 8.4, 2.8 Hz, 1H), 7.37 (d, J = 2.8 Hz, 1H). 13C NMR (CDCl3, 175.95 

MHz): δ 166.3, 134.8, 133.3, 131.9, 131.9, 131.3, 130.9, 130.9, 130.8, 124.3. 
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1-N-phthalimido-2,4,6-trimethylbenzene (8): General procedure B was followed using 

1,3,5-trimethylbenzene (2.5 mmol, 300 mg, 0.35 mL) as the arene substrate.  After 24 h, 

the reaction was diluted with EtOAc and triethylamine (1 mL) was added to quench 

trifluoroacetic acid. The reaction mixture was concentrated in vacuo, and the residue 

was purified via column chromatography to give 8 as a white solid. 

Isolated Yield: 89% (59 mg) 

Rf: 0.48 (25% EtOAc/75% hexanes) 

IR (υ, cm-1):  2919, 1718, 1489, 1464, 1375, 1113, 1038, 882, 852. 

mp: 154-156 °C 

HRMS: ESI+(m/z): [M+H]+ calcd for C17H16NO2: 266.1176; found: 266.1172 

NMR: 1H (CDCl3, 700 MHz): δ 7.97-7.96 (m, 2H), 7.80-7.79 (m, 2H), 7.01 (s, 2H), 2.34 

(s, 3H), 2.13 (s, 6H). 13C NMR (CDCl3, 175.95 MHz): δ 167.5, 139.4, 136.6, 134.4, 

132.1, 129.4, 127.2, 123.8, 21.2, 18.1. 

 
1-N-phthalimido-2,4,6-trimethoxybenzene (9): General procedure B was followed 

using 1,3,5-trimethoxybenzene (2.5 mmol, 420 mg) as the arene substrate. After 24 h, 

the volatiles were evaporated in vacuo and the crude mixture was purified by column 

chromatography to give 9 as a light yellow crystalline solid.  

Isolated Yield: 73% (57 mg) 
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Rf: 0.24 (30% EtOAc/70% hexanes) 

IR (υ, cm-1): 2922, 1785, 1731, 1711, 1591, 1515, 1463, 1423, 1388, 1341, 1239, 1206, 

1164, 1130, 1104, 1084, 1033, 946, 882, 817, 716. 

mp: 195-196 °C 

HRMS: EI (m/z) M+ calcd for C17H15NO5: 313.0950; found: 313.0946. 

NMR: 1H (CDCl3, 700 MHz): δ 7.92-7.89 (m, 2H), 7.75-7.72 (m, 2H), 6.21 (s, 2H), 3.83 

(s, 3H), 3.74 (s, 6H). 13C NMR (CDCl3, 175.95 MHz): δ 167.8, 162.2, 157.7, 133.9, 

132.6, 123.5, 101.8, 91.2, 56.1, 55.6. 

 
1-N-phthalimido-2,4,5-trichlorobenzene (10): General procedure B was followed 

using 1,3,5-trichlorobenzene (2.5 mmol, 454 mg) as the arene substrate. After 24 h, the 

volatiles were evaporated in vacuo and the crude mixture was purified by column 

chromatography to give 10 as a white solid.  

Isolated Yield: 42% (34 mg) 

Rf: 0.65 (30% EtOAc/70% Hexanes) 

IR (υ, cm-1): 3085, 2926, 1723, 1555, 1466, 1364, 1224, 1100, 872, 788. 

mp: 146-147 °C 

HRMS: EI (m/z): M+ calcd for C14H6Cl3NO2: 324.9464; found: 324.9464.  

NMR: 1H (CDCl3, 700 MHz): δ 8.00-7.98 (m, 2H), 7.85-7.82 (m, 2H), 7.51 (s, 2H). 13C 

NMR (CDCl3, 175.95 MHz): 165.6, 136.6, 136.3, 134.9, 131.9, 128.9, 127.2, 124.4. 
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N-(1,2,3-trichlorobenzene)phthalimide (11): General procedure B was followed using 

1,2,3-trichlorobenzene (2.5 mmol, 454 mg) as the arene substrate. After 24 h, the 

volatiles were evaporated in vacuo and the crude mixture was purified by column 

chromatography to give to give 11a  and 11b as white solids (57% total yield; 5.4: 1). 

The regioisomeric ratio was determined by the amount of 11a and 11b separated by 

column chromatography.  

11a:  

Isolated yield: 48% (39 mg) 

Rf: 0.47 (30% Ethyl Acetate, 70% hexanes) 

IR (υ, cm-1):  1716, 1451, 1373, 1097, 881, 823, 791, 709.   

mp: 176-177 °C.  

HRMS: EI (m/z): M+ calcd for C14H6Cl3NO2: 324.9464; found: 324.9464. 

NMR: 1H NMR (CDCl3, 700 MHz): δ 7.98 (dd, J = 5.6, 2.8 Hz, 2H), 7.83 (dd, J = 5.6, 2.8 

Hz, 2H), 7.54 (d, J = 8.4 Hz, 1H), 7.24 (d, J = 8.4 Hz, 1H). 13C NMR (CDCl3, 175.95 

MHz): δ 166.3, 135.7, 134.9, 134.2, 133.4, 131.8, 129.9, 128.9, 128.8, 124.3.  

11b:  

Isolated yield: 9% (7 mg) 

Rf: 0.50 (30% Ethyl Acetate, 70% Hexane) 

mp: 207-209 °C 

IR (υ, cm-1): 1719, 1589, 1555, 1439, 1376, 1227, 1163, 1095, 1081, 857, 787, 709. 

HRMS EI (m/z): M+ calcd for C14H6Cl3NO2: 324.9464; found: 324.9461. 

NMR: 1H NMR (CDCl3, 700 MHz): δ 7.98 (dd, J = 5.6, 3.5 Hz, 2H), 7.83 (dd, J = 5.6, 3.5 

Hz, 2H) 7.62 (s, 2H). 13C NMR (CDCl3, 175.95 MHz): δ 166.4, 135.1, 134.6, 131.3, 

131.2, 131.0, 126.4, 124.3.   
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N-Phthalimidonaphthalene (12): General procedure B was followed using 

naphthalene (2.5 mmol, 320 mg) as the arene substrate. After 24 h, the reaction was 

diluted with EtOAc, and triethylamine (1 mL) was added to quench trifluoroacetic acid. 

The reaction mixture was concentrated in vacuo, and the residue was purified via 

column chromatography. The product was further purified by dissolving it in EtOAc (~10 

mL) and washing with 2M NaOH (3 x 10 mL). The organic layer was dried over Na2SO4, 

and the volatiles were evaporated in vacuo to give a mixture of 12a and 12b as a white 

solid.  The structures of 12a and 12b were confirmed by synthesis of authentic samples 

(using general procedure D) and isomer ratios were determined by 1H NMR 

spectroscopy 

Crude ratio: 7.1 : 1.0 (GC) 

Isolated Yield: 79% (54 mg, 4.6 : 1 by 1H NMR)  

Rf (isolated mixture of isomers): 0.41 (25% EtOAc/75% hexanes) 

IR (υ, cm-1); (isolated mixture of isomers): 1707, 1540, 1466, 1401, 1374, 1108, 1084. 

HRMS; (isolated mixture of isomers): ESI+ (m/z) [M+H]+ calcd for C18H12NO2: 274.0863; 

found: 274.0860 

NMR: 12a: 1H NMR (CDCl3, 700 MHz): δ 8.03-8.02 (m, 2H), 8.00 (d, J = 8.4 Hz, 1H), 

7.96 (d, J = 8.4 Hz, 1H), 7.85-7.84 (m, 2H), 7.63-7.59 (m, 2H), 7.55-7.47 (multiple peaks, 

3H). 13C NMR (CDCl3, 175.95 MHz): δ 167.9, 134.6, 134.6, 132.2, 130.4, 130.1, 129.7, 

128.3, 127.3, 127.1, 126.7, 125.6, 124.1, 122.6. 

12b: 1H NMR (CDCl3, 700 MHz): δ 8.00-7.98 (multiple peaks, 3H), 7.95 (d, J = 1.4 Hz, 

1H), 7.91-7.89 (m, 2H), 7.83-7.80 (m, 2H), 7.56-7.52 (multiple peaks, 3H). 13C NMR 

(CDCl3, 175.95 MHz): δ 167.6, 134.6, 133.4, 132.7, 131.9, 129.2, 129.1, 128.4, 127.9, 

126.8, 126.7, 125.7, 124.3, 123.9 
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N-Phthalimidothiophene (13): General procedure B was followed using thiophene (2.5 

mmol, 210 mg, 0.20 mL) as the arene substrate. After 24 h, the volatiles were 

evaporated in vacuo and the crude mixture was purified by column chromatography to 

give a mixture of 13a and 13b as a yellow solid.  

Isolated Yield: 69% (40 mg, 4.6 : 1) 

Rf; (isolated mixture of isomers): 0.50 (30% EtOAc/70% Hexanes) 

IR (υ, cm-1); (isolated mixture of isomers): 3114, 2921, 1710, 1529, 1446, 1375, 

1323,1243, 1108, 1061, 882, 779, 677 

mp (isolated mixture of isomers): 162-164 °C  

HRMS (isolated mixture of isomers): ESI+ (m/z) [M+H]+ calcd for C12H8NO2S: 230.0270; 

found: 230.0265. 

NMR: 13a: 1H NMR (CDCl3, 700 MHz): δ 7.95-7.93 (m, 2H), 7.78-7.77 (m, 2H), 7.53 

(dd, J = 5.2, 1.4 Hz, 1H), 7.22 (dd, J = 5.5, 1.4 Hz, 1H), 7.06 (dd, J = 5.5, 3.8 Hz, 1H). 
13C NMR (CDCl3, 175.95 MHz): δ 166.1, 134.8, 132.4, 131.5, 125.4, 124.0, 122.0, 

120.5. 

 
2-N-Phthalimidofuran (14): General procedure B was followed using furan (2.5 mmol, 

170 mg, 0.18 mL) as the arene substrate. After 24 h, the volatiles were evaporated in 

vacuo and the crude mixture was purified by column chromatography to give 14 as a 

white solid.  

Isolated Yield: 51% (27 mg) 
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Rf: 0.57 (25% EtOAc/75% hexanes) 

IR (υ, cm-1): 1728, 1603, 1497, 1388, 1222, 1152, 1082, 882, 713. 

mp: 162-164 °C 

HRMS: ESI+ (m/z) [M+H]+ calcd for C12H8NO3: 214.0499; found: 214.0489 

NMR: 1H NMR (CDCl3, 700 MHz): δ 7.99-7.96 (m, 2H), 7.83-7.80 (m, 2H), 7.47 (dd, J = 

1.4, 2.1 Hz, 1H), 6.55 (dd, J = 2.1, 3.5 Hz, 1H), 6.46 (dd, J = 1.4, 3.5 Hz, 1H) 13C NMR 

(CDCl3, 175.95 MHz): δ 166.3, 141.8, 138.0, 134.9, 131.7, 124.3, 111.6, 106.8. 

 
1-methyl-2-N-phthalimidopyrrole (15): General procedure B was followed using N-

methylpyrrole (2.5 mmol, 203 mg, 0.22 mL)  as the arene substrate. After 24 h, the 

volatiles were evaporated in vacuo and the crude mixture was purified by column 

chromatography to give 15 as a white solid.  

Isolated Yield: 51% (28 mg) 

Rf: 0.35 (30% EtOAc/70% hexanes) 

IR (υ, cm-1): 2162, 1718, 1553, 1496, 1369, 1291, 1237, 1080, 880, 798. 

mp: 172-173 °C 

HRMS: ESI+ (m/z): [M+H]+ calcd for C13H11N2O2: 227.0815; found: 227.0815 

NMR: 1H (CDCl3, 400 MHz): δ 7.99-7.95 (m, 2H), 7.84-7.79 (m, 2H), 6.72 (dd, J = 2.8, 

2.1 Hz, 1H), 6.24 (dd, J = 4.2, 2.8 Hz, 1H), 6.20 (dd, J = 4.2, 2.1 Hz, 1H), 3.48 (s, 3H). 
13C NMR (CDCl3, 175.9 MHz): δ 167.8, 134.7, 131.9, 124.1, 122.3, 118.7, 107.7, 107.7, 

33.4. 
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8-(N-phthalimido)caffeine (16): General procedure B was followed using caffeine (2.5 

mmol, 486 mg) as the arene substrate. After 24 h, the reaction was diluted with EtOAc, 

and triethylamine (1 mL) was added to quench trifluoroacetic acid. The reaction mixture 

was concentrated in vacuo, and the residue was purified via column chromatography. 

The product was further purified by recrystallization from CHCl3/Et2O to give 16 as a 

white solid.  

Isolated Yield: 45% (38 mg) 

Rf: 0.44 (100% Et2O) 

IR (υ, cm-1): 1734, 1706, 1654, 1506, 1445, 1221, 1055, 1033, 879, 717. 

mp: 228-229 °C 

HRMS: ESI+ (m/z) [M+H]+ calcd for C16H14N5O4: 340.1040; found: 340.1033. 

NMR: 1H NMR (CDCl3, 700 MHz): δ 8.02 (dd, J = 5.6, 2.8 Hz, 2H), 7.89 (dd, J = 5.6, 2.8 

Hz, 2H), 3.90 (s, 3H), 3.59 (s, 3H), 3.44 (s, 3H). 13C NMR (CDCl3, 175.95 MHz): δ 165.6, 

153.4, 151.6, 147.0, 137.1, 135.6, 131.6, 124.9, 108.3, 32.5, 30.1, 28.2.  

 
2,6-dimethyl-3-(N-phthalimido)pyridine (17): General procedure B was followed 

using 2,6-dimethylpyridine (2.5 mmol, 268 mg, 0.29 mL)  as the arene substrate. After 

24 h, the reaction was diluted with EtOAc, and triethylamine (1 mL) was added to 

quench trifluoroacetic acid. The volatiles were evaporated in vacuo and the crude 

mixture was purified by column chromatography to give 17 as a light brown solid.  

Isolated Yield: 71% (34 mg) 
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Rf: 0.33 (20% NEt3/20% EtOAc/60% hexanes) 

IR (υ, cm-1): 2922, 2851, 1723, 1578, 1464, 1373, 1226, 1106, 885, 720 

mp: 160-161 °C 

HRMS: ESI+ (m/z) [M+H]+ calcd for C15H13N2O2: 253.0972; found: 253.0970 

NMR: 1H NMR (CDCl3, 700 MHz): δ 7.96 (dd, J = 5.6, 3.5 Hz, 2H), 7.81 (dd, J = 5.6, 3.5 

Hz, 2H), 7.41 (d, J = 8.4 Hz, 1H), 7.14 (d, J = 8.4 Hz, 1H), 2.60 (s, 3H), 2.41 (s, 3H). 13C 

NMR (CDCl3, 175.95 MHz): δ 167.1, 159.2, 156.1, 136.8, 134.7, 132.1, 124.4, 124.1, 

121.6, 24.5, 21.4.  

 
N-Phthalimido-4-picoline (18): General procedure B was followed using 4-

methylpyridine (2.5 mmol, 233 mg, 0.24 mL)  as the arene substrate. After 24 h, the 

reaction was diluted with EtOAc, and triethylamine (1 mL) was added to quench 

trifluoroacetic acid. The reaction mixture was concentrated in vacuo and the residue 

was purified via column chromatography to give a mixture of 18a and 18b as a light 

brown solid. The structures of 18a and 18b were confirmed by synthesis of authentic 

samples (using general procedure D) and isomer ratios were determined by 1H NMR 

spectroscopy. 

Crude ratio: 1.0 : 7.2 (GC) 

Isolated Yield: 57% (34 mg; 1: >20  1H NMR) 

Rf (isolated mixture of isomers): 0.26 (20% NEt3/20% EtOAc/60% hexanes) 

IR (υ, cm-1) (isolated mixture of isomers): 2924, 1709, 1598, 1502, 1422, 1378, 1240, 

1080, 843, 708. 

mp (isolated mixture of isomers): 147-149 °C  

HRMS (isolated mixture of isomers) ESI+ (m/z): [M+H]+ calcd for C14H11N2O2: 239.0815; 

found: 239.0820. 
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18a: NMR: 1H NMR (CDCl3, 700 MHz): δ 8.54 (d, J = 4.9 Hz, 1H), 7.98-7.96 (m, 2H), 

7.81-7.79 (m, 2H), 7.25 (s, 1H), 7.19 (d, J = 4.9 Hz, 1H), 2.45 (s, 3H). 13C NMR (CDCl3, 

175.95 MHz): δ 166.9, 150.1, 149.4, 146.2, 134.7, 131.9, 124.7, 124.1, 123.0, 21.2.  

mp: 145-146 °C 

18b: NMR: 1H NMR (CDCl3, 700 MHz): δ 8.55 (d, J = 4.9 Hz, 1H), 8.44 (s, 1H), 7.99-

7.96 (m, 2H), 7.84-7.82 (m, 2H), 7.31 (d, J = 4.9 Hz, 1H), 2.25 (s, 3H) 13C NMR (CDCl3, 

175.95 MHz): δ 167.1, 150.2, 149.6, 146.1, 134.8, 132.0, 128.2, 125.9, 124.2, 18.0.  

mp: 147-148 °C 

 
2,4,6-trimethyl-3-(N-phthalimido)pyridine (19): General procedure B was followed 

using 2,4,6-trimethylpyridine (2.5 mmol, 302 mg, 0.33 mL)  as the arene substrate. After 

24 h, the reaction was diluted with EtOAc, and triethylamine (1 mL) was added to 

quench trifluoroacetic acid. The reaction mixture was concentrated in vacuo and the 

residue was purified via column chromatography to give 19 as a white solid.  

Isolated Yield: 66 % (44 mg) 

Rf: 0.45 (20% NEt3/20% EtOAc/60% hexanes) 

IR (υ, cm-1):  2925, 2361, 1723, 1603, 1466, 1373, 1112, 866, 716. 

mp: 112-113 °C 

HRMS: ESI+ (m/z) [M+H]+ calcd for C16H14N2O2: 267.1128; found: 267.1132 

NMR: 1H NMR (CDCl3, 700 MHz): δ 7.97-7.95 (m, 2H), 7.83-7.80 (m, 2H), 7.00 (s, 1H), 

2.53 (s, 3H), 2.35 (s, 3H), 2.12 (s, 3H). 13C NMR (CDCl3, 175.95 MHz): δ 167.0, 158.8, 

156.3, 146.4, 134.7, 132.0, 124.1, 124.0, 123.3, 24.3, 21.1, 17.8. 
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2,6-dimethoxy-3-(N-phthalimido)pyridine (20):  General procedure B was followed 

using 2,6-dimethoxypyridine (2.5 mmol, 348 mg, 0.33 mL)  as the arene substrate. After 

24 h, the reaction was diluted with EtOAc, and triethylamine (1 mL) was added to 

quench trifluoroacetic acid. The reaction mixture was concentrated in vacuo and the 

residue was purified via column chromatography. The product was further purified by 

dissolving in DCM (~15 mL) and washing with 1M NaOH (3 x 6 mL). The organic layer 

was dried over Na2SO4, and the volatiles were evaporated in vacuo to give 20 as a 

white solid. 

Isolated Yield: 79 % (56 mg) 

Rf: 0.63 (20% NEt3/20% EtOAc/60% hexanes) 

IR (υ, cm-1):  2952, 2361, 1732, 1705, 1586, 1392, 1315, 1084, 1008, 880, 721 

mp: 159-160 °C 

HRMS: ESI+ (m/z) [M+H]+ calcd for C15H12N2O4: 285.0870; found: 285.0860 

NMR: 1H NMR (CDCl3, 700 MHz): δ 7.95-7.92 (m, 2H), 7.79-7.77 (m, 2H), 7.45 (d, J = 

8.4 Hz, 1H), 6.43 (d, J = 8.4 Hz, 1H), 3.96 (s, 3H), 3.92 (s, 3H). 13C NMR (CDCl3, 

175.95 MHz): δ 167.5, 163.4, 158.6, 141.0, 134.3, 132.3, 123.9, 106.6, 101.8, 54.1, 

54.0. 
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2,6-dichloro-3-(N-phthalimido)pyridine (21): A modification from general procedure B 

was followed using 2,6-dichloropyridine (5 mmol, 740 mg, 20 equiv)  as the arene 

substrate and acetonitrile (1.25 mL, 0.2 M solution 1). After 24 h, the reaction was 

diluted with EtOAc, and triethylamine (1 mL) was added to quench trifluoroacetic acid. 

The reaction mixture was concentrated in vacuo and the residue was purified via 

column chromatography. The product was further purified by dissolving in DCM (~15 

mL) and washing with 1M NaOH (3 x 6 mL). The organic layer was dried over Na2SO4, 

and the volatiles were evaporated in vacuo to give 21 as a light brown solid. 

Isolated Yield: 51 % (38 mg) 

Rf: 0.36 (20% NEt3/20% EtOAc/60% hexanes) 

IR (υ, cm-1):  2922, 2852, 1790, 1721, 1552, 1442, 1377, 1140, 1080, 826, 710 

mp: 115-117 °C 

HRMS: ESI+ (m/z) [M+H]+ calcd for C13H6Cl2N2O2: 292.9879; found: 292.9879 

NMR: 1H NMR (CDCl3, 700 MHz): δ 8.00-7.97 (m, 2H), 7.86-7.83 (m, 2H), 7.67 (d, J = 

7.7 Hz, 1H), 7.45 (d, J = 7.7 Hz, 1H). 13C NMR (CDCl3, 175.95 MHz): δ 166.0, 151.0, 

149.6, 141.4, 135.0, 131.8, 126.0, 124.4,124.0.  

 
2,6-dibromo-3-(N-phthalimido)pyridine (22): A modification from general procedure B 

was followed using 2,6-dibromopyridine (5 mmol, 1.18 g, 20 equiv)  as the arene 

substrate and acetonitrile (1.25 mL, 0.2 M in 1). After 24 h, the reaction was diluted with 

EtOAc, and triethylamine (1 mL) was added to quench trifluoroacetic acid. The reaction 

mixture was concentrated in vacuo and the residue was purified via column 

chromatography. The crude product was dissolved in DCM (~15 mL) and washed with 
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1M NaOH (3 x 6 mL). The organic layer was dried over Na2SO4, and the volatiles were 

evaporated in vacuo to give 22 as a light brown solid. 

Isolated Yield: 32 % (30 mg) 

Rf: 0.36 (20% NEt3/20% EtOAc/60% hexanes) 

IR (υ, cm-1):  2922, 2852, 1745, 1718, 1432, 1374, 1340, 1112, 1083, 855, 712. 

mp: 157-159 °C 

HRMS: ESI+ (m/z) [M+H]+ calcd for C13H6Br2N2O2: 380.8869; found: 380.8859 

NMR: 1H NMR (CDCl3, 700 MHz): δ 8.00-7.98 (m, 2H), 7.86-7.83 (m, 2H), 7.62 (d, J = 

7.7 Hz, 1H), 7.50 (d, J = 7.7 Hz, 1H). 13C NMR (CDCl3, 175.95 MHz): δ 166.0, 142.1, 

141.2, 140.7, 135.1, 131.8, 129.0, 128.1, 124.4. 

      
N-phthalimidopyridine (23): A modification from general procedure B was followed 

using pyridine (5 mmol, 393 mg, 0.40 mL, 20 equiv) as the arene substrate and 

acetonitrile (1.25 mL, 0.2 M solution 1). After 24 h, the reaction was diluted with EtOAc, 

and triethylamine (1 mL) was added to quench trifluoroacetic acid. The reaction mixture 

was concentrated in vacuo and the residue was run through a plug of silica gel (~250 

mL, 1:1:3 v/v, Et3N:EtOAc:Hex). The mixture of products were further purified by 

dissolving in DCM (~15 mL) and washing with 1M NaOH (3 x 6 mL). The organic layer 

was dried over Na2SO4, and the volatiles were evaporated in vacuo to give a mixture of 

23a and 23b. Isomer ratios were determined by 1H NMR spectroscopy. The product 

mixture was separated via silica gel column chromatography to afford 23a as a light 

yellow solid and 23b as a white solid.   
1H NMR ratio (mixture of isolated products): 1 : 2 

Isolated Yield (total of 23a & 23b) : 41 % (23 mg) 

23a:  

Rf : 0.63 (50% DCM/50% Et2O) 

IR (u, cm-1): 2919, 2850, 1709, 1585, 1464, 1438, 1379, 1112, 1082, 882, 778, 711. 
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mp: 201-203 °C 

HRMS: ESI+ (m/z) [M+H]+ calcd for C13H8N2O2: 225.0659; found: 225.0659 

NMR: 1H NMR (CD3CN, 700 MHz): δ 8.64 (dd, J = 2.1, 4.9 Hz, 1H), 7.98 (td, J = 2.1, 

7.7Hz, 1H), 7.96-7.93 (m, 2H), 7.89-7.87 (m, 2H), 7.47-7.46 (m, 2H). 13C NMR (CD3CN, 

175.95 MHz): δ 167.8, 150.5, 147.3, 139.5, 135.7, 132.9, 124.9, 124.5, 123.7. 

23b:  

Rf : 0.37 (50% DCM/50% Et2O) 

IR (u, cm-1): 2919, 2851, 1781, 1700, 1578, 1479, 1427, 1378, 1107, 879, 792, 708 

mp: 155-156 °C 

HRMS: ESI+ (m/z) [M+H]+ calcd for C13H8N2O2: 225.0659; found: 225.0662 

NMR: 1H NMR (CD3CN, 700 MHz): δ 8.70 (br s, 1H), 8.63 (br s, 1H), 7.97-7.95 (m, 2H), 

7.90-7.85 (m, 3H), 7.53 (dd, J = 4.9, 8.4 Hz, 1H). 13C NMR (CD3CN, 175.95 MHz): δ 

168.0, 149.8, 148.7, 135.8, 135.2, 132.8, 130.1, 124.8, 124.5.  

 
N-trifluoroacyloxysuccinimide (24): General procedure E was followed using N-

hydroxysuccinimide (1g, 8.7 mmol). The product was obtained as a moisture sensitive 

white solid (1.5 g, 81% yield).  

NMR: 1H NMR (700 MHz, Benzene-d6) δ 1.38 (s, 1H). 13C NMR (176 MHz, Benzene-d6) 

δ 166.66, 154.44 (q, J = 45.5 Hz), 114.63 (q, J = 286.0 Hz), 24.99. 19F NMR (377 MHz, 

Benzene-d6): δ -72.81 (s, 3 F). 

 
N-trifluoroacyloxynaphthalimide (25): General procedure E was followed using N-

hydroxynaphthalimide (1 g, 8.7 mmol). The product was obtained as a moisture 

sensitive white solid (1.5 g, 81% yield).  

NMR: 1H NMR (700 MHz, Benzene-d6) δ 8.17 (dd, J = 7.2, 1.2 Hz, 2H), 7.28 (dd, J = 8.3, 

1.1 Hz, 2H), 6.86 (dd, J = 8.3, 7.2 Hz, 2H). 13C NMR (176 MHz, Benzene-d6) δ 157.95, 
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134.33, 131.59, 131.35, 127.92, 126.37, 121.69 (Note: The acyl carbonyl signal and the 

CF3 were not observed in the spectrum in the time of acquisition). 19F NMR (377 MHz, 

Benzene-d6):  δ -72.5 (s, 3 F). 

 
N-trifluoroacyloxytetrachlorophthalimide (26): General procedure E was followed 

using N-hydroxytetrachlorophthalimide (1g, 4.7 mmol). The product was obtained as a 

moisture sensitive white solid (1.6 g, 86% yield.  

NMR: 13C NMR (176 MHz, Chloroform-d) δ 155.90, 141.83, 131.08, 124.19 (Note: the 

acyl carbonyl signal and the CF3 were not observed in the spectrum at the given 

acquisition time). 19F NMR (377 MHz, Chloroform-d) δ -71.96. 

 
N-trifluoroacyloxysaccharine (27): General procedure E was followed using N-

hydroxysaccharine (made following a reported procedure29) (0.35 g, 1.76 mmol). The 

product was obtained as a moisture sensitive white solid (500 mg, 96% yield).  

NMR: 1H NMR (401 MHz, Chloroform-d) δ 8.18 (dt, J = 7.5, 1.0 Hz, 1H), 8.09 – 7.91 (m, 

3H). 13C NMR (176 MHz, Chloroform-d) δ 156.55, 153.86 (q, J = 46.0 Hz), 136.94, 

136.63, 135.51, 126.47, 124.59, 122.25, 113.94 (q, J = 286.5 Hz). 19F NMR (377 MHz, 

Chloroform-d) δ -71.78. 

 
1-N-tetrachlorophthalimido-2,4,6-trimethylbenzene (8a): A modified general 

procedure B was followed using 1,3,5-trimethylbenzene (2 mmol, 0.24 g, 0.28 mL) as 

the arene substrate and N-trifluoroacyloxytetrachlorophthalimide 26 (0.2 mmol, 0.079 g, 
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1 equiv).  After 24 h, the reaction was diluted with EtOAc and triethylamine (1 mL) was 

added to quench trifluoroacetic acid. The reaction mixture was concentrated in vacuo, 

and the residue was purified via column chromatography to give 8a as a white solid. 

Isolated Yield: 41% (33 mg) 

Rf: 0.5 (25% EtOAc/75% hexanes) 

NMR: 1H NMR (700 MHz, Chloroform-d) δ 7.00 (s, 2H), 2.34 (s, 3H), 2.10 (s, 6H). 13C 

NMR (176 MHz, Chloroform-d) δ 162.46, 140.46, 139.79, 136.13, 130.05, 129.38, 

127.44, 126.26, 21.12, 17.93. 

 
1-N-o-benzoicsulfimidyl-2,4,6-trimethylbenzene (8b): A modified general procedure 

B was followed using 1,3,5-trimethylbenzene (2 mmol, 0.24 g, 0.28 mL) as the arene 

substrate and N-trifluoroacyloxysaccharine 27 (0.2 mmol, 0.06 g, 1 equiv).  After 24 h, 

the reaction was diluted with EtOAc and triethylamine (1 mL) was added to quench 

trifluoroacetic acid. The reaction mixture was concentrated in vacuo, and the residue 

was purified via column chromatography to give 8b as a white solid. 

Isolated Yield: 74% (45 mg) 

Rf: 0.45 (25% EtOAc/75% hexanes) 

NMR:  1H NMR (700 MHz, Chloroform-d) δ 8.17 (d, J = 7.6 Hz, 1H), 8.00 (d, J = 7.6 Hz, 

1H), 7.93 (app. t, J = 7.6 Hz, 1H), 7.91 – 7.86 (m, 1H), 7.03 (s, 2H), 2.34 (s, 3H), 2.29 (s, 

6H). 13C NMR (176 MHz, Chloroform-d) δ 158.27, 140.70, 139.40, 138.37, 134.96, 

134.30, 129.93, 127.06, 125.63, 123.40, 121.18, 21.15, 18.36. 

 
1-N-o-benzoicsulfimidyl-benzene (29): A modified general procedure B was followed 

using benzene (0.08 mmol, 6.24 mg, 7.2 µL, 1 equiv) as the arene substrate, N-

trifluoroacyloxysaccharine 27 (0.2 mmol, 0.06 g, 2.5 equiv) and [Ru(dtBubpy)3](PF6)2 (1 
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mol%, 1 mg).  After 24 h, the reaction was diluted with EtOAc and triethylamine (1 mL) 

was added to quench trifluoroacetic acid. The reaction mixture was concentrated in 

vacuo, and the residue was purified via column chromatography to give 29 as a white 

solid. The isolated product NMR matches previous literature report.12 

Isolated Yield: 65% (14 mg) 

NMR: 1H NMR (401 MHz, Chloroform-d) δ 8.17 (m, 1H), 8.01 (m, 1H), 7.97 – 7.85 (m, 

2H), 7.60 – 7.49 (m, 5H). 
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Chapter 4. Pd-Catalyzed Transannular C–H Arylation 
of Alicyclic Amines1 

4.1 Introduction 

Saturated nitrogen heterocycles (or alicyclic amines) are prevalent motifs in 

pharmaceuticals, agrochemicals, materials, and natural products. For example, 

piperidine, a six-membered alicyclic amine, is the second most common ring structure in 

pharmaceutical agents. 2  A recent analysis of small-molecule FDA approved drugs 

revealed that 58% of piperidine drugs contain a substituent at the distal C4 position.3 

Aromatic substituents at the C4 position of piperidine are especially common in active 

pharmaceutical ingredients (Figure 4.1). These include commercial treatments for pain 

(demerol), depression (paroxetine), leukemia (alvocidib), schizophrenia (invega and 

haloperidol). 

 

Figure 4.1. Representative C4-aryl piperidine drugs. 

 
 

Common synthetic routes to access 4-aryl piperidines include 1) addition of aryl 

Grignards to pre-functionalized piperdines, 2) hydrogenation of 4-aryl pyridines, and 3) 

cyclization of acyclic precursors (Figure 4.2 A).4  However, these existing approaches 

have major drawbacks, including the requirement for pre-functionalized starting 

materials and the need for multi-step sequences to access derivatives for structure-

activity relationship studies (SAR).5a,b For example, SAR studies in analogs of the 
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antidepressant drug paroxetine with varying aryl groups in the C4 position of piperidine 

requires five synthetic steps after initial installation of the aromatic unit (Figure 4.2 B).5 

Furthermore, the synthetic difficulty of accessing functionalized amines increases 

exponentially as the alicyclic amine becomes more complex in structure. 

 

Figure 4.2 A) Synthetic routes to 4-aryl piperidines. B) Synthesis of paroxetine analogs. 

 
 

C–H Functionalization of Alicyclic amines 

The advent of C–H functionalization has enabled medicinal chemists to utilize a 

late-stage functionalization approach to convert the C–H bonds in drug candidates to 

new chemical entities in a fast and efficient manner.6 Strategies to selectively C–H 

functionalize molecules rely on 1) the innate properties of the substrate (activated C–H 

bonds, formation of stable radical intermediates, steric hindrance) or 2) directing groups 

(target nearby C–H bonds). However, when molecular complexity increases, such as in 

biologically active compounds, selective C–H bond functionalization becomes more 

challenging.  

Despite tremendous progress in C–H functionalization, methods for the 

functionalization of alicyclic amines remain scarce. The vast majority of literature reports 

have focused on exploiting the innate properties of alicyclic amines to functionalize the 

C2 position.7 Due to the electron-donating properties of the nitrogen atom, selective 

functionalization of electron-rich α-C–H bonds by metal carbenoid insertions8 and H-

atom abstractions9 have been demonstrated (Figure 4.3, left). Additionally, the highly 
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acidic nature of these C–H bonds has also allowed the development of selective C2–H 

bond deprotonation/functionalization strategies.10 Very recently, the use of directing 

groups on the N-atom has allowed the selective arylation of C2–H bonds in a variety of 

alicyclic amines (Figure 4.3, right).11 

 

Figure 4.3. Representative examples of C2–H functionalization of alicyclic amines. 

 
 

Existing methods for the C–H functionalization of saturated nitrogen heterocycles 

at sites remote to nitrogen are rare. This has been accomplished by H-atom abstraction 

methods or through the use of directing groups (Figure 4.4). Asensio and co-workers 

demonstrated that protonation of alicyclic amines deactivates the highly activated C2–H 

bonds, thus enabling oxygen insertion with methyl(trifluoromethyl)dioxirane at distal 

sites of several cyclic and acyclic amines.12 Directing groups have also allowed the 

functionalization of adjacent C–H bonds at remote positions from nitrogen.13  

 

Figure 4.4. Representative examples of remote C–H functionalization of alicyclic 
amines. 

 
 

In contrast, methods that leverage the innate nitrogen functionality in alicyclic 

amines to direct transition metals to reactive C–H bonds is underexplored. Using native 

functionalities within a complex molecule can become a powerful tool to promote site 

selective C–H functionalization without the need of external directing groups.6 
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Stoichoimetric studies by Yatsimirsky demonstrated that the nitrogen atom in 

N,N-dimethylbenzylamines can cyclometallate with Pd(II) salts at adjacent C(sp2)–H 

bonds to promote a variety of C–C bond forming reactions.14 This ground-breaking work 

elucidated the C–H activation mechanism of this stoichiometric reaction and 

demonstrated that a major challenge in utilizing basic amine nitrogen substrates is the 

formation of off-cycle Pd(X)2(amine)2 species (Figure 4.5, left). This strategy was then 

translated to catalysis.15 Very recently, Gaunt and co-workers have developed several 

protocols to functionalize exocyclic pendant alkyl chains of nitrogen heterocycles 

(Figure 4.5, right).16 This strategy leverages the secondary, bulky sp3 amine as a 

directing group to activate C(sp3)–H bonds by the formation of four- or five-member 

palladacycles. The authors propose that steric repulsion of the bulky amine substrate 

destabilizes formation of Pd(X)2(amine)2 complexes, thus promoting the C(sp3)−H 

cleavage through the monoligated species.  

 

Figure 4.5. sp3-Nitrogen directed C–H Activation. 

 
 

To our knowledge, there are no available metal-catalyzed methods for selective 

C–H functionalization of alicyclic amines that harness the strongly donating properties of 

the sp3-nitrogen atom in cyclic amine substrates to direct metal catalysts at specific C–H 

bonds remote from the nitrogen. 

