
Heterogeneous Mobile Platform Characterization and
Accelerator Design

by

Cao Gao

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2017

Doctoral Committee:

Professor Trevor N. Mudge, Co-Chair
Assistant Professor Ronald G. Dreslinski Jr., Co-Chair
Professor David Blaauw
Assistant Professor Hun-Seok Kim
Assistant Professor Jason Mars

Cao Gao

caogao@umich.edu

ORCID iD: 0000-0001-6858-1655

© Cao Gao 2017

All Rights Reserved

To my family.

ii

ACKNOWLEDGMENTS

First and foremost I would like to thank my advisor Professor Trevor Mudge. It was very

fortunate for me to have him as an advisor who taught me so much on so many things, both

about research and life. If I have to pick one of his many advises that had influenced me,

it would be to focus the limited time on topics that are really important and meaningful.

In addition, his laid back style and connections allowed me to explore a wide range of

research projects and collaborate with different people. I am also really grateful for his

support, guidance and patience during those hard times in my PhD. I also would like to

thank my advisor Professor Ronald Dreslinski. From the first the day I joined the TRON

(Trev + Ron) group, he has been very helpful in getting me started on research topics,

designing experiments, organizing results and stories, and many other things. Those nights

of paper editing together in CSE are very memorable to me. This thesis would not be

possible with them.

I would like to thank several other faculty members that I have worked with during

my PhD. It was a great experience collaborating with Professor Jason Mars and Professor

Lingjia Tang. Their enthusiasm towards research was always an inspiration for me. In

addition, it was Jason who introduced me to Professor David Blaauw and Professor Hun-

Seok Kim, which led to a great collaboration during the last one and half years of my PhD.

I learned great deal from David and Hun-Seok from our inter-group weekly meetings with

Trev and Ron. Professor Carole-Jean Wu, Professor Valeria Bertacco, and Professor Todd

Austin have all helped me with their valuable suggestions and feedback.

To my lab-mates in TRON lab: Yajing Chen (and Shengshuo Lv), Nilmini Aberaytne,

iii

Yiping Kang, Johann Hauswald, Tony Gutierrez, Joseph Pusdesris, Kuangyuan Chen, By-

oungchan Oh, Jonathan Beaumont, Dong-Heyon Park, and Qi (Chi-master) Zheng. Know-

ing them is the best treasure I found here at Michigan. Not only did I get meaningful and

insightful discussion about research, but also antidotes about all the other countries and

cultures, continuous encouragement and support, and most importantly, a lot of fun time

together. I would also like to thank Chris Emmons and Dam Sunwoo, who helped me had

a good summer internship at ARM research.

Outside my group, there are many friends who helped me enjoy my life in Ann Arbor,

for which I am very grateful. I would like to thank all my friends in the CSE department,

especially Chang-Hong Hsu and Doowon Lee, for exchanging interesting information and

ideas on research and graduate student life in general. I also am grateful to my Chinese

friends outside the department, especially Xiang Yin and Zhaojian Li, for all the fun times

together. It was wonderful to have them here far away from our home country.

Finally, I would like to thank my family. My mother have always been supporting and

encouraging me these years, and special thanks to her. Together with my late father, they

shaped me to become the person I am today. My extended family has been very supportive

to me as well, and I cannot thank them enough.

iv

TABLE OF CONTENTS

Dedication . ii

Acknowledgments . iii

List of Figures . vii

List of Tables . x

Abstract . xi

Chapter

1 Introduction . 1

1.1 Heterogeneous Mobile Platforms . 1
1.2 Contributions . 2
1.3 Organization . 5

2 Background . 6

2.1 Mobile Platforms . 6
2.1.1 Mobile Device Utilization . 6
2.1.2 The status quo for wearables . 10

2.2 Wearable Applications . 11
2.2.1 Deep Learning Algorithms . 11
2.2.2 Always-on applications for wearables 13

3 An Analysis of Mobile Device Utilization . 15

3.1 Introduction . 16
3.2 Methodology . 18

3.2.1 System Setup . 18
3.2.2 Measurement . 19
3.2.3 Benchmarks . 20

3.3 Results . 26
3.3.1 Overall Results . 26
3.3.2 Core Scaling . 30
3.3.3 Heavy Load Scenarios . 32
3.3.4 Alternative Architecture . 35
3.3.5 GPU . 36

v

3.4 Suggestions . 40
3.4.1 TLP vs. Time . 41
3.4.2 Energy Efficiency of Big and Little Cores 42
3.4.3 Thread CPU Time Distribution 44

3.5 Related works . 46
3.5.1 Mobile Device Workload Characterization 46
3.5.2 Mobile Benchmarks . 46
3.5.3 Parallelism in Programs . 47
3.5.4 Mobile Device Power Consumption 47

3.6 Conclusion and Discussion . 47

4 A Low Power Accelerator for Always-On Applications in Wearable Devices . 49

4.1 Introduction . 50
4.2 Background . 54

4.2.1 Always-on applications . 54
4.2.2 The status quo for wearables . 55
4.2.3 Non-uniform scratchpad architecture 55

4.3 Accelerator design framework . 57
4.3.1 Pre-silicon . 57
4.3.2 Post-silicon . 61

4.4 Accelerator design example . 66
4.4.1 Architecture . 66
4.4.2 Operation . 67
4.4.3 Instruction set . 68

4.5 Design evaluation . 72
4.5.1 Accelerator . 73
4.5.2 Baseline . 73
4.5.3 Benchmarks . 74

4.6 Results . 75
4.6.1 Pre-silicon NUSA design . 75
4.6.2 Multi-application scheduling . 76
4.6.3 Post-silicon NUSA assignment 78
4.6.4 Post-silicon runtime scheduling 82
4.6.5 End-to-end applications . 84

4.7 Related works . 86
4.8 Conclusion . 86

5 Conclusions . 88

5.1 Summary . 88
5.2 Future Directions . 90

Bibliography . 91

vi

LIST OF FIGURES

1.1 Dark silicon trends for different technology nodes [1] 2
1.2 Utilization wall [2] . 3

2.1 Time breakdown of number of cores activated by the Android OS 7
2.2 BBench score for different number of cores. 8
2.3 Figure qualitatively describing the utilization differences between automated

desktop workloads and “realistic” runs performed by a user [3]. 9
2.4 Multilayer Perceptron . 12
2.5 Convolutional Neural Network . 13

3.1 Time breakdown of how the multi-core is utilized. The big pie chart on the
right shows an average result of all application categories we tested. The
smaller pie charts show the breakdown of three representative kinds of apps:
Google Maps with the highest TLP, stock Browser, and stock Music with a
low TLP. 28

3.2 Application B exploits better parallelism than Application A: A uses more CPU
time but has less TLP. Note the number in the graph is merely symbolic and
do not reflect actual results. 29

3.3 Overall TLP result for different number of cores 30
3.4 Increase of TLP with background apps (shown as red regions) 31
3.5 CPU breakdown for 3-core and 2-core system. This result is the average of all

applications. 31
3.6 Performance and TLP results for browser. Performance are shown in columns

and TLP in lines. Performance scores are calculated by taking the inverse of
MobileBench rendering time then normalize against the worst score in each
graphs. For instance, score bC4 stands for performance of four big cores, lC2
for two little cores, etc. For each CPU configuration, we test three scenarios:
1, 2 and 3 tabs running MobileBench on Chrome. This graph shows big cores
with stock Browser. 33

3.7 Performance and TLP: little cores with stock Browser 34
3.8 Performance and TLP: big cores with Chrome 34
3.9 Performance and TLP: little cores with Chrome 34
3.10 TLP result for the little cores . 35
3.11 Average CPU Time breakdown: little cores 35
3.12 TLP result for the Origenboard (Quad-core 1.4 GHz A9) 36

vii

3.13 Average CPU Time breakdown: Origenboard 37
3.14 TLP result for the Dragonboard (Quad-core 2.15 GHz Krait 300) 37
3.15 Average CPU Time breakdown: Dragonboard 38
3.16 GPU utilization of different category of apps. Columns with different colors

represent system configuration with different number and kind of cores activated. 39
3.17 Energy consumption and energy efficiency (defined as performance per watt)

comparison for Krait CPU vs. Adreno GPU. 40
3.18 TLP vs. time in seconds for mobile applications. For Browser, the solid lines

represent TLP, and the dashed vertical lines show when there is an action,
such as application startup or opening a new webpage. Actions are labeled by
circled numbers. This graph is for stock browser (using 4 cores). 42

3.19 TLP vs. time: chrome . 42
3.20 TLP vs. time: MXPlayer . 43
3.21 TLP vs. time: Angry Birds . 43
3.22 Performance and power under different frequency and cores (tested using Mo-

bileBench). Lines represent different cores configurations; dots on lines repre-
sent different frequencies, with lower frequencies (thus poor performance) on
the left. Error bars are drawn to a show range of scores for each dot. 43

3.23 Thread CPU time distribution. We break down the threads by their CPU time
into 8 categories, which are shown in the legend. For instance, “<0.05%”
means this thread only occupies less than 0.05% of all CPU time, “>5%-10%”
means larger than 5% but less than 10%. For the applications we tested, the
average number of total threads generated is 258. Each area for the pie chart
shows the average number of threads that fall into this category. It shows that
most threads are short living. 45

4.1 Battery constraint in wearable devices . 50
4.2 Trade-off between area and energy (data from SRAM compiler) 56
4.3 Overall description of framework . 58
4.4 Example memory layout. Banks are stacked on one side of the processing ele-

ment (PE), starting from smaller banks. The height of the stack is determined
by the framework, striking a balance between average wire distance and total
area. 59

4.5 Overall architecture of the accelerator . 62
4.6 Die photo and specifications of the accelerator chip 63
4.7 Timing and block diagram of accelerator operation 68
4.8 Convolution using MAC instruction . 71
4.9 Convolution using FFT instruction . 71
4.10 Energy reduction with NUSA framework: MAC instructions 77
4.11 Energy reduction with NUSA framework: mixture of MAC and FFT instructions 77
4.12 Multi-application scheduling. Smartglass: Key Word Spotting (KWS) and

Face Detection (Face) . 79
4.13 Multi-application scheduling. Smartwatch: Key Word Spotting (KWS) and

Seizure Detection (SD) . 79
4.14 NUSA assignment for keyword spotting: data analysis 81

viii

4.15 NUSA assignment for keyword spotting: data assignment 81
4.16 Runtime scheduling for MAC instruction: latency for different number of PEs

activated . 83
4.17 Runtime scheduling for MAC instruction: energy for different number of PEs

activated . 83
4.18 End-to-end application: latency . 85
4.19 End-to-end application: energy . 85

ix

LIST OF TABLES

3.1 Applications . 22
3.2 TLP results for the Odroid board — using ondemand governor. 27

4.1 Expected battery life target for wearable devices [4] 51
4.2 Accelerator instruction set. For “configurable fields”, common fields such as

data location or precision are not included. 69
4.3 Always-on applications evaluated in this work 74

x

ABSTRACT

Due to power constraints, growing sections of a chip need to remain passive. This

is often referred to as the “dark silicon” problem. This problem is more severe on mo-

bile platforms, especially on emerging IoT and wearable devices, due to their strict power

envelope and energy budget. Heterogeneous architecture with specialized hardware is an

effective way to utilize the limited active transistor count. To guide heterogeneous mobile

platform design, analyzing current and near-future mobile workloads and building spe-

cialized hardware based on the analysis is essential. To this end, this dissertation starts

with a quantitative analysis of current mobile applications on smartphones, followed by an

accelerator-based solution for efficient execution of wearable workloads, with an emphasis

on machine learning and signal processing kernels.

The first part of the thesis focuses on a study of mobile device utilization, where the

results argue against using many (more than 4) cores in mobile devices, and suggest a

flexible heterogeneous architecture to accommodate utilization variations. To meet the

increasing computational need of mobile devices, many vendors try to increase the number

of CPU cores in mobile device SoCs. However, it does not translate proportionally into

performance gain and power reduction. This work analyzes the behavior of a wide range

of commonly used mobile applications, using Thread Level Parallelism (TLP) as a major

metric. The results demonstrate that mobile applications have TLP less than 2 on average,

and we observe a small return on utilization when the number of cores is increased. Further

analysis shows that TLP tends to appear in peaks and valleys, which gives opportunity for

using flexible, heterogeneous mobile architecture for better energy efficiency.

xi

The second part of the thesis consists of a low-power accelerator design for always-

on applications used in wearable devices. A large class of these always-on applications,

including many deep learning and signal processing applications, execute in a deterministic

and repeatable fashion. This design takes advantage of this determinism by replacing the

traditional cache based architecture with a non-uniform scratchpad architecture (NUSA).

A framework is developed, which determines the most energy efficient NUSA scratchpad

design within area constraints, and identifies the most energy efficient data assignment and

runtime schedule given the target application. A fabricated prototype accelerator is also

presented as an illustration of the technique. On average, a 2.1× reduction in energy can

be achieved by using a NUSA architecture compared to a uniform scratchpad architecture,

and a 10× to 36× reduction compared to general purpose ARM M-class cores and DSP.

xii

CHAPTER 1

Introduction

1.1 Heterogeneous Mobile Platforms

The scaling of CMOS technology had been enabling faster switching and lower power con-

sumption for the past decades. The traditional Dennard scaling [5] states that as transistors

get smaller, their power density stays constant, so the power consumption stays in pro-

portion with area. Therefore, as we shrink the transistors down in size in conjunction to

Moore’s law [6], we would proportionally achieve lower power consumption per transistor,

maintaining the overall power density.

However, Dennard scaling is reaching its physical limits to an extent that voltage cannot

be scaled down as much as transistor gate length. Along with a rise in leakage current, this

results in increased power density, rather than a constant power density. To ensure a safe

operation, it is essential for the chip to perform within a fixed power budget [7], usually

called the thermal design power (TDP) constraint. Increased power density under the same

power budget means in order to avoid too high power dissipation, a certain part of compu-

tation, communication, and memory resources of an on-chip system cannot simultaneously

be powered-on (at the peak performance level), and thus must stay “dark” [8, 9, 10]. The

problem, therefore, is how to best utilize the abundance of transistors in the dark silicon era

to continue to reap the rewards of Moore’s Law down to the sub-10 nm node [11].