This chapter focuses on the development of this strategy by leveraging the 

energetically disfavored boat conformation of these cyclic substrates to achieve 

transannular C–H activation and subsequent C–C bond formation. Additionally, this 

chapter includes the substrate scope, limitations of the protocol, and the design and 

synthesis of several auxiliary-directing groups to promote C–H activation.  
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4.2 Results and Discussion  

Design Principle 

Inspired by the work in sp3-nitrogen directed C–H functionalization and the 

stoichiometric reactivity of alkylamine Pd complexes, my colleague Dr. Joseph 

Topczewski proposed the use of the nitrogen atom in piperidine to direct the palladium 

catalyst to the ring system. Upon coordination of the catalyst to the amine, Pd could 

interact with the C2–H, C3–H or C4–H bonds (Figure 4.6). However, highly strained 

cyclometallated Pd complexes would result from C2–H or C3–H bond activation (3 and 

4 member palladacycles). In contrast, piperidine’s rapid conformational changes could 

bring the remote C4–H bonds in close proximity to palladium via the boat conformer. 

This in turn could enable a transannular C4–H activation affording an 

azabicyclo[2.2.1]palladacycle intermediate that could be further reacted to forge new C–

FG bonds (FG = functional group). 

 

Figure 4.6. Design principle for the transannular C–H activation reaction. 

 
 

This proposal is supported by the work of Bercaw, which demonstrated that (–)-

sparteine in the presence of stoichiometric Pd(OAc)2 generates an analogous 

azabicyclo[2.2.1]palladacycle.17 Nonetheless, this proposal has several challenges that 

must be addressed. First, the intrinsic azaphilicity of Pd could lead to formation of 

inactive Pd species (Figure 4.7 A). The formation of analogous Pd species has been 
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observed in the ortho-palladation of N,N-dimethylbenzylamine.18 Second, amines are 

prone to oxidation at nitrogen or at adjacent C–H bonds.19 Furthermore, alkylamines are 

known to undergo undesired β-hydride elimination pathways upon coordination to Pd 

(Figure 4.7 B).20 Third, Pd must intercept the high-energy boat conformer species 

(energy barrier for piperidine chair inversion is 10.4 kcal/mol)21  and undergo C–H 

cleavage of an unactivated secondary C(sp3)–H bond (Figure 4.7 C).  

 

Figure 4.7. Challenges associated with C4–H activation of piperidine. 

 
 

Initial Work 

Initial work by Noam Saper, Melissa Lee and Dr. Joseph Topczewski focused on 

the use of N-methyl piperidine as a starting substrate (Figure 4.8 A). Subjecting N-

methyl piperidine to C–H activation conditions of related Pd-catalyzed C(sp3)–H 

arylation methods22 led to the formation of undesired C2–H arylated products. These α-

arylated products are consistent with a mechanism triggered by an initial α-oxidation of 

piperidine.23 

Due to the side reactions observed for N-methyl piperidine, the incorporation of 

pendant directing groups was explored next. Several bidentate coordinating directing 

groups have been utilized for the functionalization of C(sp3)–H bonds. These chelating 

groups have been shown to improve reactivity by slowing down undesired side 

reactions (e.g. β-hydride elimination), increasing the stability of Pd intermediates, and 

favoring cyclometallation.24 A quinoline-based directing group, popularized by Daugulis, 

was incorporated to piperidine (1, Figure 4.8 B). This substrate was subjected to a 

variety of reaction conditions, however no functionalized product was observed. 

Stoichiometric studies reveal that reaction of Pd(OAc)2 with 1 produces a stable square 
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complex). 1-complex shows exceptional thermal and chemical stability as no reactivity 

was observed under a variety of reaction conditions.  

 

Figure 4.8. Initial work in Pd C–H functionalization of piperidine. A) Attempts to 
functionalize N-methylpiperidine. B) Attempts to utilize a bidentate auxiliary directing 

group. 

 
 

The lack of reactivity in 1-complex prompted us to investigate monodentate 

pendant directing groups that could facilitate the desired transformation. In the area of 

directed Pd-catalyzed C–H functionalization, directing groups derived from pyridines, 

oximes, carboxylates and amides have enabled the selective functionalization of nearby 

C–H bonds.25 It is important to note that the piperidine nitrogen must remain sp3-

hybridized, otherwise planarization of the ring will prevent access to the boat conformer.  

Our group has utilized pyridine as a directing group to undergo C(sp3)–H 

functionalization reactions (Figure 4.9, top).26 Furthermore, we developed an analogous 

piperidine substrate bearing a pyridine directing group (2, Figure 4.9, bottom). However, 

under a variety of C–H activation conditions, functionalization at the methyl C–H bonds 

was observed along with several unidentifiable byproducts. 
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Figure 4.9. Attempt to employ pyridine directing group to functionalize piperidine. 

 
 

As such, we turned our attention to anionic directing groups that have proven 

successful in C–H functionalization. The Yu Group has developed a perfluorinated 

amide that, upon deprotonation, tightly coordinates Pd and enables the functionalization 

of sp2 and sp3 C–H bonds. 27  We synthesized a piperidine substrate bearing the 

perfluorinated amide (3, Figure 4.10 A). This substrate was subjected to a variety of C–

H arylation conditions and isolation of the observed product demonstrated that arylation 

occurred at the methylene carbon (4). Additionally, SnAr on the perfluorinated ring was 

observed.28 Given these results, the next generation substrate contained gem-dimethyl 

substituents to block this reactive α-methylene position and a 4-CF3(C6F4) amide, 

developed by Yu, to prevent SnAr (5, Figure 4.10 B). Gratifyingly, subjecting this 

substrate to typical C–H arylation conditions employing Pd(OAc)2 and AgOAc in neat 

phenyl iodide 29  afforded the desired product in 10% yield (6a). Product 6a was 

confirmed by comparing NMR and GCMS data with an independently synthesized 

authentic product. Interestingly, products derived from C–H functionalization of the 

methyl groups (7) were not observed in this reaction. This result indicates that the 

substrate coordinates to Pd in a bidentate fashion, positioning the catalyst away from 

the α-methyl C–H bonds. This result differs from other reports where α-methyl sites are 

functionalized with this amide directing group.30  
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Figure 4.10. Use of amide directing group to functionalize piperidine. 

 
 

3-Azabicyclo[3.1.0]hexane Optimization 

Despite our efforts to improve the reactivity of 5, the arylated piperidine product 

remained in low yields. We attributed the poor reactivity in piperidine to the requirement 

of accessing the high-energy boat conformer species and the challenging cleavage of 

strong C–H bonds, which in related reactions is typically the rate limiting step. Therefore, 

we reasoned that selecting a more reactive substrate would facilitate reaction 

optimization. We chose to continue our reaction development with 3-

azabicyclo[3.1.0]hexane, as the substrate is pre-arranged in a boat-like conformer and 

the cyclopropane C–H bonds, due to the high s-character, are more reactive toward C–

H activation than other secondary C(sp3)–H bonds (Figure 4.11 A).31 This substrate (8) 

was prepared from commercially available reagents in two steps in high yield (Figure 

4.11 B). Subjecting 8 to the C–H arylation conditions furnished 56% yield of product (9a). 

Interestingly, aminal byproducts from product and starting material (10) were observed 

(Figure 4.11 C).   
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Figure 4.11. A) Structure of 3-azabicyclo[3.1.0]hexane. B) Synthesis of 8. C) Initial C–H 
Arylation of 8. 

 
 

We found that re-subjecting aminal 10 to the reaction conditions did not furnish 

product. This led us to further investigate reaction conditions to 1) improve yield of the 

desired product (9a) and 2) prevent aminal formation. As show in Table 4.1, we 

explored a variety of Ag+ salts and bases in the presence of 20 mol % Pd(OAc)2. We 

found that AgTFA, Ag2CO3 and Ag2O led to formation of higher amount of aminal 

byproduct than AgOAc (compare entries 1-3 versus 4). Further optimization with AgOAc 

revealed that addition of carboxylate bases such as KOPiv increased the yield of 9a 

(83%, entry 7); however, lowering the amount of Pd to 10 mol % resulted in a drastic 

drop in yield to 35% (entry 8). Increasing the temperature to 130 ºC improved the yield 

of the desired product 9a (61%, entry 9), while also increasing the amount of aminal 

byproduct 10 (9%).  
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Table 4.1. Optimization for 3-azabicyclo[3.1.0]hexane 8a 

 
 

Entry 

 

Temp. Pd(OAc)2 

(mol %) 

Ag+ Base Conversion Yield 

9a 

Yield 

10 

1 100 ºC 20% AgTFA ------ 94% 21% 44% 

2 100 ºC 20% Ag2CO3 ------ 75% 36% 11% 

3 100 ºC 20% Ag2O ------ 84% 21% 21% 

4 100 ºC 20% AgOAc ------ 73% 56% 6% 

5 100 ºC 20% AgOAc K2CO3 67% 6% 17% 

6 100 ºC 20% AgOAc KOAc 86% 78% 3% 

7 100 ºC 20% AgOAc KOPiv 94% 83% 8% 

8 100 ºC 10% AgOAc KOPiv 75% 35% 7% 

9 130 ºC 10% AgOAc KOPiv 99% 61% 9% 

10 130 ºC 0% AgOAc KOPiv 85% nd 28% 

11 130 ºC 10% ------ KOPiv 99% 43% 4% 

12b 130 ºC 10% ------ CsOPiv 99% 93% < 4% 

13c 130 ºC 10% ------ CsOPiv 99% 87% < 2% 
a Conditions: 8 (1 equiv), Pd(OAc)2 (20-10 mol %), Ag salt (3 equiv), base (3 equiv), PhI (20 equiv), 100-
130 ºC, ambient conditions. b Under N2-atmosphere and dry tAmylOH.c PhI (1 equiv), N2-atmosphere, dry 
tAmylOH. 
 

As shown in entry 10, control experiments in the absence of Pd demonstrated 

that Ag promotes aminal formation. We propose that Ag oxidizes the amine in 8 to an α-

amino radical intermediate that can undergo a subsequent oxidation to the iminium ion. 

The pendant fluoroamide then attacks the iminium ion, affording the bicyclic aminal 

(Figure 4.12).32   

 

Figure 4.12. Proposed mechanism for aminal formation. 

 
 

O

NHC7F7
N N O

HN
Ph

N

N
C7F7

O+

C7F7
Pd(OAc)2 (20 mol %)

Ag Salt (3 equiv)

base (3 equiv)
PhI (20 equiv), tAmylOH

 100-130 ºC (9a) (10)(8)

O

NHC7F7
N Ag+

O

NHC7F7
N
+ N

N
C7F7

OBase

- H+ O

NHC7F7
N
• Ag+

(10)



 
	

133 

Literature reports in related C–H arylation reactions indicate that the role of Ag is 

to regenerate the Pd carboxylate catalyst by abstracting the halide from the Pd center.33 

Thus, we hypothesized that replacing Ag with a non-oxidizing alkali metal carboxylate 

could regenerate the Pd catalyst and suppress aminal formation. Indeed, KOPiv was 

able to provide 43% of 9a and traces of aminal 10 in the absence of Ag (entry 11). To 

our delight, CsOPiv afforded 93% yield of product, while minimizing aminal formation 

(entry 12). Further optimization revealed that reducing iodobenzene to 1 equivalent 

maintained excellent yield of 9a (entry 13). 

We next evaluated the scope of aryl iodides in the reaction. As shown in Table 4.2 

several aryl iodides with electron-neutral (9a, 9c), electron-donating (9b) and electron-

withdrawing (9d, 9e) substituents provided excellent yields of product. The solid-state 

structure of 9c demonstrates that C–H activation occurs at the concave face of the 

molecule, further verifying the proposed transannular C–H activation pathway. We were 

particularly pleased to observe that important functional groups such as bromo (9f), 
alcohol (9g) and aldehyde (9h) were compatible with the reaction conditions. These 

provide excellent functional group handles for subsequent reactions that can increase 

molecular complexity. Furthermore, we were please to observe that the reaction was 

amenable to iodo-heteroarenes. For example, the electron-deficient 2-fluoro-pyridine 

was successfully installed in 80% yield (9i). In addition, electron-donating heteroarenes 

such as the boc-protected indole underwent productive arylation in 59% yield (9j). 
Finally, a phenylalanine derivative underwent C–H arylation with 8 affording 63% yield 

of the desired product 9k. 
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Table 4.2. Substrate scope of aryl iodide. 

 
aConditions: 8 (1 equiv), Pd(OAc)2 (10 mol %), CsOPiv (3 equiv), aryl iodide (1-2 equiv), tAmylOH (0.12 
M), N2, 130 ºC, 18 h. b 8 (1 equiv), Pd(OAc)2 (30 mol %), AgOAc (1.1 equiv), KOPiv (3 equiv), aryl iodide 
(1 equiv), tAmylOH, 100 ºC, air, 18 hours.  
 

Investigation on the aryl electrophile showed that phenyl trilfate or chloride does 

not generate product 9a (Table 4.3, entries 1 and 2), as only aminal byproduct 10 was 

observed. Interestingly, phenyl bromide is compatible with our reaction conditions, albeit 

in low yield (Table 4.3, entry 3).  

 
Table 4.3. Scope of aryl electrophile. 

Entry Ph-X (equiv) Conversion Yield 9aa Yield 10 
1 Chlorobenzene (20) 26% nd 14% 
2 Phenyl triflate (20) 17% nd 8% 
3 Bromobenzene (20) 43% 14% 17% 
4 Bromobenzene (2) 43% <2% 13% 
5 Bromobenzene (1) 47% <2% 13% 

aConditions: 8 (1 equiv), Pd(OAc)2 (10 mol %), CsOPiv (3 equiv), Aryl electrophile (1-20 equiv), tAmylOH 
(0.12 M), N2, 130 ºC, 18 hours. All yields determined by gas chromatography (GC). nd = not detected. 
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C–H Arylation of Piperidine 

 We next sought to expand the scope in alicyclic amines. We began our studies 

with the piperidine substrate 5. Under the optimized conditions for the 3-

azabicyclo[3.1.0]hexane 8, we observed 12% yield of product 6a (Table 4.4, entry 1). 

We reasoned that the low yield is a consequence of the energetically unfavorable chair-

to-boat interconversion that increases the activation barrier by at least 6 kcal/mol 

relative to 8.34 As such, we evaluated different reaction conditions to increase the yield 

of 6a. We rationalized that increasing temperature would be beneficial as a higher 

activation energy for the substrate was expected. Indeed increasing the temperature to 

140 ºC provided 23% yield of 6a (entry 2). At this higher temperature, 14% yield of 

aminal 11 and traces of 12 were observed (entry 2). This competing aminal formation is 

proposed to be promoted by the Pd-catalyst. Encouraged by this result, we explored 

other known C–H activation solvents. The use of hexafluoro isopropanol (HFIP, entry 3) 

and trifluoroethanol (TFE, entry 4) did not result in improved reactivity. Interestingly, 

tBuOH afforded an improved 30% yield of 6a (entry 5). Reports by Daugulis in C–H 

arylation reactions have shown that neat aryl iodide could also be a suitable solvent for 

this transformation.29 To our delight, use of neat iodobenzene resulted in 44% yield of 

6a and 6% of arylated aminal 12.  

Notably, evaluation of other Cs salts drastically diminished the yield of arylated 

piperdine (entries 7-9). This indicates that pivalate is essential for the reaction to 

proceed. We proposed that the steric bulk of pivalate could prevent formation of off-

cycle Pd intermediates or to lower the energy of activation in the system as proposed in 

related C–H activation methods.35 Increasing the temperature to 150 ºC afforded a 

combined 55% yield of arylated piperidine (sum of 6a and 12). Evaluation of catalyst 

loading showed that 5 or 20 mol % of Pd provided improved yield of product (entries 11-

12). Finally, evaluation of other Pd sources did not lead to further reaction improvement 

(entries 13-15). 
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Table 4.4. Optimization of piperidine substrate 5. 

 
 
Entry Temp. Base 

(3 equiv) 
Pd (mol %) Solvent Conv. Yield 

6a 
Yield 

11 
Yield 

12 
1 130 ºC CsOPiv Pd(OAc)2 (10 mol %) tAmylOH 40% 12% 3% nd 
2 140 ºC CsOPiv Pd(OAc)2 (10 mol %) tAmylOH 54% 22% 18% 6% 
3 140 ºC CsOPiv Pd(OAc)2 (10 mol %) HFIP 86% 44% 16% 6% 
4 140 ºC CsOPiv Pd(OAc)2 (10 mol %) TFE 79% 3% 26% 2% 
5 140 ºC CsOPiv Pd(OAc)2 (10 mol %) tBuOH 63% 30% 13% 2% 
6 140 ºC CsOPiv Pd(OAc)2 (10 mol %) neat 77% 44% 16% 6% 
7 140 ºC CsOAc Pd(OAc)2 (10 mol %) neat 35% 4% nd 17% 
8 140 ºC CsTFA Pd(OAc)2 (10 mol %) neat 78% nd nd 40% 
9 140 ºC Cs2CO3 Pd(OAc)2 (10 mol %) neat 81% nd nd 21% 

10 150 ºC CsOPiv Pd(OAc)2 (10 mol %) neat 93% 44% 28% 11% 
11 150 ºC CsOPiv Pd(OAc)2 (5 mol %) neat 82% 35% 24% 9% 
12 150 ºC CsOPiv Pd(OAc)2 (20 mol %) neat 96% 46% 17% 13% 
13 150 ºC CsOPiv Pd(OPiv)2 (10 mol %) neat 76% 44% 15% 6% 
14 150 ºC CsOPiv Pd(TFA)2 (10 mol %) neat 74% 41% 14% 5% 
15 150 ºC CsOPiv Pd(Cl)2 (10 mol %) neat 60% 29% 14% 3% 

aConditions: 5 (1 equiv), Pd(OAc)2 (X mol %), base (3 equiv), iodobenzene (30 equiv), solvent (0.12 M), 
air, temp, 18 hours. All yields determined by gas chromatography (GC). nd = not detected. 
 

Isolation of 6a under the identified conditions (entry 10, Table 4.4) revealed that 

separation of product from aminals and remaining starting material was difficult. As such, 

we next looked at the conversion of aminal byproducts to starting material or product by 

ring-opening the aminal. Based on literature reports, we hypothesized that ring opening 

the bicyclic aminal can be done under reducing conditions.36 As shown in Table 4.5, 

several reducing conditions were successful at cleaving the C–N bond of the aminal; 

however, it was found that sodium borohydride in methanol quantitatively converted 

aminal 11 to amine 5 (entry 4). With the two-step procedure, we were pleased to obtain 

a 55% yield of the arylated piperidine (6b, Figure 4.13). 
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Table 4.5. Aminal reduction optimization conditions. 

 
Entry Conditions Time Temperature Yield 5a 

1 5% Pd/C, H2 12 h RT 34% 

2 Zn/AcOH 12 h 80 ºC 70% 

3 NaBH4 in THF 12 h RT 50% 

4 NaBH4 in MeOH 12 h RT 99%a 
a Conditions: 11 (0.04 mmol), NaBH4 (5 equiv), MeOH (0.2 M). GC yields. 

 

Figure 4.13. Optimized conditions for C4-Arylation of piperidine analog 5. 

 
 

Scope of Alicyclic Amines: 

Subsequently, we explored the scope of alicyclic amines. Several bicyclic amines 

were tolerated under the optimized reaction conditions affording modest to good yields 

(14a-14h, Table 4.6). Azabicyclo[3.1.1]heptanes bearing a methoxy (14a) and benzyl 

protected alcohol (14b) were arylated in good yields. Interestingly, the 

bicyclo[3.1.1]heptane (14c) with two available C–H bonds underwent diarylation in 35% 

yield. Furthermore, other bicyclic scaffolds with an embedded morpholine ring provided 

33% yield of product (14e). In addition, larger ring sizes such as the 

azabicyclo[3.2.1]octane (14d and 14f) prove successful under the reaction conditions. 

Finally, substrates derived from pyrrolidine with a cyclobutane and cyclopentane ring 

afforded arylated products in decent yields (54% of 14g and 44% of 14h).  
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Table 4.6. C–H arylation of alicyclic amines.a

 aConditions: 13 (0.25 mmol, 1 equiv), Pd(OAc)2 (10 mol %), CsOPiv (3 equiv), Aryl iodide (30 equiv), 150 
ºC, air, 18 hours. b Step 3 (NaBH4 reduction) was not performed as aminal was not observed by GC. 
 

The importance of this transformation is demonstrated by the arylation of several 

bioactive molecules (Figure 4.14). First, we demonstrated that amitifadine, a serotonin– 

noradrenaline–dopamine reuptake inhibitor with a bicyclo[3.1.0] scaffold, was 

successfully arylated (Figure 4.14 A). A variety of aryl groups containing electron-

neutral, donating and withdrawing substituents (16a to 16d) delivered new amitifadine 

derivatives.  

Furthermore, incorporation of the directing group to varenicline (17), Pfizer’s 

billion-dollar anti-smoking drug, afforded a variety of arylated products in modest yields 

(Figure 4.14 B, 18a-18e). Products derived from this reaction show that the aryl group 

was installed at the axial position of the piperidine-unit as shown in the crystal structure 

of 18a. Synthesis of this stereoisomer by other methods would be challenging. We were 

pleased to observe that the reaction is also scalable as the isolated yield of 18e at 0.25 

mmol and 4 mmol was similar (43% and 38%, respectively).  

Finally, the natural product and anti-smoking medicine, cytisine, was subjected to 

our reaction conditions and provided 25% yield of phenyl-cytisine derivative (20, Figure 

4.14 C). Again, this substrate incorporated the aryl group at the axial position of the 

substrate. Our method represents a practical way to obtain a variety of arylated 
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products with added molecular complexity that otherwise would require multiple steps of 

synthesis by traditional routes. Additionally, this rapid analog derivatization offers new 

opportunities for structure-activity relationship studies in pharmaceutical candidates.  

Overall, our method highlights the importance of developing late-stage C–H 

functionalization strategies. We hope that this approach could find use in the synthesis 

of new alicyclic amines and in the development of new pharmaceuticals.  
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Figure 4.14. C–H arylation of bioactive bicyclic amines.
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N-oxide of the substrate or chloroformate de-alkylation led to low yields of the free 

amine (Figure 4.15). 

 

Figure 4.15. Unsuccessful methods for directing group removal. 

 
 

Thus, we next explored methods to reductively cleave the C–N bond. Our initial 

trials with outer sphere reductants such as strongly reducing photoredox catalysts led to 

decomposition products attributed to the reduction of the perfluoroarene (C7F7) in the 

substrate. Inspired by the work of Honda and co-workers in the inner sphere SmI2 

reductive cleavage of C–N bonds, we began optimizing reaction conditions to cleave the 

directing group employing SmI2 (Table 4.7). 37   We found that using a mixture of 

methanol and triethylamine provided traces of the desired pivalated amine (21, entry 1). 

Further increasing the amount of MeOH and Et3N afforded higher yields of 21 (entries 

2-3). Optimal conditions for the reaction included addition of hexamethylphosphoramide 

(HMPA) to provide 95% yield of 21 (entry 4).  

 

  

N
O

NHC7F7 heat

base

R = H or CH3

NHC7F7

O

+

A

B

N
O

NHC7F7 heat
NHC7F7

O

+

C

N
O

NHC7F7
+ Cl

O

O

Cl 1. heat
2. MeOH

Cl
NHC7F7

O
+

O

R
Ar

Ar

Ar

N

Ph

R

N

Ph

OH

NH2Cl

Ph



 
	

142 

Table 4.7. Optimization for SmI2 reductive deamination.a 

 
Entry SmI2 (equiv) MeOH (equiv) Triethylamine (equiv) Conversion Yield 

1 5 5 5 <10% < 10% 

2 10 15 15 74% 39% 

3 10 50 50 94% 62% 

4b 10 50 50 100% 95% 
aConditions: 6a (0.018 mmol, 1 equiv), SmI2 (5-10 equiv, 0.1 M in THF), MeOH (5-50 equiv), triethylamine 
(5-50 equiv), THF (0.09 M in 6a), N2, RT, 18 hours. After 18 h, quench with PivCl (3 equiv), triethylamine 
(5 equiv). b Hexamethylphosphoramide was added (8 equiv). Calibrated GC yields. 
 

Under the reductive deamination conditions, pivalated phenyl piperidine (21) was 

isolated in 74% yield. We proposed that SmI2 chelates to the carbonyl group and 

undergoes two consecutive inner sphere 1 e– reductions to release the free amine and 

perfluorinated isobutyramide (Figure 4.16). Due to the highly electrophilic perfluorinated 

amide, the directing group undergoes an ortho-defluorination reaction affording 22 as 

byproduct. 

 

Figure 4.16. Proposed mechanism for reductive deamination. 
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member azepane did not provide the desired arylated product. Additionally, several 

other important bicyclic amines with adjacent substituents to the nitrogen atom such as 

8-azabicyclo[3.2.1]octane core of tropane (prevalent in FDA approved drugs38) only 

afforded traces of product. We proposed that accessing the high-energy boat conformer 

species in these amines is more difficult due to the presence of ring substituents that 

increase axial-axial interactions. In addition, adjacent substituents to the nitrogen atom 

can prevent favorable coordination to Pd. The exploration of these more challenging 

amines is described in chapter 5. 

 

Figure 4.17. Unsuccessful amines for transannular C–H arylation. 
 

 
 

Development of New Directing Groups: 

We decided to investigate the effect of substitution on the α-carbon that connects 

the alicyclic amine and the fluoroamide (Figure 4.18). We reasoned that the steric 

contribution of these substituents would modify the natural bite angle of the substrate 

and in turn influence reactivity upon coordination to the Pd catalyst.39  
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Figure 4.18. Development of auxiliary directing groups. 

 
 

We sought out to develop a variety of new substrates with varying steric 

properties on the α-carbon. As shown in Table 4.8, substrates with varying substituents 

were synthesized including: methyl (23), cyclopropyl (24), cyclobutyl (25), cyclopentyl 

(26), fluorene (27) and cyclohexyl (28) linkers.   

 

Table 4.8. Synthesis of new directing groups.a 

 
a Yields shown correspond to the final amination step. * Synthesized by different synthetic route (see 
experimental section). 
 

These compounds were reacted under a variety of reaction conditions and 

analyzed using a calibration curve for product 6a. Table 4.9 shows a reactivity 

comparison of these substrates under the optimized conditions for piperidine substrate 

bearing a gem-dimethyl substituent (5). We noticed that most of these substrates were 

unstable at 150 ºC as determined by the high starting material conversion but poor 

reactivity. Only substrate 26 afforded good mass balance with 31% of the arylated 

product.  
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Table 4.9. Substrates reactivity comparison at 150 ºC.a 

 
 

Entry Substrate Conversion C4-Ph C4-Ph aminal Aminal SM 

1 5 93% 44% 11% 28% 

2 23 75% 15% < 2% 9% 

3 24 100% nd nd nd 

4 25 100% nd nd nd 

5 26 92% 31% 13% 26% 

7 28 93% 4% 7% < 2% 
aConditions: substrate (0.03 mmol, 1 equiv), Pd(OAc)2 (10 mol %), CsOPiv (3 equiv), iodobenzene (30 
equiv), N2, 150 ºC, 18 hours. All yields determined by gas chromatography (GC) with a calibration curve 
for 6a. nd = not detected. 
 

As such, we decided to lower the reaction temperature to 130 ºC (Table 4.10). 

Under these reaction conditions, substrate 23 bearing a methyl substituent did not 

provided detectable amounts of arylated product and mostly unreacted starting material 

was observed (10% conversion, entry 2). In contrast, substrates 24 and 25 bearing the 

cyclopropyl and cyclobutyl substituents, respectively, led to unidentified decompsition 

products (entries 3 and 4). To our delight, substrate 26 (cyclopentyl substituent) and 28 

(cyclohexyl substituent) resulted in comparable reactivity to substrate 5 (19%, 24% 

respectively, versus 30%, entries 5, 6 versus entry 1). However, we noticed that aminal 

formation from starting material with these substrates (26 and 28) was higher than that 

for substrate 5. Given the possibility of substrate 28 to undergo arylation at the 

cyclohexyl ring instead of the piperidine ring, we synthesized an authentic sample of the 

phenyl arylated product using 4-phenyl piperidine. We were unable to fully purify the 

authentic product away from starting material, but analysis by GC confirmed that the 

arylated product from C–H activation is functionalizing the piperidine ring. With the 

promising reactivity of substrate 28 (38% yield of arylated products), we conducted 

further reaction optimization with this substrate. Despite our efforts to minimize 
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competing aminal formation and increase the yield of arylated product with 28, no 

significant improvement was observed.  

Table 4.10. Reactivity comparison of substrates at 130 ºC. 

 
entry substrate conversion C4-Ph C4-Ph aminal aminal SM 

1 5 63% 30% < 2% 8% 

2 23 10% nd nd nd 

3 24 100% nd nd nd 

4 25 not determined nd nd nd 

5 26 58% 19% < 2% 23% 

6 28 86% 24% 14% 31% 
aConditions: substrate (0.03 mmol, 1 equiv), Pd(OAc)2 (10 mol%), CsOPiv (3 equiv), iodobenzene (30 
equiv), N2, 130 ºC, 18 hours. All yields determined by gas chromatography (GC) with a calibration curve 
for 6a. nd = not detected. 
 

Overall, we were able to show that substituents at the linker carbon have drastic 

effects on reactivity. We observed that the best reaction yields are obtained for 

substrates with large substituents in the order cyclohexyl > gem-dimethyl > cyclopentyl 

>>> methyl, cyclobutyl and cyclopropyl (at 130 ºC). These results indicate that 

compression of the internal angle Npiperidine–C–Ccarbonyl (θ) is important for reactivity 

(Figure 4.19). However, aminal byproduct formation increases in a similar order of 

reactivity. This is attributed to the increased Thorpe-Ingold effect (gem-dimethyl 

effect).40  Several cyclization reactions analogous to the proposed aminal formation 

have shown that as the angle between the nucleophile and electrophile is compresed, 

reactivity increases.  

 

Figure 4.19. Thorpe-Ingold Effect in substrates. 
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Finally, reactions with substrate 27 were difficult to analyze by GC. However, 

product from substrate 27 was isolated in 30% yield. As shown in Figure 4.20, the 1H 

NMR of the isolated product 29 indicates that arylation ocurred at the C4 position of 

piperidine. This is consistent with the diagnostic triplet of triplets resonance of the 

benzylic C–H bond at 2.5 ppm of the alkyl region. This is remakable as nearby reactive 

C(sp2)–H bonds were not funtionalized.41 Signals corresponding to BHT (stabilizer for 

THF) and grease show up in the spectrum as 10% THF in hexanes was used for 

isolation. 

Compound 27 has very attractive characteristics due to the presence of a 

benzylic alicyclic amine. This offers opportunities to cleave the directing group using 

alternative routes such as Pd/C hydrogenations. Unfortuntately, 27 was very insoluble 

which made substrate synthesis and product isolation difficult.  

 

  



 
	

148 

Figure 4.20. C–H Arylation of substrate 27 and 1H NMR spectrum of isolated product 
29. 
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compatibility with a wide range of aryl iodides in the diversification of 3-

azabicyclo[3.1.0]hexane. We demonstrated that several bicyclic amine scaffolds 
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undergo mono- or di-arylation reactions with modest to good yields. The utility of the 

methodology was demonstrated with the synthesis and isolation of several arylated 

analogs of amitifadine, varenicline and cytisine. Several cyclic and bicyclic amines are 

not compatible with our system, presumably due to the difficulty in accessing boat 

conformer species and/or steric hindrance of the amine by α-substituents. The 

exploration of these more challenging amines is described in the next chapter. Finally, 

several auxiliary directing groups were synthesized which showed a wide range of 

reactivity toward the C4–H functionalization of piperidine. 

4.4 Experimental 

General Procedures, Materials, and Methods for Synthesis and C–H Activation 

 

Instrumental Information. NMR spectra were obtained on Varian 400 MHz, Varian 500 

MHz, or Varian 700 MHz NMR spectrometers. 1H and 13C NMR chemical shifts are 

reported in parts per million relative to TMS with the residual solvent peak (most 

commonly CDCl3) used as an internal reference (δ 7.26 for 1H NMR and δ 77.2 for 13C 

NMR for CDCl3). 19F NMR spectra were referenced to the solvent lock. 1H and 19F 

multiplicities are reported as follows: singlet (s), doublet (d), triplet (t), quartet (q), and 

multiplet (m). High resolution mass spectra were obtained at the University of Michigan 

core facility. Flash chromatography was conducted on a Biotage Isolera One auto 

chromatography system using preloaded high performance silica gel columns (10 g, 25 

g, 50 g, or 100 g as appropriate). GC-FID was conducted on a Shimadzu CG-17A 

system. Melting points were obtained on a OptiMelt automated melting point system. IR 

spectra were obtained on an FT Perkin Elmer instrument via thin film deposition.  

 

Materials. All reagents were obtained from a commercial vendor (Aldrich, CombiBlocks, 

Oakwood, AstaTech, Synthonix, Enamine, Manchester Organics, Carbosynth, Pressure 

Chemicals, Matrix, SantaCruz Biotech, or Ontario Chemicals) and were used without 

further purification unless otherwise stated. Reagents were stored under ambient 

conditions unless otherwise stated. The solvent tert-amyl alcohol was stored over 
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activated molecular sieves. Solutions of SmI2 were stored and used inside of a nitrogen-

filled glovebox.  

 

General Methods. The manipulation of solid reagents was conducted on the bench top 

unless otherwise stated. Reactions were conducted under an ambient atmosphere 

unless otherwise stated. Reaction vessels were sealed with either a septum (flask) or a 

Teflon-lined cap (4 mL or 20 mL vial). Reactions conducted at elevated temperatures 

were heated on a hot plate using an aluminum block. Temperatures were regulated 

using an external thermocouple. For reactions that were heated in excess of the 

ambient boiling point of the solvent (e.g. tert-amyl alcohol heated to 140 ºC), electrical 

tape was wrapped around the cap of the sealed vial prior to heating. For TLC analysis, 

Rf values are reported based on normal phase silica plates with fluorescent indicator, 

and sample detection was conducted based on quenched fluorescence at 254 nm. 

 

Synthesis and Characterization: 

 
Compound A. A round bottom flask was charged with 2,3,5,6-tetrafluoro-4-

(trifluoromethyl)aniline (7.01 g, 30.1 mmol, 1 equiv) and toluene (30 mL). To this 

solution, 2-bromoisobutyryl bromide (4 mL, 32.3 mmol, 1.1 equiv) was added. The flask 

was fitted with a reflux condenser topped with a drying tube that was packed with K2CO3 

(5 g). The reaction was heated to an external temperature of 140 ºC. After 18 h, the 

reaction mixture was cooled to room temperature and concentrated under vacuum. The 

solid residue was redissolved in a minimum amount of hexanes and heated to reflux. 

Upon slow cooling, a crystalline solid precipitated from solution. The solid was collected 

and rinsed with cold hexanes (3 x 5 mL).  The solid was then dried under vacuum to 

afford product A as white needles (10.9 g, 95% yield). 

MP 125-126 ºC 

IR (thin film): 1685 cm–1 
1H NMR (700 MHz, CDCl3) δ 8.19 (s, 1H), 2.06 (s, 6H). 
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19F NMR (377 MHz, CDCl3) δ –56.0 (t, J = 21.7 Hz, 3F), –141.2 (m, 2F), -144.2 (m, 2F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (176 MHz, CDCl3) δ 170.2, 60.7, 32.2. 

HRMS (ESI+) [M+H]+ Calcd for C11H8BrF7NO+: 381.9677; Found: 381.9668. 

Rf = 0.55 in 20% EtOAc in hexanes. 

 
Substrate 1. Step 1. 8-aminoquinoline (500 mg, 3.5 mmol, 1 equiv) was dissolved in 

DCM (17.5 mL, 0.2 M) followed by addition of Et3N (0.5 mL, 3.5 mmol, 1 equiv). To this 

solution, 2-bromoacetyl bromide (0.35 mL, 4 mmol, 1.1 equiv) was added. The mixture 

was stirred for 45 minutes at room temperature. After consumption of the starting 

reagents, based on TLC monitoring, the solution was concentrated. Purification of the 

crude product via column chromatography (100% DCM) provided 2-bromo-N-(quinolin-

8-yl)acetamide intermediate (int-1-1) and was subsequently used in the next step.  

Step 2. Int-1-1 (400 mg, 1.5 mmol, 1 equiv) was dissolved in acetonitrile (7.5 mL, 0.2 

M), followed by addition of piperidine (0.45 mL, 4.5 mmol, 3 equiv). This mixture was 

stirred overnight at room temperature. The volatiles were removed and the crude 

product was purified via column chromatography (25% EtOAc in hexanes) affording 

72% yield of desired product. 
1H NMR (CDCl3, 700 MHz): δ 11.51 (br s, 1H), 8.82 (dd, J = 4.1, 1.7 Hz, 1H), 8.77 (m, 

1H), 8.08 (dd, J = 8.2, 1.7 Hz, 1H), 7.49 (m, 1H), 7.44 (m, 1H), 7.38 (dd, J = 8.2, 4.1 Hz, 

1H), 3.23 (s, 2 H), 2.57 (br s, 4H), 1.74 (m, 4 H), 1.50 (br s, 2 H). 
13C NMR (CDCl3, 175.95 MHz): δ 169.82, 148.44, 139.01, 136.00, 134.52, 127.98, 

127.21, 121.51, 121.46, 116.38, 63.32, 54.94, 26.31, 23.91. 