Mobile platforms with their even more strict power envelope and energy budget, suffers

1

Figure 1.1: Dark silicon trends for different technology nodes [1]

more from the dark-silicon problem. For instance, the TDP for a mobile SoC is 2.5 to 3W

for smartphones, 5W for tablets [12], while the TDP for desktop CPU alone is around

100W [13].

An effective way to utilize the limited active transistor count is to user heterogeneous

architecture with specialized hardware. In dark silicon era, there is a choice about which

parts of the chip should be powered on, so optimal performance can be achieved under

peak power and temperature constraints. Specialized hardware usually have much superior

performance and energy efficiency than general purpose cores, which can be powered on

when executing its target task.

1.2 Contributions

In order to guide heterogeneous mobile platform design, this thesis first analyzes current

mobile applications on a smartphone platform. Mobile devices are becoming more pow-

erful and versatile than ever, calling for better embedded processors. Following the trend

in desktop CPUs, microprocessor vendors are trying to meet such needs by increasing the

number of cores in mobile device SoCs. However, increasing the number does not translate

proportionally into performance gain and power reduction. In the past, studies have shown

that there exists little parallelism to be exploited by a multi-core processor in desktop plat-

2

Expected utilization for fixed area
and power budget

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

9 0 nm 6 5 nm 4 5 nm 3 2 nm

Figure 1.2: Utilization wall [2]

form applications, and many cores sit idle during runtime. We investigate whether the same

is true for current mobile applications, and ask the question if quad- and octa- core designs

are beneficial. We analyze the behavior of a wide range of commonly used mobile applica-

tions. We measure their Thread Level Parallelism (TLP), which is the machine utilization

over the non-idle runtime. Our results demonstrate that mobile applications have TLP less

than 2 on average, and we observe a small return on utilization when the number of cores

is increased. Test on high load scenarios suggest that this is due to the nature of mobile

devices and utilization cannot be increased easily. However, further analysis shows that

TLP tends to appear in peaks, which gives opportunity for multi-core devices to gain better

power efficiency. In all, we suggest that increasing cores aggressively may not be the right

choice, and looking into the interactive nature of mobile applications can a good direction.

Next, this thesis discuss a design of an ultra low-power accelerator for always-on ap-

plications in wearable devices. These applications, such as keyword detection or heart

rate monitoring, pose a significant challenge in energy-efficient design. A large class of

always-on applications execute in a deterministic and repeatable fashion. Determinism and

repeatability mean that the optimal memory access pattern can be pre-computed statically,

3

removing the need for a cache and providing an opportunity to tailor the memory layout

directly to the application. We present a non-uniform scratchpad architecture (NUSA) ac-

celerator designed for this class of applications. To fully utilized the proposed NUSA, we

develops a framework, which when given the target applications can: a) determines the

most energy efficient NUSA scratchpad design within area constraints; and b) determines

the most energy efficient data arrangement and runtime schedule given the target applica-

tion. A fabricated prototype accelerator is presented as an illustration of our technique. We

then generalize this prototype into an architecture that is used to evaluate a wider range

of applications, and compare against traditional approaches. We show that, on average, a

2.1× reduction in energy can be achieved by using a NUSA architecture compared to a

uniform scratchpad architecture, and a 30× reduction compared to a general purpose ARM

M-class core.

In summary, this dissertation makes the following contributions:

• We construct a suite containing representative Android applications from a variety of

categories, as well as their corresponding test actions.

• We measure the Thread Level Parallelism (TLP) of mobile applications on current

mobile device platforms and show it is less than 2 on average.

• We observe diminishing returns of TLP when increasing the number of cores. Heavy-

load test cases also show low TLPs, which suggests there is not a lack of hardware

resources. Both demonstrate that having many powerful cores is over-provisioning.

• We make the case for the need of a flexible system that can accommodate both high

performance and good energy-efficiency for different program phases.

• We suggest that a heterogeneous system is an adequate and energy-efficient solution

for mobile devices.

4

• Identify the opportunity of utilizing the deterministic behavior of always-on appli-

cations in wearable devices, and the benefit of utilizing a non-uniform scratchpad

architecture (NUSA).

• Design a framework which can generate a NUSA design for a wide set of appli-

cations, as well as tailor and map the applications to the target NUSA for the best

energy-efficiency.

• Design a low power programmable accelerator for always-on wearable applications,

which has been fabricated as a prototype chip.

• Evaluate the framework by generalizing the accelerator design and comparing to

general purpose core baselines, as well as cache and USA based accelerators.

1.3 Organization

This dissertation is organized as follows. In Chapter 2, background information about mo-

bile and wearable devices is provided. Chapter 3 discuss an analysis of mobile device uti-

lization. It demonstrates diminishing returns of TLP with increasing the number of cores,

motivates a heterogeneous design for energy efficiency and accommodating Chapter 4 in-

troduce an low-power accelerator design for always-on application in wearable devices.

Finally, Chapter 5 provides concluding remarks and future research directions.

5

CHAPTER 2

Background

This chapter outlines some of the background information regarding mobile platform and

common applications. First, a discussion regarding the utilization of mobile devices and are

discussed. Next, some common applications. Specifically, applications on deep learning

algorithm are introduced.

2.1 Mobile Platforms

2.1.1 Mobile Device Utilization

Quite a number of mobile processors are made with four or even more cores today, which

offer impressive computational potential to users. However, there are still high-end mo-

bile SoCs that include only a dual-core CPU, and that still successfully provides desirable

performance for its host mobile device. In order to make design choices, it is beneficial to

analyze how much of the quad-core potential is being utilized.

We perform two preliminary experiments on an Origen board, a current mobile device

platform with a quad-core 1.4GHz ARM Cortex-A9 CPU. First, we measure how many

cores are actually activated by the OS when running an application. The Android system

employs a CPU governor which turns individual cores on or off and changes their frequen-

cies based on CPU loads. When it finds that a core sits idle for most of the time, it will

turn it off to save power. We run a suite of commonly used applications with the default

6

0%	

20%	

40%	

60%	

80%	

100%	

BBench	

(browser)	

Kindle	
 Facebook	
 Jetpack	

(game)	

Google	

Maps	

Music	
 Gallery	

Ti
m
e	

br
ea
kd

ow
n	

Number	
 of	
 	

Cores	
 	

turned	
 on:	

4	

3	

2	

1	

Figure 2.1: Time breakdown of number of cores activated by the Android OS

governor—ondemand. We find that the fourth core is only activated in 2 out of the 21 apps

we tested. For nearly half of the apps, the OS also shuts off the third core for most of the

time. We show part of our results in Fig. 2.1. We plot a breakdown of the time percentage

that each system configuration spends for these applications. Different colors represent sys-

tem configurations with different numbers of cores activated. For most of the applications,

the fourth core is always shut down, For some of them, namely Email, Facebook, Music

and Gallery in this graph, most of the time the third core is not activated as well. The only

app in this graph that activates the fourth core is Google Maps. Browser and Jetpack (a

game) do activate three cores for most of the time, but Facebook does so only for half of

the time, and Email never. Note that activation does not mean utilization; it only means the

OS thinks that this core might be utilized. The core could still sit activated and idle at the

same time. We will show the core utilization in the results section.

In the second experiment, we override system setup and manually set the number of

cores activated in the system. Since web-browsing is among the most commonly used fea-

tures on mobile devices [14], we run a browser benchmark, BBench [15] on two browsers,

and compare the performance of different CPU configurations. We plot the results in

Fig. 2.2. The score is the time taken to render the complete set of webpages in BBench,

7

1.00	

1.27	
 1.29	
 1.30	

1.00	

1.42	
 1.47	
 1.48	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

1.1	

1.2	

1.3	

1.4	

1.5	

1-­‐core	
 2-­‐core	
 3-­‐core	
 4-­‐core	
 1-­‐core	
 2-­‐core	
 3-­‐core	
 4-­‐core	

Android	
 stock	
 Browser	
 Firefox	

W
eb

	
 B
ro
w
er
	
 P
er
fo
rm

an
ce
	

(n
or
m
al
iz
ed

	
 to
	
 th

e	

w
or
st
	
 c
as
e)
	

Figure 2.2: BBench score for different number of cores.

and lower score means better performance. It is clear from the graph that a single-core

system suffers from poor performance. However, the performance gain is negligible from

dual-core to triple-core and quad-core. It may seem confusing why the OS activates 3

cores for BBench when there is such little performance improvement. Actually it again

proves that activation does not mean utilization; the ondemand CPU governor in Android

OS is performance-aware and will keep the core activated unless it is very unlikely to be

utilized [16].

Both of these tests suggest a more thorough quantitative investigation of quad-core CPU

utilization.

2.1.1.1 Metrics

To evaluate the utilization of a multi-core system, we need a good metric for system pro-

filing. A commonly used and accessible metric would be CPU utilization, which is simply

the overall average CPU usage during runtime. However, it would underestimate the par-

allelism in mobile applications. Most of these apps are interactive, and there is a large

portion of idle time for interactive applications, as shown in Fig. 2.3. The program itself

8

Thread level parallelism and Interactive performance of desktop applications - ASPLOS 2000 August 21, 2000 2 of 10

in the system are utilized. It would be difficult to make a
case for multiprocessing for desktop workloads based on the
presented machine utilization data. Very few of the work-
loads exceed 25% machine utilization, suggesting that for
the most part, only one out of the four available processors
is exercised. Some of the benchmarks exhibit even lower
utilization in the 5% to 10% range, suggesting that a single
processor is more than powerful enough for running these
workloads. What is the need for multiprocessing when a
single processor seems to be adequate?

The problem with the machine utilization metric is that
it weighs all parts of the benchmark’s execution equally.
From the metric’s point of view, generating a page of output
on the screen is as important as the idle period when the
user is consuming the data (think time) and the processor is
doing no useful work. We define idle time as the percentage
of time all processors in the machine are idle simulta-
neously. Machine utilization can only be used to accurately
measure the effects of concurrent execution if idle time dur-
ing the benchmark run is close to zero.

As the figure shows, the amount of idle time in desktop
applications can be very large. In some cases idle time
amounts to more than 90% of total execution time. This
high ratio should not be unexpected since interactive appli-
cations run at the rate at which the user interacts with them,
which is determined by human cognition and motor skills
and includes significant think time. The high proportion of
idle time can be obscured by the use of automated bench-
marks, such as Sysmark 98 [17] or Winstone 99 [18], that
perform each operation as soon as the previous operation
completes without taking think time into account. The auto-
mated benchmarks in Figure 1 have an average of 12% idle
time versus 64% for the realistic benchmark runs.

To get around the limitations of the machine utilization
metric, we define a new metric called thread-level parallel-
ism (TLP). TLP is the machine utilization over the non-idle
portions of the benchmark’s execution. This definition side-
steps the problems of the original metric and allows us to

use more realistic desktop workloads that can include a lot
of idle time. Intuitively, TLP is a metric of speedup due to
concurrent execution on the non-idle portions of the work-
load (Section 3).

The most relevant metric for interactive applications is
not the overall throughput but response time: the amount of
time it takes for the computer to respond to a user initiated
event. These periods are also referred to as interactive epi-
sodes. We focus our measurements on the interactive epi-
sodes by tracking communication between tasks in the
kernel (Section 3.1). Figure 2 illustrates a sample TLP trace
where the ranges corresponding to interactive episodes have
been highlighted.

Our response time measurements are detailed in Sec-
tion 4. We find that, while desktop applications can incur
more than 90% idle time during execution, running our
benchmarks on a dual-processor machine provides a 22%
average improvement in application response times. In Sec-
tion 4.4, we investigate the effects on response time of a
concurrently running MP3 playback application. Here, the
dual-processor machine improves response time by 29% on
average. Thus, multiprocessing on the desktop can be a via-
ble means of improving the user experience.

2. Previous work
Various papers have dealt with the characterization of

desktop applications [9][2][5]. In [5], Endo et al. performed
a detailed analysis of interactive performance in a unipro-
cessor Windows NT environment. Our methodology has
been influenced by their design choices and their definitions
of think and wait time.

Hauser et al. [8] have approached the role of threads in
interactive systems by analyzing the design patterns in two
threaded object-oriented environments. Their analysis
focused on the use of threads for program structuring
instead of run-time statistics. However, their conclusion that
most threads are used for programmers’ convenience and
few for exploiting concurrency is echoed by our results.

In their study of the characteristics of desktop applica-
tions [9] Lee et al. observed that most of the instructions are
executed from a single dominant thread. In our experience
TLP can vary greatly based on the choice of OS and work-
loads. In this study we show that multiprocessing can have
beneficial effects even on standard desktop workloads.

Our previous investigations into the concurrency char-
acteristics of desktop applications have provided a high-
level view of a broad set of workloads on three operating
systems: Windows NT, Linux, and BeOS [6]. These results
showed that while most workloads under BeOS and Win-
dows NT use a relatively large number of threads, the actual
concurrency derived from them is limited and heavily
dependent on the workload and the operating system. In this
study we expand on these results by focusing in more detail
on interactive applications under Linux. On a previous ver-
sion of Linux that we studied, applications exhibited very
little concurrency (TLP of 1.0-1.13). This was partially due
to the fact that many of the applications did not use kernel
threads to work around reentrancy bugs in the C library, and
to the heavy use of the global kernel lock in the 2.2.13 ker-
nel. However, less than a year later, due to a more recent

FIGURE 1. Machine utilization and idle time of 52 workloads

The figure shows machine utilization and idle time of 52 workloads on a
quad-processor machine. The automated benchmarks were driven by a GUI
automation tool (e.g., Visual Test), while the realistic workloads were run
by a human.

0%

25%

50%

75%

100%

Benchmarks

Machine Utilization

Idle time

Automated
benchmark runs

"Realistic"
benchmark runs

130

Figure 2.3: Figure qualitatively describing the utilization differences between automated
desktop workloads and “realistic” runs performed by a user [3].

could be well parallelized and have a high machine utilization number during busy time.

However, it sits on idle and waits for user input for most of the total running time, which

drags down the average utilization number. To avoid that, we use Thread Level Parallelism

(TLP) [17, 3]. TLP is defined as the machine utilization over the non-idle portions of the

benchmark’s execution. The formula for TLP is given by Equation. 2.1:

TLP =

∑n
i=1 cii

1− c0
(2.1)

where ci is the fraction of time that i cores are concurrently running different threads, and

n is the number of cores. Specifically, c0 represents idle time fraction, which is excluded

because it does not count towards the program’s parallelism. Note that TLP is not a per-

formance metric; the software could still spawn threads that do not perform useful work.