HRMS (ESI+) [M+H]+ calcd for C16H20N3O: 270.1601; found: 270.1601. 

N
NHO

Br

+

H
N MeCN

RT, 18 h
N
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Br Br

O
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1-complex. A 20-mL vial was charged with 1 (60 mg, 0.22 mmol, 1 equiv), Pd(OAc)2 

(51 mg, 0.22 mmol, 1 equiv) in acetone (1 mL, 0.2 M). The mixture was stirred at room 

temperature until a yellow precipitate formed. Then, the yellow colored product was 

collected vial filtration and washed with Et2O (10 mL) affording 91% yield of 1-complex. 
1H NMR (CDCl3, 700 MHz) δ 8.62 (app. d, J = 7.9 Hz, 1H), 8.24 (dd, J = 8.3, 1.4 Hz, 

1H), 8.16 (dd, J = 5.0, 1.4 Hz, 1H), 7.48 (t, J = 7.9 Hz, 1H), 7.37 (dd, J = 8.3, 5.0 Hz, 

1H), 7.32 (app. d, J = 8.0 Hz, 1H), 3.95 (s, 2H), 3.62–3.46 (m, 2H), 3.33 (m, 2H), 2.15 

(s, 3H), 1.86–1.65 (m, 3H), 1.63–1.40 (m, 3H). 
13C NMR (CDCl3, 176 MHz) δ 178.21, 174.10, 148.65, 146.48, 144.93, 138.99, 129.70, 

129.38, 121.02, 120.66, 120.09, 66.94, 59.20, 24.28, 23.10, 20.51. 

HRMS (ESI+) [M–OAc]+ calcd for C16H18N3OPd: 374.0485; found: 374.0489. 

 

 
Compound 2. A 20-mL vial was charged with 2-(pyridin-2-yl)propan-2-amine (0.25 g, 

1.84 mmol, 1 equiv), K2CO3 (0.25 g, 1.84 mmol, 1 equiv) and EtOH (0.7 mL). To this 

solution, 1,5-dibromopentane (0.3 mL, 2.2 mmol, 1.2 equiv) was added. The reaction 

mixture was heated to 60 ºC for 2 days. After, the reaction was dissolved in DCM (15 

mL) and washed with 10% KOH (3 x 5 mL). The organics were dried over Na2SO4, 

decanted, and concentrated via rotary evaporation. The residue was purified via column 

chromatography (100% DCM to 3:2:1 v/v DCM:Et2O:Et3N) to afford 2 in 65% yield. 
1H NMR (CDCl3, 500 MHz) δ 8.51 (m, 1H), 7.76 (app. d, J = 8.1 Hz, 1H), 7.61 (td, J = 

7.7, 1.8 Hz, 1H), 7.08 (m, 1H), 2.41 (br s, 4H), 1.54 (p, J = 5.6 Hz, 4H), 1.43 (m, 2H), 

1.35 (s, 6H). 
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Substrate 3. Step 1. A 20-mL vial was charged with pentafluoroaniline (500 mg, 2.7 

mmol, 1 equiv), Et3N (0.38 mL, 2.7 mmol, 1 equiv) and DCM (13.5 mL, 0.2 M). 2-

bromoacetyl bromide (0.30 mL, 3.24 mmol, 1.2 equiv) was added dropwise. The 

reaction was stirred for 30 minutes at room temperature. After, the volatiles were 

concentrated via rotary evaporation, and purification of the crude product by column 

chromatography (20% EtOAc in hexanes) afforded 76% yield of 2-bromo-N-

(perfluorophenyl)acetamide intermediate (int-1-3), which was subsequently used in the 

next step.  

Step 2. A 20-mL vial was charged with int-1-3 (228 mg, 0.75 mmol, 1 equiv), MeCN (5 

mL, 0.15 M) and piperidine (0.22 mL, 2.25 mmol, 3 equiv). The reaction mixture was 

stirred at room temperature for 3 hours. The mixture was passed through a short silica 

plug and the volatiles were concentrated via rotary evaporation. The residue was 

dissolved in DCM (10 ml) and washed with water (3 x 5 mL). The organics were dried 

over Na2SO4, filtered and concentrated to afford pure product 3 in 91% yield.  
1H NMR (CDCl3, 500 MHz) δ 8.95 (br s, 1 H), 3.16 (s, 2 H), 2.58 (app. s, 4 H), 1.65 (m, 

4 H), 1.49 (app. s, 2H). 
13C NMR (CDCl3, 175 MHz) δ 169.8, 62.3, 55.1, 26.3, 23.7.  

Note: The carbon resonances corresponding to the perfluoroarene (C6F5) in this 

compound appear as a complex series of multiplets between 110 ppm to 150 ppm as a 

result of 13C/19F coupling. Due to the complexities of the system, the peaks are not 

listed. 

HRMS (ESI+) [M+H]+ calcd for C13H14F5N2O: 309.1021; found: 309.1024. 
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Compound 4. A 4-mL vial was charged with 3 (120 mg, 0.39 mmol, 1 equiv), Pd(OAc)2 

(17 mg, 0.078 mmol, 20 mol %), AgOAc (260 mg, 1.6 mmol, 4 equiv), Cs2CO3 (152 mg, 

0.47 mmol, 1.2 equiv) and iodobenzene (1 mL). The mixture was heated to 140 ºC for 

18 hours. After, the crude product was purified by column chromatography (15% EtOAc 

in hexanes) affording 20% yield of 4. 
1H NMR (CDCl3, 400 MHz) δ 7.42–7.29 (multiple peaks, 5H), 4.12 (s, 1H), 2.49 (m, 4H), 

1.64 (m, 4H), 1.46 (m, 2H). Note: N–H not observed.  

GCMS [M– C7H2F5NO] calcd for C12H16N: 174.1277; found: 174.15. 

 

Synthesis of amine starting materials 

 
A 20-mL scintillation vial was charged with piperidine (86 mg, 1.01 mmol, 1 equiv), α-

bromo methylpropanamide A (430 mg, 1.1 mmol, 1.1 equiv), and K2CO3 (280 mg, 2.02 

mmol, 2 equiv). To the solids, anhydrous acetonitrile (5 mL) was added. The vial was 

sealed, and the reaction was heated to an external temperature of 60 ºC.  After 18 h, 

the reaction was cooled to room temperature, diluted with EtOAc (~5 mL), and filtered 

through Celite. The filtrate was concentrated under reduced pressure. Final purification 

via column chromatography (gradient elution from 0% to 20% EtOAc in hexanes) 

afforded product 5 (328 mg, 84% yield) as a white solid. Other amine derivatives were 

prepared in an analogous manner by using the appropriate amine starting material. 

When an amine hydrochloride was used, 3.2 equiv of K2CO3 were used. When the 

amine free base was used, 2 equiv of K2CO3 were used. See substrate specific notes 

below. 
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MP 72-74 ºC 

IR (thin film): 1707 (br) cm–1 
1H NMR (700 MHz, CDCl3) δ 9.50 (br s, 1H), 2.50 (br s, 4H), 1.66 (br s, 4H), 1.51 (br s, 

2H), 1.29 (s, 6H). 
19F NMR (377 MHz, CDCl3) δ –56.0 (t, J = 21.7 Hz, 3F), –141.2 (m, 2F), –144.2 (m, 2F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (176 MHz, CDCl3) δ 175.9, 64.9, 48.0, 26.7, 24.5, 20.5. 

HRMS (ESI+) [M+H]+ Calcd for C16H18F7N2O+: 387.1307; Found: 387.1304. 

Rf = 0.60 in 20% EtOAc in hexanes 

 

 
Compound 8 was isolated in 81% yield as a white solid using standard conditions above. 

MP 114-116 ºC 

IR (thin film): 1700 cm–1 
1H NMR (700 MHz, CDCl3) δ 9.02 (s, 1H), 2.88 (d, J = 8.5 Hz, 2H), 2.69 (dt, J = 8.5, 1.6 

Hz, 2H), 1.43 (m, 2H), 1.31 (s, 6H), 0.63 (q, J = 4.2 Hz, 1H), 0.48 (td, J = 7.7, 4.3 Hz, 

1H). 
19F NMR (377 MHz, CDCl3) δ –56.0 (t, J = 21.7 Hz, 3F), –141.2 (m, 2F), –144.2 (m, 2F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (176 MHz, CDCl3) δ 175.1, 61.1, 47.6, 21.0, 14.5, 6.5. 

N
NHC7F7

O
(5)

N
NHC7F7

O
(8)



 
	

156 

HRMS (ESI+) [M+H]+ Calcd for C16H16F7N2O+: 385.1151; Found: 385.1145. 

Rf = 0.60 in 20% EtOAc in hexanes 

 

(6a) 

Authentic sample of compound 6a was isolated in 80% yield as a white solid using the 

standard conditions. 

MP 138-141 ºC 

IR (thin film): 1717 (br) cm–1 
1H NMR (700 MHz, CDCl3) δ 9.45 (s, 1H), 7.32 (t, J = 7.5 Hz, 2H), 7.25-7.20 (multiple 

peaks, 3H), 2.99 (d, J = 11.2 Hz, 2H), 2.58 (tt, J = 12.4, 3.9 Hz, 1H), 2.40 (td, J = 11.5, 

2.1 Hz, 2H), 1.99 (dt, J = 12.7, 2.9 Hz, 2H), 1.79 (m, 2H), 1.36 (s, 6H). 
19F NMR (471 MHz, CDCl3) δ –56.0 (t, J = 21.7 Hz, 3F), –141.0 (m, 2F), –144.1 (m, 2F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (176 MHz, CDCl3) δ 175.7, 145.6, 128.5, 126.7, 126.4, 64.8, 47.8, 42.6, 34.0, 

20.5. 

HRMS (ESI+) [M+H]+ Calcd for C22H22F7N2O+: 463.1620; Found: 463.1621. 

Rf = 0.60 in 20% EtOAc in hexanes 

 

(13a) 

Note: The trifluoroacetate salt of the amine was used as the precursor. Preparative TLC 

(10 % EtOAc in hexanes) was used for isolation of the substrate. 

Compound 13a was isolated in 33% yield as a white solid using the standard conditions. 
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IR (thin film): 1700 cm-1 

1H NMR (500 MHz, CDCl3) δ 9.67 (s, 1H), 3.57 (t, J = 5 Hz, 1H), 3.29 (s, 3H), 3.14 – 

3.06 (multiple peaks, 4H), 2.65 (br s, 2H), 1.59 (d, J = 10 Hz, 1H), 1.50 (m, 1H), 1.43 (s, 

6H). 
19F NMR (377 MHz, CDCl3) δ –56.1 (t, J = 18.9 Hz, 3F), –141.4 (m, 2F), –143.7 (m, 2F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (126 MHz, CDCl3) δ 176.4, 75.3, 63.4, 56.5, 44.7, 37.6, 22.8, 22.5. 

HRMS (ESI+) [M+H]+ Calcd for C18H20F7N2O2: 429.1408 ; Found: 429.1411. 

Rf = 0.27 in 10% EtOAc in hexanes 

 

(13b) 

Note: The hydrochloric salt of the amine was used as the precursor.  

Compound 13b was isolated in 51% yield as a white solid using the standard conditions. 

MP 111-113 ºC 

IR (thin film): 1693 cm-1 

1H NMR (700 MHz, CDCl3) δ 9.60 (br s, 1H), 7.22 (d, J = 7 Hz, 2H), 7.14 (t, J = 7 Hz, 

2H), 7.08 (t, J = 7 Hz, 1H), 4.47 (s, 2H), 3.87 (t, J = 9.1 Hz, 1H), 3.25 (d, J = 14 Hz, 2H), 

3.15 (d, J = 9.1 Hz, 2H), 2.73 (t, J  = 4.9 Hz, 2 H), 1.57 (m, 1H), 1.46 (app d, J = 9.1 Hz, 

1H), 1.42 (s, 6H). 
19F NMR (377 MHz, CDCl3) δ –56.20 (t, J = 21.5 Hz, 3F), –142.31 (m, 2F), –143.57 (m, 

2F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
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13C NMR (176 MHz, CDCl3) δ 176.8, 137.2, 128.2, 128.1, 128.0, 74.5, 72.1, 63.1, 45.7, 

38.2, 24.2, 23.2. 

HRMS (ESI+) [M+H]+ Calcd for C24H23F7N2O2: 505.1721; Found: 505.1721. 

Rf = 0.19 in 10% EtOAc in hexanes 

 

 (13c) 

Compound 13c was isolated in 56% yield as a white solid using the standard conditions. 

MP 91-93 ºC 

IR (thin film): 1701 cm–1 
1H NMR (700 MHz, CDCl3) δ 9.22 (br s, 1H), 2.95 (s, 4H), 2.41 (tt, J = 5.9, 1.6 Hz, 2H), 

2.05 (m, 2H), 1.49 (m, 2H), 1.38 (s, 6H). 
19F NMR (377 MHz, CDCl3) δ –56.0 (t, J = 21.7 Hz, 3F), –141.2 (m, 2F), –144.3 (m, 2F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (176 MHz, CDCl3) δ 175.5, 63.2, 49.9, 33.2, 32.6, 20.7. 

HRMS (ESI+) [M+H]+ Calcd for C17H18F7N2O+: 399.1307; Found: 399.1300. 

Rf = 0.60 in 20% EtOAc in hexanes 

 

 (13d) 

Compound 13d was isolated in 86% yield as a white solid using the standard conditions. 

MP 121-123 ºC 

IR (thin film): 1712 cm–1 
1H NMR (700 MHz, CDCl3) δ 7.49 (br s, 1H), 7.16 (dd, J = 5.3, 3.2 Hz, 2H), 7.06 (dd, J = 

5.3, 3.1 Hz, 2H), 3.21 (t, J = 4.2 Hz, 2H), 2.70 (m, 2H), 2.69 (d, J = 10.4 Hz, 2H), 2.31 

(dt, J = 10.3, 3.6, Hz, 1H), 1.74 (d, J = 10.4 Hz, 1H), 1.20 (s, 6H). 
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19F NMR (377 MHz, CDCl3) δ –56.0 (t, J = 21.8 Hz, 3F), –141.5 (m, 2F), –143.0 (m, 2F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (176 MHz, CDCl3) δ 176.2, 145.5, 126.7, 121.6, 63.7, 50.5, 43.6, 41.0, 21.6. 

HRMS (ESI+) [M+H]+ Calcd for C22H20F7N2O+: 461.1464; Found: 461.1469. 

Rf = 0.55 in 20% EtOAc in hexanes 

 

 (13e) 

Note: The tosylate salt of the amine was used as the precursor. 

Compound 13e was isolated in 59% yield as an oil using the standard conditions. 

IR (thin film): 1702 (br) cm–1 
1H NMR (700 MHz, CDCl3) δ) 8.97 (s, 1H), 4.58 (m, 2H), 3.12 – 3.03 (multiple peaks, 

3H), 2.96 (dt, J = 11.5, 2.0 Hz, 2H), 2.26 (d, J = 8.3 Hz, 1H), 1.39 (s, 6H). 
19F NMR (377 MHz, CDCl3) δ –56.3 (t, J = 21.7 Hz, 3F), –141.4 (m, 2F), –144.5 (m, 2F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (176 MHz, CDCl3) δ 174.6, 79.1, 63.3, 48.8, 30.0, 20.6. 

HRMS (ESI+) [M+H]+ Calcd for C16H16F7N2O2
+: 401.1100; Found: 401.1095. 

Rf = 0.30 in 35% EtOAc in hexanes 

 

 (13f) 
Compound 13f was isolated in 93% yield as a white solid using standard conditions, 

except that purification was conducted via column chromatography, followed by 

recrystallization of the substrate from hot hexanes. 
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MP 121-123 ºC 

IR (thin film): 1699 cm-1 

1H NMR (500 MHz, CDCl3) δ 9.24 (s, 1H), 2.61 (dd, J = 4, 11 Hz, 2H), 2.37 (d, J = 11 

Hz, 2H), 2.23 (br s, 2H), 1.66 (m, 4 H), 1.50 (m, 1H), 1.39 (d, J = 11 Hz, 1H), 1.26 (s, 

6H).   
19F NMR (471 MHz, CDCl3): –56.3 (t, J = 23.6 Hz, 3F), –141.7 (m, 2F), –143.7 (m, 2F) 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (176 MHz, CDCl3) δ 176.0, 64.2, 53.3, 37.5, 35.2, 28.2, 20.8. 

HRMS (ESI+) [M+H]+ Calcd for C18H20F7N2O: 413.1458 ; Found: 413.1460. 

Rf = 0.29 in 5% EtOAc in hexanes 

 

 (13g) 

Note: The hydrochloric salt of the amine was used as the precursor.  

Compound 13g was isolated in 40% yield as a white solid using the standard conditions. 

MP 84-86 ºC 

IR (thin film): 1700 cm-1 

1H NMR (500 MHz, CDCl3) δ 9.64 (br s, 1H), 2.86 (m, 2H), 2.75 (d, J = 9.5 Hz, 2H), 2.46 

(dd, J = 9.5, 5 Hz, 2H), 2.25 (s, J = 6.5 Hz, 2H), 1.72 (m, 2H), 1.39 (s, 6H). 
19F NMR (471 MHz, CDCl3) δ –56.0 (t, J = 23.6 Hz, 3F), –141.2 (m, 2F), –143.7 (m, 2F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (126 MHz, CDCl3) δ 175.7, 61.7, 53.7, 36.5, 24.4, 21.2. 

HRMS (ESI+) [M+H]+ Calcd for C17H18F7N2O: 399.1302; Found: 399.1299. 

Rf = 0.33 in 10% EtOAc in hexanes 
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 (13h) 

Note: The hydrochloric salt of the amine was used as the precursor.  

Compound 13h was isolated in 45% yield as a white solid using the standard conditions. 

MP 68-70 ºC 

IR (thin film): 1698 cm-1 

1H NMR (700 MHz, CDCl3) δ 9.38 (br s, 1H), 2.75 (app t, J = 7.7 Hz, 2H), 2.58 (m, 2H), 

2.37 (app d, J = 7.7 Hz, 2H), 1.81 (app sextet, J = 7 Hz, 2H), 1.65 (septet, J = 7 Hz, 1H), 

1.52 (septet, J = 7 Hz, 1H), 1.39 (m, 2H), 1.32 (s, 6H).  
19F NMR (377 MHz, CDCl3) δ –56.04 (t, J = 21.9 Hz, 3F), –141.24 (m, 2F), –143.95 (m, 

2F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (176 MHz, CDCl3) δ 175.5, 61.7, 54.0, 41.8, 33.6, 26.8, 20.9. 

HRMS (ESI+) [M+H]+ Calcd for C18H19F7N2O: 413.1458; Found: 413.1458. 

Rf = 0.23 in 10% EtOAc in hexanes 

 

 (15) 

Compound 15 was isolated in 87% yield as a white solid using standard conditions 

above. 

MP 75-77 ºC 

IR (thin film): 1716 (br) cm–1 
1H NMR (700 MHz, CDCl3) δ 8.93 (s, 1H), 7.34 (d, J = 8.3 Hz, 1H), 7.23 (d, J = 2.2 Hz, 

1H), 6.99 (dd, J = 8.3, 2.2 Hz, 1H), 3.22 (d, J = 8.5 Hz, 1H), 3.02 (d, J = 8.6 Hz, 1H), 
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2.95-2.88 (multiple peaks, 2H), 1.82 (dt, J = 7.9, 3.9 Hz, 1H), 1.41 – 1.38 (multiple 

peaks, 4H), 1.37 (s, 3H), 0.93 (dd, J = 8.0, 4.8 Hz, 1H). 
19F NMR (377 MHz, CDCl3) δ –56.0 (t, J = 21.7 Hz, 3F), –141.0 (dd, J = 21.7, 11.7 Hz, 

2F), –144.1 (m, 2F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (176 MHz, CDCl3) δ 174.5, 142.3, 132.3, 130.2, 130.0, 128.5, 125.9, 61.3, 

51.5, 47.9, 29.3, 23.8, 21.2, 20.7, 16.6. 

HRMS (ESI+) [M+H]+ Calcd for C22H18F7N2O+: 529.0684; Found: 529.0679. 

Rf = 0.60 in 20% EtOAc in hexanes 

 

(17) 

Note: the tartrate salt of the amine was used as the precursor 

Compound 17 was isolated in 81% yield as a white solid using standard conditions. 

MP 153-155 ºC 

IR (thin film): 1718 cm–1 
1H NMR (700 MHz, CDCl3) δ 8.67 (s, 2H), 7.76 (s, 2H), 7.37 (s, 1H), 3.46 (t, J = 4.5 Hz, 

2H), 2.96 (dd, J = 11.0, 4.3, Hz, 2H), 2.83 (d, J = 10.8 Hz, 2H), 2.38 (dt, J = 11.0, 4.5, 

Hz, 1H), 1.92 (d, J = 10.9 Hz, 1H), 1.16 (s, 6H). 
19F NMR (377 MHz, CDCl3) δ –56.1 (t, J = 21.7 Hz, 3F), –141.4 (m, 2F), –144.3 (m, 2F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
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13C NMR (176 MHz, CDCl3) δ 174.9, 149.6, 143.9, 143.1, 120.9, 63.8, 51.7, 42.8, 40.9, 

21.3. 

HRMS (ESI+) [M+H]+ Calcd for C24H20F7N4O+: 513.1525; Found: 513.1519. 

Rf = 0.50 in 50% EtOAc in hexanes 

 

 (19) 
Note: Sodium iodide (1 equiv) was added to the reaction mixture. 

Compound 19 was isolated in 85% yield as light yellow solid using standard conditions. 

MP 65-67 ºC 

IR (thin film): 1700, 1653 cm-1 

1H NMR (500 MHz, CDCl3) δ 7.72 (s, 1H), 7.02 (dd, J = 6.5, 9 Hz, 1H), 6.28 (app d, J = 

9 Hz, 1H), 5.94 (app d, J = 6.5 Hz, 1H), 4.18 (d, J = 15.5 Hz, 1H), 3.87 (dd, J = 6 Hz, 

15.5 Hz, 1H), 3.10-3.07 (multiple peaks, 2H), 2.87 (m, 1H), 2.66-2.56 (multiple peaks, 

3H), 1.98 (m, 1H), 1.86 (m, 1H), 1.29 (s, 3H), 1.19 (s, 3H). 
19F NMR (377 MHz, CDCl3) δ –56.1 (t, J = 22.6 Hz, 3F), –141.0 (m, 2F), –142.8 (m, 2F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (126 MHz, CDCl3) δ 174.9, 163.0, 150.3, 138.3, 116.9, 104.8, 64.5, 55.7, 53.0, 

49.9, 35.5, 28.0, 26.1, 23.5, 17.7. 

HRMS (ESI+) [M+H]+ Calcd for C22H21F7N3O2: 492.1517; Found: 492.1517. 

Rf  = 0.09 in 60% EtOAc in hexanes 
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Isolation of Aminal Products 

 
Under ambient conditions, a 4 mL scintillation vial was charged with amine 8 (45 mg, 

0.12 mmol, 1 equiv), AgOAc (65 mg, 0.39 mmol, 3.3 equiv), and KOPiv (94 mg, 0.67 

mmol, 6 equiv). To the solids, tert-amyl alcohol (0.8 mL) was added. The vial was 

sealed with a Teflon-lined cap, wrapped in electrical tape, and heated to an external 

temperature of 140 ºC. After 18 h, the reaction was removed from the heat source, 

diluted with EtOAc, and filtered through a plug of Celite. The filtrate was concentrated 

under reduced pressure. Final purification by column chromatography (10 g cartridge, 

gradient elution from 0% to 20% EtOAc in hexanes) afforded aminal 10 (26 mg, 58% 

yield) as a yellow oil. 

 

(10) 

IR (thin film): 1728 (br) cm–1 
1H NMR (700 MHz, CDCl3) δ 5.29 (s, 1H), 3.10 – 3.03 (multiple peaks, 2H), 1.60 (m, 

1H), 1.43 (ddd, J = 9.2, 6.2, 3.5 Hz, 1H), 1.38 (s, 3H), 1.37 (s, 3H), 0.82 (q, J = 4.3, Hz, 

1H), 0.58 (td, J = 8.1, 4.9 Hz, 1H).  
19F NMR (377 MHz, CDCl3) δ –56.2 (t, J = 21.8 Hz, 3F), –139.5 (br s, 1F), –140.2 (br s, 

1F), –140.6 (m, 1F), –144.5 (m, 1F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (176 MHz, CDCl3) δ 177.4, 79.9, 63.7, 49.8, 24.9, 19.4, 17.5, 16.6, 6.0. 

HRMS (ESI+) [M+H]+ Calcd for C16H14F7N2O+: 383.0994; Found: 383.0992. 
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Rf = 0.30 in 20% EtOAc in hexanes 

 

(11) 

Note: No KOPiv was used; instead 20 mol% Pd(OAc)2 was added. 

Compound 11 was isolated as faintly yellow solid in 47% yield. 

MP 83 ºC 

IR (thin film): 1736 cm–1 
1H NMR (700 MHz, CDCl3) δ 4.25 (d, J = 8.3 Hz, 1H), 2.90 (m, 1H), 2.44 (td, J = 11.4, 

2.7 Hz, 1H), 1.90 (m, 1H), 1.74-1.69 (m, 2H), 1.63 (m, 1H), 1.40 (t, J = 4.5 Hz, 2H), 1.36 

(s, 3H), 1.16 (s, 3H). 
19F NMR (377 MHz, CDCl3) δ –56.2 (t, J = 21.7 Hz, 3F), –139.1 (dd, J = 22.0, 11.1 Hz, 

1F), –139.5 (m, 1F), –140.8 (m, 1F), –143.7 (dd, J = 21.9, 10.3 Hz, 1F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (176 MHz, CDCl3) δ 175.9, 74.7, 61.0, 42.8, 29.4, 25.1, 23.0, 22.6, 14.6. 

HRMS (ESI+) [M+H]+ Calcd for C16H16F7N2O+: 385.1151; Found: 385.1145. 

Rf = 0.35 in 20% EtOAc in hexanes 

 

(12) 

Compound 12 was isolated as a yellow oil in 30% yield. 

IR (thin film): 1741 (br) cm–1 
1H NMR (700 MHz, CDCl3) δ 7.30 (dd, J = 8.7, 6.7 Hz, 2H), 7.27 – 7.19 (multiple peaks, 

3H), 4.45 (dd, J = 10.2, 2.4 Hz, 1H), 3.07 (dd, J = 11.2, 4.6, Hz, 1H), 2.72 (tt, J = 12.3, 
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3.9 Hz, 1H), 2.63 (td, J = 11.3, 2.9 Hz, 1H), 1.97 (m, 1H), 1.89 (m, 2H), 1.65 (q, J = 11.2 

Hz, 1H), 1.43 (s, 3H), 1.23 (s, 3H). 
19F NMR (377 MHz, CDCl3) δ –56.3 (t, J = 21.7 Hz, 3F), –139.0 (dd, J = 22.1, 10.7 Hz, 

1F), –139.3 (m, 1F), –140.6 (m, 1F), –143.8 (dd, J = 22.1, 10.6 Hz, 1F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (176 MHz, CDCl3) δ 175.8, 144.2, 128.6, 126.8, 126.7, 74.30, 60.9, 42.3, 41.4, 

36.7, 32.9, 23.1, 14.7. 

HRMS (ESI+) [M+H]+ Calcd for C22H20F7N2O+: 461.1464; Found: 461.1458. 

Rf = 0.55 in 20% EtOAc in hexanes 

 

Optimization of C–H Arylation of Azabicyclo[3.1.0]hexane 8 
 

 
Under ambient conditions, a stock solution of Pd(OAc)2 (21 mg, 0.09 mmol) was 

prepared in dichloromethane (2 mL). An aliquot of this solution was transferred to a 4 

mL vial (200 µL, 0.009 mmol Pd, 30 mol %). The dichloromethane was removed by 

heating the open vial to 100 ºC for approximately 20 s. To the concentrated Pd(OAc)2, 

solid AgX (2 equiv) and/or base (3 equiv) were added. 

A separate vial was charged with substrate 8 (120 mg, 0.31 mmol). A mixture of PhI 

(710 µL, 6.2 mmol, 20 equiv) and tert-amyl alcohol (2.8 mL) was gently heated (at ~60 

ºC) to form a homogeneous solution. An aliquot (370 µL, 0.031 mmol substrate) of this 

solution was transferred to the vial containing Pd(OAc)2, AgX, and/or base (prepared as 

described above). The vial was sealed with a Teflon-lined cap, wrapped in electrical 

tape, and heated to the designated temperature on an aluminum heating block. After 18 

O

NHC7F7
N N O

HN
Ph

N

N
C7F7

O+

C7F7
Pd(OAc)2 (30 mol %)

Ag Salt (2 equiv)

base (3 equiv)
PhI (20 equiv), tAmylOH

 100-130 ºC (9a)
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h, the reaction was removed from the heat source and hydrazine (28 µL, 35% in H2O, 

0.3 mmol, 10 equiv) was added to the warm solution. The addition of hydrazine resulted 

in the immediate precipitation of a black solid (presumably Pd0). A solution of internal 

standard (1,3,5-trimethoxybenzene, 168 mg in 5 mL of DCM) was prepared, and an 

aliquot (150 µL) of the stock standard solution was added to the reaction vial.  The 

reaction solution was then diluted with EtOAc to an approximate total volume of 2 mL. 

The solution was then filtered through a pipette packed with Celite and was analyzed by 

GC-FID. The average value of duplicate GC injections was used to determine the GC 

yield based on a linear calibration curve (minimum 5 points) with 1,3,5-

trimethoxybenzene. 

Variations of this procedure were used in all optimization reactions (Table 4.1) where 

the yield was determined by GC-FID. For instance, the impact of the mol % of Pd(OAc)2 

was determined by following the same procedure outlined above except that different 

volumes of the Pd(OAc)2 stock solution were transferred to each vial. 

 

Scope of Ar-I for C–H Arylation of 8  

 
Standard conditions A: Under ambient conditions, a 20 mL scintillation vial was 

charged with solid substrate 8 (100 mg, 0.26 mmol, 1 equiv), Pd(OAc)2 (6 mg, 0.03 

mmol, 10 mol %) and iododoarene (when solid, 1-2  equiv). The vial was then brought 

inside of a glove box. To these solids, iodoarene (when liquid, 1-20 equiv), cesium 

pivalate (182 mg, 0.78 mmol, 3 equiv), and tert-amyl alcohol (2.4 mL) were added. The 

vial was sealed with a Teflon-lined cap, wrapped in electrical tape, removed from the 

glove box, and heated to an external temperature of 130 ºC. After 18 h, the reaction 

was removed from the heat source, and hydrazine (250 µL, 35% in H2O, 2.7 mmol, 10 

equiv) was added to the warm solution. The mixture was then allowed to stir for 10 to 30 

min at 60 °C to remove ligated Pd from the product. The resulting solution was diluted 

with EtOAc (~5 mL) and filtered through a layered plug of Celite and basic alumina. The 
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plug was rinsed with additional EtOAc, and the resulting solution was concentrated 

under reduced pressure. Purification by column chromatography (25 g cartridge, 

gradient elution from 0% to 20% EtOAc in hexanes) afforded the desired product.  

The use of a glove box was not necessary to obtain reliable conversion in the C–H 

activation reaction. In general, the yield using a glove box was 10-15% higher than 

when conducted under ambient atmosphere with reagents stored under ambient 

conditions.  This observation was unique to the azabicyclo[3.1.0]hexane system 

(substrate 8). 

Note: Reaction with compound 9j was done by a modified procedure.  Under ambient 

conditions, a 20 mL scintillation vial was charged with solid substrate (100 mg, 0.26 

mmol, 1 equiv), Pd(OAc)2 (18 mg, 0.08 mmol, 30 mol %), AgOAc (52 mg, 0.31 mmol, 

1.2 equiv), and KOPiv (109 mg, 0.78 mmol, 3 equiv).  To these solids, PhI (590 µL, 5.2 

mmol, 20 equiv) and tert-amyl alcohol (2.4 mL) were added. The vial was sealed with a 

Teflon-lined cap and heated to an external temperature of 100 ºC for 18 hours. Work up 

procedure is similar to the standard conditions above. 

 

(9a) 

Isolated yield using standard conditions A (using 1 equiv of Aryl-I): 74% yield 

MP 83-85 ºC (white solid) 

IR (thin film): 1711 cm–1 
1H NMR (700 MHz, CDCl3) δ 7.30 (d, J = 7.5 Hz, 2H), 7.08 (t, J = 7.6 Hz, 2H), 6.93 (t, J 

= 7.4 Hz, 1H), 6.34 (s, 1H), 2.95 (d, J = 9.1 Hz, 2H), 2.85 (dt, J = 9.1, 2.0 Hz, 2H), 2.08 

(t, J = 8.1 Hz, 1H), 1.86 (dt, J = 8.4, 1.8 Hz, 2H), 1.11 (s, 6H). 
19F NMR (471 MHz, CDCl3) δ –56.0 (t, J = 21.7 Hz, 3F), –141.5 (m, 2F), –144.6 (m, 2F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
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13C NMR (176 MHz, CDCl3) δ 175.9, 138.0, 128.1, 128.0, 125.9, 60.9, 45.0, 22.8, 20.8, 

19.9. 

HRMS (ESI+) [M+H]+ Calcd for C22H20F7N2O+: 461.1464; Found: 461.1458. 

Anal. Calc for C22H19F7N2O: C, 57.39; H, 4.16. Found C, 57.14; H, 3.99. Found C, 

57.12; H, 4.03. 

Rf = 0.67 in 20% EtOAc in hexanes 

 

(9b) 

Isolated yield using standard conditions A (using 1 equiv of Aryl-I): 75% yield 

MP 75-77 ºC (white solid) 

IR (thin film): 1711 cm–1 
1H NMR (700 MHz, CDCl3) δ 7.20 (d, J = 8.4 Hz, 2H), 6.56 (d, J = 8.4 Hz, 2H), 6.51 (s, 

1H), 3.53 (s, 3H), 2.94 (d, J = 9.1 Hz, 2H), 2.87 (ddd, J = 9.1, 2.6, 1.4 Hz, 2H), 1.99 (t, J 

= 8.0 Hz, 1H), 1.81 (ddd, J = 8.0, 2.6, 1.3 Hz, 2H), 1.14 (s, 6H). 
19F NMR (377 MHz, CDCl3) δ –56.1 (t, J = 21.8 Hz, 3F), –141.4 (m, 2F), –143.1 (m, 2F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (176 MHz, CDCl3) δ 176.1, 157.5, 129.7, 128.9, 113.4, 60.9, 54.6, 45.1, 22.8, 

20.9, 20.0. 

HRMS (ESI+) [M+H]+ Calcd for C23H22F7N2O2
+: 491.1570; Found: 491.1560. 

Rf = 0.50 in 20% EtOAc in hexanes 
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(9c) 

 
Isolated yield using standard conditions A (using 1 equiv of Aryl-I): 80% yield 

MP 116-118 ºC (white solid) 

IR (thin film): 1705 (br) cm–1 
1H NMR (700 MHz, CDCl3) δ 7.43-7.36 (multiple peaks, 4H), 7.34-7.21 (multiple peaks, 

5H), 6.37 (s, 1H), 3.01 (d, J = 9.2 Hz, 2H), 2.90 (dt, J = 9.2, 1.7 Hz, 2H), 2.13 (t, J = 8.1 

Hz, 1H), 1.89 (dt, J = 8.2, 1.6 Hz, 2H), 1.16 (s, 6H). 
19F NMR (377 MHz, CDCl3) δ –56.2 (t, J = 21.7 Hz, 3F), –141.4 (m, 2F), –143.0 (m, 2F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (176 MHz, CDCl3) δ 176.4, 138.9, 137.9, 137.1, 128.8, 128.7, 127.5, 126.3, 

125.4, 61.04, 45.2, 22.4, 21.1, 20.1. 

HRMS (ESI+) [M+H]+ Calcd for C28H24F7N2O+: 537.1777; Found: 537.1773. 

Rf = 0.55 in 20% EtOAc in hexanes 
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(9d) 

Isolated yield using standard conditions A (using 1 equiv of Aryl-I): 69% yield 

MP 116-118 ºC (white solid) 
1H NMR (700 MHz, CDCl3) δ 7.77 (s, 2H), 7.56 (s, 1H), 6.09 (s, 1H), 2.97 (d, J = 9.7 Hz, 

2H), 2.93 (ddd, J = 9.7, 2.5, 1.4 Hz, 2H), 2.15 (t, J = 8.0 Hz, 1H), 2.00 (ddd, J = 8.0, 2.5, 

1.3 Hz, 2H), 1.14 (s, 6H). 
19F NMR (377 MHz, CDCl3) δ –56.3 (t, J = 21.8 Hz, 3F), –63.5 (s, 6F), –141.3 (m, 2F), –

143.7 (m, 2F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (176 MHz, CDCl3) δ 174.6, 141.0, 131.5 (q, JC-F = 33.9 Hz), 128.5 (q, JC-F = 

3.1 Hz), 122.9 (q, JC-F = 271 Hz), 119.7 (q, J C-F = 3.9 Hz), 61.2, 45.0, 22.5, 20.6, 20.5. 

HRMS (ESI+) [M+H]+ Calcd for C24H18F13N2O+: 597.1212; Found: 597.1206. 