Nevertheless, it is the natural metric to measure multi-core utilization, especially for inter-

active applications like the ones on a smartphone. The TLP serves as a good indicator of

the number of processors needed to support the execution of a parallelized workload.

9

2.1.1.2 Early Studies on TLP

Flautner et al. [3] proposed the definition of TLP in 2000. At that time, multi-core was

mostly exploited in research labs and appeared only in workstations and servers. They per-

formed a study of TLP on desktop applications and found that a dual-core system improves

the responsiveness of interactive programs. However, they also showed that desktop appli-

cations leveraged TLP very sparingly. This result was echoed 10 years later by Blake et

al. [17] with a similar study of TLP of contemporary software and hardware, when multi-

core had become the norm rather than the exception in home and office desktops. They

reported that 2-3 cores were more than adequate for almost all but a few domain specific

applications like Video Authoring. After observing low single-thread performance could

have a small impact on the TLP, they claimed that software is lagging behind and is the

main limiting factor in TLP.

Smartphones were already becoming popular during the time when Blake et al. pre-

sented their results, and they have continued to supplant desktops for many applications.

To reflect this it is important to analyze TLP behavior on mobile devices because the orig-

inal studies did not. Besides exploring a different hardware platform, we are also using a

slightly different set of benchmarks from the original work. Some categories of desktop

applications are rarely seen on mobile devices, such as Video Authoring and professional

Image Authoring. We also make some investigations into frequency scaling, which is es-

pecially interesting for smartphones and tablets due to their tight power budget.

2.1.2 The status quo for wearables

Battery life is still a major constraint for current wearable devices (Table. 4.1.) One typi-

cal method of reducing power consumption in smartphones is to reduce the brightness or

resolution of the screen, which takes up a large portion of the total power consumption.

However, the display in wearable devices already consumes a much lower portion of total

energy than those in a smartphone. It can be as much as 20-40× fewer pixels and has only

10

a relatively simple color scheme [18, 19]. Another major power consumer in wearables is

the wireless connectivity module, which is usually implemented in very specific commu-

nication ASICs and is difficult to further optimize [20]. Therefore, optimizing the power

consumption of the compute stack becomes critical.

2.2 Wearable Applications

In this section we discuss some of the common mobile applications, mostly used in Chap-

ter 4. First, we introduce some recent deep learning algorithms used in near-future appli-

cations, namely Multilayer Perceptron (MLP) and Convolutional Neural Network (CNN).

Then, we introduce some common always-on applications used in wearable devices.

2.2.1 Deep Learning Algorithms

Neural networks have been around for many decades[21, 22]. However, until 2006, deep,

fully connected neural networks were commonly outperformed by shallow architectures

that used feature engineering[23]. Three additional reasons have recently helped deep ar-

chitectures obtain state of the art performance: large datasets, faster, parallel computers and

new machine learning insights. In this time of “big data”, huge datasets can be collected

rather easily and cheaply by institutions, which can be used to train deep models with many

parameters. Improvement of multi-core CPU and GPU computing architectures gives op-

portunity to execute a large number of matrix multiplications, which are required by these

algorithms. All these leads to an increase of application using deep learning algorithms.

2.2.1.1 General Structures

Even though Deep and Convolutional Neural Networks come in various forms, they share

enough properties that a generic formulation can be defined. In general, these algorithms

are made of a (possibly large) number of layers; these layers are executed in sequence so

11

Figure 2.4: Multilayer Perceptron

they can be considered (and optimized) independently.

2.2.1.2 MLP (Multilayer Perceptron)

The Multilayer perceptron (MLP) is a neural network consisting of multiple mutually in-

terconnected layers of neurons. Every neuron in one layer is connected to every neuron in

the following layer. A non-linear function is applied to the neurons output of each layer.

2.2.1.3 CNN (Convolutional Neural Network)

Convolutional neural networks (CNNs) are mostly designed to recognize features in 2-

dimensional image data, but are used for various other purposes as well. CNNs are primar-

ily used for 2D image recognition, so we will illustrate their architecture on a 2D rectan-

gular image consisting of pixels. Each pixel generally carries colour information. Colour

can be represented by multiple channels (e.g. 3 RGB channels). For the sake of simplicity,

we will consider only one single channel (shades of gray) while explaining the model. The

neurons in CNNs work by considering a small portion of the image, let us call it subimage.

The subimages are then inspected for features that can be recognized by the network. As

a simple example, a feature may be a verticalline, an arch, or a circle. These features are

then captured by the respective feature maps of the network. A combination of features is

12

Figure 2.5: Convolutional Neural Network

then used to classify the image. Furthermore, multiple different feature maps are used to

make the network robust to varying levels of contrast, brightness, colour saturation levels,

noise, etc.

2.2.2 Always-on applications for wearables

We examine several example categories of always-on applications, which are summarized

in the following subsections.

2.2.2.1 Keyword spotting

Keyword spotting is a detection task to identify the presence of specific spoken words in a

stream of speech signals. It is often used to trigger automatic speech recognition and spoken

dialog systems. It is common in wearable devices when hands-free activation is desired.

Examples include detecting ”OK Google” when wearing a Google Glass or ”Hey Siri”

when wearing an Apple watch. Keyword spotting can be implemented using classification

techniques, such as hidden Markov models (HMM) [27] to identify different keywords.

More recently machine learning algorithms based on Deep Neural Networks [28] and Re-

13

current Neural Networks [29] are being deployed because their better detection accuracy.

2.2.2.2 Seizure detection

Epileptic seizure detection refers to the use of algorithms to recognize the occurrence of a

seizure. Typically these algorithms are based on the analysis of biological signals from a

patient with epilepsy. They can be deployed in smartwatches or health wristbands for quick,

always-on detection. The algorithms are typically based on a nearest-neighbor classifier of

EEG features [30, 31], or the RNN technology mentioned above [32, 33].

2.2.2.3 Face detection

Face detection is the detection of a face in a scene. It is commonly used as a front-end to

trigger facial recognition. It appears in Google Glass and smart home detection devices.

Due to its wide range of application, face detection algorithms have been studied heavily.

Recent implementations include DNNs [34] or Convolution Neural Networks (CNN) [35,

36]. The former is easier in terms of memory access patterns but the latter is usually more

suitable for image processing.

2.2.2.4 Wake on user gesture

Wake-on user gesture is the feature of some wearable devices which can be activated using

certain user-specified gestures. This enables the device to recognize who is interacting.

For an entertainment device, it can recognize the user and load the right game profile or

music play list. For a home climate control, it can adjust the environment to the wearer’s

preference. This feature can be implemented using one-vs-all classification [37] or margin

classifiers [38].

14

CHAPTER 3

An Analysis of Mobile Device Utilization

Mobile devices are becoming more powerful and versatile than ever, calling for better em-

bedded processors. Following the trend in desktop CPUs, microprocessor vendors are try-

ing to meet such needs by increasing the number of cores in mobile device SoCs. However,

increasing the number does not translate proportionally into performance gain and power

reduction. In the past, studies have shown that there exists little parallelism to be exploited

by a multi-core processor in desktop platform applications, and many cores sit idle dur-

ing runtime. In this chapter, we investigate whether the same is true for current mobile

applications, and ask the question if quad- and octa- core designs are beneficial.

We analyze the behavior of a wide range of commonly used mobile applications. We

measure their Thread Level Parallelism (TLP), which is the machine utilization over the

non-idle runtime. Our results demonstrate that mobile applications have TLP less than

2 on average, and we observe a small return on utilization when the number of cores is

increased. Test on high load scenarios suggest that this is due to the nature of mobile

devices and utilization cannot be increased easily. However, further analysis shows that

TLP tends to appear in peaks, which gives opportunity for multi-core devices to gain better

power efficiency. In all, we suggest that increasing cores aggressively may not be the right

choice, and looking into the interactive nature of mobile applications can a good direction.

15

3.1 Introduction

Nowadays, mobile devices are gradually taking over the functions of traditional desktop ap-

plications. High-definition video playback, interactive games and web browsing are com-

monly supported by the latest smartphones and tablets. These performance-intensive tasks

need powerful hardware support, which drives microprocessor vendors to continuously

produce better mobile CPUs. Given the strict power budget of mobile devices, vendors

reached the limits of frequency scaling quickly and turned to multi-processors. The first

dual-core smartphones, such as Galaxy S II and HTC Sensation, came to market in 2011.

Most of the high-end smartphones released in 2012 were dual-core or quad-core; in April

2013, the Samsung Galaxy S4 was released with the Exynos 5 Octa, which uses ARM’s

big.LITTLE architecture and has a total of eight cores. Mediatek shipped their octa-core

SoC in late 2013, and Qualcomm announced their octa-core CPU with eight A53s in early

2014 as well.

However, some recent smartphones are still equipped with dual cores. Apple’s new

A8 Chip for the iPhone 6, released in September 2014, uses a dual-core CPU and still

provides satisfactory performance. This leads to the question: How much of the computa-

tion potential residing in multi-core CPUs is actually being utilized? On the desktop end,

Blake et al. [17] did a study on Thread Level Parallelism (TLP) on a suite of representative

desktop applications. Their work was to measure the core utilization in modern multi-core

CPUs, and they suggested that the number of cores that can be profitably used is less than

3 for most commonly used applications. It is possible that mobile device applications have

similar characteristics and cannot effectively utilize a quad-core CPU, let alone hexa- and

octa-core. Moreover, the GPU, DSPs, and ASICs in these systems already exploit much of

the parallelism, leaving little for the CPU.

To make some observations about the benefit of multi-core, we performed two prelim-

inary experiments on an up-to-date quad-core mobile device platform. First, we measured

how many cores are actually activated by the Android OS when running an application.

16

We found that the fourth core was only activated in 2 out of 21 apps, and the OS also shut

off the third core for nearly half of the apps. Note that activation does not mean the core

is in use; it only means the OS thinks that the core might be used. Second, we overrode

system setup and manually set the number of activated cores in the system. Then we ran a

browser benchmark [15]; we saw a significant performance improvement from single-core

to dual-core, but negligible improvements from dual-core to triple- and quad-core. Both of

these results show rather modest gains from high numbers of cores (here more than 2). In

all, to measure how much parallelism actually exists is helpful to: a) inform vendors and

prevent them from over-provisioning hardware that cannot be effectively used, b) highlight

the need to find more parallelism, c) provide suggestions for a better design.

In this work, we analyze a broad range of popular mobile applications to determine how

the growing number of cores are utilized. We measure the Thread Level Parallelism (TLP)

of these applications. The results show that mobile apps are utilizing less than 2 cores on

average, which means multiple cores are used rather infrequently. A small TLP scalabil-

ity is observed for most applications, and increasing the number of cores has diminishing

return on TLP. Even in heavy-load real-world scenarios with background applications or

multi-tab browsing, there is still not enough work to keep utilization high. Due to the

physical constraint and interactive user pattern, mobile applications tend to have less par-

allelism to exploit than desktop applications. The GPU and mobile co-processors on chip

also reduce CPU load. All these factors, and the history of the slow pace of exploiting par-

allelism in desktop and mobile software environments [17, 40], indicate that having many

powerful cores is over-provisioning. Further analysis suggests that current mobile appli-

cations can benefit from a system with the flexbility to satisfy high performance and good

energy-efficiency for different application phases. We find that TLP behavior exhibits short

peaks and long valleys rather than remaining constant. Peaks require high performance, but

not necessary good energy-efficiency because these peaks are usually short, meaning that

power has less affect on overall energy consumption. Valleys, on the other hand, desire

17

better energy-efficiency because they do not require high performance but usually domi-

nate the application execution. There is also a number of other research opportunities that

arise, such as building accelerators or customized hardware to further reduce the thread’s

TLP peaks with better energy efficiency, or building better OS infrastructure to utilize mo-

bile heterogeneous systems.

To summarize, we make the following contributions:

• We construct a suite containing representative Android applications from a variety of

categories, as well as their corresponding test actions.

• We measure the Thread Level Parallelism (TLP) of mobile applications on current

mobile device platforms and show it is less than 2 on average.

• We observe diminishing returns of TLP when increasing the number of cores. Heavy-

load test cases also show low TLPs, which suggests there is not a lack of hardware

resources. Both demonstrate that having many powerful cores is over-provisioning.

• We make the case for the need of a flexible system that can accommodate both high

performance and good energy-efficiency for different program phases.

The rest of the chapter is organized as follows: In Section 3.2 we describe the system

setup, measurement method, and benchmarks used. Section 3.3 presents and analyzes the

results. We discuss the related works in Section 3.5 and conclude the chapter in Section

3.6.

3.2 Methodology

3.2.1 System Setup

We use the Odroid XU+E board [41]. It has a Samsung Exynos 5410 SoC, which contains

an ARM big.LITTLE octa core of four 1.6GHz A15s and four 1.2GHz A7s. Each core has

18

its own 32KB/32KB L1 instruction and data cache; the four A15s share a 2MB L2 cache

and the A7s share a 512KB L2 cache. Either four A15s or four A7s can be enabled at the

same time, but not a mixture of them. The Odroid board has a PowerVR tri-core GPU

running at 480MHz and with 2GB main memory. It also has an on-board current/power

semiconductor sensor which measures the current/power consumption of CPUs, GPU and

memory separately1. We run Android version 4.4.2 (Kitkat) and Linux kernel version 3.4.5.

We choose the use the ART runtime instead of the older Dalvik. A web-cam is connected

as smartphone camera.

3.2.2 Measurement

3.2.2.1 TLP

To get the TLP number, we track all the context switches that happen in the system, which

reveals the information about the status of each core. For instance, a context switch from

SurfaceFlinger to swapper on Core #0 indicates this core has turned from busy to idle.

This information gives us the number of running cores at any time, which is sufficient to

calculate TLP. Moreover, we can get information about which thread is running and filter

out observation overhead threads. For example, we treat adbd, the Android Debug Bridge

thread, as swapper. The core that is running adbd would then be treated as idle, preventing

an overestimation of TLP. We use ftrace [42], a Linux kernel internal trace, to get context

switches. The data we gathered contains task names, ids, CPU Number, and timestamp.

3.2.2.2 GPU utilization

For the PowerVR on the Odroid board, we directly read GPU utilization numbers from the

sysfs interface provided. For the Mali GPU on the Origen board, we directly use a function

from Mali GPU driver which monitors GPU utilization. This function is originally used for

GPU dynamic voltage and frequency scaling.
1For CPU power, we measure the sum of power of big and little clusters.