Rf = 0.67 in 20% EtOAc in hexanes 

 

(9e) 

Isolated yield using standard conditions A (using 2 equiv of Aryl-I): 68% yield  

MP 60-65 ºC (white solid) 

IR (thin film): 1712 (br) cm–1 
1H NMR (700 MHz, CDCl3) δ 7.33 (td, J = 7.4, 1.6 Hz, 1H), 6.93 (m, 1H), 6.89-6.81 

(multiple peaks, 2H), 6.48 (s, 1H), 3.00 (d, J = 9.3 Hz, 2H), 2.84 (dt, J = 9.3, 1.7 Hz, 2H), 

1.94 (multiple peaks, 3H), 1.13 (s, 6H). 
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19F NMR (471 MHz, CDCl3) δ –56.1 (t, J = 21.8 Hz, 3F), –116.1 (q, J = 7.4 Hz, 1F), –

141.5 (m, 2F), –143.5 (m, 2F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (176 MHz, CDCl3) δ 175.64, 161.2 (d, JC-F = 247 Hz), 130.4 (d, JC-F = 4.5 Hz), 

127.5 (d, JC-F = 7.7 Hz), 125.5 (d, JC-F = 16.1 Hz), 123.3 (d, JC-F = 3.1 Hz), 115.2 (d, JC-F 

= 22.2 Hz), 61.10, 45.6, 20.7, 19.9, 18.1. 

HRMS (ESI+) [M+H]+ Calcd for C22H19F8N2O+: 479.1370; Found: 479.1364. 

Rf = 0.67 in 20% EtOAc in hexanes 

 

(9f) 
Isolated yield using standard conditions A (using 2 equiv of Aryl-I): 70% yield 

MP 105-108 ºC (white solid) 

IR (thin film): 1712 cm–1 
1H NMR (700 MHz, CDCl3) δ 7.22 – 7.15 (multiple peaks, 4H), 6.39 (s, 1H), 2.93 (d, J = 

9.3 Hz, 2H), 2.88 (ddd, J = 9.2, 2.6, 1.4 Hz, 2H), 2.00 (t, J = 8.0 Hz, 1H), 1.87 (ddd, J = 

8.0, 2.6, 1.3 Hz, 2H), 1.14 (s, 6H). 
19F NMR (471 MHz, CDCl3) δ –56.2 (t, J = 21.7 Hz, 3F), –141.1 (m, 2F), –143.0 (m, 2F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (176 MHz, CDCl3) δ 175.9, 137.0, 131.3, 129.9, 119.9, 61.0, 45.0, 22.3, 21.0, 

20.0.  

HRMS (ESI+) [M+H]+ Calcd for C22H17BrF7N2O+: 539.0569; Found: 539.0561. 
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Anal. Calc for C22H16BrF7N2O: C, 49.00; H, 3.36. Found C, 48.93; H, 3.40. Found C, 

49.10; H, 3.33. 

Rf = 0.50 in 20% EtOAc in hexanes 

 

(9g) 

NOTE: chromatography gradient was 0% to 30% EtOAc in hexanes 

Isolated yield using standard conditions A (using 2 equiv of Aryl-I): 57% yield 

MP 200-203 ºC (white solid) 

IR (thin film): 1684 cm–1 
1H NMR (700 MHz, CD3OD) δ 6.97 (t, J = 7.8 Hz, 1H), 6.82 (dd, J = 7.8, 1.2 Hz, 1H), 

6.68 (dd, J = 2.6, 1.4 Hz, 1H), 6.27 (dd, J = 8.0, 2.4 Hz, 1H), 3.00 (d, J = 9.0 Hz, 2H), 

2.86 (ddd, J = 9.0, 2.5, 1.4 Hz, 2H), 2.00 (t, J = 8.0 Hz, 1H), 1.83 (ddd, J = 8.0, 2.6, 1.2 

Hz, 2H), 1.11 (s, 6H). 
19F NMR (377 MHz, CD3OD) δ –56.9 (t, J = 21.2 Hz, 3F), –144.1 (multiple peaks, 4F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (176 MHz, CD3OD) δ 177.3, 157.0, 139.5, 128.9, 118.8, 114.5, 112.4, 60.6, 

44.5, 22.4, 19.9, 19.4. 

HRMS (ESI+) [M+H]+ Calcd for C22H20F7N2O2
+: 477.1413; Found: 477.1408. 

Rf = 0.40 in 20% EtOAc in hexanes 
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(9h) 

NOTE: Due to the rapid formation of a hydrazone, hydrazine was not used in the 

isolation of this aldehyde. Instead, the reaction was diluted with MeOH (0.2 mL) and 

heated at 60 °C for 4 h prior to filtration. 

Isolated yield using standard conditions A (using 1 equiv of Aryl-I): 88% yield  

MP 116 ºC (white solid) 

IR (thin film): 1704, 1700 cm–1 
1H NMR (700 MHz, CDCl3) δ 9.77 (s, 1H), 7.61 (m, 2H), 7.46 (m, 2H), 6.19 (s, 1H), 2.95 

(d, J = 9.5 Hz, 2H), 2.88 (ddd, J = 9.4, 2.4, 1.3 Hz, 2H), 2.13 (t, J = 8.0 Hz, 1H), 1.94 

(ddd, J = 8.1, 2.6, 1.3 Hz, 2H), 1.11 (s, 6H). 
19F NMR (377 MHz, CDCl3) δ –56.2 (t, J = 21.7 Hz, 3F), –140.9 (m, 2F), –143.0 (m, 2F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (176 MHz, CDCl3) δ 190.6, 175.3, 145.3, 134.5, 129.2, 128.7, 61.0, 45.0, 23.0, 

20.8, 20.2. 

HRMS (ESI+) [M+H]+ Calcd for C23H20F7N2O2
+: 489.1413; Found: 489.1407. 

Rf = 0.45 in 20% EtOAc in hexanes 

 

(9i) 
NOTE: chromatography gradient was 0% to 40% EtOAc in hexanes. 

Isolated yield using standard conditions A (using 2 equiv of Aryl-I): 80% yield  

MP 118-120 ºC (white solid) 
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IR (thin film): 1710 cm–1 
1H NMR (700 MHz, CDCl3) δ 7.90 (d, J = 4.4 Hz, 1H), 7.78 (t, J = 8.4 Hz, 1H), 6.99 (ddd, 

J = 6.9, 4.8, 1.7 Hz, 1H), 6.46 (s, 1H), 2.98 (d, J = 9.5 Hz, 2H), 2.86 (dt, J = 9.6, 1.7 Hz, 

2H), 2.01 – 1.93 (m, 3H), 1.13 (s, 6H). 
19F NMR (471 MHz, CDCl3) δ –56.1 (t, J = 21.8 Hz, 3F), –70.1 (d, J = 9.1 Hz, 1F), –

141.1 (m, 2F), –142.8 (m, 2F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (176 MHz, CDCl3) δ 174.86, 162.6 (d, JC-F = 241 Hz), 145.2 (d, JC-F = 13.8 Hz), 

140.5 (d, JC-F = 5.5 Hz), 120.6 (d, JC-F = 4.3 Hz), 120.5 (d, JC-F = 30.7 Hz), 61.3, 45.5, 

20.6, 20.1, 17.5 (d, JC-F = 3.2 Hz). 

HRMS (ESI+) [M+H]+ Calcd for C21H18F8N3O+: 480.1322; Found: 480.1318. 

Rf = 0.80 in 50% EtOAc in hexanes 

 

(9j) 
Isolated yield using modified standard conditions A (using 2 equiv of Aryl-I): 59% yield 

MP 158-161 ºC (white solid) 

IR (thin film): 1733, 1701 cm–1 
1H NMR (700 MHz, CDCl3) δ 8.05 (d, J = 8.5 Hz, 1H), 7.40 (s, 1H), 7.30 (m, 1H), 7.17 (d, 

J = 3.8 Hz, 1H), 6.15 – 6.10 (multiple peaks, 2H), 3.00 (d, J = 9.1 Hz, 2H), 2.88 (dt, J = 

9.2, 1.9 Hz, 2H), 2.14 (t, J = 8.1 Hz, 1H), 1.86 (dt, J = 8.1, 1.9 Hz, 2H), 1.64 (s, 9H), 

1.11 (s, 6H). 
19F NMR (377 MHz, CDCl3) δ –56.2 (t, J = 21.7 Hz, 3F), –142.0 (m, 7.4 Hz, 2F), –143.9 

(m, 2F). 
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The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (176 MHz, CDCl3) δ 176.2, 149.0, 132.12, 130.1, 125.6, 124.3, 119.9, 115.0, 

112.9, 105.8, 83.9, 60.76, 45.04, 27.89, 22.70, 21.4 (br s), 20.07. 

HRMS (ESI+) [M+H]+ Calcd for C29H29F7N3O3
+: 600.2097; Found: 600.2091. 

Rf = 0.60 in 20% EtOAc in hexanes 

 

(9k) 

NOTE: Due to the rapid N-deacylation of the product, hydrazine was not used in the 

isolation of this substrate. Instead, the reaction was diluted with MeOH (0.4 mL) and 

heated at 60 °C for 4 h prior to filtration. Chromatography gradient was 0% to 60% 

EtOAc in hexanes. 

Isolated yield using standard conditions A (using 1.5 equiv of Aryl-I): 63% yield 

MP 112-115 ºC (white solid) 

IR (thin film): 1700 (br) cm–1 
1H NMR (700 MHz, CDCl3) δ 7.22 (d, J = 7.9 Hz, 2H), 6.82 (d, J = 7.9 Hz, 2H), 6.42 (s, 

1H), 5.78 (d, J = 7.8 Hz, 1H), 4.65 (dt, J = 7.9, 5.9 Hz, 1H), 3.68 (s, 3H), 2.94 (dd, J = 

9.2, 6.7 Hz, 2H), 2.84 (dd, J = 9.3, 2.9 Hz, 2H), 2.74 (dd, J = 13.9, 6.1 Hz, 1H), 2.63 (dd, 

J = 13.9, 5.8 Hz, 1H), 2.02 (t, J = 8.0 Hz, 1H), 1.93 (s, 3H), 1.88-1.81 (multiple peaks, 

2H), 1.11 (s, 3H), 1.10 (s, 3H). 
19F NMR (377 MHz, CDCl3) δ –56.1 (t, J = 21.8 Hz, 3F), –141.4 (m, 2F), –142.6 (m, 2F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
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13C NMR (176 MHz, CDCl3) δ 175.8, 171.9, 169.3, 136.8, 133.8, 128.8, 128.3, 61.0, 

52.9, 52.2, 45.1, 45.0, 37.2, 22.9, 22.4, 21.0, 20.6, 19.9, 19.8 

HRMS (ESI+) [M+H]+ Calcd for C28H29F7N3O4
+: 604.2046; Found: 604.2038. 

Rf = 0.30 in 50% EtOAc in hexanes 

 

Optimization of C–H Arylation of piperidine substrate 5  

 
A stock solution of Pd(OAc)2 was prepared by dissolving 22.5 mg of Pd(OAc)2 in 5 mL of 

dichloromethane (0.02 M solution of Pd(OAc)2). To a 4-mL vial a 150 µL aliquot of the 

Pd stock solution was added (0.7mg, 0.003 mmol, 10 mol %). The solvent was removed 

by heating the vial gently to 40 °C. After, substrate 5 (12 mg, 0.03 mmol, 1 equiv), 

CsOPiv (21 mg, 0.09 mmol, 3 equiv) and iodoarene (30 equiv) were added to the vial 

containing Pd. Finally, solvent was added if shown in entry of Table 4.4 (0.12 M). The 

vial was sealed with a Teflon-lined cap and heated to the corresponding temperature for 

18 hours. After, the reaction mixture was removed from the heat source and hydrazine 

(50 µL, 65% in H2O, 0.6 mmol, 20 equiv) was added to the warm solution. The addition 

of hydrazine resulted in the precipitation of a black solid. A solution of internal standard 

(1,3,5-trimethoxybenzene, 168 mg in 5 mL of DCM) was prepared, and an aliquot (150 

µL, 0.03 mmol) of the stock standard solution was added to the reaction vial. The 

reaction solution was then diluted with DCM to an approximate total volume of 4 mL. 

The solution was then filtered through a pipette packed with Celite and was analyzed by 

GC-FID. The average value of duplicate GC injections was used to determine the GC 

yield based on a linear calibration curve with 1,3,5-trimethoxybenzene. Results are 

shown in Table 4.4. 
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Work-up to Effect Reduction of Aminal Products 

 
A solution of aminal (15 mg, 0.04 mmol, 1 equiv) in MeOH (0.2 mL) was pre-cooled in 

an ice bath, and solid NaBH4 (7.5 mg, 0.2 mmol, 5 equiv) was added in one portion. The 

solution was allowed to gradually warm to room temperature. After 1 h, the reaction was 

poured into water, the resulting mixture was extracted with CH2Cl2 (3 x ~10 mL), and 

the organic extracts were dried over Na2SO4, filtered, and concentrated under reduced 

pressure. Analysis of the crude oil by 1H NMR, 19F NMR, and GC-FID indicated full 

conversion of the aminal 11 to the piperidine 5.  

 

Standard Conditions for C-H Arylation of Alicyclic Amines  

 
Standard conditions B: Under ambient conditions, a 20 mL scintillation vial was 

charged with solid substrate 13 (0.25 mmol, 1 equiv), Pd(OAc)2 (5.6 mg, 0.0325 mmol, 

10 mol %), cesium pivalate (176 mg, 0.75 mmol, 3 equiv), and iodoarene (30 equiv). 

The vial was sealed with a Teflon-lined cap and heated to an external temperature of 

150 ºC.  After 18 h, the reaction was removed from the heat source and diluted with 

hexanes (5 mL). Hydrazine (250 µL, 35% in H2O, 2.6 mmol, 10 equiv) was added to the 

warm solution. The mixture was allowed to stir for 30 min at 60 ºC to remove Pd from 

the product.  

 

Isolation Procedure A: If aminal (such as 11) is not formed during the reaction. 

The mixture was filtered through a small plug of silica gel with 100% EtOAc. The 

resulting solution was concentrated under vacuum. Purification by column 

chromatography (25 g cartridge, gradient elution using Hex, EtOAc and/or THF) or 
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preparative TLC afforded the desired product. Modifications to the procedure and 

chromatography conditions are noted under each substrate.  

 

Isolation Procedure B: If aminal (such as 11) is formed during the reaction. 

The mixture was loaded onto a small plug of silica gel over which hexanes (150 mL) 

was passed to remove iodoarene. The plug of silica was then rinsed with EtOAc (150 

mL) to elute the products, and this solution was concentrated under reduced pressure. 

The mixture of products was dissolved in MeOH (2 mL), and cooled in an ice bath to 0 

ºC. NaBH4 (total 100 mg, 2.6 mmol, 20 equiv) was added portion-wise over 30 min. 

[Caution: gas evolution occurs!] The solution was allowed to warm to room temperature. 

After stirring for 12 h, the reaction was diluted with water and the resulting solution was 

extracted with CH2Cl2, dried (Na2SO4), and concentrated under reduced pressure. 

Purification by column chromatography (25 g cartridge, gradient elution using Hex, 

EtOAc and/or THF) or preparative TLC afforded the desired product. Modifications to 

the procedure and chromatography conditions are noted under each substrate. 

 

(6b) 

NOTE: Aminal formation was observed. NaBH4 reduction was required on this substrate 

following Isolation Procedure B. 

Isolated yield using standard conditions B: 57%, 52%; 55% average yield 

Isolated yield when calculated based on recovered starting material: 67%, 62%; 65% 

average yield 

MP 121 ºC (white solid) 

IR (thin film): 1715 (br) cm–1 
1H NMR (700 MHz, CDCl3) δ 9.45 (br s, 1H), 7.15 (m, 2H), 6.87 (m, 2H), 3.79 (s, 3H), 

2.97 (dt, J = 11.3, 2.1 Hz, 2H), 2.53 (tt, J = 12.3, 3.8 Hz, 1H), 2.39 (td, J = 11.6, 2.2 Hz, 

2H), 1.96 (d, J = 12.5 Hz, 2H), 1.75 (qd, J = 12.5, 3.6 Hz, 2H), 1.35 (s, 6H). 
19F NMR (377 MHz, CDCl3) δ –56.0 (t, J = 21.8 Hz, 3F), –141.2 (m, 2F), –144.1 (m, 2F). 
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The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (176 MHz, CDCl3) δ 175.6, 158.0, 137.7, 127.5, 113.8, 64.8, 55.2, 47.8, 41.7, 

34.3, 20.5. 

HRMS (ESI+) [M+H]+ Calcd for C23H24F7N2O2
+: 493.1726; Found: 493.1718. 

Rf = 0.50 in 20% EtOAc in hexanes 

 

 (14a) 

 
NOTE: The arylation reaction was conducted at 100 °C for 16 h. Aminal was not 

observed, thus purification was performed following Isolation Procedure A.  

A mixture of starting material and product were isolated from the initial column 

chromatography (10% THF in hexanes). The mixture of product and recovered starting 

material were subjected to a preparative TLC (5% THF in hexanes, plate was run four 

times).  

Isolated yield using standard conditions B: 62% yield. 

MP 101-103 ºC (white solid) 

IR (thin film): 1712 cm–1 
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1H NMR (500 MHz, CDCl3) δ 7.23 (d, J = 7.5 Hz, 2H), 7.12 (t, J = 7.5 Hz, 2H), 6.96 (t, J 

= 7.5 Hz, 1H), 6.75 (s, 1H), 3.60 (t, J = 5.5 Hz, 1H), 3.38 (s, 3H), 3.08-2.96 (multiple 

peaks, 7H), 1.19 (s, 6H). 
19F NMR (471 MHz, CDCl3) δ –56.1 (t, J = 23.6 Hz, 3F), –141.8 (m, 2F), –142.3 (m, 2F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (126 MHz, CDCl3) δ 176.3, 140.9, 128.2, 125.5, 125.1, 72.9, 63.2, 55.8, 39.8, 

39.6, 34.7, 21.1. 

HRMS (ESI+) [M+H]+ Calcd for C24H24F7N2O2: 505.1721; Found: 505.1721. 

Rf = 0.12 in 5% THF in hexanes 

 

 (14b) 

NOTE: The arylation reaction was conducted at 120 °C for 16 h. Aminal formation was 

observed. NaBH4 reduction was required on this substrate following Isolation 

Procedure B. Purification via column chromatography (10 g cartridge, gradient elution 

from 0% to 5% THF in hexanes) afforded a colorless oil. This oil was diluted with a 

small amount of methanol (~0.3 mL). Slow evaporation at RT of the methanol to about 

0.15 mL yielded pure product as a white solid. The supernatant was removed by 

decantation.  

Isolated yield using standard conditions B: 66% yield. 

MP 114-116 ºC (white solid) 

IR (thin film): 1690 cm–1 

1H NMR (700 MHz, CDCl3) δ 7.37 (app d, J = 7.7 Hz, 2H), 7.34 (t, J = 7.7 Hz, 2H), 7.28 

(t, J = 7.7 Hz, 1H), 7.22 (app d, J = 7.7 Hz, 2H), 7.14 (t, J = 7.7 Hz, 2H), 6.99 (t, J = 7 
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Hz, 1H), 6.90 (br s, 1H), 4.57 (s, 2H), 3.83 (t, J = 5.6 Hz, 1H), 3.16 (d, J = 9.8 Hz, 2H), 

3.10 (m, 2H), 3.04 (app d, J = 9.1 Hz, 2H), 2.99 (t, J = 5.6 Hz, 1H), 1.16 (s, 6H).  
19F NMR (377 MHz, CDCl3) δ –56.11 (t, J = 21.5 Hz, 3F), –141.87 (m, 2F), –142.38 (m, 

2F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (176 MHz, CDCl3) δ 176.4, 140.6, 137.8, 128.6, 128.2, 128.0, 127.9, 125.6, 

125.2, 71.6, 70.8, 63.2, 40.12, 40.11, 34.9, 21.5 

HRMS (ESI+) [M+H]+ Calcd for C30H28F7N2O2: 581.2034; Found: 581.2034. 

Rf = 0.19 in 5% THF in hexanes 

 

 (14c) 

NOTE: The arylation reaction was conducted at 100 °C. Aminal was not observed, thus 

purification was performed following Isolation Procedure A. No starting material was 

recovered from this reaction. 

Isolated yield using standard conditions B: 35%, 34%; 35% average yield 

MP 152-156 ºC (white solid) 

IR (thin film): 1715 cm–1 
1H NMR (700 MHz, CDCl3) δ 7.27 (m, 4H), 7.20 (d, J = 7.4 Hz, 4H), 7.10 (t, J = 7.4 Hz, 

2H), 6.48 (s, 1H), 3.48 (m, 2H), 3.40 (m, 2H), 3.11(m, 4H), 0.76 (s, 6H). 
19F NMR (377 MHz, CDCl3) δ –56.1 (t, J = 21.8 Hz, 3F), –141.8 (m, 2F), –142.5 (m, 2F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
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13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (176 MHz, CDCl3) δ 175.7, 128.3, 128.3, 126.3, 125.6, 62.9, 40.9, 40.1, 38.0, 

20.2. 

HRMS (ESI+) [M+H]+ Calcd for C29H26F7N2O+: 551.1933; Found: 551.1926. 

Rf = 0.80 in 20% EtOAc in hexanes 

 

 (14d) 

NOTE: Aminal formation was observed. NaBH4 reduction was required on this substrate 

following Isolation Procedure B. 

Isolated yield using standard conditions B: 47%, 45%; 46% average yield 

Isolated yield when based on recovered starting material: 66%, 75%; 71% average yield 

MP 161-164 ºC (white solid) 

IR (thin film): 1713 cm–1 
1H NMR (700 MHz, CDCl3) δ 7.47 (br s, 1H), 7.31-7.22 (multiple peaks, 4H), 7.13 (dd, J 

= 5.3, 3.1 Hz, 2H), 6.96 (m, 2H), 3.84 (s, 3H), 3.69 (t, J = 4.2 Hz, 2H), 3.58 (t, J = 4.4 Hz, 

1H), 3.01 (d, J = 10.8 Hz, 2H), 2.56 (dd, J = 11.0, 4.2 Hz, 2H), 1.04 (s, 6H). 
19F NMR (377 MHz, CDCl3) δ –56.0 (t, J = 21.8 Hz, 3F), –141.5 (m, 2F), –142.9 (m, 2F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (176 MHz, CDCl3) δ 176.0, 157.6, 146.2, 130.8, 129.2, 126.7, 121.7, 114.2, 

63.5, 55.2, 51.0, 43.6, 42.6, 21.4. 

HRMS (ESI+) [M+H]+ Calcd for C27H26F7N2O2
+: 567.1882; Found: 567.1874. 

Rf = 0.50 in 20% EtOAc in hexanes 
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  (14e) 

Note: The arylation reaction was conducted at 95 ºC. Aminal was not observed, thus 

purification was performed following Isolation Procedure A.  

Isolated yield using standard conditions B: 32%, 34%; 33% average yield 

Isolated yield when calculated based on recovered starting material: 69%, 74%; 72% 

average yield 

MP 202 ºC (white solid) 

IR (thin film): 1713 cm–1 
1H NMR (700 MHz, CDCl3) δ 7.12 (t, J = 7.7 Hz, 2H), 7.05 (d, J = 7.7 Hz, 2H), 7.00 (t, J 

= 7.7 Hz, 1H), 6.42 (s, 1H), 4.95 (d, J = 6.1 Hz, 2H), 4.60 (t, J = 6.3 Hz, 1H), 3.19 (d, J = 

11.6 Hz, 2H), 3.09 (d, 11.4 Hz, 2H), 1.23 (s, 6H). 
19F NMR (377 MHz, CDCl3) δ –56.1 (t, J = 21.8 Hz, 3F), –141.4 (m, 2F), –142.5 (m, 2F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (176 MHz, CDCl3) δ 175.2, 139.2, 128.3, 126.1, 123.8, 81.4, 63.0, 45.8, 44.7, 

20.5. 

HRMS (ESI+) [M+H]+ Calcd for C22H20F7N2O2
+: 477.1413; Found: 477.1505. 

Rf = 0.38 in 35% EtOAc in hexanes 

 

  

N
O

HN
C7F7

O



 
	

185 

 (14f) 

NOTE: The reaction was performed at a larger scale (0.4 mmol of substrate), and was 

conducted at 145 °C in t-amylOH (0.13 M in substrate). Aminal formation was observed. 

NaBH4 reduction was required on this substrate following a modified Isolation 

Procedure B where iodobenzene was removed under vacuum instead of via filtration 

through silica gel plug.  

The yield for compound 14f was determined by isolating a mixture of recovered starting 

material 13f and compound 14f via column chromatography (2% THF in hexanes). The 

mixture was analyzed by 1H NMR spectroscopy to determine the ratio of 13f:14f (ca. 

0.23:1). This ratio, in combination with the isolated mass of the mixture and the 

respective molecular masses, was used to determine a yield of 14f based on the 

mixture. Pure 14f was obtained after repeated chromatography (2% THF in hexanes). 

An excerpt of the NMR used to determine the ratio is below: 

 

 
Yield using standard conditions B: 34% yield 

MP 142-144 ºC (white solid) 

IR (thin film): 1716 cm–1 
1H NMR (700 MHz, CDCl3) δ 7.83 (s, 1H), 7.41-7.38 (multiple peaks, 4H), 7.34 (app d, J 

= 8.4 Hz, 2H), 7.23 (t, J = 7.7 Hz, 1 H), 7.16 (t, J = 7.7 Hz, 2H), 6.75 (t, J = 7.7 Hz, 1H), 

3.58 (quintet, J = 5.6 Hz, 1H), 3.34 (br s, 1H), 3.25 (br s, 1H), 3.01 (m, 1H), 2.80 (d, J = 

10.5 Hz, 1H), 2.73 (d, J = 12.6 Hz, 1H), 2.58 (dd, J = 3.5, 11.2 Hz, 1 H), 2.53 (m, 1H), 

2.48 (dd, J = 4.2, 11.2 Hz, 1H), 2.41 (dd, J = 7, 5.6 Hz, 1H), 1.01 (s, 3H), 0.77 (s, 3H). 
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19F NMR (377 MHz, CDCl3) δ –56.0 (t, J = 22.6 Hz, 3F), –142.1 (m, 2H), –143.2 (m, 2H). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (176 MHz, CDCl3) δ 175.3, 143.4, 139.6, 128.92, 128.86, 128.6, 127.2, 126.0, 

125.1, 63.9, 47.6, 46.9, 44.9, 41.5, 40.0, 36.4, 32.4, 22.5, 18.3. 

HRMS (ESI+) [M+H]+ Calcd for C30H28F7N2O: 565.2084; Found: 565.2089. 

Rf = 0.10 in 2% THF in hexanes 

 

 (14g) 

 
NOTE: The arylation reaction was conducted at 130 °C in t-AmylOH (0.12 M in 

substrate). Aminal was not observed, thus purification was performed following 

Isolation Procedure A. 

Isolated yield using standard conditions B: 54% yield 

Isolated yield when calculated based on recovered starting material: 57% yield 

MP 138-140 ºC (white solid) 

IR (thin film): 1708 cm–1 

1H NMR (500 MHz, CDCl3) δ 8.28 (br s, 1H), 7.08 (multiple peaks, 4H), 6.64 (m, 1H), 

3.79 (q, J = 9.5 Hz, 1H), 3.26 (q, J = 8 Hz, 1H), 2.97 (m, 1H), 2.76 (dd, J = 15, 10 Hz, 
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2H), 2.61 (m, 1H), 2.42 (dd, J = 9, 5.5 Hz, 1H), 2.35 (dd, J = 10, 7 Hz, 1H), 2.25 (m, 1H), 

1.31 (s, 3H), 1.14 (s, 3H). 
19F NMR (471 MHz, CDCl3) δ –56.0 (t, J = 22.1 Hz, 3F), –142.1 (m, 2F), –143.5 (m, 2F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (126 MHz, CDCl3) δ 175.3, 142.3, 128.1, 126.7, 124.8, 61.3, 53.0, 48.0, 41.5, 

36.5, 32.9, 28.9, 25.1, 16.8. 

HRMS (ESI+) [M+H]+ Calcd for C23H22F7N2O: 475.1615; Found: 475.1612. 

Rf = 0.21 in 5% THF in hexanes 

 

 (14h) 

NOTE: Aminal formation was observed. NaBH4 reduction was required on this substrate 

following Isolation Procedure B. Purification via preparative TLC (5% THF in hexanes). 

Isolated yield using standard conditions B: 44% yield. 

MP 93-95 ºC (white solid) 

IR (thin film): 1722 cm–1 

1H NMR (500 MHz, CDCl3) δ 9.36 (br s, 1H), 7.31-7.18 (multiple peaks, 5H), 3.01 (app 

septet, J = 5.5 Hz, 1 H), 2.71-2.59 (multiple peaks, 6H), 2.42 (m, 2H), 1.49 (m, 2H), 1.37 

(s, 6H). 
19F NMR (471 MHz, CDCl3) δ –56.02 (t, J = 18.8 Hz, 3F), –141.10 (m, 2F), –143.77 (m, 

2F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
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13C NMR (126 MHz, CDCl3) δ 175.3, 143.8, 128.5, 127.0, 126.3, 61.7, 53.2, 46.9, 41.7, 

41.5, 21.1. 

HRMS (ESI+) [M+H]+ Calcd for C24H24F7N2O: 489.1771; Found: 489.1772. 

Rf = 0.13 in 5% THF in hexanes 

 

Scope of Ar-I for C–H Arylation of 15  

 
Standard conditions C: Under ambient conditions, a 20 mL scintillation vial was 

charged with solid substrate 15 (137.6 mg, 0.26 mmol, 1 equiv), Pd(OAc)2 (6 mg, 0.03 

mmol, 10 mol %) and iodoarene (when solid, 20  equiv). To these solids, iodoarene 

(when liquid, 1-20 equiv), cesium pivalate (182 mg, 0.78 mmol, 3 equiv), and tert-amyl 

alcohol (2.4 mL) were added. The vial was sealed with a Teflon-lined cap, wrapped in 

electrical tape and heated to an external temperature of 120 ºC. After 18 h, the reaction 

was removed from the heat source, and hydrazine (250 µL, 35% in H2O, 2.7 mmol, 10 

equiv) was added to the warm solution. The mixture was then allowed to stir for 10 to 30 

min at 60 °C to remove ligated Pd from the product. The resulting solution was diluted 

with EtOAc (~5 mL) and filtered through a layered plug of Celite and basic alumina. The 

plug was rinsed with additional EtOAc, and the resulting solution was concentrated 

under reduced pressure. Purification by column chromatography (25 g cartridge, 

gradient elution from 0% to 20% EtOAc in hexanes) afforded the desired product.  
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10 mol % Pd(OAc)2
20 equiv Aryl-I
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(16a) 

NOTE: NaBH4 reduction was required on this substrate following the Isolation 

Procedure B found in the Standard Conditions for C-H Arylation of Alicyclic 

Amines section.  

Isolated as a colorless oil.  

Isolated yield using modified standard conditions C: 52%, 54%; 53% average yield 

Isolated yield when based on recovered starting material: 61%, 59%; 60% average yield 

IR (thin film): 1710 (br) cm–1 
1H NMR (700 MHz, CDCl3) δ 7.43 (d, J = 8.4 Hz, 1H), 7.39 (d, J = 2.0 Hz, 1H), 7.35 (d, 

J = 7.2 Hz, 2H), 7.17 – 7.08 (multiple peaks, 3H), 7.00 (t, J = 7.4 Hz, 1H), 6.25 (s, 1H), 

3.28 (d, J = 9.2 Hz, 1H), 3.15 (d, J = 9.6 Hz, 1H), 3.10 (dd, J = 9.6, 3.9 Hz, 1H), 3.04 (d, 

J = 9.2 Hz, 1H), 2.42 (d, J = 8.5 Hz, 1H), 2.21 (dd, J = 8.5, 3.7 Hz, 1H), 1.16 (s, 3H), 

1.10 (s, 3H). 
19F NMR (377 MHz, CDCl3) δ –56.0 (t, J = 21.8 Hz, 3F), –141.4 (m, 2F), –142.3 (m, 2F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (176 MHz, CDCl3) δ 175.2, 142.4, 137.0, 132.6, 130.5, 130.5, 129.0, 128.2, 

127.6, 126.4, 126.3, 61.2, 49.8, 45.5, 35.0, 32.5, 28.1, 20.8, 20.6. 

HRMS (ESI+) [M+H]+ Calcd for C28H22Cl2F7N2O+: 605.0997; Found: 605.0996. 

Rf = 0.60 in 20% EtOAc in hexanes 
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(16b) 

Isolated yield using modified standard conditions C (using 1 equiv of Aryl-I): 40% yield 

Isolated yield using modified standard conditions C (using 20 equiv of Aryl-I): 50%, 

51%; 51% average yield 

Isolated yield when based on recovered starting material (using 20 equiv of Aryl-I): 77%, 

69%; 73% average yield 

MP 140-143 ºC (white solid) 

IR (thin film): 1707 cm–1 
1H NMR (700 MHz, CDCl3) δ 7.41 (d, J = 8.3 Hz, 1H), 7.36 (d, J = 2.1 Hz, 1H), 7.25 (d, 

J = 8.4 Hz, 2H), 7.12 (dd, J = 8.3, 2.2 Hz, 1H), 6.61 (d, J = 8.4 Hz, 2H), 6.43 (s, 1H), 

3.56 (s, 3H), 3.26 (d, J = 9.1 Hz, 1H), 3.16 – 3.09 (multiple peaks, 2H), 3.05 (d, J = 9.1 

Hz, 1H), 2.36 (d, J = 8.4 Hz, 1H), 2.18 (dd, J = 8.5, 3.8 Hz, 1H), 1.20 (s, 3H), 1.18 (s, 

3H). 
19F NMR (377 MHz, CDCl3) δ –56.1 (t, J = 21 Hz, 3F), –141.4 (m, 2F), –143.0 (m, 2F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (176 MHz, CDCl3) δ 175.4, 157.8, 142.6, 132.6, 130.5, 130.4, 128.9, 128.6, 

128.5, 126.2, 113.6, 61.2, 54.6, 49.8, 45.6, 35.0, 32.0, 28.2, 21.4, 20.4. 

HRMS (ESI+) [M+H]+ Calcd for C29H24Cl2F7N2O +: 635.1103; Found: 635.1098. 

Rf = 0.60 in 20% EtOAc in hexanes 
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(16c) 

Isolated yield using modified standard conditions C: 44%, 24%; 35% average yield 

Isolated yield when based on recovered starting material: 54%, 27%; 41% average yield 

MP 162-165 ºC (white solid) 

IR (thin film): 1709 cm–1 
1H NMR (700 MHz, CDCl3) δ 7.43 (d, J = 8.3 Hz, 1H), 7.36 (d, J = 2.2 Hz, 1H), 7.27 (d, 

J = 8.4 Hz, 2H), 7.24 (d, J = 8.4 Hz, 2H), 7.12 (dd, J = 8.3, 2.2 Hz, 1H), 6.30 (s, 1H), 

3.25 (d, J = 9.3 Hz, 1H), 3.12 (m, 2H), 3.06 (d, J = 9.3 Hz, 1H), 2.35 (d, J = 8.4 Hz, 1H), 

2.25 (dd, J = 8.5, 3.8 3Hz, 1H), 1.20 (s, 3H), 1.19 (s, 3H). 
19F NMR (377 MHz, CDCl3) δ –56.2 (t, J = 21.8, Hz, 3F), –140.8 (m, 2F), –142.9 (dt, J = 

13.7, 8.8 Hz, 2F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (176 MHz, CDCl3) δ 175.2, 141.9, 135.9, 132.7, 131.5, 130.7, 130.6, 129.4, 

128.9, 126.2, 120.4, 61.2, 49.8, 45.6, 35.1, 32.0, 28.0, 21.4, 20.5. 

HRMS (ESI+) [M+H]+ Calcd for C28H21BrCl2F7N2O +: 683.0103; Found: 683.0093. 

Rf = 0.52 in 20% EtOAc in hexanes 
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(16d) 

NaBH4 reduction was required on this substrate following the Isolation Procedure B 

found in the Standard Conditions for C-H Arylation of Alicyclic Amines section. 

Isolated as colorless oil.  