19

3.2.3 Benchmarks

In this work we test a diverse range of real-world Android applications. We prefer ap-

plications that are: a) most widely used by users; b) from a broad range of diversified

categories. Applications are also categorized in the Play Store, which make us easy to find

applications in different categories. We choose not to use existing Android benchmark ap-

plications; the reason is that they mostly focus more on CPU or GPU performances and do

not reflect the real scenarios. The tests are usually very CPU-intensive in order to test its

peak performance; however, in real application this happens rather infrequently. We will

show relevant result in Section. 3.3.1. Based on these requirements, we choose 18 top-pick

applications from the Google Play Android App store, and 4 native ones in the Android

OS. Most Android users download and install their applications using the Android Play

Store, therefore its scores and ranking can be used as an credible indication of the pop-

ularity of Android applications. This means they are the applications commonly used in

their category and are thus representative of current mobile software. They come from 10

different categories: browser, video player, music player, image viewer, communication,

games, social networking, navigation, office, and file browser. They make use of important

hardware resources on a mobile device (CPU, GPU, co-processors, etc).

We then perform test actions on each of the testing applications. Three applications

(browser, Adobe reader and MX Player) are so widely used that they have already been

included in some benchmarks [15, 43, 44], therefore we leverage the existing work and

use their implementation directly. For other applications, we design a series of actions that

cover most typical functions of the application under test. We also refer to the study in [45]

on mobile applications usages, including what the popular applications are and how long

each session (from opening to closing) normally last. Test actions on the Odroid board are

automated using android adb commands and RERAN, a record and replay tool for Android

OS [46]. These actions usually last for 30 seconds, and covers most typical functions of

the application under test. We found 30 seconds is long and effective enough to cover all

20

common actions for the benchmark applications we have chosen. Meanwhile, we keep

them as simple as possible to maximize the operator’s ability to produce a repeatable input.

All experiments are repeated at least 5 times for more accurate results, and applications that

require an Internet connection are repeated for at least 10 runs. We observe a low standard

deviation of TLP results as shown in Section. 3.3.1.

It is also important to test TLP of scenarios with background applications, to reflect

common daily usage. We also test three applications with a set of other applications running

in the background. The three applications under test are Angry Birds, Adobe reader, and

Chrome, while the background applications are Hangout, Spotify, and Email.

Except for multi-tasking tests, we kill all the running and background applications be-

fore testing to reduce experimental errors. We also never test the application in the same

category consecutively; for instance, after a test run of Browser (no matter on stock An-

droid Browser or Chrome), we will start testing applications in a new category like Gallery

or Fruit Ninja but not testing either browser again immediately. We do this to avoid cache

thrashes. In our suite, most of the applications does not require an Internet connection.

We briefly introduce each application, and its corresponding test actions in the follow-

ing subsections. We summarize our benchmark in Table. 3.1.

3.2.3.1 Web browser

Web browsing has always been one of the most common usages since the introduction of

smartphones. We use the Realistic General Web Browsing (R-GWB)[44], an automatic

webpage rendering benchmark. It comprises offline pages of several most popular web-

pages, all of which utilize modern web technology such as CSS, HTML, ash, and multi-

media. During the experiment, MobileBench uses JavaScript to load each webpage and

then scroll over it with a pre-set speed. By doing so, it simulates an actual web browsing

scenario. We run MobileBench on three popular browsers: the Android stock web browser,

Firefox, and Chrome. For each test, we iterate through the MobileBench webpage set five

21

Category Application
Browser (MobileBench) Stock Browser

Firefox
Chrome

Video Player MXPlayer
Netflix

Music Player Stock Music
Spotify

Image Viewer Stock Gallery
Instagram

Communication Skype
Google Hangout

Games Angry Bird
Fruit Ninja
Jetpack

SNS Facebook
Twitter

Navigation Google Maps
Office Adobe reader

Stock Email
Kindle

File Manager Dropbox
ES File Browser

Table 3.1: Applications

22

times, and profile the third one. We do not impose any other user input as MobileBench is

automatic itself.

3.2.3.2 Video Player

Video playback is another commonly used application for smartphones. Specialized de-

coders and DSPs have made high-definition video easily available on current mobile de-

vices. We use two applications: MXPlayer, a video playback application and Netflix, an

online streaming application. We test both applications by playing a video for 30 seconds,

with a 1 second pause at the 15th second of each of the tests.

3.2.3.3 Music Player

People are gradually replacing traditional music players with phones. We use the Android

stock music player and Spotify for testing music players. Spotify is a music player that

supports online music streamling. We test both of the two apps by running a series of

actions including open new song, jump to an arbitrary position of the song (not in spotify),

and open another song.

3.2.3.4 Image Viewer

One important function of modern smartphone is taking photos. Image viewers, in turn,

become one of the commonly used application categories. We use Android stock image

viewer (Gallery) and Instagram for testing image viewers. We test it by opening images,

scrolling between images, opening another image and new folders, and playing a slideshow

for a couple of seconds. Instagram is mobile photo-sharing service. Users take pictures

share them on a variety of social networking platforms. We test it by scrolling new feeds,

opening a picture, applying Amaro filter and changing brightness to 75, and then sharing

the picture.

23

3.2.3.5 Communication

We use Google Hangout and Skype here. We test both of these applications by initialing a 1

minute video call, 30 seconds in foreground and 30 seconds in background (approximating

an audio call).

3.2.3.6 Games

Mobile Games are becoming extremely popular these days. Many of them are actually

very performance and graphic intensive, which makes them a good testing benchmark for

CPU and GPU. The three games we choose are Angry Birds, Fruit Ninja, and Jetpack.

Angry Bird is a puzzle video game; in the game, players use a slingshot to launch birds at

pigs stationed on or within various structures, with the intent of killing all the pigs on the

playing field. We play this game by entering the first stage, firing two birds with one miss

and one hit. Fruit Ninja is an action game with lots of floating objects and high-frequency

user input. It represents a more intensive mobile game comparing to Angry Birds. We play

this game in the “zen mode”, where fruit keeps spawning for 90 seconds. During testing,

the tester keeps sliding with a constant frequency horizontally in the upper middle of the

screen. Jetpack Joyride is a game where the player tries to control the rider to avoid barriers

and collect coins. We play this game by tapping the screen at a regular frequency for 45

seconds.

3.2.3.7 Social Networking

We choose the apps from two major Social networking service providers, Facebook and

Twitter. When testing Facebook, we scroll feeds, open up the pictures in the feeds and

browse the profile of the user. The action of testing Twitter includes clicks on tweets,

checking out picture in the tweets and looking at the profile of the tweeter.

24

3.2.3.8 Navigation

GPS are ubiquitous on mobile devices. People use navigation apps to help them find places

or guide routes. The most popular navigation application on Android platform is Google

Maps. We test Google Maps by searching directions between airports in New York city:

we search driving directions from Newark to JFK, then public transportation from JFK to

LaGuardia. We also save an offline map of New York city to avoid fetching map data from

the Internet during testing.

3.2.3.9 Office

The office category contains a broad range of commonly used apps. We test the following:

1) Android stock Email — we test it by writing an email and save that as a draft, sending

it, checking and downloading new email. 2) Adobe reader — actions here include opening

a pdf, zooming in and out, scrolling pages and searching for a keyword. 3) Amazon Kindle

— actions here include opening a book, scrolling and jumping to arbitrary positions.

3.2.3.10 File Browser

The increasing storage capacity of mobile devices lead people to use that as a mass storage.

File browsers are then helpful in organizing files. We test Dropbox and ES File Browser.

For Dropbox, we open and change folders, sort the content in the folder, do searching and

editing new text file. For ES File Browser, we open the folders on the SD cards, scroll the

images in it, sort and change the view of the folder.

3.2.3.11 Background

The background applications we choose are Google Hangout (video chatting), Spotify

(playing music), Email (checking emails)2. With those applications we test Fruit Ninja,

2During the test we automatically send an email to the account on board from the host machine every half
minute

25

Maps, and Adobe Reader.

3.3 Results

In this section, we present our experimental results and analysis of mobile device utiliza-

tion, specifically on CPU and GPU. First, we show that current mobile applications have a

rather low average TLP on modern mobile device platforms. We show that increasing the

number of cores has diminishing returns on TLP. Even some heavy-load real-world scenar-

ios do not use many cores. High GPU utilization also indicates that some of the parallelism

is already offloaded from the CPU to the GPU. All these factors, and the history of the slow

pace of exploiting parallelism in desktop environments [17], suggests that having many

powerful cores is likely to be over-provisioning.

3.3.1 Overall Results

We list a summary of the results in Table. 3.2. Each row in the table shows the TLP and

standard deviation (σ) for an application type. The first line, “System”, refers to the plain

Android OS testing environment without any application running; the last line, “Average”,

is the average of the statistics of all tested applications. The standard deviation of the

TLP over runs for each application is low. This indicates the tests are reproducible and

insensitive to user input variation.

We make two observations based on these results:

1) All the applications demonstrate some, but quite limited TLP.

For Android, even in a case where a developer writes code with no awareness of multi-

threading, a number of threads are still created for external I/O, garbage collection, graphics

rendering, etc. This means that even a programmer with no idea about multithreading could

benefit from parallel processing on different CPU cores. Moreover, many software devel-

opers are aware of the multi-core hardware they are using and write applications explicitly

26

Category App TLP σ (TLP)
System [None] 1.03 0.00
Browser Stock Browser 1.47 0.03

Firefox 1.31 0.02
Chrome 1.66 0.01

Video Player MXPlayer 1.34 0.01
Netflix 1.53 0.07

Music Player Stock Music 1.29 0.03
Spotify 1.23 0.05

Image Viewer Stock Gallery 1.46 0.03
Instagram 1.31 0.03

Communication Google Hangout 1.82 0.15
Skype 1.55 0.13

Games Angry Birds 1.31 0.08
Fruit Ninja 1.40 0.12
Jetpack 1.54 0.09

Social Network Facebook 1.43 0.04
Twitter 1.32 0.04

Navigation Google Maps 1.59 0.06
Office Stock Email 1.52 0.04

Adobe Reader 1.30 0.05
Kindle 1.45 0.01

File Browser Dropbox 1.33 0.02
ES file browser 1.22 0.02

Background Back Fruit 1.65 0.12
Back Maps 1.91 0.11
Back Adobe 1.60 0.14

Average 1.46 0.06

Table 3.2: TLP results for the Odroid board — using ondemand governor.

27

68.7%	

24.3%	

6.1%	

0.8%	
 4	
 core	
 system	
 1	
 core	
 2	
 cores	

3	
 cores	
 4	
 cores	

56.2
%	

30.6
%	

11.4
%	

2.0
%	

Google	
 Maps	

60.9
%	

32.2
%	

6.4
%	

0.5
%	

Browser	

76.8
%	

18.8
%	

3.6
%	

0.9
%	

Music	

Figure 3.1: Time breakdown of how the multi-core is utilized. The big pie chart on the
right shows an average result of all application categories we tested. The smaller pie charts
show the breakdown of three representative kinds of apps: Google Maps with the highest
TLP, stock Browser, and stock Music with a low TLP.

with multiple threads.

However, the parallelism we observed is generally still quite low. On average, we see

a TLP of 1.46. The application with the highest TLP, Google Hangout, has a TLP of just

1.8. Applications like Music and File Browser have rather low TLP, around 1.2 to 1.3. This

result shows, on average, the system is using less than 2 cores.

2) Multi-core is utilized infrequently.

We present a time breakdown of how the multi-core system is utilized in Fig. 3.1. The

big pie chart on the right shows an average result of all application categories we tested.

The smaller pie charts show the breakdown of three representative application categories.

We observe a very low 4-core and 3-core utilization; on average only 0.68% of all the non-

idle time is the system fully utilized (all four cores running), and 5.81% of the time when

three cores are used — this means there is only a small amount of time that four or three

cores are being utilized at the same time.

28

#0

#1

#2

#3

CPU Usage: 200%
TLP: 1.5

Application A Application B

CPU Usage: 200%
TLP: 1.5

CPU Usage: 150%
TLP: 1.5

CPU Usage: 125%
TLP: 1.8

Figure 3.2: Application B exploits better parallelism than Application A: A uses more CPU
time but has less TLP. Note the number in the graph is merely symbolic and do not reflect
actual results.

3) Performance-intensive tasks do not necessarily mean high TLP.

Intuitively, applications with high CPU usage should utilize more cores and thus have

a high TLP. However, we find several applications have both high TLP and relatively low

CPU utilization. For instance, Android native browser has better TLP but less CPU usage

than Firefox.

We believe it shows that how software is written has critical affect on TLP. We illustrate

a possible scenario in Fig. 3.2. Compared to Application A where the single thread on Core

#0 takes up much more work than other threads, Application B parallelize its work better so

it utilizes more benefit from multi-cores. Another pair that shows similar result is Google

Maps and Fruit Ninja. Google Maps has a higher TLP of 1.590 than that of Fruit Ninja

(1.391) but only has half the CPU utilization. Comparatively, Google Maps has more

content that gets parallelized: graphic rendering for map, Internet connection for search

and route inquiry, user interface, etc. On the other hand, Fruit Ninja has less threads; we

observe one core keeps near 100% usage all the time running one single main thread of

Fruit Ninja, while some of the other cores sit idle. This result shows that rather than the

inherent function of the application itself, the way software is written also has a very large

impact on exploiting the TLP.

29

1.0	

1.1	

1.2	

1.3	

1.4	

1.5	

1.6	

1.7	

Browser	
 Video	
 Music	
 Comm-­‐	

unica<on	

Games	
 Image	
 Social	
 Naviga<on	
 Office	
 File	

Browser	

4	
 core	
 3	
 core	
 2	
 core	

Figure 3.3: Overall TLP result for different number of cores

3.3.2 Core Scaling

Microprocessor vendors put more cores on a chip to exploit more parallelism in the system.

Therefore, it is important to consider the change of TLP as the system scales from 2 to 3 to

4 cores.

We show our TLP results in Fig. 3.3 and 3.4. We change the number of active cores

in the system and repeat the same experiments for TLP. For each category, the leftmost

bar shows the TLP when 4 cores are kept activated. The middle one shows the TLP when

the fourth core is shut down and the remaining 3 cores are kept activated. Similarly, the

rightmost bar shows the system configuration with 2 cores. The results demonstrate:

1) Increasing the number of cores has little impact on TLP.

On average, TLP increased by 7.03% when we switch from a 2-core system to a 3-core

system, and only 3.47% from a 3-core system to a 4-core system.

2) Most applications show some scalability, but not much.

Particularly, Games, Navigation, Office and Social apps show over a 10% increase of

TLP from a 2-core to a 4-core system. File manager only shows a 5.6% increase. Most apps

show small increases in TLP from 3-core to 4-core which are below 4%. This indicates that

the software does not generate many concurrently parallel threads during its execution.

Fig. 3.5 presents the average multi-core utilization for a system with only 3 cores and

2 cores enabled. We observe similar results to that of the 4-core system: the third core is

30

1	

1.1	

1.2	

1.3	

1.4	

1.5	

1.6	

1.7	

C4	
 C3	
 C2	
 C4	
 C3	
 C2	
 C4	
 C3	
 C2	

Adobe	
 Chrome	
 Angry	
 Birds	

Figure 3.4: Increase of TLP with background apps (shown as red regions)

68.0%	

26.0%	

5.9%	
 3	
 core	
 system	

1	
 core	
 2	
 cores	
 3	
 cores	

72.1%	

27.9%	

2	
 core	
 system	

1	
 core	
 2	
 cores	

Figure 3.5: CPU breakdown for 3-core and 2-core system. This result is the average of all
applications.

31

utilized very infrequently and the majority of time only the first core is used.

3.3.3 Heavy Load Scenarios

Intuitively, a multi-core system is beneficial when the CPU load is high. In this section we

test the TLP of a couple of heavy load scenarios.

3.3.3.1 Background Applications

It is now common to have several applications like music or email checking running in

background concurrently with a foreground application. One argument that favors having

more cores is that they can boost performance of such scenarios. We measure the TLP of

several applications with a set of background applications running concurrently (described

in Section. 3.2.3), and present our result in Table .3.2 and Fig. 3.4. The results demonstrate

that background applications only lead to limited increase in TLP, and we are still not fully

utilizing all four cores with background activities.

3.3.3.2 Multi-tab Web Browsing

We test multi-tab scenarios to see how mobile browser applications exploit parallelism

under high load circumstances. We measure the TLP and performance of MobileBench on

different CPU configurations. We run one, two and three MobileBench tabs concurrently

and measure the average of the metrics. We manually switch between tabs constantly to

make them appear in the foreground for similar amount of time. Fig. 3.6, 3.7, 3.8, 3.9 show

the results. The maximum TLP is still below 2 for big cores and 2.2 for little cores, and

there is significant performance degradation when increasing the number of tabs.

The reason for low TLP here is that even for these two cases, we do not see a real

“multi-tasking” scenario; instead, we see a main task and several light-load tasks, and that

does not exhibit a high TLP. For instance, for multi-tab browsing, only the visible web

pages will be loaded at regular speed, and all background pages will be given much less

32

TLP_bC4	

TLP_bC2	

TLP_bC1	
 1	

1.1	

1.2	

1.3	

1.4	

1.5	

1.6	

1.7	

1.8	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

1	
 2	
 3	

TL
P	

Pe
rf
or
m
an

ce
	
 o
f	
 M

ob
ile
be

nc
h	

(H
ig
he

r	
 i
s	
 b

e6
er
)	

Number	
 of	
 Tabs	

score_bC4	
 score_bC2	
 score_bC1	

Figure 3.6: Performance and TLP results for browser. Performance are shown in columns
and TLP in lines. Performance scores are calculated by taking the inverse of MobileBench
rendering time then normalize against the worst score in each graphs. For instance,
score bC4 stands for performance of four big cores, lC2 for two little cores, etc. For
each CPU configuration, we test three scenarios: 1, 2 and 3 tabs running MobileBench
on Chrome. This graph shows big cores with stock Browser.

priority and use less CPU. Energy and thermal constraints are tight in mobile devices. It

might be that the developers realize there is not enough need for implementing a fast but

energy-hungry multi-tab browser for mobile phones. Reasons may include small display

size or typical user behavior. In other words, the physical constraints and use pattern could

reduce the amount of parallelizable work of mobile applications. In the future, we may

have phones with bigger screens and higher resolutions, but human user perception will

not change. On the other hand, the desktop TLP study by Blake et al. [17] showed the

TLP of desktop applications remained relatively low, even after 10 years of effort writing

parallelized software. Similarly, we have not seen a significant increase in TLP compared

work from one year ago [40]. Clearly, parallelizing software is an extremely challenging

problem, particularly for desktop/mobile applications.

33

TLP_lC4	

TLP_lC2	

TLP_lC1	
 1	

1.1	

1.2	

1.3	

1.4	

1.5	

1.6	

1.7	

1.8	

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

0.35	

0.4	

1	
 2	
 3	

TL
P	

Pe
rf
or
m
an

ce
	
 o
f	
 M

ob
ile
be

nc
h	

(H
ig
he

r	
 i
s	
 b

e6
er
)	

Number	
 of	
 Tabs	

score_lC4	
 score_lC2	
 score_lC1	

Figure 3.7: Performance and TLP: little cores with stock Browser

TLP_bC4	

TLP_bC2	

TLP_bC1	

1	

1.2	

1.4	

1.6	

1.8	

2	

2.2	

2.4	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

1	
 2	
 3	

TL
P	

Pe
rf
or
m
an

ce
	
 o
f	
 M

ob
ile
be

nc
h	

(H
ig
he

r	
 i
s	
 b

e6
er
)	

Number	
 of	
 Tabs	

score_bC4	
 score_bC2	
 score_bC1	

Figure 3.8: Performance and TLP: big cores with Chrome

TLP_lC4	

TLP_lC2	

TLP_lC1	

1	

1.2	

1.4	

1.6	

1.8	

2	

2.2	

2.4	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

1	
 2	
 3	

TL
P	

Pe
rf
or
m
an

ce
	
 o
f	
 M

ob
ile
be

nc
h	

(H
ig
he

r	
 i
s	
 b

e6
er
)	

Number	
 of	
 Tabs	

score_lC4	
 score_lC2	
 score_lC1	

Figure 3.9: Performance and TLP: little cores with Chrome

34

1.0	

1.1	

1.2	

1.3	

1.4	

1.5	

1.6	

1.7	

1.8	

1.9	

Browser	
 Video	
 Music	
 Comm-­‐	

unica>on	

Games	
 Image	
 Social	
 Naviga>on	
 Office	
 File	

Browser	

4	
 core	
 3	
 core	
 2	
 core	

Figure 3.10: TLP result for the little cores

62.2%	

27.5%	

8.8%	
 1.5%	
 Breakdown:	
 li6le	
 cores	

1	
 core	

2	
 cores	

3	
 cores	

4	
 cores	

Figure 3.11: Average CPU Time breakdown: little cores

3.3.4 Alternative Architecture

3.3.4.1 Little Cores

We also perform the same set of TLP tests on the little cores in order to see how a less

powerful CPU would affect TLP. We present our results in Fig. 3.11. Both the TLP and the

average percentage of time that four or three cores are utilized has increased when using

little cores compared to big cores. One reason is that tasks on more powerful cores run

faster and finish earlier, reducing the overlap between them. This result suggests that as

CPU architecture designs improve, exploiting TLP will be harder. The CPUs will be less

utilized if software developers fail to produce better parallelized program.

Nevertheless, we still have TLP less than 2. Further suggesting that software is still the

main limiting factor in exploiting TLP.

35

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Browser Video Music Games Image Social Navigation Office File	Browser

4	core 3	core 2	core

Figure 3.12: TLP result for the Origenboard (Quad-core 1.4 GHz A9)

3.3.4.2 A9 and Krait CPUs

We also perform the same set of TLP tests on two other development boards: the Origen

board and Dragon board. The results are shown in Fig. 3.12, 3.13 and Fig. 3.14, 3.15. There

are two observations to make: a.) both boards still show a limited amount of TLP; b.) the

Origen board has higher TLP and 4-core and 3-core time than that of the Dragonboard.

This echoes the observation in 3.3.2 that more powerful CPU tends to have less TLP.

In all, this result implies that as CPU architecture designs continue to evolve, exploiting

TLP will be harder in more powerful cores. The CPUs will be less utilized if software

developers fail to produce better parallelized program.

3.3.5 GPU

Applications like games and web browsers require large amount of graphical computation.

On the hardware side, almost all mobile device SoCs now contain their own GPU units. On

the OS side, the Android 2D rendering pipeline has started to support hardware acceleration

in Android 3.0 (Honeycomb). Hardware acceleration is enabled by default from Android

4.0 (Ice Cream Sandwich). Therefore, it is important to analyze the actual utilization of

36

1	core,	
66%

2	cores,	
26%

3	cores,	
7%

4	cores,	
1%

1	core 2	cores
3	cores 4	cores

Figure 3.13: Average CPU Time breakdown: Origenboard

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

Browser Video Music Games Image Social Navigation Office

4	core 3	core 2	core

Figure 3.14: TLP result for the Dragonboard (Quad-core 2.15 GHz Krait 300)

37

1	core,	
74%

2	cores,	
20%

3	cores,	
5%

4	cores,	
1%

1	core 2	cores
3	cores 4	cores

Figure 3.15: Average CPU Time breakdown: Dragonboard

mobile device GPUs.

We measure the GPU utilization of the same suite of applications on the Odroid board.

We show our experimental result of GPU usage in Fig. 3.16. For each category, the leftmost

bar shows the average GPU utilization when 4 big cores are kept activated, then 3 big cores,

2 big cores, and little cores. We have not found much variance when we change the number

and type of CPU cores. Average GPU utilization is 24.1%, and some specific applications

such as games, communcation (chats in the graph) and navigation utilize a considerable

amount of the GPU. This is an indication that a part of the parallelism is already offloaded

from the CPU to the GPU, which reduces the amount of parallelism that the CPU can

exploit.

Given the availability of programmable GPUs, an increasing amount of general-purpose,

non-graphics work can be offloaded from the application cores to the GPU or other acceler-

ators for performance and energy efficiency. This led us to examine the energy efficiency of

computation offloading for mobile platforms. We analyze several applications on both the

CPU and the GPU and present the results in Fig. 3.17. We run the OpenMP and OpenCL

38

0%	

5%	

10%	

15%	

20%	

25%	

30%	

35%	

40%	

45%	

50%	

Browser	
 Video	
 Music	
 Chat	
 Games	
 Image	
 Social	
 NavigaAon	
 Office	
 File	
 Browser	

4	
 big	
 cores	
 3	
 big	
 cores	
 2	
 big	
 cores	
 4	
 liGle	
 cores	
 3	
 liGle	
 cores	
 2	
 ilGle	
 cores	

Figure 3.16: GPU utilization of different category of apps. Columns with different colors
represent system configuration with different number and kind of cores activated.

versions of three machine learning algorithms – kmeans, backpropagation (BP), and near-

est neighbor (NN) as well as a streaming algorithm Daxpy on a Qualcomm Snapdragon

board, one of the few development boards which support offloading for general-purpose

GPU applications. We evaluate the machine learning algorithms because these are the

important building blocks of application domains such as audio recognition, image recog-

nition/processing, and recommendation algorithms.

The programs running on the Krait CPU are written in OpenMP whereas the programs

running on the Adreno GPU use OpenCL to exploit the heterogeneous GPU compute unit.

We find that for Daxpy, the Krait CPU achieves higher energy efficiency than the GPU

(less than 1). This means that when the parallelism can be well exploited by the software,

Daxpy, and when the instructions are simple enough for the CPU, the energy efficiency of

the multicore CPU can be equivalent or slightly higher than that of the GPU. On the other

hand, for the machine learning algorithms, GPU offers higher energy efficiency of varying

degrees. This suggests that, for software where there is an ample amount of thread- and

data-level parallelism, e.g., the machine learning algorithms, and where there are instruc-

tions that can be accelerated by the GPU, e.g., the multiplication, sqaure root mathematical

functions, it is more beneficial to offload the computation to the GPU or other accelerators

39

0	

0.5	

1	

1.5	

2	

2.5	

0	

10	

20	

30	

40	

50	

60	

70	

Kmeans	
 BP	
 NN	
 Daxpy	

En
er
gy
	
 E
ffi
ci
en

cy
	
 o
f	
 G

PU
	

no
rm

al
iz
ed

	
 to
	
 C
PU

	

EN
ER

G
Y	

CO

N
SU

M
PT

IO
N
	
 (J
)	

APPLICATION	

CPU	
 Energy	
 GPU	
 Energy	
 Energy	
 Efficiency	

Figure 3.17: Energy consumption and energy efficiency (defined as performance per watt)
comparison for Krait CPU vs. Adreno GPU.

for performance and energy efficiency. For workloads with more branch-divergence, or

with a small amount of parallelism, it is more efficient to run them on the CPU. In short,

the variety of mobile workloads suggests that we should look deeper into building a suit-

able heterogeneous system to take advantage of the different types and the varying degree

of parallelism and better utilizing the existing hardware real estate.

3.4 Suggestions

In the previous section, we demonstrate that current mobile applications are not fully utiliz-

ing mobile devices, and simply adding more cores can be over-provisioning. However, it is

not clear yet what kind of system is more desired for mobile devices. In this section, we try

to shed light on this question by further analyzing the TLP behavior and energy efficiency

of current CPUs. We make the following two observations:

a) TLP behavior exhibits short peaks and long valleys rather than staying constant.

This suggests that during peak TLP times, higher performance is desired: the system needs

to be kept responsive for better user experience, also these peaks are short so the extra

computation power will not have a big impact on total energy consumption. During low

40

TLP times when the performance requirement is low, better energy-efficiency is required

as any extra power will be a waste and will affect battery life.

b) For current systems, there is a distinct energy-efficiency difference between the big

and little cores.

Based on these observations, we argue that current mobile applications can benefit from

a system that has flexibility to accommodate both high performance and good energy-

efficiency under different applications as well as different program phases. Architectures

including heterogenous multi-cores. [47, 48] and flexible core architectures[49, 50, 51]

might be among the possible solutions.