Isolated yield using modified standard conditions C: 33%, 34%, 46%, 33%; 37% 

average yield 

Isolated yield when based on recovered starting material: 55%, 46%, 54%, 37%; 49% 

average yield 

IR (thin film): 1717 cm–1 
1H NMR (700 MHz, CDCl3) δ 7.80 (s, 2H), 7.63 (s, 1H), 7.46 (d, J = 8.3 Hz, 1H), 7.38 (d, 

J = 2.2 Hz, 1H), 7.15 (dd, J = 8.3, 2.2 Hz, 1H), 6.01 (s, 1H), 3.28 (d, J = 9.7 Hz, 1H), 

3.19-3.09 (multiple peaks, 3H), 2.49 (d, J = 8.4 Hz, 1H), 2.35 (dd, J = 8.5, 3.7 Hz, 1H), 

1.20 (s, 3H), 1.19 (s, 3H). 
19F NMR (377 MHz, CDCl3) δ –56.2 (t, J = 21 Hz, 3F), –63.5 (s, 6F), –141.2 (m, 2F), –

143.5 (m, 2F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (176 MHz, CDCl3) δ 174.0, 140.9, 140.0, 132.9, 131.9 (q, JC-F = 33 Hz), 131.2, 

130.7, 128.8, 127.9, 126.2, 122.8 (q, JC-F = 273 Hz), 120.2 (q, JC-F = 3.9 Hz), 61.4, 49.8, 

45.5, 35.5, 31.7, 28.2, 20.8, 20.4. 

HRMS (ESI+) [M+H]+ Calcd for C30H20Cl2F13N2O +: 741.0745; Found: 741.0744. 

Rf = 0.60 in 20% EtOAc in hexanes 
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Diversification of varenicline and cytisine core via transannular C–H arylation 

 
Standard conditions D. Example given for Aryl–I = PhI: Under ambient conditions, a 

20 mL scintillation vial was charged with solid substrate 17 (77 mg, 0.15 mmol, 1 equiv), 

Pd(OAc)2 (3.5 mg, 0.01 mmol, 10 mol %), cesium pivalate (105 mg, 0.45 mmol, 3 equiv), 

and iodobenzene (0.55 mL, 5.3 mmol 30 equiv). The vial was sealed with a Teflon-lined 

cap and heated to an external temperature of 150 ºC. After 24 h, the reaction was 

removed from the heat source and diluted with hexanes (5 mL). Hydrazine (300 µL, 

35% in H2O, 1.5 mmol, 20 equiv) was added to the warm solution.  The mixture was 

allowed to stir for 60 min at 60 ºC to remove Pd from the product. This solution was 

loaded onto a small plug of silica gel over which hexanes (150 mL) was passed to 

remove iodoarene. The plug of silica was then rinsed with EtOAc (150 mL) to elute the 

product, and this solution was concentrated under reduced pressure. Purification by 

column chromatography (25 g cartridge, gradient elution from 0% to 40% EtOAc in 

hexanes) afforded recovered starting material (26 mg) along with the desired product 

18a (40 mg, 45%).  
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(18a) 

 
Isolated yield using standard conditions D: 41%, 55%, 45%; 45% average yield 

Isolated yield when calculated based on recovered starting material: 63%, 77%, 61%; 

67% average yield 

MP 203-205 ºC (white solid) 

IR (thin film): 1721 cm–1 
1H NMR (700 MHz, CDCl3) δ 8.76 (s, 2H), 7.93 (s, 2H), 7.46 (t, J = 7.6 Hz, 2H), 7.40-

7.35 (multiple peaks, 3H), 7.30 (m, 1H), 4.03 (t, J = 4.3 Hz, 2H), 3.77 (m, 1H), 3.17 (d, J 

= 11.0 Hz, 2H), 2.76 (dd, J = 11.2, 4.2 Hz, 2H), 1.02 (s, 6H). 
19F NMR (377 MHz, CDCl3) δ –56.0 (t, J = 21.6 Hz, 3F), –141.4 (m, 2F), –144.4 (m, 2F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (176 MHz, CDCl3) δ 174.8, 149.9, 144.1, 143.0, 138.0, 129.1, 128.2, 126.5, 

121.1, 63.8, 51.4, 44.9, 42.5, 21.2. 

HRMS (ESI+) [M+H]+ Calcd for C30H24F7N4O+: 589.1838; Found: 589.1830. 

Rf = 0.60 in 50% EtOAc in hexanes 
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(18b) 

The yield for compound 18b was determined by isolating a mixture of recovered starting 

material 17 and compound 18b from the column chromatography. The mixture was 

analyzed by 1H NMR spectroscopy to determine the ratio of 17:18b (ca. 2:1.6 

depending on sample). This ratio, in combination with the isolated mass of the mixture 

and the respective molecular masses, was used to determine a yield of 18b based on 

the mixture. Pure 18b was isolated after repeated chromatography. An excerpt of the 

NMR spectrum used to determine the ratio is below: 

 
Yield using standard conditions D: 41%, 38%; 40% average yield 

Yield calculated based on recovered starting material: 80%, 70%; 75% average yield 

MP 161-164 ºC (white solid) 
1H NMR (700 MHz, CDCl3) δ 8.75 (s, 2H), 7.91 (s, 2H), 7.36 (s, 1H), 7.28 (m, 2H), 6.99 

(m, 2H), 3.97 (t, J = 4.2 Hz, 2H), 3.86 (s, 3H), 3.71 (m, 1H), 3.17 (d, J = 11.0 Hz, 2H), 

2.74 (dd, J = 11.1, 4.1 Hz, 2H), 1.03 (s, 6H). 
19F NMR (377 MHz, CDCl3) δ –56.1 (t, J = 21.7 Hz, 3F), –141.4 (qd, J = 21.7, 12.6 Hz, 

2F), –144.3 (m, 2F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
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13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (176 MHz, CDCl3) δ 174.8, 157.9, 150.0, 144.0, 143.1, 129.9, 129.2, 121.1, 

114.5, 63.8, 55.2, 50.7, 44.8, 42.7, 21.2. 

HRMS (ESI+) [M+H]+ Calcd for C31H26F7N4O2
+: 619.1944; Found: 619.1936. 

Rf = 0.50 in 50% EtOAc in hexanes 

 

(18c) 

Isolated yield using standard conditions D: 41%, 43%; 42% average yield 

Isolated yield when calculated based on recovered starting material: 55%, 53%; 54% 

average yield 

MP 239-244 ºC (light brown solid) 

IR (thin film): 1721 cm–1 
1H NMR (700 MHz, CDCl3) δ 8.75 (s, 2H), 7.91 (s, 2H), 7.37 (s, 1H), 7.26 (s, 4H), 3.99 (t, 

J = 4.3 Hz, 2H), 3.72 (t, J = 4.3 Hz, 1H), 3.17 (d, J = 11.0 Hz, 2H), 2.75 (dd, J = 11.2, 

4.2 Hz, 2H), 2.39 (s, 3H), 1.03 (s, 6H). 
19F NMR (377 MHz, CDCl3) δ –56.1 (t, J = 21.6 Hz, 3F), –141.4 (m, 2F), –144.3 (m, 2F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (176 MHz, CDCl3) δ 174.9, 150.0, 144.0, 143.0, 136.0, 134.8, 129.7, 128.0, 

121.1, 63.8, 51.1, 44.8, 42.6, 21.2, 21.0. 

HRMS (ESI+) [M+H]+ Calcd for C31H26F7N4O+: 603.1995; Found: 603.1989. 

Rf = 0.65 in 50% EtOAc in hexanes 
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(18d) 

NOTE: This reaction was conducted at 140 ºC using 20 mol % Pd(OAc)2, 3 equiv 

AgOAc, and 3 equiv KOPiv analogous conditions in the standard conditions of 

azabicyclo[3.1.0]hexane system 8 for isolation of 9j. 
Isolated yield using modified standard conditions: 36%, 39%, 34%; 36% average yield 

Isolated yield when calculated based on recovered starting material: 51%, 46%, 53%; 

50% average yield 

MP >250 ºC (dec.) (white solid) 

IR (thin film): 1715 cm–1 
1H NMR (700 MHz, CDCl3) δ 8.77 (s, 2H), 7.96 (s, 2H), 7.86 (s, 1H), 7.84 (s, 2H), 7.18 

(s, 1H), 4.13 (t, J = 4.2 Hz, 2H), 3.85 (bs, 1H), 3.02 (d, J = 11.4 Hz, 2H), 2.87 (dd, J = 

11.6, 4.2 Hz, 2H), 1.05 (s, 6H). 
19F NMR (377 MHz, CDCl3) δ –56.1 (t, J = 21.7 Hz, 3F), –62.8 (s, 6F), –141.2 (m, 2F), –

144.4 (m, 2F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (176 MHz, CDCl3) δ 174.3, 148.5, 144.4, 143.1, 140.9, 132.5 (q, JC-F = 33 Hz), 

128.6 (q, JC-F = 4.0 Hz), 123.1 (q, JC-F = 273 Hz), 121.5, 120.7 (q, JC-F = 4.0 Hz), 63.8, 

51.1, 44.8, 42.3, 21.1. 

HRMS (ESI+) [M+H]+ Calcd for C32H22F13N4O+: 725.1586; Found: 725.1575. 

Rf = 0.70 in 50% EtOAc in hexanes 
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(18e) 

Isolated yield using standard conditions D: 44%, 42%; 43% average yield 

Isolated yield when calculated based on recovered starting material: 78%, 74%; 76% 

average yield 

MP 228-231 ºC (brown solid) 

IR (thin film): 1714 cm–1 
1H NMR (700 MHz, CDCl3) δ 8.75 (s, 2H), 7.91 (s, 2H), 7.37 (s, 1H), 7.20 (d, J = 7.7 Hz, 

1H), 7.13 (s, 1H), 7.09 (d, J = 7.7 Hz, 1H), 4.00 (t, J = 4.3 Hz, 2H), 3.70 (m, 1H), 3.18 (d, 

J = 10.9 Hz, 2H), 2.75 (dd, J = 11.1, 4.2 Hz, 2H), 2.33 (s, 3H), 2.30 (s, 3H), 1.04 (s, 6H). 
19F NMR (377 MHz, CDCl3) δ –56.1 (t, J = 21.7 Hz, 3F), –141.4 (m, 2F), –144.4 (m, 2F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (176 MHz, CDCl3) δ 174.9, 150.1, 144.0, 143.1, 137.2, 135.3, 134.6, 130.2, 

129.3, 125.5, 121.0, 63.8, 51.1, 44.9, 42.5, 21.2, 20.0, 19.3. 

HRMS (ESI+) [M+H]+ Calcd for C32H28F7N4O+: 617.2151; Found: 617.2145. 

Rf = 0.70 in 50% EtOAc in hexanes 
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(20) 

 

NOTE: The arylation reaction was conducted in tAmylOH (0.13 M in substrate).  

Isolated yield using standard conditions D: 25% yield (yellow oil). 

Isolated yield when calculated based on recovered starting material: 32% 

IR (thin film): 1717, 1653 cm–1 

1H NMR (700 MHz, CDCl3) δ 7.68 (s, 1H), 7.44 (t, J = 14 Hz, 2H), 7.38 (d, J = 14 Hz, 

2H), 7.31 (t, J = 14 Hz, 1H), 7.09 (dd, J = 7, 0.7 Hz, 1H), 6.38 (app d, J = 10.5 Hz, 1H), 

6.09 (app d, J = 7 Hz, 1H), 4.45 (d, J = 15.4 Hz, 1H), 4.15 (dd, J = 6.3, 15.4 Hz, 1H), 

3.65 (br s, 1H), 3.38 (br s, 1H), 3.18 (br s, 1H), 2.95 (m, 1H), 2.89 (m, 1H), 2.82 (d, J = 

11.9 Hz, 1H), 2.65 (app d, J = 11.9 Hz, 1H), 1.24 (s, 3H), 1.08 (s, 3H). 
19F NMR (377 MHz, CDCl3) δ –56.1 (t, J = 21.9 Hz, 3F), –140.9 (m, 2F), –142.9 (m, 2F). 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
13C NMR (176 MHz, CDCl3) δ 174.8, 163.1, 150.9, 138.6, 137.7, 129.3, 127.3, 127.1, 

117.5, 105.0, 64.6, 52.6, 50.0, 48.0, 39.7, 36.1, 31.1, 23.7, 17.8. 

HRMS (ESI+) [M+H]+ Calcd for C28H25F7N3O2: 568.1830; Found: 568.1829. 

Rf =  0.25 in 60% EtOAc in hexanes 
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Gram scale C–H arylation reaction: 

 
Under ambient conditions, a 50 mL round bottom flask was charge with substrate 17  

(2.51 g, 4.0 mmol, 1 equiv), Pd(OAc)2 (110 mg, 0.49 mmol, 10 mol %), cesium pivalate 

(3.45 g, 14.7 mmol, 3 equiv) and 4-iodo-o-xylene (20.9 mL, 147 mmol, 30 equiv). The 

flask was sealed with a glass stopper, and heated to an external temperature of 150 ºC. 

After reaching the appropriate temperature, excess pressure was vented from the flask, 

and it was resealed.  After 24 h, the reaction was removed from the heat source, and 

hydrazine (3 mL, 65% in H2O, 40 mmol, 8 equiv) and hexanes (5 mL) were added to the 

warm solution. The mixture was then allowed to stir for 1 h at 60 ºC to remove Pd from 

the product. This solution was loaded onto a large plug of silica gel over which hexanes 

(1.5 L) was passed to remove iodoarene. The plug of silica was then rinsed with EtOAc 

(1 L) to elute the product, and this solution was concentrated under reduced pressure. 

Purification by column chromatography (100 g cartridge, gradient elution from 0% to 

40% EtOAc in hexanes) afforded the desired product 18e as a brown solid (1.16 g, 38% 

yield).  

 

Directing group cleavage by SmI2 reductive deamination  

 
In a glove box, a vial was charged with solid amine 6a (66 mg, 0.14 mmol, 1 equiv) to 

which a solution of SmI2 (15 mL, 0.1M in THF, 1.5 mmol, 10 equiv) was added. To this 

solution, MeOH (0.3 mL, 7.5 mmol, 53 equiv), HMPA (0.2 mL, 1.12 mmol, 8 equiv) and 

(18e)
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Et3N (1.0 mL, 14 mmol, 100 equiv) were added. The vial was then sealed with a Teflon-

lined cap and removed from the glove box.  The solution was allowed to stand at room 

temperature for 18 h, after which the reaction was quenched by dropwise addition of 

pivaloyl chloride (1.0 mL, 8.1 mmol, 58 equiv) followed by the addition of additional TEA 

(1.0 mL, 14 mmol, 100 equiv). The resulting solution was allowed to remain at room 

temperature for 90 min, after which it was poured onto 2M HCl.  The mixture was 

extracted with EtOAc. The combined organic phases were washed with brine, dried 

(Na2SO4), filtered, and concentrated under reduced pressure. Purification by column 

chromatography (25 g cartridge, gradient elution from 0% to 40% EtOAc in hexanes) 

afforded amide 21 (29 mg, 78% yield) and reduced fluoroamide (22) in 40% yield.  

 

(21) 

Isolated yield: 78%, 70%; 74% average yield 

MP 87 ºC (off white solid) 

IR (thin film): 1617 cm–1 
1H NMR (700 MHz, CDCl3) δ 7.31 (m, 2H), 7.23-7.19 (multiple peaks, 3H), 4.58 (d, J = 

12.2 Hz, 2H), 2.87 (t, J = 12.9 Hz, 2H), 2.76 (tt, J = 12.2, 4.1 Hz, 1H), 1.90 (d, J = 13.1 

Hz, 2H), 1.63 (qd, J = 12.6, 4.1 Hz, 2H), 1.31 (s, 9H). 
13C NMR (176 MHz, CDCl3) δ 176.1, 145.3, 128.5, 126.7, 126.4, 45.8, 42.8, 38.7, 33.5, 

28.4. 

HRMS (ESI+) [M+H]+ Calcd for C16H24NO+: 246.1858; Found: 246.1852. 

Rf = 0.40 in 20% EtOAc in hexanes 

(22) 

Isolated yield: 41%, 40%; 41% average yield 

MP 140 ºC (white solid) 

IR (thin film): 1683 cm–1 
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1H NMR (700 MHz, CDCl3) δ 7.41 (br s, 1H), 7.29 (d, J = 11.5 Hz, 2H), 2.52 (septet, J = 

7.0 Hz, 1H), 1.25 (d, J = 7.0 Hz, 6H). 
19F NMR (377 MHz, CDCl3) δ –56.0 (t, J = 21.3 Hz, 3F), –108.8 (qd, J = 21.3, 11.2 Hz, 

2F). 
13C NMR (176 MHz, CDCl3) δ 175.7, 160 (m), 142.9 (t, JC-F = 13.4 Hz) 121.6 (q, JC-F = 

272 Hz), 103.1 (dd, JC-F = 26.6, 3.7 Hz), 102.7 (m), 36.8, 19.3. 

HRMS (ESI+) [M+H]+ Calcd for C11H11F5NO+: 268.0761; Found: 268.0751. 

Rf = 0.38 in 20% EtOAc in hexanes 

 

 
Compound 23. Step 1: 2-bromopropanoyl bromide (0.55 mL, 5.25 mmol, 1 equiv) and 

2,3,5,6-tetrafluoro-4-(trifluoromethyl)aniline (0.74 mL, 5.25 mmol, 1 equiv) were 

dissolved in toluene (20 mL, 0.25 M) and heated to reflux for 18 hours. The reflux 

condenser was equipped with a drying tube that was packed with K2CO3 (5 g). After 

cooling to room temperature, the volatiles were removed via rotary evaporation. The 

crude product was recrystallized from hexanes affording 93% yield of int-1-23.  
1H NMR (CDCl3, 401 MHz) δ 7.84 (s, 1H), 4.63 (q, J = 7.0 Hz, 1H), 2.00 (d, J = 7.0 Hz, 

4H). 
19F NMR (CDCl3, 377 MHz) δ –56.16 (t, J = 21.7 Hz, 3F), –140.17 (m, 2F), –142.82 (m, 

2F). 

Step 2: int-1-23 (0.9 g, 2.45 mmol, 1 equiv), piperidine (0.49 mL, 4.9 mmol, 2 equiv), 

K2CO3 (1.01 g, 7.35 mmol, 3 equiv) were mixed in acetonitrile (9.8 mL, 0.25 M). The 

reaction mixture was heated to 60 °C for 18 h. The mixture was filtered through a silica 

plug (100% EtOAc) and the volatiles were removed via rotary evaporation. The residue 

was purified via column chromatography (5% to 20% EtOAc in hexanes) to afford 70% 

yield of 23.  
1H NMR (CDCl3, 500 MHz) δ 9.53 (s, 1H), 3.35 (q, J = 7.0 Hz, 1H), 2.68–2.43 (multiple 

peaks, 4H), 1.78–1.58 (m, 4H), 1.51 (m, 2H), 1.30 (t, J = 7.0, 3H). 
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19F NMR (CDCl3, 471 MHz) δ –56.02 (t, J = 21.8 Hz), –141.07 (m, 2F), –143.97 (m, 2F). 

 
Compound 24. 

Step 1: 1-aminocyclopropane-1-carboxylic acid (1g, 9.89, 1 equiv) was mixed with 

acetyl chloride (1.5 mL, 19.8 mmol, 2 equiv) and methanol (5 mL) at 0 °C under N2. The 

mixture was heated to reflux overnight. The volatiles were removed via rotary 

evaporation affording quantitative yield of int-1-24. 
1H NMR (500 MHz, Methanol-d4) δ 3.81 (s, 3H), 1.57 (m, 2H), 1.37 (m, 2H). 

Step 2: int-1-24 (90 mg, 0.66 mmol, 1 equiv), 1,5-dibromopentane (90 µL, 0.66 mmol, 1 

equiv), K2CO3 (100 mg, 0.66 mmol, 1 equiv) were dissolved in ethanol (0.2 mL). The 

reaction was heated to 60 °C for two days. The reaction mixture was diluted in DCM (10 

mL) and washed with aqueous K2CO3 (4 X 5 mL). The organics were dried over Na2SO4, 

decanted and concentrated. The crude product was purified via column chromatography 

(4 : 1 v/v DCM : Et2O) affording 89% of int-2-24. 
1H NMR (CDCl3, 500 MHz) δ 3.62 (s, 3H), 2.86 (app. br s, 4H), 1.48–1.34 (multiple 

peaks, 6H), 1.23 (m, 2H), 0.88 (m, 2H). 

Step 3: int-2-24 (400 mg, 2.2 mmol, 1 equiv) was dissolved in 6 M HCl (42 mL) and 

was heated to 105 ºC for 2 days. The water was removed by rotary evaporation. The 

crude product (int-3-24) was dried in high vacuum and used without further purification. 
1H NMR (700 MHz, Deuterium Oxide) δ 3.35 (br s, 4H), 1.79 (m, 2H), 1.70 – 1.53 

(multiple peaks, 3H), 1.47 (m, 2H), 1.37 (m, 2H), 1.32 (m, 1H). 
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Step 4: A round-bottom flask was charged with int-3-24 (500 mg, 2.43 mmol, 1 equiv) 

and POBr3 (1.39 g, 4.86 mmol, 2 equiv) and cooled to –78 ºC. Pyridine (9.5 mL) was 

slowly added, followed by 2,3,5,6-tetrafluoro-4-(trifluoromethyl)aniline (0.75 mL, 5.35 

mmol, 2.2 equiv). The reaction was slowly brought to room temperature and then 

heated to 50 ºC for 24 hours. The reaction was diluted with DCM (10 mL) and 

triethylamine was added (1 mL, 7.3 mmol, 3 equiv). The mixture was filtered through a 

plug of celite and the volatiles were removed via rotary evaporation. The residue was 

purified via column chromatography (20% DCM in hexanes to 100% DCM) to give 24 in 

50% yield. 
1H NMR (400 MHz, Methanol-d4) δ 2.51 (br s, 4H), 1.72 (p, J = 5.7 Hz, 4H), 1.47 (m, 

2H), 1.30 (m, 2H), 1.21 (m, 2H). Note: N–H not observed. 
19F NMR (376 MHz, Methanol-d4) δ –57.62 (t, J = 21.9 Hz, 3F), –144.72 (m, 2F), –

145.61 (m, 2F). 

 
Compound 25. 

Step 1: A round-bottom flask was charged with cyclobutanecarboxylic acid (1.2 mL, 

11.9 mmol, 1 equiv) and PBr3 (0.46 mL, 4.7 mmol, 0.4 equiv). A rubber septum was 

fitted to the flask and the reaction was placed under a N2 atmosphere. The mixture was 

heated to 95 ºC for 5 minutes. Subsequently, Br2 (1.54 mL, 29.8 mmol, 2.5 equiv) was 

added dropwise over 2 hours [Caution: Evolution of gas]. A needle was used to 

puncture the septum to vent the system into a saturated solution of sodium thiosulfate. 

After 4 hours, additional Br2 (0.5 mL, 9.7 mmol, 0.8 equiv) was added to the reaction 

mixture. After 12 hours, additional Br2 (0.5 mL, 9.7 mmol, 0.8 equiv) was added to the 

reaction mixture. Next, the reaction was cooled to room temperature and the crude 

product was placed under high vacuum for 5 minutes, followed by purification of the 

viscous residue via Kugelrohr (50 ºC, 50 mTorr) to afford 93% yield of int-1-25 in 80% 

purity as determined by 1H NMR. 
1H NMR (CDCl3, 400 MHz) δ 2.96 (m, 2H), 2.61 (m, 2H), 2.29 (m, 1H), 1.89 (m, 1H). 
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Step 2: A dry round bottom flask was charged with 2,3,5,6-tetrafluoro-4-

(trifluoromethyl)aniline (0.6 mL,  4.01 mmol, 1 equiv) and toluene (19 mL). To this 

solution, int-1-25 (0.97 g, 4.01 mmol, 1 equiv) was added. The flask was fitted with a 

reflux condenser topped with a drying tube that was packed with K2CO3 (5 g). The 

reaction was heated to an external temperature of 130 ºC. After 18 h, the reaction 

mixture was cooled to room temperature and concentrated under vacuum. The solid 

residue was recrystallized from hot hexanes. The solid was then dried under vacuum to 

afford int-2-25 and was used in the next step without further purification. 

Step 3: Inside a N2 glovebox, a dry round-bottom flask was charged with int-2-25 (1.6 g, 

4 mmol, 1 equiv), K2CO3 (0.56 g, 4 mmol, 1 equiv), AgBF4 (0.79 g, 4 mmol, 1 equiv) and 

acetonitrile (20 mL). To this solution, piperidine (1.5 mL, 15.2 mmol, 3.8 equiv) was 

added. The reaction was stirred at room temperature outside of the glovebox. After 18 

hours, the mixture was filtered through celite and the volatiles were removed under 

vacuum. The residue was purified via column chromatography (0% to 10% THF in 

hexanes) to afford product 25 in 27% yield. 
1H NMR (401 MHz, Methanol-d4) δ 2.54 (app. t, J = 5.6 Hz, 4H), 2.43 (m, 2H), 2.29 (m, 

2H), 1.93–1.74 (multiple peaks, 2H), 1.68 (app. p, J = 5.6 Hz, 4H), 1.52 (m, 2H). Note: 

N–H not observed.  
19F NMR (377 MHz, Methanol-d4) δ –57.63 (t, J = 22.0 Hz, 3F), –144.61 (m, 2F), –

145.46 (m, 2F). 

 

 
Compound 26. 

Step 1: A round-bottom flask was charged with cyclopentanecarboxylic acid (1 mL, 9.23 

mmol, 1 equiv) and PBr3 (0.35 mL, 3.7 mmol, 0.4 equiv). A rubber septum was fitted to 

the flask and the reaction was placed under a N2 atmosphere. The mixture was heated 

to 110 ºC for 5 minutes. Subsequently, Br2 (0.71 mL, 13.8 mmol, 1.5 equiv) was added 

dropwise over 1 hour, until the solution retained the brown color of bromine [Caution: 
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Evolution of gas]. A needle was used to puncture the septum to vent the system into a 

saturated solution of sodium thiosulfate. The reaction was cooled to room temperature 

and the crude product was placed under high vacuum for 10 minutes, followed by 

purification of the viscous residue via Kugelrohr (50 ºC, 50 mTorr) to afford 78% yield of 
int-1-26 as a colorless oil. 
1H NMR (CDCl3, 400 MHz) δ 2.37 (m, 4H), 2.04 (m, 2H), 1.88 (m, 2H). 

Step 2: A round bottom flask was charged with 2,3,5,6-tetrafluoro-4-

(trifluoromethyl)aniline (1 mL, 7.2 mmol, 1 equiv) and toluene (30 mL). To this solution, 

int-1-26 (1.84 g, 7.2 mmol, 1 equiv) was added. The flask was fitted with a reflux 

condenser topped with a drying tube that was packed with K2CO3 (5 g). The reaction 

was heated to an external temperature of 140 ºC. After 18 h, the reaction mixture was 

cooled to room temperature and concentrated under vacuum. The solid residue was 

recrystallized from hot hexanes. The solid was then dried under vacuum to afford 

product int-2-26 in 79% yield. 
1H NMR (CDCl3, 401 MHz) δ 8.22 (s, 1H), 2.62–2.47 (multiple peaks, 2H), 2.44–2.33 

(multiple peaks, 2H), 2.13–1.89 (multiple peaks, 4H). 

Step 3: Inside a N2 glovebox, a 20-mL vial was charged with int-2-26 (1.15 g, 2.83 

mmol, 1 equiv), K2CO3 (0.39 g, 2.83 mmol, 1 equiv), AgBF4 (0.55g, 2.83 mmol, 1 equiv) 

and acetonitrile (14 mL). To this solution, piperidine (1.07 mL, 10.8 mmol, 3.8 equiv) 

was added. The reaction was stirred at room temperature outside of the glovebox. After 

18 hours, the mixture was filtered through celite and the volatiles were removed under 

vacuum. The residue was purified via column chromatography (0% to 5% THF in 

hexanes) to afford product 26 in 63% yield.  
1H NMR (400 MHz, Methanol-d4) δ 2.51 (app. s, 4H), 1.97 (m, 4H), 1.77–1.59 (multiple 

peaks, 8H), 1.53 (m, 2H). Note: N–H not observed.  
19F NMR (376 MHz, Methanol-d4) δ –57.61 (t, J = 21.9 Hz, 3F), –144.73 (m, 2F), –

146.02 (m, 2F). 
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Compound 27. 

Step 1: A round-bottom flask was charged with 9-hydroxy-9H-fluorene-9-carboxylic acid 

(0.5 g, 2.21 mmol, 1 equiv) and PBr5 (1.9 g, 4.42 mmol, 2 equiv). The neat mixture was 

heated to 100 ºC for 2 hours. After cooling to room temperature, the reaction mixture 

was dissolved in chloroform (15 mL) and passed through a small silica gel plug (100% 

EtOAc). The solvent was removed via rotary evaporation and dried under high vacuum 

to afford int-1-27. The product was used in the next step without further purification or 

characterization. 

HRMS EI+ [M+] Calcd for C14H8Br2O: 349.8942, found: 349.8929. 

Step 2: A dry round bottom flask was charged with 2,3,5,6-tetrafluoro-4-

(trifluoromethyl)aniline (0.31 mL,  2.21 mmol, 1 equiv) and toluene (10 mL). To this 

solution, int-1-27 (0.78 g, 2.21 mmol, 1 equiv) was added. The flask was fitted with a 

reflux condenser topped with a drying tube that was packed with K2CO3 (5 g). The 

reaction was heated to an external temperature of 140 ºC. After 18 h, the reaction 

mixture was cooled to room temperature and concentrated via rotary evaporation. The 

residue was purified via column chromatography (10% EtOAc in hexanes) to give 34% 

yield of int-2-27. 
1H NMR (CDCl3, 401 MHz) δ 7.79 (d, J = 7.6 Hz, 2H), 7.74 (d, J = 7.6 Hz, 2H), 7.51 (t, J 

= 7.4 Hz, 2H), 7.48–7.40 (multiple peaks, 3H). 
19F NMR (CDCl3, 377 MHz) δ –56.18 (t, J = 21.7 Hz, 3F), –140.33 (m, 2F), –142.68 (m, 

2F). 

HRMS ESI+ [M+H]+ calcd. for C21H10BrF7NO: 503.9829; found: 503.9820. 

Step 3: A 4-mL vial was charged with int-2-27 (150 mg, 0.3 mmol, 1 equiv), K2CO3 (83 

mg, 0.6 mmol, 2 equiv) and acetonitrile (1.5 mL). To this solution, piperidine (89 µL, 0.9 

mmol, 3 equiv) was added. The reaction mixture was heated to 60 °C for 18 h. After, the 

mixture was filtered through a silica plug (100% EtOAc) and the volatiles were removed 
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via rotary evaporation. The residue was purified via column chromatography (5% THF in 

hexanes) to afford 63% yield of 27.  
1H NMR (CDCl3, 401 MHz) δ 7.71 (d, J = 7.6 Hz, 2H), 7.54 (d, J = 7.6 Hz, 2H), 7.43 (t, J 

= 7.5 Hz, 2H), 7.32 (t, J = 7.5 Hz, 2H), 2.53 (br s, 4H), 1.63 (m, 4H), 1.46 (br s, 2H). 
19F NMR (CDCl3, 471 MHz) δ –56.03 (t, J = 21.8 Hz, 3F), –140.96 (m, 2F), –143.55 (m, 

2F). Note: N–H not observed.  

 

 
Compound 28. 

Step 1: Step one was done following a literature procedure affording int-1-28.42  

Step 2: A dry round bottom flask was charged with 2,3,5,6-tetrafluoro-4-

(trifluoromethyl)aniline (0.52 mL,  3.7 mmol, 1 equiv) and toluene (14 mL). To this 

solution, int-1-28 (1 g, 3.7 mmol, 1 equiv) was added. The flask was fitted with a reflux 

condenser topped with a drying tube that was packed with K2CO3 (5 g). The reaction 

was heated to an external temperature of 140 ºC. After 18 h, the reaction mixture was 

cooled to room temperature and concentrated via rotary evaporation. The solid residue 

was recrystallized from hot hexanes to give int-2-28 as a white solid in 83% yield.  
1H NMR (CDCl3, 400 MHz) δ 8.09 (s, 1H), 2.21 (m, 4H), 1.87–1.66 (multiple peaks, 5H), 

1.40 (m, 1H). 
19F NMR (CDCl3, 376 MHz) δ –56.12 (t, J = 21.8 Hz, 3F), –140.51 (m, 2F), –143.05 (m, 

2F). 

HRMS ESI+ [M+H]+ calcd for C14H11BrF7NO: 421.9985; found 421.9979. 

Step 3: Inside a N2 glovebox, a 20-mL vial was charged with int-2-28 (0.45 g, 1.07 

mmol, 1 equiv), K2CO3 (0.15 g, 1.07 mmol, 1 equiv), AgBF4 (0.21 g, 1.07 mmol, 1 equiv) 

and acetonitrile (9 mL). To this solution, piperidine (0.4 mL, 4.1 mmol, 3.8 equiv) was 

added. The reaction was stirred at room temperature outside of the glovebox. After 18 

hours, the mixture was filtered through celite and the volatiles were removed under 
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vacuum. The residue was purified via column chromatography (0% to 10% THF in 

hexanes) to afford product 28 in 53% yield. 
1H NMR (CDCl3, 400 MHz) δ 2.57 (m, 4H), 1.99–1.39 (m, 15H), 1.15 (m, 1H). Note: N–H 

not observed.  
19F NMR (CDCl3, 376 MHz) δ –55.96 (t, J = 21.7 Hz, 3F), –141.41 (m, 2H), –144.28 (m, 

2H) 

 

 (29) 

NOTE: Aminal formation was not observed. This substrate was isolated following 

Isolation Procedure A of the Standard Conditions for C-H Arylation of Alicyclic 

Amines. Purification via column chromatography (0% to 10% THF in hexanes). 

Isolated yield using standard conditions B: 30% yield 
1H NMR (CDCl3, 500 MHz) δ 9.73 (br s, 1H), 7.73 (d, J = 7.6 Hz, 2H), 7.59 (d, J = 7.6 Hz, 

2H), 7.46 (app. t, J = 7.4 Hz, 2H), 7.38–7.28 (multiple peaks, 4H), 7.21 (m, 3H), 3.06 (d, 

J = 11.4 Hz, 2H), 2.50 (tt, J = 11.8, 4.1 Hz, 1H), 2.35 (app. t, J = 11.0 Hz, 2H), 1.94–

1.77 (multiple peaks, 4H). 
19F NMR (CDCl3, 471 MHz) δ –56.03 (t, J = 21.6 Hz, 3F), –140.81 (m, 2F), –143.45 (m, 

2F). 
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Chapter 5. Ligand Effects on the Pd-Catalyzed 
Transannular C–H Functionalization of 

Azabicycloalkanes 

5.1 Introduction 

Naturally occurring alkaloids have long inspired the development of 

pharmaceutical agents with 59% of U.S. FDA approved drugs containing a nitrogen 

heterocycle. 1  Bicyclic alkaloids are especially notable and are featured in several 

biologically active molecules (Figure 5.1). For example, 8-azabicyclo[3.2.1]octane 

(tropane) is the second most prevalent bicyclic nitrogen heterocycle among U.S. FDA 

approved drugs.1 The tropane core is present in several bioactive natural products such 

as cocaine (stimulant), atropine (anticholinergic), and scopolamine (antiemetic; Figure 

5.1).1, 2  Furthermore, other azabicycloalkanes with the [3.2.1]-, [3.3.1]- and [2.2.1]-

bridged systems appear in several natural products (epibatidine, euphococcinine) and 

pharmaceutical agents (varenicline, granisertron; Figure 5.1). 

 

Figure 5.1. Relevance of representative bioactive azabicycloalkanes. 
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Despite this pervasiveness, the synthesis and derivatization of bicyclic alkaloids 

rely on the use of de novo synthetic routes to construct the bridged bicyclic core.3 For 

example, Robinson’s double Mannich reaction allows for a one-pot synthesis of 

tropinone but with limited functional group tolerance (Figure 5.2 A).4 This strategy has 

also been employed to synthesize several bicyclic systems with bridgehead-carbons 

adjacent to the nitrogen atom. Metal-catalyzed strategies have been used to construct 

highly functionalized bicyclic amines (Figure 5.2 B-C). For example, Professor Huw 

Davies at Emory University developed the synthesis of functionalized [3.2.1]-bridged 

frameworks via a Rh-catalyzed tandem cyclopropanation/Cope rearrangement strategy 

between vinyldiazoacetates and pyrroles (Figure 5.2 B).5 Additionally, a Pd-catalyzed 

alkene carboamination strategy has been explored for the intramolecular synthesis of 

benzo-tropanes by Professor John Wolfe at University of Michigan (Figure 5.2 C).6 

Furthermore, Professor Jonathan A. Ellman at Yale University reported on a [3+2] 

cycloaddition of unstabilized azomethine ylides and alkynes to provide functionalized 

tropane structures (Figure 5.2 D).7  

 

Figure 5.2. Representative examples for the synthesis of azabicycloalkanes. 
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aryl group has a strong correlation to the binding affinity and transporter selectivity on 

these molecules making the rapid synthesis and development of these arylated 

derivatives critically important. Common synthetic routes for aryl azabicycloalkanes 

require multi-step synthetic sequences and many of them employ methylecgonidine 

derivatives as reactive intermediates to afford racemic cis/trans-isomeric mixtures of 

aryltropanes (Figure 5.3, right).8a Although these methods allow access to valuable 

bicyclic cores (vide supra), all of them represent an iterative and resource-intensive 

strategy to prepare functionalized azabicycles. 

 

Figure 5.3. Representative examples of arylated azabicycloalkanes and synthetic 
routes.  
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Recently, the use of sp3-nitrogen atoms as directing groups to transition metals 

has enabled the site-selective C(sp3)–H functionalization of aliphatic amines. Professor 

Matthew Gaunt at the University of Cambridge employed this strategy for the C–H 

functionalization of pendant alkyl chains in nitrogen heterocycles (Figure 5.4).18  

 

Figure 5.4. Gaunt’s C–H arylation of alkylamines.18b 

 
 

We have also reported on the remote C–H functionalization of aliphatic cyclic 

amines (alicyclic amines, Figure 5.5).17 Our transannular C–H functionalization protocol 
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this strategy, a variety of alicyclic amines were functionalized affording arylated 

products with added molecular complexity (full details in chapter 4). However, the 

reaction conditions for most azabicycles (other than 3-azabicyclo[3.1.0]hexane) afforded 

modest yields of arylated products (25–60%) with remaining starting material. 

Furthermore, bioactive scaffolds such as tropane and related azabicycloalkanes with 

substituents adjacent to the nitrogen-atom led to trace arylated products and poor mass 

balance.  

 

Figure 5.5. Transannular C–H functionalization of alicyclic amines. 
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bioactive azabicycloalkanes. We envisioned utilizing ligand additives to improve 

reactivity. Ligands in Pd(II)-catalyzed C–H functionalization reactions are known to 

modulate the catalyst reactivity to enhance site-, stereo- and chemo-selectivity. 19 

Additives, such as pyridines or quinolines, in Pd catalysis have enabled the 

development of new C–H functionalization reactions by 1) lowering activation 

barriers,20,21 or 2) preventing catalyst decomposition18c,22 or inhibition.23,24 As a result, 

we hypothesized that identification of suitable ligands could allow for the expansion of 

our method to the C–H functionalization of challenging azabicycloalkanes. 

This chapter describes the use of 2-picolinic acid or 2-quinaldic acid for the 

transannular Pd-catalyzed C–H activation of aliphatic azabicycles. We demonstrate that 

the addition of these ligands can dramatically increase the yields of remotely 

functionalized azabicyclic products. Furthermore, a combination of kinetic experiments 

(initial rates, KIEs, catalyst inhibition and recovery studies) suggests that the role of the 

ligand is to recover deactivated Pd species. Finally, the use of these ligand additives 

enable the C–H functionalization of tropane and related azabicycloalkaloids.  

The work described in this chapter has been done in collaboration with my 

colleague Melissa Lee. 

5.2 Results and Discussion 

Ligand identification 

Initial studies focused on utilizing a model bicyclic system with modest reactivity 

to identify ligand-induced reactivity trends. We began our investigation using the benzo-

fused 3-azabicyclo[3.2.1]octane substrate (1). Under our previously reported reaction 

conditions this substrate afforded 46% yield of the C4-arylated product 2a (Figure 5.6 

and Chapter 4).17 This important bicyclic core (1) is present in several bioactive 

molecules such as vareniciline (Pfizer’s smoking cessation drug) and other isotropane 

alkaloids 25  (Figure 5.1). Therefore, 1 provides an opportunity for significant yield 

improvement via the use of ligands.  
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Figure 5.6. Ligand-less reactivity of benzo-isotropane substrate 1. 
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that beyond 20 mol % of picolinic acid the reaction was drastically inhibited with only 

26% conversion of starting substrate 1 (entry 11). In contrast, addition of varying 

amounts of quinaldic acid had minimal impact on the yield (77-85%, entries 12-14) and 

conversion of 1 (> 99%). Furthermore, 2a was isolated in 82% yield with addition of 20 

mol % of quinaldic acid, which represents an almost 2-fold yield improvement from the 

ligandless reaction (entry 14).  

 

Table 5.1. Ligand evaluation with benzo-fused isotropane substrate 1. 

 
Entry L L (mol%) Yield 2aa Conversionb 

1 ---- ---- 46% 68% 
2 L1 5 44% 68% 
3 L2 5 47% 73% 
4 L3 5 43% 68% 
5 L4 5 40% 68% 
6 L5 5 46% 75% 
7 L6 5 56% 80% 
8 L7 5 68% 96% 
9 L8 5 80% > 99% 

10 L8 10 78% > 99% 
11 L8 20 24% 26% 
12 L9 5 77% > 99% 
13 L9 10 77% > 99% 
14 L9 20 85% (82%c) > 99% 

a Conditions: 1 (0.03 mmol, 1 equiv), Pd(OAc)2 (10 mol %), ligand L (5 - 20 mol %) CsOPiv (3 equiv), PhI 
(30 equiv), 150 ºC. Calibrated GC yields are a sum of products 2a and 2a-aminal. b For entries 1-7, 1-
aminal detected below < 4%; entries 8-14 1-aminal not detected. C Isolated yield of 2a (0.3 mmol scale). 
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2a and 95% conversion of 1 (entry 8). Similarly, replacement of ligand with picolinic acid 

(5 mol %) afforded 85% yield of 2a (entry 9). Notably, the reaction in the absence of 

ligand only afforded 29% yield of 2a (entry 10), which highlights the importance of the 

ligand to the reaction.  

 

Table 5.2. Reaction optimization of 1 with quinaldic acid.a 

 
Entry Temp. Solvent Ph–I (equiv) Yield 2a Conversion 

1 150 ºC neat 30 77% > 99% 
2 120 ºC neat 30 60% 74% 
3 120 ºC tAmylOH 30 87% > 99% 
4 120 ºC tAmylOH 15 85% > 99% 
5 120 ºC tAmylOH 3 87% > 99% 
6 120 ºC tAmylOH 1 79% 95% 
7 110 ºC tAmylOH 3 86% > 98% 
8 100 ºC tAmylOH 3 84% 95% 
9b 100 ºC tAmylOH 3 85% 96% 
10c 100 ºC tAmylOH 3 29% 42% 

a Conditions: 1 (0.03 mmol, 1 equiv), Pd(OAc)2 (10 mol %), quinaldic acid (5 mol %) CsOPiv (3 equiv), PhI 
(1-30 equiv), 100-150 ºC. Calibrated GC yields for 2a. b Ligand: picolinic acid (5 mol%). c No ligand 
additive. 

 

Reaction Rate Profile 

Ligands in other Pd catalyzed C–H activation reactions have enabled the 

development of challenging transformations by enhancing catalyst activity (i.e. lowering 

activation barrier) or preventing catalyst deactivation or product inhibition pathways.19 

Given the positive results with these pyridinecarboxylate ligands we decided to 

investigate the role of the ligand in the reaction.27 

We began our investigation by assessing the reaction rate profile of 1 with and 

without ligand (Figure 5.7). The reaction progress was monitored via gas 

chromatography (GC) by measuring the concentration of starting material (1) and 

product (2a) over time. Each time-point represents an independent vial reaction. As 

shown in Figure 5.7, the concentration of 2a versus time plots show that both reactions 

(with and without ligand) start with comparably fast initial rates. However, the reaction in 

the absence of ligand plateaus after 60 minutes and completely stalls after 480 minutes 
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(8 hours) to a maximum concentration of 0.035 M 2a (blue curve). In contrast, the 

reaction with quinaldic acid after 60 minutes has reached a product concentration of 

0.039 M, which is a 2.2-fold increase in [2a] from the ligandless reaction (0.018 M). The 

quinaldic acid reaction continues to produce product and finally plateaus to a 

concentration of ~ 0.1 M. 

 

Figure 5.7. Rate profile of 2a in the presence of 5 mol% quinaldic acid (red curve) and 
absence of ligand (blue curve). 

 
Conditions red curve: 1 (0.03 mmol, 1 equiv, 0.12 M), Pd(OAc)2 (0.012 M), CsOPiv (0.36 M), PhI (0.36 M), 
quinaldic acid (0.006 M), 0.25 mL tAmylOH, 100 ºC. Conditions blue curve: 1 (0.03 mmol, 1 equiv, 0.12 
M), Pd(OAc)2 (0.012 M), CsOPiv (0.36 M), PhI (0.36 M), 0.25 mL tAmylOH, 100 ºC.  

 

Analysis of the ligandless reaction profile suggests that product formation might 

inhibit Pd-catalyst turnover (product inhibition). The increase in product concentration 

over time could be preventing the coordination of substrate 1 to the Pd-catalyst, thus 

leading to the observed low yield of 2a. It seems plausible that the role of the ligand is to 

serve as a transient coordinating group to promote catalyst turnover and prevent 

product inhibition.24 

 

Catalyst Inhibition Studies 

Previous reports suggest that a vacant coordination site at the Pd center is 

required for C−H bond cleavage to occur. 26a,28,29 Due to the bidentate coordination of 
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the substrate and product, we hypothesized that formation of square planar off-cycle 

[Pd(1)2], [Pd(2a)2] or [Pd(1)(2a)] complexes in solution could be leading to 

product/substrate inhibition (Figure 5.8 A). Analogous structures have been observed 

when strongly coordinating sp3-amines bind to Pd(II) centers (Figure 5.8 B).29,30 

 
Figure 5.8. A) Plausible off-cycle Pd species. B) Literature sp3-hybridized amine bound 

Pd complexes. C) X-Ray of analogous phenyl-piperidine substrate. 

 
 

Attempts to observe or isolate these Pd species with 1 or 2a were difficult as 

complex mixtures were obtained, presumably due to the formation of monomeric and 

dimeric Pd species. However, an analogous solid-state crystal structure of two arylated 

piperidine molecules bound to palladium suggests that these off-cycle species could 

form in solution (Figure 5.8 C).  
To investigate the possibility of product inhibition, we employed the same-excess 

protocol by Donna Blackmond at The Scripps Research Institute.31 This experiment 

allows access to different starting points of a reaction by adjusting the concentrations of 

reactants and product. We proceeded to conduct the same-excess reaction profile with 

added 0.03 M of 2a at the reaction onset (reaction conditions equivalent to 25% yield of 

2a and 75% conversion of 1, Figure 5.9 curve A).32 We reasoned that if product is 

inhibiting the catalyst and no other catalyst deactivation paths are operating, we should 

expect little to no product forming during the course of the reaction (as observed in the 

parent reaction profile Figure 5.9 curve B). As shown in Figure 5.9 curve A, we 

observed that product proceeds to form in the first 3 hours (180 minutes) and plateaus 

to a concentration of 0.048 M (40% yield of 2a) after 19 hours. This is in stark contrast 

to the observed reactivity of the parent reaction (curve B).  
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Employing the time-adjustment protocol,24 the same-excess reaction profile can 

be time-shifted to match concentration profile of the parent reaction at the time point 

where [2a] is ~ 0.03M (360 minutes, Figure 5.9 curve C). The frame-shifted curve from 

the same-excess product-added reaction profile shows a visualization of the significant 

rate difference between curves. The lack of overlay cannot fully rule out product 

inhibition, but it does indicate that other catalyst deactivation pathways are operating.  

 
Figure 5.9. Curve A: same-excess product-added reaction profile. Curve B: Ligand-less 

C–H arylation of 1 (parent reaction profile). Curve C: Time-shifted curve A to match 
parent reaction at 0.03 M 2a. 

 

 
Conditions curve A: 1 (0.0225 mmol, 0.75 equiv, 0.09 M), 2a (0.0075 mmol, 0.25 equiv, 0.03 M) Pd(OAc)2 
(0.012 M), CsOPiv (0.36 M), PhI (0.36 M), 0.25 mL tAmylOH, 100 ºC. Conditions curve B: 1 (0.03 mmol, 1 
equiv, 0.12 M), Pd(OAc)2 (0.012 M), CsOPiv (0.36 M), PhI (0.36 M), 0.25 mL tAmylOH, 100 ºC.  
 

To probe product inhibition, we added varying amounts of product to the reaction 

onset. This method has been previously used to demonstrate product inhibition in 

related Pd catalyzed C–H activation reactions.23 If product hampers reactivity, we 

expect that the excess product would impact the catalyst’s reactivity by competing with 

starting material 1 to coordinate to the Pd center. This in turn would change the reaction 
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rate and [2a] over the course of the reaction and we would expect to see drastic 

differences in the yield of 2a as a function of product loading. 

  We chose to add varying amounts of the anisole derived product 2b to accurately 

determine product formation solely from iodobenzene in the reaction. Addition of 

different amounts of 2b from 0.012 M to 0.09 M to the ligandless reaction shows that all 

reactions provided the same amount of product 2a after 45 minutes (Table 5.3, column 

4). Furthermore, experiments in the presence of quinaldic acid also resulted in similar 

yield of 2a irrespective of product loading (Table 5.3, column 5). This result provides 

evidence that 1) product is not interacting with the active catalyst to inhibit turnover and 

2) the ligand is not preventing product from deactivating the Pd-catalyst.  

 

Table 5.3. Addition of 2b to the C–H arylation of 1. 

 
Entry [2b] (M) 2b (equiv) Yield 2a (no ligand)a Yield 2a (5 mol % QA)b 

1 0 0 13% 28% 
2 0.012 0.1 13% 29% 
3 0.03 0.25 13% 30% 
4 0.06 0.50 13% 28% 
5 0.09 0.75 11% 28% 

a Conditions: 1 (0.03 mmol, 1 equiv, 0.12 M), 2b (0, 0.012, 0.03, 0.06 or 0.09 M), Pd(OAc)2 (0.012 M), 
CsOPiv (0.36 M), PhI (0.36 M), 0.25 mL tAmylOH, 100 ºC.b Reaction with quinaldic acid (0.006 M). 
 

Following our previous results with addition of excess product, we investigated 

initial reaction rates in the presence and absence of product. The initial rates method 

avoids the need to address problems associated with possible catalyst deactivation; 

thus, decoupling catalyst deactivation from product inhibition. If product inhibition is 

occurring, we hypothesized that addition of 2b to the reaction would slow down the 

initial rate of the reaction in the absence of ligand. If the role of the ligand is to prevent 

product inhibition, addition of 2b to the reaction in the presence of ligand should not 

affect the initial rate of the reaction. As shown in Figure 5.10, we conducted initial rates 

of the reaction with and without added product 2b (0.06 M 2b, 50 mol %). Plotting [2a] 
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versus time profiles of the reaction without product (blue line) and the reaction with 

added product (red line) shows superimposable lines. This suggests that product is not 

affecting the turnover of the Pd-catalyst.  

Similarly, the superimposable initial rate profiles between the quinaldic acid 

reactions with or without 50 mol % 2b (Figure 5.11) indicates that ligand’s role is not to 

prevent product inhibition. However, we noticed a 2-fold increase in rate between the 

quinaldic acid reaction and the ligandless reaction (compare initial rates of Figure 5.11 

versus Figure 5.10). This enhanced reaction rate prompted us to further investigate the 

role of the ligand additive in the turnover-limiting step.21 

 

Figure 5.10. Ligand-less reaction initial rates comparison of [2a] versus time plots. Blue 
line reaction without product 2b. Red line initial rates with 0.06 M 2b (50 mol %). 

 

 
Conditions: 1 (0.03 mmol, 0.12 M), 2b (0.06 M), Pd(OAc)2 (0.012 M), CsOPiv (0.36 M), PhI (0.36 M), 0.25 
mL tAmylOH, 100 ºC. 2b was not added in blue line initial rates 
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Figure 5.11. Ligand-added reaction initial rates comparison of [2a] versus time plots. 
Blue line initial rates without product 2b. Red line initial rates with 0.06 M 2b. 

 

 
Conditions: 1 (0.03 mmol, 0.12 M), 2b (0.06 M), Pd(OAc)2 (0.012 M), CsOPiv (0.36 M), PhI (0.36 M), 
quinaldic acid (0.006 M), 0.25 mL tAmylOH, 100 ºC. 2b was not added in blue line initial rates 

 
Kinetic Isotope Effect (KIE)  

Given the ligand-induced rate acceleration (Figure 5.11), we next investigated the 

involvement of the ligand in the turnover-limiting step (TOLS) of the reaction. Isotope 

effects are a commonly used tool when determining if C–H bond cleavage occurs during 

the TOLS of a catalytic reaction or rate-determining step of a stoichiometric reaction.33 

In order to measure the KIE (kH/kD) of C(sp3)–H activation under our reaction conditions, 

we synthesized the deutereo-benzoazabicycloalkane d5-1 (Figure 5.12) by designing a 

new synthetic route to introduce deuterium in the amine scaffold (see experimental 

section for details). In separate KIE experiments without ligand additive, a primary 

isotope effect of 3.3 was observed, suggesting that C–H activation occurs in the TOLS. 

If the ligand is involved in the TOLS, we expect to observe an isotope effect 

dependence on ligand additive. However, two parallel reactions (1 vs d5-1) with 

quinaldic acid led to a primary isotope effect of 3.2. The similar KIE values with and 
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without ligand suggest that ligand is not involved in the TOLS and that the TOLS of the 

reaction is not changing as a function of ligand. Furthermore, the bidentate nature of the 

pyridinecarboxylate ligand would prevent vacant sites at Pd(II) center necessary for C–

H activation. This result differs from other Pd-catalyzed C–H activation reactions where 

large differences in KIE values are observed as a function of ligand, and the authors 

suggest that ligand is involved in the transition-state of the C–H activation step.20a,21 

 

Figure 5.12. Kinetic isotope effect for 1 and d5-1 with and without quinaldic acid. 

 
Conditions: 1 or d5-1 (0.03 mmol, 0.12 M), Pd(OAc)2 (0.012 M), CsOPiv (0.36 M), PhI (0.36 M), 0.25 mL 
tAmylOH, 100 ºC, with and without quinaldic acid (0.006 M). 

 
Catalyst Deactivation 

We next investigated if the ligand could be preventing catalyst decomposition 

pathways. This could occur through either an irreversible Pd-catalyst decomposition22 or 

a reversible Pd-catalyst off-cycle pathway.24,34 If the Pd-catalyst is deactivated, we 

hypothesized that addition of the ligand at the time point where the ligandless reaction 

stalls would provide an increase in catalyst turnover (catalyst recovery by ligand). In 

contrast, if most of the catalyst has irreversibly decomposed (i.e. Pd black), we would 

expect minor increase in product concentration upon addition of ligand.  

We conducted the C–H arylation reaction of 1 under the ligandless conditions for 

240 minutes, which is the time-point where reaction begins to stall (see Figure 5.7, blue 

curve). At this point, the reaction mixture was charged with 5 mol % of quinaldic acid 

and heated back to 100 ºC. Remarkably, the reaction recommenced to produce 2a 
(Figure 5.13) and after 20 hours (1200 minutes) the reaction has doubled the 
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concentration of 2a compared to the ligandless reaction. This result suggests that the 

Pd-catalyst undergoes a deactivation mechanism that ligand additives are able to 

reverse, regenerating an active catalyst.  

 

Figure 5.13. Catalyst recovery by addition of quinalidic acid after 4 hours. 

 
Conditions: 1 (0.03 mmol, 0.12 M), Pd(OAc)2 (0.012 M), CsOPiv (0.36 M), PhI (0.36 M), 0.25 mL 
tAmylOH, 100 ºC, 4 hours. Then, add quinaldic acid (0.006 M) and heat to 100 ºC. 
 

The rate profile upon addition of ligand completes fewer turnovers than the 

reaction with ligand added at the reaction onset (see Figure 5.7 red curve). This result 

indicates that some portion of the catalyst has undergone irreversible decomposition. 

This is further supported by performing a similar catalyst-recovery experiment, except 

that quinaldic acid was added after 12 hours, where [2a] was 0.034 M. Results 

demonstrate that addition of ligand to the reaction provided a slight increase in [2a] after 

an additional 12 hours up to 0.047 M.  

We observed that over the course of the reaction, the reaction mixture changed 

from a bright yellow homogeneous solution to a black heterogeneous mixture. We 

hypothesized that insoluble Pd species were forming, thus hindering reactivity. An initial 

isolation and analysis by ICP of the heterogeneous black species indicated the 

presence of Pd.35 This result led us to conduct a series of experiments where the black 

insoluble species (3) formed after 90 minutes of a ligand-less reaction were isolated by 

centrifugation and used as catalyst for subsequent reactions. 
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We conducted the C–H arylation reaction of 1 without ligand, employing 3 as 

catalyst (no Pd(OAc)2 added). We chose 4-iodoanisole as the aryl iodide coupling 

partner in order to confirm that product formation was catalyzed by 3. As shown in 

Figure 5.14 A, 10% yield of 2b was formed after 18 hours. In contrast, when 3 was used 

in combination with quinaldic acid, we obtained a 47% yield of 2b (Figure 5.14 B). A 

similar experiment was conducted with the supernatant post-removal of 3. The reaction 

without ligand afforded 41% yield of 2a after 18 h. In contrast, the addition of quinaldic 

acid to the supernatant furnished 73% yield of 2a (see experimental section for details). 

Collectively, these results indicate that the Pd catalyst undergoes a deactivation 

mechanism that decreases the total Pd concentration in solution via precipitation. 

Although, we recognize that the role of the ligand involves multiple factors, we have 

demonstrated that a major role of quinaldic acid (or picolinic acid, see experimental 

section) in the reaction with 1 is to rescue insoluble Pd species. 

 

Figure 5.14. A) Reaction of 3 without ligand. B) Reaction of 3 with quinaldic acid. 

 
Conditions: 1 (0.03 mmol), black precipitate (3), CsOPiv (0.09 mmol), with or without quinaldic acid 
(0.0015 mmol), PhI (0.09 mmol), 0.25 mL tAmylOH, 100 ºC, 18 hours. 

 
Ligand effects in other azabicycloalkanes 

The studies on the C–H arylation of the benzo-fused isotropane substrate (1) 

demonstrated that ligand additives provide improved reactivity by preventing catalyst 

deactivation and regenerating active Pd species. This led us to investigate the use of 

ligands in the C–H functionalization of challenging substrates that afforded only trace 

product under our previous reaction conditions. We began our studies with 8-

azabicyclo[3.2.1]octane substrate (tropane core, 4). Gratifyingly, the addition of ligand 

(quinaldic or picolinic acid) increased the yield of arylated tropane product (5, Figure 
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5.15). Further reaction optimization showed that picolinic acid was a more suitable 

ligand for the C–H arylation of 4 (see experimental section for optimization details).  

With the optimized conditions, we explored the scope in aryl iodide. As shown in 

Figure 5.15 A, a wide range of aryl iodides with varying steric and electronic properties 

were compatible in the C–H functionalization of 4. Electron-rich aryl iodides bearing 

methoxy- and methyl-substituents afforded good yields of the C–H arylated products 

(40–60%, 5a-5d). The reaction also tolerated other halides. For example, product 5d 

provides a bromide handle that can be used in subsequent cross-coupling reactions. In 

addition, electron-deficient aryl iodides furnished good yields of the desired arylated 

product (5e-5g). Given the importance of the trifluoromethoxy group in agrochemical 

and pharmaceutical agents,36 we were pleased to observe the incorporation of the 

trifluoroanisole ring in reasonable yields (34%, 5g). Finally, other important aromatic 

scaffolds were amenable to the reaction conditions affording arylated tropane analogs 

bearing the benzofuran (5h), veratrole (5i) and perfluorobenzene (5j) moieties.  

We then explored the functionalization of other bicycloalkanes (Figure 5.15 B). 

The tropane derivative containing a bridged-alkene functionality (7a) afforded 50% yield 

of the desired arylated product. Furthermore, the functionalized alkoxy-tropane was 

arylated in good yield (7b). C–H functionalization of other bicycles demonstrated that 

the tropane homologue ketal-protected azabicyclo[3.3.1]nonanone provided a 54% yield 

of arylated product 7c. Finally, the ring-contracted 7-aza-norbornane substrate afforded 

42% yield of 7d. 
The generality of the new reaction conditions was tested with a selection of 

previously reported amine substrates (Figure 5.15 C).17 Addition of ligand significantly 

increased the yield of several arylated azabicycloalkanes products (9a-9d). In other 

alicyclic amines the yield was only slightly improved as in the case of piperidine (9e) 

and 3-azabicyclo[3.1.0]hexane (9f). Notably, none of the tested amines resulted in lower 

yields in the presence of ligand additives. Finally, we were pleased to see that bioactive 

molecules were compatible with the ligand conditions. For example, Pfizer’s anti-

smoking drug varenicline improved the yield by almost 2-fold (85% yield versus 45% 

yield 9g) and the drug candidate amitifadine also improved the isolated yield of the 
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arylated analog 9h. Overall, this method provides an improved method for the C–H 

arylation of several bioactive azabicycloalkane scaffolds.  

Figure 5.15. A) Scope in aryl iodide for tropane 4.a B) Scope in azabicycloalkanes.b C) 
Ligand addition on previously reported alicyclic amines.c

 a Conditions for part A: 4 (0.1 mmol, 1 equiv), Pd(OAc)2 (0.01 mmol, 10 mol %), CsOPiv (0.3 mmol, 3 
equiv), picolinic acid (0.005 mmol, 5 mol%), neat Ar–I, 140 ºC, 18 h. Isolated yields. See details in 
experimental section. b Conditions for part B: 6 (0.1 mmol, 1 equiv), Pd(OAc)2 (0.01 mmol, 10 mol %), 
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CsOPiv (0.3 mmol, 3 equiv), picolinic acid (0.005 mmol, 5 mol%), neat 4-iodoanisole, 140 ºC, 18 h. 
Isolated yields. See details in experimental section.c Reaction conditions for part C were analogous to 
reported conditions (Ref X) except that ligand (5 mol %) was added. Isolated yields. d  20 mol % Pd(OAc)2. 
e Previously reported yield in Ref. 17. f 20 mol % quinaldic acid. 
 

Independent optimization of the azabicyclo[3.3.1]nonane substrate (10) showed 

that quinaldic acid was a suitable ligand for the C–H arylation reaction (Figure 5.16). 

Subjecting 10 to the reaction conditions furnished three different C–H functionalized 

products (combined 70% yield, 11a-11c). The first product underwent a transannular C–

H di-arylation reaction providing 11a in 15% yield. The structure of 11a was confirmed 

via X-ray crystallography. The second product underwent two distinct C–H 

functionalization reactions (arylation and dehydrogenation) affording 11b in 24% yield. 

Finally, the third C–H functionalized product was isolated in 31% yield (11c). The 

structure of 11c was confirmed via a combination of NMR spectroscopy and X-ray 

crystallography. The bicyclic amine underwent three C–H functionalization reactions to 

yield 11c (C–H arylation, dehydrogenation, and C–H oxygenation). Furthermore, we 

hypothesized that 11b is an intermediate to 11c via a Pd-catalyzed allylic C–H 

oxygenation reaction.37 To test this hypothesis, we re-subjected 11b under the C–H 

arylation conditions. Indeed, 1H NMR analysis indicated that 11c formed in 30% yield. 

The synthesis of these highly functionalized products (11a-11c) by traditional synthetic 

routes would require parallel multistep sequences. This preliminary result with substrate 

10 demonstrates the potential of our Pd C–H activation protocol to incorporate diverse 

functional groups in azabicycloalkanes. As such, we hope this methodology can be 

useful for the rapid screening of bioactive alkaloids in the context of medicinal 

chemistry. Ongoing work in our lab is focused on exploring these opportunities.  
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Figure 5.16. C–H functionalization of azabicyclo-nonane 10.

 
Conditions: 10 (0.1 mmol, 1 equiv), Pd(OAc)2 (0.01 mmol, 10 mol %), CsOPiv (0.3 mmol, 3 equiv), 
quinaldic acid (0.02 mmol, 20 mol %), neat 4-iodoanisole, 150 ºC, 18 h. Isolated yields. 
 

5.3 Conclusions 

In summary, this chapter has focused on the development of a transannular Pd-

catalyzed C–H functionalization of azabicycloalkanes. The addition of ligands (2-

picolinic acid or 2-quinaldic acid) was found to dramatically improve reactivity.  

Mechanistic studies with the benzo-isotropane substrate 1 demonstrated that catalyst 

deactivation leads to low yields of arylated product. Furthermore, these studies led to 

the discovery of the unusual role of the ligand, which seems to regenerate active 

catalyst from insoluble Pd species during the reaction.  

Finally, the ligand additives promoted the challenging distal C–H functionalization 

of several bioactive cores such as 8-azabicyclo[3.2.1]octane (tropane core) and related 

azabicyclic bridged-analogs. Interestingly, the 9-azabicyclo[3.3.1]nonane core  

underwent an unusual one-pot multi-C–H functionalization reaction furnishing highly 

functionalized products.  

5.4 Perspective and Outlook 

The transannular C–H functionalization of alicyclic amines has enabled the 

synthesis of value-added amines. This transformation has permitted the rapid 

diversification of pharmaceutical agents such as varenicline, amitifidine and cytisine 
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(chapter 4). Furthermore, the use of ligands has allowed for the increase in reaction 

yields and the expansion of the substrate scope to diverse alkaloids such as tropane, 

azabicyclo-nonane and azabicyclo-norbornane. However, there are several remaining 

opportunities in this area: 

1) The development of new directing groups that can promote the transformation, 

but are easily removed and recycled (see Chapter 4).  

2) The exploration of reaction conditions, oxidants, and ligands to promote other 

C–H functionalization reactions. Initial efforts with substrate 10 have demonstrated that 

C–H oxygenation and dehydrogenation reactions are feasible and may provide 

important synthetic methodologies. 

3) Stoichiometric studies with these alicyclic amines could provide invaluable 

insights into the C–H activation mechanism. Although C–H activation could occur at 

Pd(II) through a cyclometallation-deprotonation mechanism,38 there is a possibility that 

C–H activation might be occurring at Pd(IV). Additionally, isolation of the boat-conformer 

C–H activated palladacycle would validate the proposed mechanism and increase the 

understanding of its reactivity. This would be a significant step forward, as studies in Pd-

alkyl amine complexes are limited. As such, our work presents an excellent opportunity 

to understand and further explore Pd-catalyzed sp3-amine directed C–H activation 

transformations.  

Finally, we hope that the improvement of the transannular C–H functionalization 

strategy will enable the synthesis of highly valuable products for development of new 

pharmaceutical and agrochemical agents.  

5.5 Experimental 

Materials and Methods 

All reagents were obtained from a commercial vendor (Aldrich, CombiBlocks, Oakwood, 

AstaTech, Synthonix, Enamine, Manchester Organics, Carbosynth, Pressure Chemicals, 

Matrix, SantaCruz Biotech, PharmaBlock, Ark Pharm, or Ontario Chemicals) and were 

used without further purification unless otherwise stated. Reagents were stored under 

ambient conditions unless otherwise stated. The solvent tert-amyl alcohol was stored 

over activated molecular sieves.  
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The manipulation of solid reagents was conducted on the bench top unless otherwise 

stated. Reactions were conducted under an ambient atmosphere unless otherwise 

stated. Reaction vessels were sealed with either a septum (flask) or a Teflon-lined 

screw cap (4-mL or 20-mL vial). Reactions conducted at elevated temperatures were 

heated on a hot plate using an aluminum block. Temperatures were regulated using an 

external thermocouple. For reactions that were heated in excess of the ambient boiling 

point of the solvent (i.e. tert-amyl alcohol heated to 140 ºC), the cap of the sealed vial 

was re-tightened after 5 minutes of heating. For TLC analysis, Rf values are reported 

based on normal phase silica plates with fluorescent indicator, and sample detection 

was conducted based on quenched fluorescence at 254 nm or KMNO4 stain. 

 

Instrumental Information 

NMR spectra were obtained on Varian 400 MHz, Varian 500 MHz, or Varian 700 MHz 

NMR spectrometers. 1H, 2H and 13C NMR chemical shifts are reported in parts per 

million relative to TMS with the residual solvent peak (most commonly CDCl3) used as 

an internal reference (δ 7.26 for 1H, 2H NMR and δ 77.16 for 13C NMR for CDCl3). 19F 

NMR spectra were referenced to the solvent lock. 1H and 19F multiplicities are reported 

as follows: singlet (s), doublet (d), triplet (t), quartet (q), double of doublets (dd), double 

of triplet (dt), and multiplet (m). High-resolution mass spectra were obtained at the 

University of Michigan core facility. Flash chromatography was conducted on a Biotage 

Isolera One auto chromatography system using preloaded high performance silica gel 

columns (10 g, 25 g, 50 g, or 100 g as appropriate). GC-FID was conducted on a 

Shimadzu 17A using a Restek Rtx®-5 (Crossbond 5% diphenyl/95% dimethyl 

polysiloxane; 15 m, 0.25 mm ID, 0.25 µm df) column. All stock solutions were made 

using volumetric glassware. Melting points were obtained on a OptiMelt automated 

melting point system.  

 

  



 
	

235 

Synthesis of Starting Materials:  

 

 
Compound 12. 12 was synthesized using 2,3,5,6-tetrafluoro-4-(trifluoromethyl)aniline 

and 2-bromoisobutyryl bromide following a literature procedure.17 

 

 
General Procedure A: Synthesis of starting materials. A 20 mL scintillation vial was 

charged with the corresponding hydrochloride salt of the saturated nitrogen heterocycle 

(2.5 mmol, 1 equiv), α-bromo methylpropanamide 12 (955 mg, 2.50 mmol, 1 equiv), 

K2CO3 (1.1 g, 8.25 mmol, 3.3 equiv) and NaI (188 mg, 1.25 mmol, 0.5 equiv). To the 

solids, anhydrous acetonitrile (12 mL, 0.2 M) was added. The vial was equipped with a 

stirbar, sealed with a Teflon-lined screw cap and heated to 60 ºC.  After 18 h, the 

reaction was cooled to room temperature, diluted with EtOAc (~5 mL), and filtered 

through a pad of silica gel using 100% EtOAc (~50 mL). The filtrate was concentrated 

under reduced pressure. Final purification via column chromatography (gradient elution 

from 0% to 20% EtOAc in hexanes) afforded product. See each substrate for specific 

details. 

 

 
Synthesis of 6-hydroxytropinone (13). 13 was prepared by a modified literature 

procedure.39 In a 100-mL round-bottom flask 2,5-dimethoxy-2,5-dihydrofuran (mixture of 

cis and trans) (2.6 g, 2.5 mL, 20 mmol, 1 equiv) was added to a 3 M aqueous HCl 

solution (36 mL). The mixture was stirred overnight (~12 h). The solution was 
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neutralized (pH 7-8) with 6 M aqueous NaOH (~18 mL) and stirred for 45 minutes. 

During this time, the pH dropped to 5; as such, dropwise addition of 6 M aq. NaOH 

brought the pH back to 7. This solution was added to a 500-mL round-bottom flask 

containing a solution of NaOAc•3H2O (13.6 g, 100 mmol, 5 equiv), methylamine 

hydrochloride (1.75 g, 26 mmol, 1.3 equiv) and 1,3 acetonedicarboxylic acid (3.8 g, 26 

mmol, 1.3 equiv) in H2O (150 mL). The reaction mixture was stirred at room temperature 

for 5 days. Solid K2CO3 (15 g) and NaCl (15 g) were added to the brown solution and 

stirred for 30 minutes. The solution was extracted with CHCl3 (15 × 75 mL) and 

EtOAc:Acetone (9:1; 4 × 75 mL). The combined organics were dried over Na2SO4, 

decanted, and volatiles removed via rotary evaporation. The crude product was purified 

via column chromatography (silica gel; 0% to 10% MeOH in DCM) using a Biotage 

column (50-g column) affording a 36% yield of 13 as a brown solid. NMR 

characterization of product matches the literature report.39 

 

 
Synthesis of 14. 14 was prepared following a modified literature procedure.40 In a 50-

mL round bottom flask, 13 (0.6 g, 3.87 mmol, 1 equiv) was dissolved in absolute ethanol 

(8 mL, 0.5 M), followed by addition of hydrazine monohydrate (1.9 mL, 38.7 mmol, 10 

equiv). The reaction mixture was refluxed to 120 ºC for 2 hours. The reflux condenser 

was replaced with a short-path distillation apparatus and the temperature increased to 

130 ºC allowing the solvent to gradually distill over 1 hour. After the solvent was distilled, 

KOH powder (2g, 34.8 mmol, 9 equiv) was added to the oily residue in one portion. The 

reflux condenser (no water flowing) was fitted to the flask and the mixture was heated to 

130 ºC for 1 hour, then at 160 ºC for 2 hours and finally to 190 ºC for 1.5 hours 

(Caution: Fumes evolve).  After cooling to room temperature, the residue was dissolved 

in water (20 mL) and extracted with Et2O (5 × 30 mL), DCM (5 × 30 mL) and 

EtOAc:Acetone (9:1; 1 × 30 mL). The combined organic extracts were dried over 

Na2SO4, decanted and volatiles removed via rotary evaporation. The product was 

N

O OH

N

OH

i) NH2NH2•H2O
   EtOH, 120 ºC
ii) KOH powder
   130 ºC for 1h
   160 ºC for 2h
   190 ºC for 1.5h

(14)(13)
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obtained in 56% yield as a brown semi-solid, and it was utilized without further 

purification. NMR characterization matches the literature report.40 

 

 
Synthesis of 15. A 50-mL round bottom flask was charged with 14 (298 mg, 2.11 mmol, 

1 equiv), Et3N (0.4 mL, 2.87 mmol, 1.3 equiv), 4-dimethylaminopyridine (27 mg, 0.21 

mmol, 0.1 equiv), p-toluenesulfonyl chloride (0.55 g, 2.87 mmol, 1.3 equiv) and DCM 

(9.6 mL, 0.23 M). The mixture was stirred at room temperature for 24 hours. The 

reaction mixture was diluted with water (10 mL) and the product was extracted with 

DCM (5 × 10 mL). The combined organic extracts were dried over Na2SO4, decanted 

and volatiles removed via rotary evaporation. The crude product was purified via column 

chromatography (silica gel, hexanes:EtOAc:Et3N 3:2:0.5) affording 61% yield of 15 as a 

yellow oil.  