3.4.1 TLP vs. Time

We record the TLP over time for applications and present the results. We choose the 20

seconds3of the test starting from launching the applications. For Browser, pronounced

peaks can be seen in TLP (Fig. 3.18). In MobileBench these occur when the application

is launched and new browser webpages are opened (these actions are labeled in circled

numbers in Fig. 3.18). We also see a shift of peaks towards the right from a 4 core system

to a 2 core system corresponding with the actions, which reflects a quicker webpage load

time in a 4 core system. For MXPlayer, there are more significant peaks during application

launch and when starting, pausing and resuming a video. For Angry Birds, there are less

pronounced peaks during runtime but it still shows one when the application launches as

well as few others during the game.

These results show that the interactive nature of most mobile application can cause TLP

to fluctuating above 2, but the average TLP still remains low. The peaks do suggest a need

for multiple cores for quicker response time, which is critical for better user experience.

However, multiple cores are used only during brief bursts, mostly at the application launch

time. Moreover, even during these peaks, we do not observe a constant high peak TLP

320 seconds is enough for apps to reach steady state.

41

1	

1.5	

2	

2.5	

3	

3.5	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	
 16	
 17	
 18	
 19	
 20	

4	
 core	
 ac2on	
 2	
 core	
 ac2on	
 4	
 core	
 tlp	
 2	
 core	
 tlp	

Figure 3.18: TLP vs. time in seconds for mobile applications. For Browser, the solid
lines represent TLP, and the dashed vertical lines show when there is an action, such as
application startup or opening a new webpage. Actions are labeled by circled numbers.
This graph is for stock browser (using 4 cores).

1	

1.5	

2	

2.5	

3	

3.5	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	
 16	
 17	
 18	
 19	
 20	

tlp	

Figure 3.19: TLP vs. time: chrome

(above 3). This suggests that the idea of keeping many big cores (four or even more) for

short bursts may not be a good choice for mobile devices. Instead, a system that can provide

high performance during peaks and good energy-efficiency fits better with the fluctuate TLP

pattern of mobile applications.

3.4.2 Energy Efficiency of Big and Little Cores

The processor takes up a substantial portion of power consumption in mobile devices [52].

It is meaningful to analyze the energy efficiency between big cores and little cores. We

run MobileBench on the Odroid board for different types of cores, different number of

cores, and three different frequencies4 on each cluster (big and little). We show the results

4We use 1.6, 1.2 and 0.8GHz for big cores, and 1.2, 0.8, 0.5GHz for little cores.

42

1	

1.5	

2	

2.5	

3	

3.5	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	
 16	
 17	
 18	
 19	
 20	

tlp	

Figure 3.20: TLP vs. time: MXPlayer

1	

1.5	

2	

2.5	

3	

3.5	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	
 16	
 17	
 18	
 19	
 20	

tlp	

Figure 3.21: TLP vs. time: Angry Birds

1.6GHz	
 1.2GHz	

0.8GHZ	

1.2GHz	

0.8GHz	

0.5GHz	
 0.15	

0.20	

0.25	

0.30	

0.35	

0.40	

0.45	

0	
 0.2	
 0.4	
 0.6	
 0.8	
 1	
 1.2	

Pe
rf
or
m
an

ce
	
 	
 (
Th

e	

hi
gh
er
	
 th

e	

be

2
er
)	

CPU	
 Power	
 (W)	

Performance	
 and	
 power	
 :	
 	

le<	
 part	
 is	
 li2le	
 core,	
 right	
 part	
 is	
 big	
 core	

4	
 big	
 cores	
 3	
 big	
 cores	
 2	
 big	
 cores	
 1	
 big	
 core	

4	
 li2le	
 cores	
 3	
 li2le	
 cores	
 2	
 li2le	
 cores	
 1	
 li2le	
 core	

Li1le	
 core:	

Be1er	
 Energy-­‐
efficency	
 Big	
 core:	

Be1er	
 peak	

performance	

Figure 3.22: Performance and power under different frequency and cores (tested using Mo-
bileBench). Lines represent different cores configurations; dots on lines represent different
frequencies, with lower frequencies (thus poor performance) on the left. Error bars are
drawn to a show range of scores for each dot.

43

on two different clusters in Fig. 3.22. For every core/frequency combination, we did four

repeated runs. The results show a distinct energy-efficiency difference between the big and

little cores: big cores have better performance, but little cores only use roughly a quarter

of the power consumption than big cores. Though big cores have approximately 25% less

execution time, their power consumption is 3×more than little cores so they consume more

total energy. In a system with flexbility, we can use little cores as much as possible, and

big cores in situations that are both computational intensive.

Additionally, the importance of user experience makes such architecture more desir-

able. Human users want to deliver a response within a user acceptable timeframe rather

than finishing the task as fast as possible. For instance, literature shows that a latency less

than 0.1s is not perceivable by a human [53]. Any extra resources that are used in acceler-

ating the program to finish faster than 0.1s is unnecessary. In the case of browser perfor-

mance, as shown in Fig. 3.22, we may or may not need to switch to a big core depending

on the workload of the webpage and the quality of experience demanded by the user. More

flexibility in such scenarios will be beneficial for both performance and energy-efficiency.

3.4.3 Thread CPU Time Distribution

We gather some statistics about the threads created and present the result in Fig. 3.23. We

see that actually there are a large number of threads being generated. Most of the threads

are system threads generated by the Android OS, which are very short-lived and only take

up a little amount of total work. The major part of the program is still not well parallelized.

A heterogeneous system may take advantage of this situation. Many of the short-living

threads are helper threads which are not on the critical path of program execution. If we

run the main threads on the big cores and these helper threads on the little core, we may

save a considerable amount of power without performance degradation. However, whether

we can effectively and accurately prioritize the threads appears to be difficult, and suggests

an interesting line of research for the future.

44

186	
 	

16	
 	

27	
 	

12	
 	

11	
 	

2	
 	
 1	
 	

2	
 	
 1	
 	
 Average	
 number	
 	

of	
 total	
 threads	
 	

generated:	
 258

<0.05%	

0.05%	
 -­‐	
 0.1%	

0.1%	
 -­‐	
 0.5%	

0.5%	
 -­‐	
 1%	

1%	
 -­‐	
 3%	

3%	
 -­‐	
 5%	

5%	
 -­‐	
 10%	

10%	
 -­‐	
 20%	

>20%	

Figure 3.23: Thread CPU time distribution. We break down the threads by their CPU time
into 8 categories, which are shown in the legend. For instance, “<0.05%” means this thread
only occupies less than 0.05% of all CPU time, “>5%-10%” means larger than 5% but less
than 10%. For the applications we tested, the average number of total threads generated
is 258. Each area for the pie chart shows the average number of threads that fall into this
category. It shows that most threads are short living.

45

3.5 Related works

3.5.1 Mobile Device Workload Characterization

Gutierrez et al. [15] measure the microarchitectural behavior of a set of mobile applica-

tions. Their result show that real-world interactive smartphone applications differ signif-

icantly from the SPEC suite, which is a desktop benchmark. Hayenga et al. [54] present

a workload characterization and memory-level analysis of internet and media-centric ap-

plications for an embedded system used for mobile applications. Berkel [55] shows a

workload characterization including application, radio and media processing. Ma et al.

[56] characterize performance and power consumption of 3D mobile games on three main-

stream mobile SoC architectures. Canali et al. [57] make an analysis on web-based ser-

vices. Sunwoo et al. [58] propose a methodology to tractably explore the processor design

space and to characterize applications in a full-system simulation environment.

3.5.2 Mobile Benchmarks

To accurately characterize mobile device applications, a set of representative benchmarks

is necessary. Traditional desktop benchmarks such as PARSEC or SPEC are not suited

for mobile devices [15]. Recently, a few number of mobile device benchmarks has been

proposed. Mobile bench [44] is a collection of applications, including a revised version

of BBench, Adobe pdf reader, Photo viewer and Video playback. Mobybench [43] is also

comprised of popular applications, which has already been ported to the gem5 simulator

[59]. AM-Bench [60] an open source based mobile multimedia benchmark for Android

platform. Some more application-specific benchmarks have also been proposed [61, 62].

Most of these suites have not cover many other commonly used applications such as social

apps or games.

46

3.5.3 Parallelism in Programs

Flautner et al. [3] propose the definition of Thread Level Parallelism. Both they and Blake

et al. [17] measure the TLP on desktop applications. The latter work, which is more recent,

argues that 2-3 cores were enough for desktop applications. To the best of our knowledge,

there is no such study about TLP on mobile platforms.

3.5.4 Mobile Device Power Consumption

Due to the limited capacity of battery in hand-carry devices, a number of works have been

done on mobile device power consumptions. Caroll et al. [52] make an anlysis of smart-

phone power consumption by providing a detailed breakdown of the device’s main hard-

ware components. The work by Simunic et al. [63] is a early work on dynamic voltage

scaling for portable systems. Yang et al. [16] propose an adaptive user-and-application-

aware dynamic CPU frequency scaling technique, which saves power by scaling the system

down to a minimum user-acceptable frequency.

3.6 Conclusion and Discussion

In this chapter, we considered how multi-core processors in mobile devices are being used.

We have shown that current mobile applications cannot effectively use a large number of

cores. Instead, we suggest that a flexible system that can accommodate both high perfor-

mance and good energy-efficiency is a more preferable choice for current mobile applica-

tions.

We have analyzed a wide range of common mobile applications, and calculated the

Thread Level Parallelism (TLP) of these applications. The average TLP across all cate-

gories is 1.46, which shows that mobile apps are utilizing less than 2 cores on average. The

applications with the highest TLP, Google Hangout, only has a TLP of just 1.8. We have

also evaluated a number of different CPU configurations, including different numbers of

47

cores, core frequencies, and CPU types. We observe a diminishing return on TLP when

the number of cores increases. Even in those heavy-load real-world scenarios with back-

ground applications or multi-tab browsing, there is still not enough work to keep utilization

high. Both these results suggests that having many powerful cores is over-provisioning.

Due to physical constraint and interactive user patterns, mobile applications tend to have

less parallelism to exploit than desktop applications. The GPU and mobile co-processors

on chip also takes off work from CPU. Historically, the desktop TLP study by Blake et

al. [17] showed the TLP of desktop applications remained relatively low, even after a 10

year gap. It indicates that parallelizing software is an extremely challenging problem. All

these contribute to the low TLP for current mobile applications.

On the other hand, we find out that TLP behavior exhibits peaks and valleys rather than

remaining constant. User experience, which is critical for mobile applications, also varies

by different application scenarios and different users. A system with the flexiblity to satisfy

both high performance and good energy-efficiency for different program phases is a good

choice for mobile devices.

We believe this work can motivate new research directions. TLP is a utilization metric

rather than a performance metric. We have only used web browser benchmarks [15, 44]

as performance metrics in this chapter; the research community can benefit from having

benchmarks that quantitatively measure the performance for popular applications of various

categories such as games, social, office, etc. Responsiveness is another metric worth noting,

especially for user experience of interactive mobile applications [16]. This is also where the

peak TLP mainly comes from. Building an accelerator or specific processor architecture

tailored for such phases may be an interesting avenue of research into. Last but not least,

we analyzed TLPs of different CPUs. As future work, it would also be interesting to make

a further analysis of the impact of GPU and co-processors on TLP.

48

CHAPTER 4

A Low Power Accelerator for Always-On

Applications in Wearable Devices

Always-on applications in wearable devices, such as keyword detection or heart rate moni-

toring, pose a significant challenge in energy-efficient design. A large class of these always-

on applications execute in a deterministic and repeatable fashion, including many deep

learning and signal processing applications. Determinism and repeatability mean that it

is know a priori which memory elements are accessed when and how often. We take ad-

vantage of this determinism by replacing the traditional cache based architecture with a

non-uniform scratchpad architecture (NUSA) where certain address ranges are intention-

ally optimized for low access energy while others are optimized for high area density. An

optimal memory access pattern is then pre-computed statically, taking advantage of this

non-uniform memory architecture, placing frequently access elements in low energy ad-

dress ranges thereby reducing overall energy consumption.

In this chapter, we present a NUSA based accelerator designed for this class of appli-

cations. To fully utilize the proposed NUSA, this chapter develops a framework, which: a)

determines the most energy efficient NUSA scratchpad design within area constraints; and

b) identifies the most energy efficient data assignment and runtime schedule given the tar-

get application. We evaluate a wide range of applications, and compare against traditional

approaches. A fabricated prototype accelerator is also presented as an illustration of our

technique. We show that, on average, a 2.1× reduction in energy can be achieved by using

49

0

500

1000

1500

2000

2500

3000

iPhone	6	Plus Samsung	
Galaxy	S6

Apple	Watch Moto	360

Ba
tt
er
y	
Ca
pa

ci
ty
	(m

Ah
)

Device
Figure 4.1: Battery constraint in wearable devices

a NUSA architecture compared to a uniform scratchpad architecture, and a 10× to 36×

reduction compared to general purpose ARM M-class cores and DSP.

4.1 Introduction

Wearable devices, being in close proximity to users, are critical parts in the Internet of

Things (IoT) eco-system. A flourishing group of these devices, including smart watches,

smart glasses, and activity trackers, are rapidly emerging, defining new man-machine inter-

faces and compelling user experiences. One key aspect of this new interface is the contin-

uous, ”always-on” access to its user; examples include voice activation for smart watches

and user gesture identification on activity trackers. Wearables also serve as an important

filter on the very edge of the cloud, triggering more powerful compute resources only when

the always-on applications find that the information from the sensors is meaningful.

50

Application
Application
Processor

TI C55 DSP Smartwatch target

Voice activation 20mA 4.5mA 0.6mA
Wake-on-gesture 40mA 1.5mA 1.1mA
Bluetooth Low

Energy
0.03mA 0.03mA 0.03mA

Battery Life 5 hours 50 hours = 2 days 173 hours = 7 days

Table 4.1: Expected battery life target for wearable devices [4]

Energy consumption is the key design factor for these always-on applications. By defi-

nition, these applications need to be running continuously; this is very different from what

is usually observed in mobile devices [18, 64], where much of the silicon can be kept

”dark”, or off, as long as possible. In addition, wearables have extremely tight battery con-

straints due to their form factor. Battery capacity can be about an order of magnitude lower

than the already constrained budget of smartphones, as shown in Fig. 4.1.

Meeting such strict energy consumption proposes a challenge to traditional designs.