Rf: 0.2 (Hex:EtOAc:Et3N ratio of 3:2:0.5) 
1H NMR (500 MHz, Chloroform-d) δ 7.79 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 

4.96 (app. dd, J = 7.8, 3.0 Hz, 1H), 3.29 (m, 1H), 3.16 (m, 1H), 2.45 (s, 3H), 2.41 (s, 3H), 

2.21 (m, 1H), 1.98 (m, 1H), 1.77–1.68 (multiple peaks, 2H), 1.50 (m, 1H), 1.37 (m, 1H), 

1.26–1.11 (multiple peaks, 2H). 
13C NMR (176 MHz, Chloroform-d) δ 144.80, 134.38, 129.99, 127.89, 86.45, 67.23, 

61.99, 40.32, 36.11, 28.64, 27.30, 21.82, 16.96. 

HRMS (ESI+) [M+H]+ Calcd for C15H22NO3S: 296.1315; Found: 296.1316. 

 

 
Synthesis of 16. A Schlenk flask was charged with compound 15 (0.379 g, 1.28 mmol, 

1 equiv) and anhydrous 1,2-dichloroethane (4.7 mL, 0.4 M) under a N2 atmosphere. To 
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this mixture, 1-chloroethyl chloroformate (0.28 mL, 2.57 mmol, 2 equiv) was added 

dropwise via syringe. The mixture was heated to reflux for 5 hours. After cooling to room 

temperature, the reaction was concentrated via rotary evaporation and placed under 

high vacuum for 1 hour. The remaining brown oil was dissolved in methanol (5 mL) and 

heated to 60 ºC for 3 hours under a N2 atmosphere. After, the reaction mixture was 

transferred to a 20-mL scintillation vial and solvent was removed via rotary evaporation. 

The crude hydrochloride salt of the amine intermediate int-1-16 was dried under high 

vacuum for 2 hours. After, int-1-16 was mixed with α-bromo 2-methylpropanamide 12 

(0.489 g, 1.28 mmol, 1 equiv), K2CO3 (0.584 g, 4.22 mmol, 3.3 equiv) and NaI (96 mg, 

0.64 mmol, 0.5 equiv) in MeCN (6.4 mL, 0.2 M) and heated to 60 ºC. After 18 h, the 

reaction was cooled to room temperature, diluted with EtOAc (~5 mL), and filtered 

through a pad of silica gel using 100% EtOAc (~50 mL). The filtrate was concentrated 

under reduced pressure. Final purification via column chromatography (gradient elution 

from 0% to 10% EtOAc in hexanes) afforded product 16 in 60% yield as a white solid. 

MP: 95-97 ºC 

Rf: 0.1 (10% EtOAc in Hexanes) 
1H NMR (700 MHz, Chloroform-d) δ 9.56 (s, 1H), 7.78 (d, J = 7.8 Hz, 2H), 7.36 (d, J = 

7.8 Hz, 2H), 5.03 (app. t, J = 5.6 Hz, 1H), 3.75 (m, 1H), 3.51 (m, 1H), 2.46 (s, 3H), 2.04 

(m, 2H), 1.77–1.61 (multiple peaks, 4H), 1.44 (m, 1H), 1.47–1.35 (multiple peaks, 8H). 
13C NMR (176 MHz, Chloroform-d) δ 176.05, 145.23, 133.98, 130.12, 127.79, 85.81, 

63.60, 61.35, 58.26, 38.33, 31.73, 31.49, 26.73, 21.81, 21.61, 17.53. 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
19F NMR (377 MHz, Chloroform-d) δ –56.03 (t, J = 21.7 Hz, 3F), –140.36 (m, 2F), –

143.57 (m, 2F). 

HRMS (ESI+) [M+H]+ Calcd for C25H26F7N2O4S: 583.1496 ; Found: 583.1503 .  
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Synthesis of 6a. Inside a N2 glove box a 20-mL vial was charged with 16 (0.414 g, 0.71 

mmol, 1 equiv), tBuOK (0.16 g, 1.4 mmol, 2 equiv) and THF (7 mL, 0.1 M). The reaction 

mixture was stirred at room temperature for 24 hours (Caution: excess tBuOK leads to 

SnAr in the perfluorinated ring). The reaction was mixed with water (1 mL) and stirred for 

10 minutes. The solution was filtered through a silica gel plug with 100% EtOAc (~10 

mL). The volatiles were removed via rotary evaporation and the crude product was 

purified by column chromatography (silica gel, 0% to 10% EtOAc in Hexanes) affording 

45% yield of 6a as a white solid (90% yield based on recovered starting material). 

MP: 111-113 ºC 

Rf: 0.3 (10% EtOAc in Hexanes) 
1H NMR (700 MHz, Chloroform-d) δ 5.94 (s, 2H), 3.73 (s, 2H), 1.76–1.69 (multiple 

peaks, 2H), 1.61 (m, 1H), 1.53–1.43 (multiple peaks, 3H), 1.24 (s, 6H). 
13C NMR (176 MHz, Chloroform-d) δ 175.84, 130.23, 64.13, 61.57, 27.35, 24.03, 16.98. 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
19F NMR (377 MHz, Chloroform-d) δ –56.04 (t, J = 21.7 Hz, 3F), –141.3 (m, 2F), –

143.49 (m, 2F). 

HRMS (ESI+) [M+H]+ Calcd for C18H18F7N2O: 411.1302; Found: 411.1304. 
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Synthesis of 6b. Steps i and ii: Inside of a N2 glovebox, a dry 50-mL round-bottom 

flask was charged with 14 (0.6 g, 4.25 mmol, 1 equiv) and THF (15 mL, 0.2 M). The 

mixture was cooled inside a freezer (–35 ºC) for 10 minutes, and then NaH (0.11g, 4.5 

mmol, 1.05 equiv) was added to the mixture. The suspension was brought out of the 

glovebox and placed under a N2 atmosphere in the fume hood.  After 30 minutes, 

methyl iodide (0.28 mL, 4.5 mmol, 1.05 equiv) was added via syringe at room 

temperature. The mixture was stirred vigorously overnight. The white suspension was 

filtered through a pad of celite and washed with DCM. The volatiles were removed by 

rotary evaporation. Steps iii and iv: The concentrated crude mixture was transferred to 

a Schlenk flask using anhydrous DCE (10 mL, 0.4 M). To this solution K2CO3 (587 mg, 

4.25 mmol, 1 equiv) was added, followed by dropwise addition of 1-chloro 

ethylchloroformate (1.38 mL, 12.75 mmol, 3 equiv). The reaction mixture was refluxed 

for 5 hours under N2 atmosphere. After cooling to room temperature, the solution was 

concentrated via rotary evaporation and placed under high vacuum for 1 hour. The 

residue was dissolved in methanol (10 mL) and heated to 60 ºC overnight under a N2 

atmosphere. After, the reaction mixture was transferred to a 20-mL scintillation vial and 

the solvent was removed via rotary evaporation to afford crude int-1-6b. Step v: The 

crude int-1-6b was mixed with α-bromo 2-methylpropanamide 12 (1.6 g, 4.25 mmol, 1 

equiv), K2CO3 (1.9 g, 14 mmol, 3.3 equiv) and NaI (0.32 g, 2.12 mmol, 0.5 equiv) in 

MeCN (18 mL) and heated to 60 ºC for 18 hours. The reaction was cooled to room 

temperature, diluted with EtOAc (~5 mL), and filtered through a pad of silica gel using 

100% EtOAc (~80 mL). The filtrate was concentrated under reduced pressure. 

Purification via column chromatography (gradient elution from 0% to 10% THF in 

hexanes). Collection of fractions containing product showed minor impurities by NMR 

and the product was further purified by a subsequent column chromatography (0% to 

80% THF in DCM) to afford product 6b in 5% overall yield as a white solid. 
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MP: 67-69 ºC 

Rf: 0.3 (10% THF in hexanes) 
1H NMR (700 MHz, Chloroform-d) δ 9.96 (s, 1H), 3.86 (m, 1H), 3.59 (m, 1H), 3.55 (m, 

1H), 3.27 (s, 3H), 2.02–1.86 (multiple peaks, 2H), 1.76–1.38 (multiple peaks, 12H). 
13C NMR (176 MHz, Chloroform-d) δ 176.98, 85.87, 63.17, 59.62, 57.44, 56.28, 37.47, 

31.54, 30.89, 26.87, 22.31, 17.57. 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
19F NMR (377 MHz, Chloroform-d) δ –56.02 (t, J = 21.7 Hz, 3F), –141.46 (m, 2F), –

143.58 (m, 2F). 

HRMS (ESI+) [M+H]+ Calcd for C19H22F7N2O2: 443.1564; Found: 443.1564. 
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 (int-1-d5-1) 
A 20-mL scintillation vial was charged with solid 3-oxo-2,3-dihydro-1H-indene-1-

carboxylic acid (500 mg, 2.83 mmol) and D2O (10 mL). To this solution, dropwise NaOD 

(30% in D2O) was added at 0 ºC to a pH 12-13. The reaction was warmed to room 

temperature and allowed to stir for 3 hours. The reaction was quenched with dropwise 

addition of D2SO4 at 0 ºC to a pH 2-3. The reaction mixture was extracted with DCM (3 

x 75 mL), dried over Na2SO4, decanted, and the volatiles were removed by rotary 

evaporation, affording compound int-1-d5-1 in >99% yield as an off-white solid that was 

used without further purification (96% deuterium incorporation by 1H NMR). 
1H NMR (700 MHz, Chloroform-d) δ 7.79 (d, J = 7.7, 1H), 7.76 (d, J = 7.7, 1H), 7.66 (t, J 

= 7.7, 1H), 7.48 (t, J = 7.7, 1H). 
2H NMR (700 MHz, Chloroform-d) δ 4.34 (br s, 1D), 3.13 (br s, 1D), 2.90 (br s, 1D).  
13C NMR (176 MHz, Chloroform-d) δ 204.1, 177.5, 150.5, 136.5, 135.3, 129.2, 126.8, 

124.2, 43.1, 38.7. 

Note: JC-D were not assigned, the incorporation of deuterium was confirmed by 2H NMR 

and HRMS.  

HRMS (ESI+) [M-D]- Calcd for  C10H3D4O3: 178.0589; found:178.0588. 

 

 (int-2-d5-1) 
A 20-mL scintillation vial was charged with solid int-1-d5-1 (485 mg, 2.69 mmol) and 

DCM (27 mL). To this solution, thionyl chloride (0.39 mL, 5.38 mmol) was added 

dropwise at 0 ºC followed by d4-MeOD (1.09 mL, 26.9 mmol) and warmed to room 

temperature. The reaction was allowed to stir for 3 hours at room temperature. After, the 

volatiles were removed, leading to quantitative conversion to compound int-2-d5-1 as a 
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yellow oil. The intermediate was used without further purification (94% deuterium 

incorporation by 1H NMR). 
1H NMR (700 MHz, Chloroform-d) δ 7.78 (d, J = 7.7, 1H), 7.70 (d, J = 7.7, 1H), 7.64 (t, J 

= 7.7, 1H), 7.46 (t, J = 7.7, 1H). 
2H NMR (700 MHz, Chloroform-d) δ 4.30 (br s, 1D), 3.77 (br s, 3D), 3.13 (br s, 1D), 2.87 

(br s, 1D).  
13C NMR (176 MHz, Chloroform-d) δ 204.3, 172.4, 151.2, 136.6, 135.1, 129.0, 126.6, 

124.1, 52.1, 43.3, 39.0.  

Note: JC-D were not assigned, the incorporation of deuterium was confirmed by 2H NMR 

and HRMS.  

HRMS (ESI+) [M+H]+ Calcd for  C11H4D6O3: 197.1079; found:197.1076. 

 

Compounds int-3-d5-1 to int-6-d5-1: Intermediates int-3-d5-1 to int-6-d5-1 were 

prepared following a reported literature procedure.41 Note: For the synthesis of int-4-d5-
1 (hydrogenation step), D2 gas (3.6 bar) was employed instead of H2.  

 

 (d5-1) 

Compound d5-1 was isolated in 54% yield (over seven steps) as a white solid using 

general procedure A (90% deuterium incorporation by 1H NMR) and purified by 

column chromatography (silica gel; 0% EtOAc to 20% EtOAc in hexanes). Collection of 

fractions containing product showed minor impurities by NMR and the product was 

further purified by subsequent column chromatography (0% to 5% THF in hexanes).  

MP: 118.9-120.0 ºC 

Rf: 0.24 (5% THF in hexanes) 
1H NMR (700 MHz, Chloroform-d) δ 7.49 (br s, 1H), 7.16 (multiple peaks, 2H), 7.07 

(multiple peaks, 2H), 3.21 (m, 1H), 2.79 (m, 1H), 2.69 (m, 1H), 1.21 (s, 6H),  
2H NMR (700 MHz, Chloroform-d) δ 3.21 (br s, 1D), 2.79 (br s, 1D), 2.69 (br s, 1D), 2.30 

(br s, 1D), 1.73 (br s, 1D).  
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13C NMR chemical shifts were not assigned due to complex JC-D and JC-F splitting.  
19F NMR (377 MHz, Chloroform-d) δ –56.07 (t, J = 21.9 Hz, 3F), –141.57 (m, 2F), –

142.99 (m, 2F). 

HRMS (ESI+) [M+H]+ Calcd for C22H14D5F7N2O: 466.1772; found: 466.1758. 

 

(1) 

Compound 1 was isolated in 85% yield as a white solid following general procedure A. 

Product characterization matches with previous literature report.17  

 

(4) 

Compound 4 was isolated in 69% yield as a white solid following general procedure A. 

MP: 81-83 ºC 

Rf: 0.23 (10% EtOAc in hexanes) 
1H NMR (401 MHz, Chloroform-d) δ 9.86 (s, 1H), 3.45 (m, 2H), 1.89–1.51 (multiple 

peaks, 10H), 1.33 (s, 6H). 
13C NMR (176 MHz, Chloroform-d) δ 176.40, 63.97, 57.20, 34.87, 29.81, 23.75, 17.27. 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
19F NMR (377 MHz, Chloroform-d) δ –56.03 (t, J = 21.7 Hz, 3F), –141.36 (m, 2F), –

143.57 (m, 2F). 

HRMS (ESI+) [M+H]+ Calcd for C18H20F7N2O: 413.1458; Found: 413.1461. 
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Step 1: A round-bottom flask was charged with 9-azabicyclo[3.3.1]nonan-3-one 

hydrochloride (500 mg, 2.84 mmol, 1 equiv), toluene sulfonic acid (594 mg, 3.12 mmol, 

1.1 equiv), ethylene glycol (1.7 mL, 28.4 mmol, 10 equiv) and benzene (14 mL, 0.2 M). 

The flask was equipped with a Dean-Stark trap and heated to 110 ºC overnight. The 

reaction was allowed to cool to room temperature, followed by addition of Na2CO3 (1.18 

g) and brine (26 mL). The aqueous layer was extracted with chloroform (3 x 75 mL). 

The organic layer was dried over Na2SO4, decanted and concentrated via rotary 

evaporation. Intermediate int-1-6c was carried forward without analysis or purification. 

Step 2: Int-1-6c was used as starting amine reagent following general procedure A to 

isolate compound 6c in 15% yield as a white solid over the two steps. 

MP: 93.3-94.9 ºC 

Rf: 0.13 (5% EtOAc in hexanes) 
1H NMR (700 MHz, Chloroform-d) δ 10.87 (s, 1H), 3.89 (m, 4H), 3.46 (d, J = 10.5 Hz, 

2H), 2.34 (t, J = 12.6 Hz, 2H), 2.07 (m, 1H), 1.85–1.77 (multiple peaks, 4H), 1.66 (app. d, 

J = 14.7 Hz, 2H), 1.49 (s, 6H), 1.30 (d, J = 13.3 Hz).  
13C NMR (176 MHz, Chloroform-d) δ 178.1, 108.9, 64.7, 64.0, 45.8, 38.4, 29.5, 26.7, 

14.3.  

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
19F NMR (377 MHz, Chloroform-d) δ –56.03 (t, J = 21.8 Hz, 3F), –141.69 (m, 2F), –

143.87 (m, 2F). 

HRMS (ESI+) [M+H]+ Calcd for C21H24F7N2O3: 485.1670; Found: 485.1671.  
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(6d) 

Compound 6d was isolated in 50% yield as a pale yellow solid following general 

procedure A. 

MP: 75-77 ºC 

Rf:  0.29 (10% EtOAc in Hexanes). 
1H NMR (700 MHz, Chloroform-d) δ 10.21 (s, 1H), 3.61 (m, 2H), 1.74 (m, 4H), 1.45 - 

1.39 (multiple peaks, 10H). 
13C NMR (176 MHz, Chloroform-d) δ 176.58, 61.23, 56.78, 30.94, 24.43. 
19F NMR (376 MHz, Chloroform-d) δ –56.01 (t, J = 21.7 Hz, 3F), –141.35 (m, 2F), –

144.17 (m, 2F) 

HRMS (ESI+) [M+H]+ Calcd for C17H18F7N2O: 399.1302; Found: 399.1304.  

(10) 

Compound 10 was isolated in 75% yield as a white solid following general procedure 

A. 

MP: 118-120 ºC 

Rf: 0.42 (10% EtOAc in hexanes) 
1H NMR (700 MHz, Chloroform-d) δ 9.73 (s, 1H), 3.15 (m, 2H), 2.14 (m, 2H), 1.96 (m, 

4H), 1.71 (m, 2H), 1.64 (m, 4H), 1.47 (s, 6H). 
13C NMR (176 MHz, Chloroform-d) δ 177.26, 65.21, 48.13, 30.09, 25.62, 20.54. 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
19F NMR (377 MHz, Chloroform-d) δ –56.25 (t, J = 21.7 Hz, 3F), –141.76 (m, 2F), –

143.73 (m, 2F). 

HRMS (ESI+) [M+H]+ Calcd for C19H22F7N2O: 427.1615; Found: 427.1619. 
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 (8a) 

Compound 8a was isolated in 59% yield following a previous literature report.17  

 

(8b) 

Compound 8b was isolated in 33% yield following a previous literature report.17  

 

(8c) 

Note: Reaction was heated to 75 ºC for 6 hours. Compound 8c was isolated in 31% 

yield as a white solid following general procedure A. Product characterization matches 

with previous literature report.17  

 

(8d) 

Compound 8d was isolated in 93% yield following a previous literature report.17  

 

(8e) 

Compound 8e was isolated in 84% yield following a previous literature report.17  

 

(8f) 

Compound 8f was isolated in 81% yield following a previous literature report.17  
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(8g) 

Compound 8g was isolated in 81% yield following a previous literature report.17  

 

(8h) 

Compound 8h was isolated in 87% yield following a previous literature report.17  

 

Optimization of 2,3,4,5-tetrahydro-1H-1,5-methanobenzo[d]azepine 1: 

 

Ligand Evaluation with azabicycloalkane 1: 

General Procedure B: Ligand evaluation reaction conditions. Under ambient 

conditions, a 0.02 M stock solution of Pd(OAc)2 (23 mg Pd(OAc)2, 0.10 mmol) dissolved 

in dichloromethane (5 mL) was prepared. An aliquot of this solution was transferred to a 

vial (4 mL capacity, 150 µL, 0.003 mmol Pd, 10 mol %). DCM was removed by gently 

heating the open vial to 45 ºC for 5 minutes. To the concentrated Pd(OAc)2, the 

appropriate ligand (0.0015 mmol, 5 mol%) was added (ligand was weighed on a 

Sartorius ME36S microgram analytical balance). Solid substrate 1 (13.8 mg, 0.03 mmol, 

1 equiv) and CsOPiv (21.1 mg, 0.09 mmol, 3 equiv) were added. To this mixture, PhI 

(0.1 mL, 0.9 mmol, 30 equiv) was added via plastic syringe. The vial was equipped with 

a stirbar, sealed with a Telfon-lined cap and heated to an external temperature of 150 

ºC in a preheated aluminum block. After 18 hours, the reaction was cooled to room 

temperature and diluted with DCM (2.5 mL). Hydrazine monohydrate (50 µL) was added 

and the solution was vigorously stirred for 15 minutes. A 0.2 M stock solution of 1,3,5-

trimethoxybenzene (168 mg, 1 mmol) dissolved in DCM (5 mL) was prepared. An 
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aliquot of this solution (150 µL, 0.03 mmol) was added to the reaction as the GC internal 

standard. The reaction solution was then filtered through a pipette packed with Celite 

and was analyzed by GC-FID. Yield of 2a was determined based on a 10-point 

calibration curve.  

Variations of this procedure were used in all optimization reactions (Table 5.1, 5.4) 

where the yield was determined by GC-FID. For instance, the effect of ligand loading (5 

to 20 mol%) was determined by following the same procedure outlined above except 

that the amount of ligand was varied. 

 

Table 5.4. Ligand evaluation for substrate 1. 

 
Conditions following general procedure B. 
 

Reaction optimization for C–H arylation of 1 

General Procedure C: Reaction optimization of Table 5.2. Under ambient conditions, 

a 0.02 M stock solution of Pd(OAc)2 (23 mg Pd(OAc)2 dissolved in DCM (5 mL) was 

prepared. An aliquot of this solution was transferred to a vial (4 mL capacity, 150 µL, 

0.003 mmol Pd, 10 mol %). To the Pd(OAc)2 solution, a quinaldic acid aliquot (75 µL, 

0.0015 mmol, 5 mol %) from a 0.02 M stock solution (17.3 mg of quinaldic acid in 5 mL 

of DCM) was added. DCM was removed by gently heating the open vial to 45 ºC for 5 

minutes. To the concentrated reaction mixture, solid substrate 1 (13.8 mg, 0.03 mmol, 1 

equiv), CsOPiv (21.1 mg, 0.09 mmol, 3 equiv) and PhI (1 – 30 equiv) were added. The 

reaction mixture was then diluted with tAmylOH (0.25 mL, if indicated in Table 5.2). The 
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Ph10 mol% Pd(OAc)2
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3 equiv CsOPiv

30 equiv PhI
150 °C, 18h
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O OH(L1)
44% y

64% conv.

(L2)
47% y

68% conv.

(SL10)
43% y

66% conv.

(L4)
40% y

64% conv.

(L5)
46% y

72% conv.

(L3)
43% y

64% conv.

(SL11)
6% y

20% conv.

(SL12)
36% y

64% conv.

(SL13)
43% y

68% conv.

(SL14)
51% y

76% conv.

(SL15)
42% y

65% conv.

(L6)
48% y

77% conv.

(L7)
68% y

96% conv.

(L8)
5 mol% : 80% y; > 99% conv.
10 mol%: 78% y; > 99% conv.
15 mol%: 80% y; > 99% conv.
20 mol%: 24% y; 26% conv.

(L9)
5 mol%: 77% y; > 99% conv.

10 mol%: 77% y; > 99% conv.
15 mol% 79% y; > 99% conv.
20 mol%:85% y; > 99% conv.

(1) (2a)
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vial was equipped with a stirbar, sealed with a Telfon-lined cap and heated to the 

indicated temperature in Table 5.2 in a preheated aluminum block. After 18 hours, the 

reaction was cool to room temperature and diluted with DCM (2.5 mL). Hydrazine 

monohydrate (50 µL) was added and the solution was vigorously stirred for 15 minutes. 

A 0.2 M stock solution of 1,3,5-trimethoxybenzene (168 mg, 1 mmol) dissolved in DCM 

(5 mL) was prepared. An aliquot of this solution (150 µL, 0.03 mmol) was added to the 

reaction as the GC internal standard. The reaction solution was then filtered through a 

pipette packed with Celite and was analyzed by GC-FID. Yield of 2a was determined 

based on a 10-point calibration curve.  

 

Kinetic Analysis of azabicycloalkane 1: 

General Procedure D: Reaction conditions for kinetic studies. Under ambient 

conditions, if ligand was used, a 0.02 M stock solution of picolinic acid (12.3 mg picolinic 

acid dissolved in 5 mL of MeOH) or quinaldic acid (17.3 mg quinaldic acid dissolved in 5 

mL of DCM) was prepared. An aliquot of this solution was transferred to a vial (4 mL 

capacity, 75 µL, 0.0015 mmol ligand, 5 mol %). MeOH was removed by heating the 

open vial to 68 ºC for 10 minutes or DCM was removed by heating the open vial to 45 

ºC for 5 minutes. To the concentrated carboxylate ligand, a Pd(OAc)2 aliquot (150 µL, 

0.003 mmol Pd, 10 mol %) of a 0.02 M stock solution (23 mg Pd(OAc)2 in 5 mL of DCM) 

was added. DCM was removed by gently heating the open vial to 45 ºC for 5 minutes.  

To the vial containing the resulting solid, substrate 1 (13.8 mg, 0.03 mmol, 1 equiv) and 

CsOPiv (21.1 mg, 0.09mmol, 3 equiv) were added, followed by PhI (10 µL, 0.09 mmol, 3 

equiv) and tAmylOH (0.25 mL). The vial was equipped with a stirbar, tightly sealed with 

a Teflon-lined screw cap and heated to 100 ºC in a preheated aluminum block. At the 

desired reaction time (measured by a stopwatch), the reaction was flash-cooled in a 

liquid nitrogen bath until frozen solid (35 seconds). The reaction was then allowed to 

warm up to room temperature and diluted with DCM (2.5 mL). Hydrazine monohydrate 

(50 µL) was added and the solution was vigorously stirred for 15 minutes. A 0.2 M stock 

solution of 1,3,5-trimethoxybenzene (168 mg, 1 mmol) dissolved in DCM (5 mL) was 

prepared. An aliquot of this solution (150 µL, 0.03 mmol) was added to the reaction as 

the GC internal standard. The reaction solution was then filtered through a pipette 
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packed with Celite and was analyzed by GC-FID. Yields and concentrations of 1 and 2a 

were used to obtain reaction rate profiles and initial rates. 

 

Rate profile of 1 with 5 mol % quinaldic acid 

 

Figure 5.17. Rate profile of 1 and 2a in the presence of 5 mol % quinaldic acid. 

 

 
Conditions: 1 (0.12 M), Pd(OAc)2 (0.012 M), CsOPiv (0.36 M), PhI (0.36 M), quinaldic acid (0.006 M), 
0.25 mL tAmylOH, 100 ºC. 
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Rate profile of 1 with 5 mol % picolinic acid 

 

Figure 5.18. Rate profile of 1 and 2a in the presence of 5 mol % picolinic acid. 

 

 
Conditions: 1 (0.12 M), Pd(OAc)2 (0.012 M), CsOPiv (0.36 M), PhI (0.36 M), picolinic acid (0.006 M), 0.25 
mL tAmylOH, 100 ºC. 
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Rate profile of 1 without ligand additive 

 

Figure 5.19. Rate profile of 1 and 2a without ligand. 

 

 
Conditions: 1 (0.12 M), Pd(OAc)2 (0.012 M), CsOPiv (0.36 M), PhI (0.36 M), 0.25 mL tAmylOH, 100 ºC. 
 
Product addition at the reaction onset 

General Procedure D was used with the following modifications/details: To each vial, 1 

(10.4 mg, 0.0225 mmol, 0.75 equiv, 0.9 M) and 2a (4 mg, 0.0075 mmol, 0.25 equiv, 

0.03 M) were added. 
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Figure 5.20. Reaction profile with added product at the reaction onset. 

 

 
Conditions: 1 (0.09 M), 2a (0.03 M), Pd(OAc)2 (0.012 M), CsOPiv (0.36 M), PhI (0.36 M), 0.25 mL 
tAmylOH, 100 ºC. 
 

Addition of 2b to the reaction onset 

General Procedure D was used with the following modifications/details: To each vial, a 

varying amount of 2b was added (1.7 mg–12.8 mg, 0.003–0.0225 mmol, 0.1–0.75 equiv, 

0.012–0.09 M). The amount of 2b is indicated in each entry of Table 5.3. Reactions 

were stopped after 45 minutes and immediately flash-cooled in a liquid nitrogen bath 

until frozen solid (35 seconds). 
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Initial rate with 5 mol% quinaldic acid 

General Procedure D was used with quinaldic acid as the ligand. 

Figure 5.21. Plot of initial rate of [2a] versus time with quinaldic acid additive. 

 

 
Conditions: 1 (0.12 M), Pd(OAc)2 (0.012 M), CsOPiv (0.36 M), PhI (0.36 M), quinaldic acid (0.006 M), 
0.25 mL tAmylOH, 100 ºC. 
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Initial rate with 5 mol% picolinic acid 

General Procedure D was used with picolinic acid as the ligand. 

Figure 5.22. Plot of initial rate of [2a] versus time with picolinic acid additive. 

 

 
Conditions: 1 (0.12 M), Pd(OAc)2 (0.012 M), CsOPiv (0.36 M), PhI (0.36 M), picolinic acid (0.006 M), 0.25 
mL tAmylOH, 100 ºC. 
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Initial rate without ligand 

General Procedure D was used without ligand additives.  

Figure 5.23. Plot of initial rate of [2a] versus time. 

 

 
Conditions: 1 (0.12 M), Pd(OAc)2 (0.012 M), CsOPiv (0.36 M), PhI (0.36 M), 0.25 mL tAmylOH, 100 ºC. 
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Initial rate with addition of product 2b and 5 mol% quinaldic acid 

General Procedure D was used with quinaldic acid as the ligand. Additionally, 2b (8.5 

mg, 0.015 mmol, 0.5 equiv, 0.06 M) was added to each reaction. 

Figure 5.24. Initial rate plot of [2a] versus time with quinaldic acid in the presence of 
0.06 M 2b. 

 

 
Conditions: 1 (0.12 M), 2b (0.06 M), Pd(OAc)2 (0.012 M), CsOPiv (0.36 M), PhI (0.36 M), quinaldic acid 
(0.006 M), 0.25 mL tAmylOH, 100 ºC. 
 
  

3 equiv Ph–I
tAmylOH, 100 ˚C

time

N

Ph

(2a)

O

NHC7F7N
O

NHC7F7

(1)
0.12 M

10 mol % Pd(OAc)2
5 mol % quinaldic acid

3 equiv CsOPiv
N

(2b)
0.06 M

O

NHC7F7

OMe

+

y = 0.00129x - 0.00151 
R² = 0.98880 

0 

0.001 

0.002 

0.003 

0.004 

0.005 

0.006 

0.007 

0.008 

0.009 

0.01 

0 2 4 6 8 10 

[2
a]

 / 
M

 

Time / minutes 



 
	

259 

Initial rate with addition of product 2b and without ligand 

General procedure D was used without ligand additive. Additionally, 2b (8.5 mg, 0.015 

mmol, 0.5 equiv, 0.06 M) was added to each reaction.  

Figure 5.25. Initial rate plot of [2a] versus time in the presence of 0.06 M 2b. 

 

 
Conditions: 1 (0.12 M), 2b (0.06 M), Pd(OAc)2 (0.012 M), CsOPiv (0.36 M), PhI (0.36 M), 0.25 mL 
tAmylOH, 100 ºC. 
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Kinetic Isotope Effect in substrate 1 

KIE without ligand: Intermolecular KIE was performed following General Procedure D 

with addition of 1 (13.8 mg, 0.03 mmol, 1 equiv, 0.12 M) or d5-1 (14 mg, 0.03 mmol, 1 

equiv, 0.12 M). 

 
 

Figure 5.26. KIE of 1 versus d5-1 without ligand. 

 

 
Conditions: 1 (0.12 M) or d5-1 (0.12 M), Pd(OAc)2 (0.012 M), CsOPiv (0.36 M), PhI (0.36 M), 0.25 mL 
tAmylOH, 100 ºC. 
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KIE with 5 mol% quinaldic acid: Intermolecular KIE was performed following General 

Procedure D using quinaldic acid and with addition of 1 (13.8 mg, 0.03 mmol, 1 equiv, 

0.12 M) or d5-1 (14 mg, 0.03 mmol, 1 equiv, 0.12 M).  

 
Figure 5.27. KIE of 1 versus d5-1 with quinaldic acid. 

 
Conditions: 1 (0.12 M) or d5-1 (0.12 M), Pd(OAc)2 (0.012 M), CsOPiv (0.36 M), PhI (0.36 M), quinaldic 
acid (0.006 M), 0.25 mL tAmylOH, 100 ºC. 
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Catalyst recovery studies 

General Procedure E: Under ambient conditions, if ligand was used, a 0.02 M stock 

solution of picolinic acid (12.3 mg picolinic acid dissolved in 5 mL of MeOH) or quinaldic 

acid (17.3 mg quinaldic acid dissolved in 5 mL of DCM) was prepared. An aliquot of this 

solution was transferred to a vial (4 mL capacity, 75 µL, 0.0015 mmol ligand, 5 mol %). 

MeOH was removed by heating the open vial to 68 ºC for 10 minutes or DCM was 

removed by heating the open vial to 45 ºC for 5 minutes. To the concentrated 

carboxylate ligand, a Pd(OAc)2 aliquot (150 µL, 0.003 mmol Pd, 10 mol %) of a 0.02 M 

stock solution (23 mg Pd(OAc)2 in 5 mL of DCM) was added. DCM was removed by 

gently heating the open vial to 45 ºC for 5 minutes. To the vial containing the resulting 

solid, substrate 1 (13.8 mg, 0.03 mmol, 1 equiv) and CsOPiv (21.1 mg, 0.09 mmol, 3 

equiv) were added, followed by PhI (10 µL, 0.09 mmol, 3 equiv) and tAmylOH (0.25 mL). 

The vial was equipped with a stirbar, sealed with a Teflon-lined screw cap and heated to 

100 ºC in a preheated aluminum block. After four hours (240 minutes), the reaction was 

removed from the heating source and cooled to room temperature. The reaction mixture 

was opened to air and solid quinaldic acid (0.260 mg, 0.0015 mmol, 5 mol %) OR 

picolinic acid (0.19 mg, 0.0015 mmol, 5 mol %) was added (ligand was weighed on a 

Sartorius ME36S microgram analytical balance). The reaction was then reheated to 100 

ºC. At the desired reaction time (measured by a stopwatch), the reaction was cooled to 

room temperature and diluted with DCM (2.5 mL). Hydrazine monohydrate (50 µL) was 

added and the solution was vigorously stirred for 15 minutes. A 0.2 M stock solution of 

1,3,5-trimethoxybenzene (168 mg, 1 mmol) dissolved in DCM (5 mL) was prepared. An 

aliquot of this solution (150 µL, 0.03 mmol) was added to the reaction as the GC internal 

standard. The reaction solution was then filtered through a pipette packed with Celite 

and was analyzed by GC-FID. The concentration of 2a over time was used to plot the 

reaction profiles of Figure 5.13 and Figure 5.28.  

 
  



 
	

263 

Catalyst recovery with picolinic acid 
 
Figure 5.28. Catalyst recovery by addition of 5 mol % picolinic acid after 240 minutes. 

 
Conditions: 1 (0.03 mmol, 0.12 M), Pd(OAc)2 (0.012 M), CsOPiv (0.36 M), PhI (0.36 M), 0.25 mL 

tAmylOH, 100 ºC, 240 minutes. Then, add picolinic acid (0.006 M) and heat to 100 ºC. 
 

 
Reactivity of Pd species 3 

 
Isolation Procedure for 3: Under ambient conditions, a 0.02 M stock solution of 

Pd(OAc)2 (23 mg, 0.1 mmol) dissolved in DCM (5 mL) was prepared. An aliquot of this 

solution was transferred to a vial (4 mL capacity, 150 µL, 0.003 mmol Pd, 10 mol %). 

DCM was removed by gently heating the open vial to 45 ºC for 5 minutes. To the 

concentrated Pd(OAc)2, substrate 1 (13.8 mg, 0.03 mmol, 1 equiv) and CsOPiv (21.1 

mg, 0.09 mmol, 3 equiv) were added, followed by PhI (10 µL, 0.09 mmol, 3 equiv) and 

tAmylOH (0.25 mL). The vial was equipped with a stirbar, sealed with a Teflon-lined 

screw cap and heated to 100 ºC in a preheated aluminum block. During the course of 
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90 minutes the reaction color changed from bright yellow to black. At this point, the 

reaction was removed from the heating source and cooled to room temperature. The 

stirbar was removed from the vial with a magnetic retriever. The vial was resealed and 

centrifuged (5000 rpm, 5 minutes). The black precipitate (3) settled to the bottom of the 

vial and the supernatant was carefully removed with a pipette. The precipitate (3) was 

washed with fresh tAmylOH (0.1 mL), re-centrifuged, and solvent was removed with a 

syringe. The remaining precipitate (3) was used for subsequent reactions. 

Note: If the supernatant was used for subsequent reactions, the supernatant was first 

passed through a pipette packed with a small piece of glass fiber filter paper. 

 

Reactions with isolated black precipitate 3: 

 
To the vial containing precipitate 3, if indicated in Figure 5.14 or Table 5.5, solid 

quinaldic acid (0.260 mg, 0.0015 mmol, 5 mol%) or picolinic acid (0.190 mg, 0.0015 

mmol, 5 mol%) were added (ligand was weighed on a Sartorius ME36S microgram 

analytical balance). Solid substrate 1 (13.8 mg, 0.03 mmol, 1 equiv), CsOPiv (21.1 mg, 

0.09 mmol, 3 equiv) and 4-iodoanisole (21 mg, 0.09 mmol, 3 equiv) were added. To this 

mixture, tAmylOH (0.25 mL) was added. The vial was equipped with a stirbar, sealed 

with a Teflon-lined screw cap and heated to 100 ºC in a preheated aluminum block. 

After 18 hours, the reaction was cooled to room temperature and diluted with DCM (2.5 

mL). Hydrazine monohydrate (50 µL) was added and the solution was vigorously stirred 

for 15 minutes. A 0.2 M stock solution of 1,3,5-trimethoxybenzene (168 mg, 1 mmol) 

dissolved in DCM (5 mL) was prepared. An aliquot of this solution (150 µL, 0.03 mmol) 

was added to the reaction as the GC internal standard. The reaction solution was then 

filtered through a pipette packed with Celite and was analyzed by GC-FID. Yields of 2b 

are shown in Table 5.5 along with reaction details. 

3
3 equiv CsOPiv

with or without 5 mol % ligand
3 equiv 4-Iodoanisole
tAmylOH, 100 ˚C, 18 h
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Reaction with supernatant after removal of precipitate 3: 

The supernatant from Isolation Procedure for 3 was also further reacted as follows: To 

the vial containing the supernatant, if indicated in Table 5.5, solid quinaldic acid (0.260 

mg, 0.0015 mmol, 5 mol %) or picolinic acid (0.190 mg, 0.0015 mmol, 5 mol %) were 

added (ligand was weighed on a Sartorius ME36S microgram analytical balance). 

Additional CsOPiv (14 mg, 0.06 mmol, 2 equiv) and PhI (3.5 µL, 0.03 mmol, 1 equiv) 

were added. The vial was equipped with a stirbar, sealed with a Teflon-lined screw cap 

and heated to 100 ºC in a preheated aluminum block. After 18 hours, the reaction was 

cooled to room temperature and diluted with DCM (2.5 mL). Hydrazine monohydrate (50 

µL) was added and the solution was vigorously stirred for 15 minutes. A 0.2 M stock 

solution of 1,3,5-trimethoxybenzene (168 mg, 1 mmol) dissolved in DCM (5 mL) was 

prepared. An aliquot of this solution (150 µL, 0.03 mmol) was added to the reaction as 

the GC internal standard. The reaction solution was then filtered through a pipette 

packed with Celite and was analyzed by GC-FID. Yield of 2a is shown in Table 5.5 

along with reaction details. 

 

Table 5.5. Experiments with precipitate 3 and supernatant. 
Entry Ligand  Conversion Yield 2a Yield 2b 

1 ---- 3 20% --- 10% 
2 quinaldic acid 3 81% --- 47% 
3 picolinic acid 3 71%  60% 
4 ---- supernatant 61% 39% --- 
5 quinaldic acid supernatant 96% 73% --- 
6 picolinic acid supernatant 77% 56% --- 

Conditions shown above. 
 
C–H Arylation of substrate 1 
 
General Procedure F: Isolation of 2a and 2b. A 4-mL vial was charged with solid 

substrate 1 (115.1 mg, 0.25 mmol, 1 equiv), Pd(OAc)2 (5.6 mg, 0.025 mmol, 10 mol %), 

CsOPiv (176 mg, 0.75 mmol, 3 equiv), quinaldic acid (2.2 mg, 0.013 mmol, 5 mol %), 

iodoarene (0.075 mmol, 3 equiv) and tAmylOH (2.1 mL, 0.12 M). The vial was equipped 

with a magnetic stir bar, sealed with a Teflon-lined screw cap, and heated to an external 

temperature of 100 ºC.  After 18 h, the reaction was cooled to room temperature and 
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diluted with DCM (1 mL). Hydrazine hydrate (0.7 mL) was added to the solution. The 

mixture was allowed to stir for 30 min at room temperature to remove Pd from the 

product. The mixture was filtered through Celite and washed with DCM (10 mL). The 

volatiles were removed by rotary evaporation and the residue was purified via column 

chromatography (0% to 10% EtOAc in hexanes) affording the desired product. See 

each substrate for specific notes. 

 

 (2a) 

Reaction conditions 1: Compound 2a was isolated in 67% yield as an inseparable 

mixture with starting material following general procedure F.  

The yield for compound 2a was determined by isolating a mixture of recovered starting 

material 1 and compound 2a via column chromatography (5% EtOAc in hexanes). The 

mixture was analyzed by 1H NMR spectroscopy to determine the ratio of 1:2a (ca. 

0.12:1). This ratio, in combination with the isolated mass of the mixture and the 

respective molecular masses, was used to determine the yield of 2a based on the 

mixture. An excerpt of the NMR used to determine the ratio is below: 

 
 
Reaction conditions 2: At 120 ºC following general procedure F, complete 

conversion of 1 is observed after 18 hours (0.33 mmol scale). Under these modified 

conditions, pure product 2a was isolated in 77% yield as a white solid. 

N
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Reaction conditions 3: Using previously reported conditions17 with addition of 20 

mol % quinalidic acid, compound 2a was isolated in 82% yield as a white solid. 

Purification by column chromatography (0% to 10% EtOAc in hexanes). 

MP: 188-189 ºC 

Rf: 0.31 (10% EtOAc in hexanes) 
1H NMR (400 MHz, Chloroform-d) δ 7.49–7.37 (m, 3H), 7.32 (m, 2H), 7.30–7.23 

(multiple peaks, 3H), 7.12 (m, 2H), 3.74 (m, 2H), 3.65 (m, 1H), 3.00 (d, J = 10.7 Hz, 2H), 

2.56 (dd, J = 10.9, 4.0 Hz, 2H), 1.01 (s, 6H). 
13C NMR (176 MHz, Chloroform-d) δ 176.04, 146.07, 138.93, 128.91, 128.29, 126.78, 

126.11, 121.72, 63.58, 51.80, 43.72, 42.43, 21.41. 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
19F NMR (376 MHz, Chloroform-d) δ –56.08 (t, J = 21.7 Hz, 3F), –141.52 (m, 2F), –

142.99 (m, 2F). 

HRMS (ESI+) [M+H]+ Calcd. for C28H24F7N2O: 537.1771; Found: 537.1772. 

 

(2b) 
Reaction conditions 1: Compound 2b was isolated in 68% yield following general 

procedure F. 

Reaction conditions 2: At 120 ºC following general procedure F, complete 

conversion of 1 is observed after 18 hours (0.33 mmol scale). Under these modified 

conditions, pure product 2b was isolated in 81% yield as a white solid. 

NMR characterization matches the literature report.17  
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C–H Arylation of 8-azabicyclo[3.2.1]octane (tropane) 4: 

Reaction optimization for tropane 4. 

General procedure G: Under ambient conditions, a 0.02 M stock solution of picolinic 

acid (12.3 mg picolinic acid dissolved in 5 mL of MeOH) was prepared. An aliquot of this 

solution was transferred to a vial (4 mL capacity, 75 µL, 0.0015 mmol ligand, 5 mol %). 

MeOH was removed by heating the open vial to 68 ºC for 10 minutes. To the 

concentrated picolinic acid, a Pd(OAc)2 aliquot (150 µL, 0.003 mmol Pd, 10 mol %) of a 

0.02 M stock solution (23 mg of Pd(OAc)2 in 5 mL of DCM) was added. DCM was 

removed by gently heating the open vial to 45 ºC for 5 minutes. To the concentrated 

reaction mixture, solid substrate 4 (12.4 mg, 0.03 mmol, 1 equiv), CsOPiv (21.1 mg, 

0.09 mmol, 3 equiv) and PhI (3–45 equiv) were added. The reaction mixture was then 

diluted with tAmylOH (0.25 mL, if indicated in Table 5.6). The vial was equipped with a 

stirbar, sealed with a Telfon-lined screw cap and heated to the indicated temperature in 

Table 5.6 in a preheated aluminum block. After 18 hours, the reaction was cooled to 

room temperature and diluted with DCM (2.5 mL). Hydrazine monohydrate (50 µL) was 

added and the solution was vigorously stirred for 15 minutes. A 0.2 M stock solution of 

1,3,5-trimethoxybenzene (168 mg, 1 mmol) dissolved in DCM (5 mL) was prepared. An 

aliquot of this solution (150 µL, 0.03 mmol) was added to the reaction as the GC internal 

standard. The reaction solution was then filtered through a pipette packed with Celite 

and was analyzed by GC-FID. Yield of 5k is uncalibrated. 

In the cases where quinaldic acid was used, a 0.02 M stock solution of quinaldic acid 

(17.3 mg in 5 mL of DCM) was prepared and an aliquot (75 µL, 0.0015 mmol, 5 mol %) 

was added to the 4-mL vial. 

Different volumes of ligand stock solution were used depending on the amount of ligand 

indicated in each entry of Table 5.6. 
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Table 5.6. Reaction optimization for 4. 

 
Entry Ligand (mol %)a Temp Solvent PhI (equiv) Conv. Yield 5kb 

1 PA (5) 150 °C neat 45 > 99% 41 
2 PA (10) 150 °C neat 45 87% 47 
3 QA (5) 150 °C neat 45 97% 31 
4 QA (20) 150 °C neat 45 94% 33 
5 PA (5) 140 °C neat 45 91% 51 
6 PA (10) 140 °C neat 45 51% 21 
7 PA (5) 130 °C neat 45 74% 38 
8 PA (10) 130 °C neat 45 53% 28 
9 PA (5) 140 °C tAmylOH 45 72% 26 

10 PA (5) 140 °C tAmylOH 15 96% 24 
11 PA (5) 140 °C tAmylOH 3 94% 18 
12 ----- 140 °C neat 45 47% 4 

Conditions from general procedure G. a PA = picolinic acid; QA = quinaldic acid. b Uncalibrated GC 
yields. 
 
C–H Arylation of Tropane: Scope in Aryl Iodide. 

General Procedure H: Under ambient conditions, a stock solution of picolinic acid (24.6 

mg, 0.2 mmol) was prepared in methanol (2 mL). An aliquot of this solution was 

transferred to a vial (4 mL capacity, 50 µL, 0.005 mmol picolinic acid, 5 mol %). 

Methanol was removed by heating the open vial to 70 ºC for approximately 15 minutes 

(Note: leftover methanol can lead to Pd-catalyst decomposition). To the concentrated 

picolinic acid, solid substrate 6 (41.2 mg, 0.1 mmol, 1 equiv), Pd(OAc)2 (2.3 mg, 0.01 

mmol, 10 mol %), CsOPiv (70.2 mg, 0.3 mmol, 3 equiv), and iodoarene (45 equiv) were 

added. The vial was equipped with a magnetic stirbar, sealed with a Teflon-lined screw 

cap, and heated to an external temperature of 140 ºC.  After 18 h, the reaction was 

cooled to room temperature and diluted with DCM (2.5 mL). Hydrazine hydrate (0.4 mL) 

was added to the solution. The mixture was allowed to stir for 30 min at room 

temperature to remove Pd from the product. The mixture was filtered through Celite and 

washed with DCM (10 mL). The volatiles were removed by rotary evaporation, and the 

N
NHC7F7

OPhN
NHC7F7

O

10 mol % Pd(OAc)2
X mol % ligand
3 equiv CsOPiv

X equiv PhI
solvent, temp., 18 h(4) (5k)
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residue was purified via column chromatography (commonly mixtures of EtOAc:Hex or 

THF:Hex) affording the desired product. See each substrate for specific notes. 

 

(5a) 
Compound 5a was isolated in 49% yield as a yellow semi-solid following general 

procedure H.  

Purification by column chromatography (silica gel; 0% EtOAc to 5% EtOAc in hexanes) 

Rf: 0.1 (5% EtOAc in Hexanes) 
1H NMR (401 MHz, Chloroform-d) δ 9.79 (br s, 1H), 7.13 (d, J = 8.6 Hz, 2H), 6.84 (d, J = 

8.6 Hz, 2H), 3.77 (s, 3H), 3.57 (app. s, 2H), 2.95 (tt, J = 10.8, 4.0 Hz, 1H), 1.98–1.79 

(multiple peaks, 8H), 1.37 (s, 6H). 
13C NMR (176 MHz, Chloroform-d) δ 176.07, 158.20, 137.35, 128.04, 114.07, 63.96, 

57.11, 55.43, 42.92, 34.72, 30.09, 23.90. 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
19F NMR (377 MHz, Chloroform-d) δ –56.00 (t, J = 21.6 Hz, 3F), –141.08 (m, 2F), –

143.59 (m, 2F). 

HRMS (ESI+) [M+H]+ Calcd for C25H26F7N2O2: 519.1877; Found: 519.1875.  

 

(5b) 
Compound 5b was isolated in 60% yield as a colorless oil following general procedure 

H. Purification by column chromatography (silica gel; 0% to 5% THF in hexanes). 

Rf: 0.10 (5% THF in hexanes) 
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1H NMR (500 MHz, Chloroform-d) δ 7.25 (t, J = 7.8 Hz, 1H), 6.84 (d, J = 7.8 Hz, 1H), 

6.82–6.75 (multiple peaks, 2H), 3.82 (s, 3H), 3.62 (app. s, 2H), 3.01 (m, 1H), 2.04–1.82 

(multiple peaks, 8H), 1.40 (s, 6H). 
13C NMR (176 MHz, Chloroform-d) δ 175.66, 159.53, 146.62, 129.27, 119.21, 113.01, 

110.98, 63.59, 56.70, 54.91, 42.17, 35.25, 29.71, 23.50. 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
19F NMR (377 MHz, Chloroform-d) δ –56.01 (t, J = 21.6 Hz, 3F), –141.10 (m, 2F), –

143.60 (m, 2F). 

HRMS (ESI+) [M+H]+ Calcd for C25H26F7N2O2: 519.1877; Found: 519.1881.  

 

(5c) 
Compound 5c was isolated in 40% yield as a colorless oil solid following general 

procedure H.  

Purification by column chromatography (silica gel; 0% to 100% DCM in hexanes), 

followed by a preparative TLC (silica gel; 10% THF in hexanes). 

Rf: 0.37 (100% DCM). 
1H NMR (700 MHz, Chloroform-d) δ 7.13 (app. s, 4H), 3.59 (app. s, 2H), 2.99 (m, 1H), 

2.32 (s, 3H), 1.99–1.92 (multiple peaks, 2H), 1.90–1.82 (multiple peaks, 6H), 1.39 (s, 

6H). 
13C NMR (176 MHz, Chloroform-d) δ 176.09, 142.24, 136.03, 129.36, 127.05, 63.94, 

57.10, 42.76, 35.15, 30.08, 23.88, 21.12. 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
19F NMR (377 MHz, Chloroform-d) δ –56.00 (t, J = 21.6 Hz, 3F), –141.14 (m, 2F),  

–143.57 (m, 2F). 

N
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HRMS (ESI+) [M+H]+ Calcd for C25H26F7N2O: 503.1928; Found: 503.1926.  

 

(5d) 
Compound 5d was isolated in 46% yield as a yellow oil following general procedure H. 

Purification by column chromatography (silica gel; 0% to 20% THF in hexanes). 

Rf: 0.71 (20% THF in hexanes) 
1H NMR (700 MHz, Chloroform-d) δ 9.67 (br s, 1H), 7.45 (d, J = 8.1 Hz, 1H), 6.77 (app. 

s, 1H), 6.72 (dd, J = 8.1, 2.0 Hz, 1H), 3.90 (s, 3H), 3.61 (app. s, 2H), 2.99 (tt, J = 11.8, 

6.2 Hz, 1H), 2.02–1.80 (m, 8H), 1.39 (s, 6H). 
13C NMR (176 MHz, Chloroform-d) δ 175.75, 156.01, 146.29, 133.35, 120.49, 111.19, 

109.39, 63.99, 56.99, 56.23, 42.54, 35.67, 30.06, 23.85. 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
19F NMR (377 MHz, Chloroform-d) δ –55.99 (t, J = 21.7 Hz, 3F), –141.02 (m, 2F), –

143.80 (m, 2F). 

HRMS (ESI+) [M+H]+ Calcd for C25H25BrF7N2O2: 597.0982; Found: 597.0977.  

 

(5e) 
Compound 5e was isolated in 47% yield as a white solid following general procedure 

H. Purification by column chromatography (silica gel; 5% THF in hexanes) followed by a 

preparative TLC (silica gel; 100% CHCl3). 

MP: 100-101 ºC 

Rf:  0.29 (100% CHCl3) 
1H NMR (400 MHz, Chloroform-d) δ 9.73 (br s, 1H), 7.55 (d, J = 8.1 Hz, 2H), 7.32 (d, J = 

8.1 Hz, 2H), 3.61 (app. s, 2H), 3.06 (m, 1H), 2.04–1.76 (m, 8H), 1.38 (s, 6H). 
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13C NMR (176 MHz, Chloroform-d) δ 175.64, 149.11, 128.68 (q, JC-F = 32.4 Hz), 127.37, 

125.47 (q, JC-F = 3.7 Hz), 124.18 (q, JC-F = 271.8 Hz), 63.83, 56.82, 42.19, 35.42, 29.91, 

23.70. 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
19F NMR (376 MHz, Chloroform-d) δ –56.02 (t, J = 21.7 Hz, 3F), –62.44 (s, 3F), –140.96 

(m, 2F), -143.75 (m, 2F). 

HRMS (ESI+) [M+H]+ Calcd for C25H23F10N2O: 557.1645; Found: 557.1644. 

 

 (5f) 
Compound 5f was isolated in 44% yield as a colorless semi-solid following general 

procedure H. Purification by column chromatography to remove bulk of aryl iodide 

(silica gel; 5% THF in hexanes), followed by a preparative TLC (silica gel; 8% THF in 

hexanes). Significant impurities from the preparative TLC binder were observed by 1H 

NMR, thus a short column was performed (silica gel; 100% CHCl3). 

Rf: 0.19 (5% THF in hexanes) 
1H NMR (500 MHz, Chloroform-d) δ 9.72 (s, 1H), 7.74 (s, 1H), 7.68 (s, 2H), 3.66 (app. s, 

2H), 3.17 (tt, J = 11.9, 5.9 Hz, 1H), 2.09–1.78 (multiple peaks, 8H), 1.41 (s, 6H). 
13C NMR (126 MHz, Chloroform-d) δ 175.53, 147.69, 131.94 (q, J = 32.9 Hz), 127.47 

(m), 123.51 (q, J = 272.6 Hz), 120.63 (m), 64.02, 56.84, 42.28, 35.61, 30.05, 23.84. 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
19F NMR (471 MHz, Chloroform-d) δ –56.01 (t, J = 21.5 Hz, 3F), –62.88 (s, 6F), –140.97 

(m, 2F), –143.97 (m, 2F). 

HRMS (ESI+) [M+H]+ Calcd for  C26H22F13N2O: 625.1519; found 625.1524.   
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(5g) 
Note: 20 mol % Pd(OAc)2 was used for this substrate. Compound 5g was isolated in 

34% yield as a light yellow oil following general procedure H. Purification by column 

chromatography (silica gel; 0% to 100% DCM in hexanes). 

Rf: 0.77 (100% DCM) 
1H NMR (401 MHz, Chloroform-d) δ 7.22 (m, 2H), 7.14 (m, 2H), 3.59 (app. s, 2H), 3.02 

(tt, J = 11.9, 6.2 Hz, 1H), 2.02–1.76 (m, 8H), 1.37 (s, 6H). 
13C NMR (176 MHz, Chloroform-d) δ 175.71, 147.58 (m), 143.73, 128.23, 121.05, 63.81, 

56.84, 42.45, 34.88, 29.92, 23.72. 

The carbon resonances corresponding to the perfluoroarene (C7F7) and CF3O are not 

listed due to complexities in the region between 105 ppm and 150 ppm. 19F NMR and 

HRMS were used to confirm the presence of these groups. 
19F NMR (377 MHz, Chloroform-d) δ –56.01 (t, J = 21.7 Hz, 3F), –57.96 (s, 3F), –140.95 

(m, 2F), –143.70 (m, 2F). 

HRMS (ESI+) [M+H]+ Calcd for C25H23F10N2O2: 573.1594; found 573.1592.     

 

(5h) 
Compound 5h was isolated in 54% yield as a colorless oil following general procedure 

H. Purification by column chromatography (silica gel; 0% EtOAc to 10% EtOAc in 

hexanes). 

Rf: 0.1 (5% EtOAc in hexanes) 
1H NMR (700 MHz, Chloroform-d) δ 9.88 (br s, 1H), 7.33 (s, 1H), 7.30 (m, 1H), 7.06 (dd, 

J = 8.4, 1.8 Hz, 1H), 6.32 (s, 1H), 3.61 (app. s, 2H), 3.09 (m, 1H), 2.44 (s, 3H), 2.02–

1.83 (m, 8H), 1.40 (s, 6H). 
13C NMR (176 MHz, Chloroform-d) δ 176.11, 156.02, 153.62, 139.47, 129.51, 122.43, 

118.21, 110.57, 102.58, 63.95, 57.17, 43.26, 35.57, 30.10, 23.89, 14.24. 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
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13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
19F NMR (376 MHz, Chloroform-d) δ –56.01 (t, J = 21.7 Hz, 3F), –141.15 (m, 2F), –

143.59 (m, 2F). 

HRMS (ESI+) [M+H]+ Calcd for C27H26F7N2O2: 543.1877; found 543.1879.  

 

(5i) 
Compound 5i was isolated in 47% yield as a light yellow oil following general 

procedure H. Purification by column chromatography (silica gel; 0% to 20% THF in 

hexanes). 

Rf: 0.07 (5% THF in hexanes) 
1H NMR (400 MHz, Chloroform-d) δ 6.86–6.72 (multiple peaks, 3H), 3.89 (s, 3H), 3.86 

(s, 3H), 3.60 (app. s, 2H), 2.96 (m, 1H), 2.03–1.76 (multiple peaks, 8H), 1.39 (s, 6H). 
13C NMR (176 MHz, Chloroform-d) δ 175.74, 148.90, 147.49, 137.77, 118.68, 111.29, 

110.53, 63.80, 56.90, 55.91, 55.78, 42.69, 35.03, 29.90, 23.69. 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
19F NMR (376 MHz, Chloroform-d) δ –55.97 (t, J = 21.6 Hz, 3F), –141.11 (m, 2F), –

143.73 (m, 2F). 

HRMS (ESI+) [M+H]+ Calcd for C26H28F7N2O2: 549.1983; found 549.1990.     

 

(5j) 
Compound 5j was isolated in 42% yield as a colorless semi-solid following general 

procedure H. 
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Purification by short silica plug starting at 100% hexanes to remove excess aryl iodide, 

then 100% EtOAc to collect crude product. After, the crude product was purified by 

preparative TLC (silica gel; 100% CHCl3).  

Rf: 0.46 (100% CHCl3) 
1H NMR (700 MHz, Chloroform-d) δ 9.73 (s, 1H), 3.62 (app. s, 2H), 3.50 (tt, J = 12.2, 

6.0 Hz, 1H), 2.23 (app. t, J = 7.2 Hz, 2H), 2.00 (m, 2H), 1.86 (m, 2H), 1.75 (m, 2H), 1.38 

(s, 6H). 
13C NMR (176 MHz, Chloroform-d) δ 175.86, 63.89, 56.82, 39.16, 29.82, 25.82, 23.79. 

The carbon resonances corresponding to the perfluoroarenes (C7F7 and C6F5) in this 

compound appear as a complex series of multiplets between 105 ppm to 155 ppm as a 

result of 13C/19F coupling. Due to the complexities of these groups, the peaks are not 

listed. 19F NMR and HRMS were used to confirm the presence of both ring systems. 
19F NMR (377 MHz, Chloroform-d) δ –56.04 (t, J = 21.7 Hz, 3F), –141.07 (m, 2F), –

143.55 (app. d, J = 18.4 Hz, 2F), –143.85 (m, 2F), –157.06 (t, J = 21.0 Hz, 1F), –162.07 

(m, 2F). 

HRMS (ESI+) [M+H]+ Calcd for  C24H19F12N2O: 579.1300; found: 579.1305.  

 
C–H Arylation of other alicyclic amines: 
 

(7a) 

Compound 7a was isolated in 50% yield as a colorless semi-solid solid following 

general procedure H. 

Purification by column chromatography (silica gel; 0% to 5% THF in hexanes). 

Rf:  0.19 (5% THF in hexanes) 
1H NMR (401 MHz, Chloroform-d) δ 7.15 (d, J = 8.2 Hz, 2H), 6.85 (d, J = 8.2 Hz, 2H), 

6.05 (app. s, 2H), 3.88 (app. s, 2H), 3.79 (s, 3H), 2.86 (m, 1H), 1.87–1.76 (multiple 

peaks, 4H), 1.29 (s, 6H). 
13C NMR (176 MHz, Chloroform-d) δ 175.49, 158.16, 137.40, 130.64, 128.64, 113.99, 

64.14, 61.44, 55.40, 35.86, 35.24, 24.20. 
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The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
19F NMR (377 MHz, Chloroform-d) δ –56.02 (t, J = 21.7 Hz, 3F), –141.07 (m, 2F), –

143.55 (m, 2F). 

HRMS (ESI+) [M+H]+ Calcd for  C25H24F7N2O2: 517.1721; found: 517.1718.  

 

(7b) 
Compound 7b was isolated in 40% yield as a colorless oil following general procedure 

H. 

Purification by column chromatography (silica gel; 0% to 5% THF in hexanes). Minor 

impurities were observed by 1H NMR, thus a second column chromatography was 

performed (silica gel; 2% EtOAc in DCM). 

Rf: 0.42 (2% EtOAc in DCM). 
1H NMR (401 MHz, Chloroform-d) δ 10.00 (s, 1H), 7.12 (d, J = 8.6 Hz, 2H), 6.86 (d, J = 

8.6 Hz, 2H), 3.97 (m, 1H), 3.79 (s, 3H), 3.71 (m, 2H), 3.31 (s, 3H), 2.75 (m, 1H), 2.12 (m, 

1H), 2.00 (m, 1H), 1.89–1.67 (multiple peaks, 4H), 1.54 (s, 3H), 1.50 (s, 3H). 
13C NMR (176 MHz, Chloroform-d) δ 176.91, 158.32, 137.19, 127.92, 114.16, 85.79, 

63.11, 59.76, 56.89, 56.52, 55.44, 39.20, 38.44, 37.96, 35.30, 27.18, 23.33. 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
19F NMR (377 MHz, Chloroform-d) δ –56.01 (t, J = 21.7 Hz, 3F), –141.29 (m, 2F), –

143.61 (m, 2F). 

HRMS (ESI+) [M+H]+ Calcd for C26H28F7N2O3: 549.1983; found: 549.1978. 
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(7c) 
Note: 20 mol % Pd(OAc)2 was used for this substrate. Compound 7c was isolated in 

54% yield as a yellow oil following general procedure H. Purification by column 

chromatography (silica gel; 0% EtOAc to 20% EtOAc in hexanes). 

Rf: 0.31 (20% EtOAc in hexanes) 
1H NMR (700 MHz, Chloroform-d) δ 10.90 (s, 1H), 7.15 (d, J = 8.4 Hz, 2H), 6.87 (d, J = 

8.4 Hz, 2H), 3.93 (app. s, 4H), 3.80 (s, 3H), 3.63 (app. d, J = 10.5 Hz, 2H), 3.27 (m, 1H), 

2.44 (t, J = 12.6 Hz, 2H), 1.94 (d, J = 14.7 Hz, 2H), 1.88 (m, 2H), 1.60–1.52 (multiple 

peaks, 8H).  
13C NMR (176 MHz, Chloroform-d) δ 177.8, 158.3, 138.1, 128.1, 114.2, 108.7, 64.8, 

64.1, 55.4, 46.5, 38.9, 37.6, 31.4, 26.8.  

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
19F NMR (377 MHz, Chloroform-d) δ –56.01 (t, J = 18.0 Hz, 3F), –141.57 (m, 2F), –

143.82 (m, 2F). 

HRMS (ESI+) [M+H]+ Calcd for C28H30F7N2O4: 592.3088 ; found: 592.3087 

 

(7d) 
Note: 5 mol % quinaldic acid was used instead of picolinic acid. Compound 7d was 

isolated in 42% yield as a white solid following general procedure H. 

MP: 97-99 ºC 

Rf: 0.26 (5% THF in hexanes) 
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1H NMR (401 MHz, Chloroform-d) δ 9.18 (s, 1H), 7.21 (d, J = 8.3 Hz, 2H), 6.70 (d, J = 

8.3 Hz, 2H), 3.80 (m, 1H), 3.65–3.53 (multiple peaks, 4H), 2.91 (app. dd, J = 9.0, 4.4 Hz, 

1H), 2.13 (m, 1H), 1.95–1.55 (m, 5H), 1.40 (s, 3H), 1.38 (s, 3H). 
13C NMR (176 MHz, Chloroform-d) δ 176.35, 157.89, 136.57, 128.03, 113.78, 64.81, 

61.14, 56.99, 55.06, 47.83, 37.03, 30.72, 30.13, 25.42, 23.91. 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
19F NMR (377 MHz, Chloroform-d) δ –56.14 (t, J = 21.7 Hz, 3F), –141.93 (m, 2F), –

143.61 (m, 2F). 

HRMS (ESI+) [M+H]+ Calcd for C24H24F7N2O2: 505.1721; found: 505.1720.  

 

Ligand effect on the C–H Arylation of previously reported alicyclic amines 

Substrates 8a-8h were reacted under their previously reported conditions with addition 

of 5 mol % picolinic acid to the reaction mixture. Products 9a-9h were isolated as 

previously reported.17 

 

(9a) 

Compound 9a was isolated in 76% yield. NMR characterization matches literature 

report. Previous reported yield: 33% yield.17  
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(9b) 

Compound 9b was isolated in 90% yield. NMR characterization matches literature 

report. Previous reported yield: 62% yield.17  

 

(9c) 

Compound 9c was isolated in 64% yield. NMR characterization matches literature 

report. Previous reported yield: 35% yield.17  

 

(9d) 

Compound 9d was isolated in 64% yield. NMR characterization matches literature 

report. Previous reported yield: 34% yield.17  
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(9e) 

Compound 9e was isolated in 60% yield. NMR characterization matches literature 

report. Previous reported yield: 55% yield.17  

 

(9f) 
Compound 9f was isolated in 75% yield. NMR characterization matches literature report. 

Previous reported yield: 74% yield.17  

 

(9g) 

Isolated yield using picolinic acid (5 mol %): 68%. 

Isolated yield using quinaldic acid (20 mol %): 81%.  

NMR characterization matches literature report. Previous reported yield: 45% yield.17  
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(9h) 

Compound 9h was isolated in 51% yield. NMR characterization matches literature 

report. Previous reported yield: 40% yield.17  

C–H Arylation of Azabicyclo[3.3.1]nonane: 

 
Procedure: Under ambient conditions, a 4-mL scintillation vial was charged with solid 

substrate 10 (40 mg, 0.094 mmol, 1 equiv), Pd(OAc)2 (2.2 mg, 0.01 mmol, 10 mol %), 

cesium pivalate (66 mg, 0.28 mmol, 3 equiv), quinaldic acid (3.3 mg, 0.02 mmol, 20 

mol %) and 4-iodoanisole (990 mg, 4.23 mmol, 45 equiv). The vial was equipped with a 

magnetic stir bar, sealed with a Teflon-lined screw cap, and heated to an external 

temperature of 150 ºC.  After 18 h, the reaction was cooled to room temperature and 

diluted with DCM (2.5 mL). Hydrazine hydrate (0.4 mL) was added to the solution and 

stirred for 30 min at room temperature to remove Pd from the product. The mixture was 

filtered through Celite and washed with DCM (10 mL). The volatiles were removed by 

rotary evaporation and the residue was purified via column chromatography (silica gel; 

0% to 5% THF in hexanes). Although the column chromatography separated the 

products (11a-11c), minor impurities were observed by 1H NMR. As such, each of the 

products were subjected to a preparative TLC (silica gel; 5% THF in hexanes) to afford 

15% yield of 11a as a white solid, 24% yield of 11b as a colorless oil and 31% yield of 

11c as a white solid.  
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(11a) 

11a 
MP: 170-172 ºC 

Rf: 0.10 (5% THF in hexanes) 
1H NMR (500 MHz, Chloroform-d) δ 9.70 (s, 1H), 7.21 (d, J = 8.5 Hz, 4H), 6.89 (d, J = 

8.5 Hz, 4H), 3.81 (s, 6H), 3.69 (tt, J = 12.7, 6.4 Hz, 2H), 3.51 (app. s, 2H), 2.15–1.96 (m, 

8H), 1.62 (s, 6H). 
13C NMR (176 MHz, Chloroform-d) δ 176.63, 158.24, 138.93, 127.78, 114.16, 65.27, 

55.44, 49.36, 38.38, 37.55, 26.11. 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
19F NMR (377 MHz, Chloroform-d) δ –56.01 (t, J = 21.7 Hz, 3F), –140.95 (m, 2F), –

143.56 (m, 2F). 

HRMS (ESI+) [M+H+] Calcd. for C33H34F7N2O3: 639.2452; found: 639.2444. 

 

(11b) 

11b 
Rf: 0.16 (5% THF in hexanes) 

N
C7F7HN

O

MeO

OMe

N
MeO

O

C7F7HN



 
	

284 

1H NMR (700 MHz, Chloroform-d) δ 9.77 (br s, 1H), 7.15 (d, J = 8.3 Hz, 2H), 6.86 (d, J = 

8.3 Hz, 2H), 6.06 (dt, J = 9.9, 3.0 Hz, 1H), 5.92 (m, 1H), 3.79 (s, 3H), 3.61 (s, 1H), 3.42 

(s, 1H), 3.21 (tt, J = 12.4, 6.2 Hz, 1H), 2.47 (dd, J = 18.9, 7.0 Hz, 1H), 2.03–1.96 

(multiple peaks, 2H), 1.93–1.78 (multiple peaks, 3H), 1.49 (s, 3H), 1.43 (s, 3H). 
13C NMR (126 MHz, Chloroform-d) δ 176.35, 158.00, 137.55, 130.24, 128.34, 127.87, 

113.88, 64.96, 55.26, 50.36, 47.12, 43.59, 37.65, 33.45, 28.75, 24.67, 23.11. 

The carbon resonances corresponding to the perfluoroarene (C7F7) in this compound 

appear as a complex series of multiplets between 105 ppm to 155 ppm as a result of 
13C/19F coupling. Due to the complexities of the system, the peaks are not listed. 19F 

NMR and HRMS were used to confirm the presence of this ring system. 
19F NMR (377 MHz, Chloroform-d) δ –56.01 (t, J = 21.7 Hz, 3F), –141.09 (m, 2F), –

143.74 (m, 2F). 

HRMS (ESI+) [M+H+] Calcd. for C26H26F7N2O2: 531.1877; found: 531.1872. 

 

(11c) 

11c 
Rf: 0.13 (5% THF in hexanes) 
1H NMR (700 MHz, Chloroform-d) δ 9.47 (s, 1H), 7.14 (d, J = 8.5 Hz, 2H), 6.87 (d, J = 

8.5 Hz, 2H), 6.05 (ddd, J = 10.3, 4.6, 1.8 Hz, 1H), 5.95 (dd, J = 10.3, 2.3 Hz, 1H), 5.49 

(d, J = 6.8 Hz, 1H), 3.86 (br s, 1H), 3.80 (s, 3H), 3.37 (s, 1H), 3.29 (tt, J = 12.5, 4.5 Hz, 

1H), 2.16 (m, 1H), 1.99 (td, J = 12.8, 4.2 Hz, 1H), 1.80 (m, 1H), 1.76 (td, J = 13.3, 4.6 

Hz, 1H), 1.55 (s, 3H), 1.46 (s, 3H), 1.24 (s, 9H). 
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13C NMR (176 MHz, Chloroform-d) δ 178.22, 175.53, 158.13, 137.11, 133.64, 127.88, 

127.79, 114.00, 67.85, 64.99, 55.25, 51.04, 48.63, 38.87, 36.07, 35.90, 33.24, 27.22, 

25.62, 23.44. 
19F NMR (377 MHz, Chloroform-d) δ –56.03 (t, J = 21.7 Hz, 3F), –140.86 (m, 2F), –

143.63 (m, 2F). 

HRMS (ESI+) [M+H+] Calcd. for C31H34F7N2O4: 631.2401; found: 631.2397. 
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