The display in wearable devices consumes a much lower portion of the total energy com-

pared to one in a smartphone [18, 19], which in turn makes optimizing the processing power

even more critical. Using powerful general-purpose processors with a high-level OS is an

untenable solution. Even with a DSP, it is hard to meet user expectations of charging the

wearable devices no more than once a week. Emerging applications, which demand more

computation, will make it even more difficult to meet this tight energy budget.

One key observation about always-on applications is that they run in a deterministic

and repeatable fashion. They are usually tailored to the constraints of the wearable device

they are running on, such as the type/number of sensors available or the use case of the

device. For instance, a smart watch with a microphone and a gyro can execute keyword

spotting and user gesture detection, but it is not designed to run face detection or heart rate

seizure detection due to the lack of appropriate sensors. Though the data being used, such

as the voice pattern of the user, can change over time, the inherent algorithm and compu-

tation will remain the same. Due to their specific functionality, always-on functions are

51

often implemented as accelerators. Their deterministic and repeatable computation makes

it possible to determine a priori the memory access patterns and design the accelerator to

be more energy efficient.

With this observation, we present a low power multi-application accelerator design for

always-on applications in wearables. Using the deterministic characteristics of always-on

applications, we make several design choices to avoid unnecessary overhead while provid-

ing flexibility. First, we propose to use an on-chip, software-managed scratchpad mem-

ory instead of a cache based design. Second, the energy consumption is further reduced

by utilizing a non-uniform scratchpad architecture (NUSA): frequently accessed data are

assigned to nearer, smaller scratchpad banks with low access energy, and infrequently ac-

cessed data to further, larger banks with higher density. Third, to address the challenge of

identifying the optimal NUSA architecture and data layout, a two-phase design framework

is proposed: 1) in the pre-silicon accelerator design phase, the framework determines the

best NUSA hierarchy, including the number of levels in the scratchpad and the size of each

level; 2) in the post-silicon scheduling phase, the framework chooses the number of active

processing elements and determines the data assignment and optimal access pattern for

the NUSA scratchpad, pursuing the best energy-efficiency within the application latency

requirement. By solving a formal optimization problem, the proposed framework identi-

fies the energy-efficient data placement and corresponding optimal access pattern that are

NUSA architecture specific and also application dependent.

To demonstrate these ideas, we design a multi-application accelerator targeted towards

always-on applications using deep learning algorithms, which has been fabricated as a pro-

totype chip. Based on the computationally intensive kernels from the applications, a CISC

instruction set is formed for the accelerator with the goal of minimizing design and run-

time programming complexity. Finally, we further generalize the architecture by evaluating

the latency and energy of different designs, and evaluate the framework compared to both

uniform scratchpad architectures (USA) and cache based architectures. On average, the

52

proposed approach exhibits a 2.1× reduction in energy by using NUSA compared to USA,

and a 10× to 36× reduction comparing NUSA with general purpose ARM M-class cores

and DSP.

To summarize, we make the following contributions:

• Identify the opportunity of utilizing the deterministic behavior of always-on appli-

cations in wearable devices, and the benefit of utilizing a non-uniform scratchpad

architecture (NUSA).

• Design a framework which can generate a NUSA design for a wide set of appli-

cations, as well as tailor and map the applications to the target NUSA for the best

energy-efficiency.

• Design a low power programmable accelerator for always-on wearable applications,

which has been fabricated as a prototype chip.

• Evaluate the framework by generalizing the accelerator design and comparing to

general purpose core baselines, as well as cache and USA based accelerators.

The rest of the chapter is organized as follows. Section 4.2 describes background infor-

mation. In Section 4.3 we describe the accelerator design framework. With the framework,

we first present an example accelerator design, which has been fabricated in a prototype

chip, in Section 4.4. Then we generalize the design, present and analyze the results in Sec-

tion 4.5 and Section 4.6. We discuss the related works in Section 4.7, and, conclude the

chapter in Section 4.8.

53

4.2 Background

4.2.1 Always-on applications

We examine several example categories of always-on applications, which are summarized

in the following subsections.

4.2.1.1 Keyword spotting

Keyword spotting is a detection task to identify the presence of specific spoken words in a

stream of speech signals. It is often used to trigger automatic speech recognition and spoken

dialog systems. It is common in wearable devices when hands-free activation is desired.

Examples include detecting ”OK Google” when wearing a Google Glass or ”Hey Siri”

when wearing an Apple watch. Keyword spotting can be implemented using classification

techniques, such as hidden Markov models (HMM) [27] to identify different keywords.

More recently machine learning algorithms based on Deep Neural Networks [28] and Re-

current Neural Networks [29] are being deployed because their better detection accuracy.

4.2.1.2 Seizure detection

Epileptic seizure detection refers to the use of algorithms to recognize the occurrence of a

seizure. Typically these algorithms are based on the analysis of biological signals from a

patient with epilepsy. They can be deployed in smartwatches or health wristbands for quick,

always-on detection. The algorithms are typically based on a nearest-neighbor classifier of

EEG features [30, 31], or the RNN technology mentioned above [32, 33].

4.2.1.3 Face detection

Face detection is the detection of a face in a scene. It is commonly used as a front-end to

trigger facial recognition. It appears in Google Glass and smart home detection devices.

Due to its wide range of application, face detection algorithms have been studied heavily.

54

Recent implementations include DNNs [34] or Convolution Neural Networks (CNN) [35,

36]. The former is easier in terms of memory access patterns but the latter is usually more

suitable for image processing.

4.2.1.4 Wake on user gesture

Wake-on user gesture is the feature of some wearable devices which can be activated using

certain user-specified gestures. This enables the device to recognize who is interacting.

For an entertainment device, it can recognize the user and load the right game profile or

music play list. For a home climate control, it can adjust the environment to the wearer’s

preference. This feature can be implemented using one-vs-all classification [37] or margin

classifiers [38].

4.2.2 The status quo for wearables

Battery life is still a major constraint for current wearable devices (Table. 4.1.) One typi-

cal method of reducing power consumption in smartphones is to reduce the brightness or

resolution of the screen, which takes up a large portion of the total power consumption.

However, the display in wearable devices already consumes a much lower portion of total

energy than those in a smartphone. It can be as much as 20-40× fewer pixels and has only

a relatively simple color scheme [18, 19]. Another major power consumer in wearables is

the wireless connectivity module, which is usually implemented in very specific commu-

nication ASICs and is difficult to further optimize [20]. Therefore, optimizing the power

consumption of the compute stack becomes critical.

4.2.3 Non-uniform scratchpad architecture

The idea of non-uniform memory architectures has been widely adopted in memory and

cache design for multi-core systems. In this work, we utilize non-uniform memory on

embedded systems in the form of a scracthpad—NUSA. The strategy is to include both

55

Figure 4.2: Trade-off between area and energy (data from SRAM compiler)

small/nearby and large/far-away banks in order to differentiate the characteristics of scratch-

pad banks. Fig. 4.2 is generated by a typical SRAM compiler using a commercial 40nm

CMOS process with a 6T cell. As shown in the figure, smaller banks can provide lower

access energy but at the cost of lower density. Larger banks, which have the opposite char-

acteristic, can be included to compensate for the low density. In addition, smaller banks

can be placed nearer to the processing element, further reducing the energy spent on the

interconnect.

To utilize NUSA, the programmer should assign frequently accessed data to the small

banks for energy efficiency, and infrequently accessed data to the large banks for density.

For instance, in matrix vector multiplication, the elements in the vector, which are accessed

many times, should be placed in the small/nearby banks. Meanwhile the elements in the

matrix, accessed only once, should be placed in the large/far-away banks. When the ap-

plication becomes complicated, it can be difficult to find the optimal NUSA structure. We

56

will address this in Section. 4.3.

4.3 Accelerator design framework

Fig.4.3 illustrates the overall procedure of the proposed framework. It consists of two

phases: pre-silicon and post-silicon. The pre-silicon phase provides the accelerator chip

design: it determines the best NUSA layout, including the number of different scratchpad

levels and sizes. After the chip design has been set, the post-silicon phase acts like a

compiler: it determines which kernels should be running on the accelerator, how many

processing elements to use, generates the best data partitioning, and the operation schedule.

That is, the post-silicon phase identifies the optimal memory access and processing patterns

for each target application given the NUSA design determined in the pre-silicon phase.

4.3.1 Pre-silicon

The pre-silicon phase decides on the optimal NUSA architecture considering a wide set of

target applications that are anticipated to run on the multi-application accelerator. To do

so, it is given the set of kernels supported by the accelerator, the area constraints, and the

characteristics of density and access energy for the type of memory element being used

in the scratch-pads. The pre-silicon design phase is performed in four steps, which are

discussed in the following subsections.

4.3.1.1 Determine the kernels for acceleration

First, the applications are analyzed, and all kernels to be supported on the accelerator are

identified. Typical kernels include matrix-vector multiplication, signal transform (FFT,

DCT), and non-linear activation funcation. An example set of kernels supported by an ac-

celerator design will be described in the Sec. 4.4.3. All other kernels that are not supported

by the accelerator will be handled by the general purpose microprocessor (i.e., the control

57

Kernels

Pre-silicon
framework

Post-silicon
framework

Chip area

Pre-silicon
phase

Post-silicon
phase

Target Applications

 Latency
Requirement

Generate
Output
Provide

Constraint

New
applications

Memory
bank stats

Runtime
data layout

Run time
scheduling

Chip
design

Figure 4.3: Overall description of framework

58

Figure 4.4: Example memory layout. Banks are stacked on one side of the processing
element (PE), starting from smaller banks. The height of the stack is determined by the
framework, striking a balance between average wire distance and total area.

core).

4.3.1.2 Determine the data element characteristics

The framework analyzes all the kernels, and distinguishes the type of data access along

three axes—a) lifetime, b) access frequency, and c) size: a) The lifetime of the data can be

categorized as either temporary or static. Temporary data means it will be used only once in

one iteration of the application and discarded; static data means it will be used many times

or seldom changes across different iterations of the runtime. For instance, in keyword spot-

ting, the speech signal sent by the sensor to the accelerator is considered temporary data,

while the neural network classifier parameters are static data. Since always-on applications

will usually run many iterations, these two data types are quite different. b) The access

frequency of the data can be used to determine data placement—more frequently accessed

data assigned to small/nearby banks, and less frequently accessed data to large/far-away

banks; c) The sizes of data is necessary to determine the memory size of each level in the

NUSA design.

59

4.3.1.3 Determine the NUSA configuration

In this step, the most energy efficient NUSA configuration to enable the optimal trade-offs

in access energy and bit density is determined. Access ratios between different NUSA

levels are also specified in this phase. This problem can be formalized as an optimization

problem described below:

We have n different types of data with different access frequencies. For every type of

data i we have its size Ti, number of elements Ni, and access frequency Fi. For the tech-

nology node and memory used, we have a bank access energy function E(x) and density

function D(x), where x is the unit of bank size. The access energy also includes energy

for the wires Ew(i) and routing peripherals Ep(i), which are NUSA layout dependent. To

estimate these quantities, the framework automatically generates a layout, such as the one

shown in Fig. 4.4. Given an area constraint A, we can determine the optimal unit bank size

xi and number of banks Bi for the n different types of data, which can be written as:

minimize
∑

(E(xi) + Ew(i) + Ep(i))NiFi

such that (
∑

D(xi)Bi) < A

and Bixi > Ti, ∀i

(4.1)

The first term is the total access energy, the second term specifies the area constraint, and

the third term species the data size requirement. Notice that this optimization problem is

defined with highly discretized variables. As the optimization is performed off-line, we

solve it by enumerating all possible combinations of memory bank sizes.

4.3.1.4 Determine the number of processing elements

The number of processing elements (PE) can be determined from the latency requirement of

the application and computation capability of each PE. Though the scratchpad will usually

occupy more space than the PEs, area constraints may also apply for PEs.

60

With these four steps, the multi-application accelerator design can be tailored for the set

of target applications specified by the designer. Extra scratchpad space or additional PEs

can also be added for potential future applications which might require more scratchpad

capacity or computation demand.

4.3.2 Post-silicon

The post-silicon framework is used to map each application onto the NUSA accelerator

identified in the pre-silicon phase. It contains four steps, which are outlined in the following

subsections.

4.3.2.1 Determine the number of active PEs

The framework determines the number of active PEs for each kernel, with the goal of

minimizing total energy consumption within the application latency constraint. The final

number of active PEs could be 0, which means that the kernel is better off running on the

control core than offloading it to the accelerator. This usually happens because the kernel

is so small that the overhead of invoking the accelerator offsets the benefit of using it. This

process can be formalized as a new optimization problem described below:

We are given n different kernels, X available PEs, and the total latency constraint for

the application, Tc. For each kernel, we have a latency function Ti(x) and energy function

Ei(x), where x is the number of PEs activated.

Latency Ti(x) consists of two parts: the computation latency Tpi(x) and communication

latency Tmi(x). When x! = 0, computation latency Tpi(x) is the latency for the accelerator

to finish the kernel, otherwise it is the latency to run on the control core. Communication

latency Tmi(x) is the time spent for the control core to program the PEs and gather results

from them.

Energy Ei(x) consists of three parts: a) control core energy Eci(x), b) PE energy

Epi(x), and c) memory energy Emi(x). All of them can be broken down into a static

61

PE2PE3PE4

Cortex-M0
Processor

Lo
w

-p
o

w
e

r

Se
ri

al
 B

us

Central Arbitration Unit
(CAU)

AHB-Lite

Compiled SRAM
for Cortex-M0

MMIO Registers

External ICs

D
a

ta

T
ra

n
sf

er

Data Transfer
& DLP Instruction Update

Data Transfer
& M0 Instruction Read

Data Transfer
& M0 Instruction Read

PE3 Mem PE2 Mem

L4

L3

L2
L1

PE4 Mem

PE1

Always-on Accelerator

Figure 4.5: Overall architecture of the accelerator

62

2.5mm

PE1
NUSA

Memory
(67.5kB)

PE2
NUSA

Memory
(67.5kB)

PE3
NUSA

Memory
(67.5kB)

PE4
NUSA

Memory
(67.5kB)

PE1 PE2

ARM
M0

Compiled
Memory for M0

CAU

Lo
w

-p
o

w
e

r
Se

ri
a

l B
u

s PE3 PE4

2
.8

5
m

m

Process

Chip Area

Operating Frequency

Operating Power

Total NUSA SRAM Size

40nm

7.1mm
2

1.9 – 19.3MHz

0.288mW

270kB

Figure 4.6: Die photo and specifications of the accelerator chip

63

portion and a dynamic portion. Both the static and dynamic depend on the active time of

each component, as well as the total latency. For instance, if the static power consump-

tion per PE is Pspe and dynamic power consumption is Pdpe, PE energy Epi(x) is then

roughly XTmi(x)Psee + xTpi(x)Pdpe. More accurate calculation of energy can be used if

necessary.

The problem then can be written as:

minimize
∑

Eci(xi) + Epi(xi) + Emi(xi)

such that(
∑

Tpi(xi) + Tmi(xi)) < Tc

and xi < X,∀i

(4.2)

where the first term is the total energy consumption, the second term the total latency, and

the third term the number of PEs. It is necessary to iterate all possible combinations, be-

cause the latency and energy consumption may not change monotonically with the number

of PEs. For instance, when increasing the number of PEs, computation latency on the ac-

celerator may decrease, but communication latency may increase since there are more PEs

to orchestrate. Sec. 4.6 will investigate this in detail.

4.3.2.2 Tailor applications towards NUSA

Before mapping the kernel on the NUSA acceleartor, we first analyze opportunities to

modify the kernel to make its data access pattern benefits more from the target NUSA.

For instance, in the case of matrix multiplication, the concept of matrix tiling can be ap-

plied where a large matrix is divided into smaller size submatrices to be merged in the final

stage. The tiling scheme assigns some portion of the NUSA memory as an access energy

efficient scratchpad space which holds temporary inputs and outputs. The tiling scheme

incurs overheads to merge the final output from different submatrices but the overall en-

ergy consumption is minimized because each submatrix processing exhibits significantly

lower NUSA memory access energy by the optimal scheduling that aggressively utilizes

64

nearby memories. Similarly, a large size FFT can be partitioned into multiple smaller size

FFTs that can be sufficiently performed using only nearby memory banks. The framework

analyzes the overhead of tiling and merging considering the memory access energy con-

sumption associated with each NUSA layer. Note this step only modifies the data access

pattern of the kernels; the output should be mathematically equivalent without affecting the

algorithm functionality.

4.3.2.3 Assign the data layout for the scratch-pads

In this step we assign data to their location in the NUSA to achieve maximum energy-

efficiency. This step is similar to the pre-silicon phase described in Section 4.3.1.3, except

the range of the density function D(x) and energy function E(x) will be limited; only

the bank sizes x that are actually implemented on the chip can be selected. In fact, if the

application does not change, the data layout should be exactly the same as planned in the

pre-silicon phase. One special case is when the application needs more scratchpad space

than is available on the chip. Off-chip data access energy can be prohibitive, given the

limited energy budget in wearables. Therefore, for the scope of this work, we assume data

is always stored on-chip for always-on applications. The scenario in which data does not

fit on chip is left for future work. This scenario can be avoided by using the pre-silicon

framework to ensure there is enough space on a new accelerator.

4.3.2.4 Generate the code

Finally, after the PE scheduling and NUSA layout is determined, the framework generates

the code for runtime execution. For all the kernels to be executed on the PE, their code in

the original program will be replaced by the generated code, which includes the memory-

mapped addresses for the data, and the code to control the PEs.

65

4.4 Accelerator design example

In this section we describe the prototype accelerator chip designed and fabricated in a 40nm

low power (LP) process. Details on its architecture and instruction set are discussed in this

section. Analysis of a more generalized architecture is given in Section 4.5 and Section 4.6.

4.4.1 Architecture

The overall architecture of the prototype chip is shown in Fig.5a. The accelerator is com-

posed of 4 processing elements (PE), 4 levels of customized NUSA SRAMs for each PE,

an ARM Cortex-M0 as the control core, a 32kB compiled SRAM for the M0, a low-power

serial bus [65] for external I/O, and a central arbitration unit serving as the hub to connect

these components together.

The NUSA SRAM occupies most of the chip area. Each PE has 4 levels of NUSA

SRAM, with sizes of 1.5kB, 6kB, 12kB, and 48kB, respectively. In addition, every PE has

access to the other three PE’s NUSA SRAM through the AHB-lite bus. From the perspec-

tive of a PE, other PE scratchpads essentially becomes an extra level of far-away NUSA.

This is useful in supporting applications that have data sizes larger than the capacity of the

local scratchpad memory, and applications with data of many different access frequencies.

The PEs are the main computation units in the accelerator. Section 4.4.3 will discuss the

computation supported by the PEs. The M0, which serves as a control core, programs the

PEs by writing instructions to their instruction buffers and activates them. It also handles

operations not supported in the PE or that are not energy-efficient enough to be executed on

the PEs. It has access to the NUSA memory at every PE, as well as a dedicated compiled

SRAM. Section 4.4.2 will introduce the operation in detail.

Internal communication between components is done via the central arbitration unit

and the AHB-Lite bus. External communication, for instance with the sensors and main

application cores, is handled by the low-power serial bus [65], enabling integration into a

66

complete system. Both the NUSA SRAM and the M0 compiled SRAM are in the same

address space and can be fully accessed externally. Since the optimal data placement in

the NUSA is known a priori, input data from the sensors can be placed into the optimal

location directly.

The architecture has been implemented as a functional prototype chip that has been

fabricated, tested, and evaluated. The die photo and specification are shown in Fig. 4.6.

4.4.2 Operation

The operation of the accelerator is diagrammed in Fig. 4.7. In general, always-on wear-

able devices will run for long periods of time before powering-down. This means that the

initialization is negligible compared to continuous operation. The initialization procedure

includes loading the PE NUSA SRAMs with static data (data that will not change across

different iterations, such as parameters or constants), and the M0 SRAM with code.

After the initialization procedure, one iteration of an always-on application consists of

a combination of the six stages as labeled in Fig. 4.7:

1. External I/O writes the inputs to the accelerator. The inputs typically come from

sensors, such as voice waveforms for keyword spotting or heart rate monitors for seizure

detection. The NUSA location where the inputs are stored is determined beforehand by the

framework.

2. Control core pre-processing. External I/O will activate the control core (M0 in this

implementation), which may perform some pre-processing. It includes operations that are

either not supported in the PE, or are too small that the overhead of invoking the accelerator

offsets the benefit of using it. The amount of computation depends on the applications and

is decided by the framework; it is sometimes the case that no pre-processing is necessary.

3. Programming the PEs. The control core will write the PE instructions to their

respective instruction buffers, then activate the PEs. The number and timing of the PEs

activated by the control core is configurable and determined by the framework.

67

Control
Core

External I/O (Sensor, etc)

j

k

l

m

n

o

L
1

L
2

L
3

L4

NUSA

Data processing

Data transfer
Controls

PE0

PEn

Control
Core

External
I/O

 Sensor
Send
input

 Pre-
process
ing

Activate
Ctrl Core

Activate
PE

PE Finished,
Notify Ctrl Ccore

Program
PEs

 PE execution;
Control core Can
execute or sleep

 Control
core post-
processing

 Control core
determine next
step

Stages

.

.

.

Ctrl Core
Finished

PE

Figure 4.7: Timing and block diagram of accelerator operation

4. PE execution. This phase is where the PE executes on the data. The control core

may be put to sleep, or perform other work, depending on the need of the application.

5. Control core post-processing. Once the PEs finish their execution they notify the

control core. Similar to the pre-processing step, the control core then performs some op-

tional post-processing on the results from the PEs.

6. Final result. Depending on the result, the control core may decide to wake up the

main application core and let it take over, activate some sensors or alarms, or go back to

sleep until the next iteration starts.

During one iteration of inputs, stages 2 through 5 can be repeated zero or more times,

and can be optionally run in a pipeline fashion. These decisions are decided statically by

the post-silicon part of the framework. The use of ping-pong CISC instruction buffers are to

overlap PE execution with the programming of the PE for the next CISC macro instruction,

further reducing the time that the control core needs to be on.

4.4.3 Instruction set

We target our instruction set towards memory access intensive linear algebra kernels which

are common in neural network classifiers and signal processing algorithms.

To accommodate the form factor and energy budget of a wearable device, we lay out

three guidelines for our ISA design:

68

Instructions Example purposes Configurable fields
MAC Matrix-vector / matrix multiplica-

tion, dot product
Matrix size, vector size, add offset
(Y/N), apply NLI (Y/N)

FFT FFT, DFT, elementwise operation FFT points, data size
NLI Non-linear function using a piece-

wise linear interpolation
Data size

MOV Memory copy Data size

Table 4.2: Accelerator instruction set. For “configurable fields”, common fields such as
data location or precision are not included.

A) Provide flexible fixed point operation

For these applications, fixed point is enough to provide good precision [28, 34]. Avoid-

ing expensive floating point operations can save ALU area, memory space, and computa-

tion power. In addition, variable data precisions (6 choices from 6 to 32 bits) are supported

for the user to exploit trade-offs between precision and energy efficiency.

B) Minimize the accelerator logic

The complexity of the decoding and issue logic in the accelerator should be minimized

for energy efficiency. This can be done by providing extra information in the instruction

directly. For instance, in one stage of FFT, the number of FFT instances can be calculated

as (FFT size / FFT unit size). Instead of implementing the calculation in the accelerator,

for example, this number is set as a field in the instruction.

C) Reduce programming effort for the control core

Writing instructions to PEs is the job of the control core (M0 in this chip). If many

instructions are required to complete one application, the M0 would be waken up by PEs to

be reprogrammed many times. It is beneficial to reduce the number of instructions in order

to keep the M0 asleep as long as possible.

The above three guidelines motivate a CISC instruction design with many fields in

the instruction. A control FSM in the PE will drive the operation by decomposing the

instruction into micro-codes. We extract the important kernels in the target applications and

implement them as 192b long CISC instructions for the accelerator, as shown in Table. 4.2.

69

The MAC instruction performs a series of vector dot products, where the size of the

vector and number of total vectors are configurable. The most typical use case for a MAC

instruction is matrix vector multiplication, which is among the major computations in deep

neural networks (DNN). The MAC instruction supports adding an offset vector to the result

vector and/or applying a non-linear function (NLI) instruction.

The FFT instruction executes a stage of an FFT. A stage means a set of butterfly op-

erations through the entire input vector. The entire FFT operations require log2(N) stages

to complete, N being the size of the input. The data size and the number of stages are

specified in the instruction. It operates on complex numbers. By setting the imaginary part

to 0, it can also be used for DCT or vector elementwise operations.

The NLI instruction executes piecewise linear interpolation1 for each element in a vec-

tor. The parameters, ai and bi, for each segment are too long to be specified by the instruc-

tion; instead they are stored in a dedicated space in the accelerator and can be programmed

by the control core. The NLI instruction can be used to approximate non-linear functions,

for instance the activation functions in a DNN.

The MOV instruction performs data copy in the NUSA memory. It is more efficient

than the control core when copying a large chunk of data, such as merging partial results

for a parallel matrix vector multiplication. ALUs in the PEs are not involved in the MOV

instruction.

4.4.3.1 Support for convolution

Convolution is an important kernel in the IoT space, being widely used in signal processing

and image processing. Two methods on the accelerator are supported to perform convolu-

tion:

A.) using MAC: convolution as a dot product

Fig. 4.8 describes this method. We name the two functions to be convoluted as f(t) and

1Use f(x) = aix + bi when x belongs to the i-th segment (xi < x < xi+1) to approximate a nonlinear
function f(x).

70

g(N) g(N-1) g(N-2) … f(0)
f(1)
f(2)
…

g(N-1) g(N-2) g(N-3) …

g(N-2) g(N-3) g(N-4) …

… … … … …

cycle

y(0)

y(1)

y(2)

…

𝑦 𝑡 = 𝑓 𝑡 	⊗ 𝑔(𝑡)

Figure 4.8: Convolution using MAC instruction

𝑦	 𝑡 = 𝑓	 𝑡 	⊗ 𝑔(𝑡)

Y 𝑡 = 𝐹	 𝑡 		∗ 	𝐺	(𝑡)

FFT FFTI-
FFT

3 11

2

Figure 4.9: Convolution using FFT instruction

71

g(t), and the result as y(t). We first reverse g(t), and start computing the dot product with

f(t) and the reversed version of g(t). The result of the dot product will be the first element

of the result y(t). Then we move g(t) by one element, and compute the next dot product

along the way. The MAC instruction is used in the actual implementation.

B.) using FFT: convolution in the frequency domain

This is done by utilizing the convolution theorem: the Fourier transform of a convolu-

tion is the element-wise product of Fourier transforms. Therefore, we can transform the

two functions we want to convolve, f(t) and g(t) by using the FFT instruction to trans-

form them to frequency domain. Then an element-wise product of the two functions is

performed. Finally, an inverse FFT is used to obtain the result. As for implementation, the

FFT instruction can support the FFT and element-wise product, and inverse FFT can be

done using forward FFT and data swapping. The process is shown in Fig. 4.9.

The post-silicon framework can decide to use A.) or B.), based on the characteristics

of the convolution itself and memory available. In general, B.) will only be beneficial for

problems of large data sizes and when abundant scratchpad space is available. Note that

though in our evaluation both are supported, currently only B.) is possible on the fabricated

chip. This is because the NUSA SRAM on the chip works at a 96-bit word granularity. For

A.), access to individual elements in a word is required, which is not currently implemented

on chip for the MAC instruction.

4.5 Design evaluation

In addition to the prototype chip, we generalize the architecture by simulating the latency

and power consumption with different number of PEs, NUSA memory layouts, and optimal

memory access patterns. We compare the performance of traditional CPUs as well as cache,

USA, and NUSA based accelerator designs.

72

4.5.1 Accelerator

In order to obtain a breakdown of the energy consumption of individual components, the

design is simulated using the final RTL of the fabricated chip in Synopsys VCS tool, and

the Value Change Dump (VCD) files generated from the VCS simulation are then fed into

Synopsys Prime-Time PX for energy consumption estimation. The accelerator, M0 core,

and AHB bus all run at 10 MHz. When the number of PEs simulated is larger than 4, the PE

energy is extrapolated from the energy measured for 0-4 active PEs. For scratchpad SRAM

memory, access energy is obtained from SPICE simulation; for caches it is obtained from

CACTI [66].

4.5.2 Baseline

We compare the accelerator against Cortex M0/M3/M4 cores and a TI TMS320VC5509A

low-power fixed-point DSP [67]. The latency of M-class cores are simulated using Keil

uVision 5 microcontroller development kit [68]. CMSIS math library is used for computa-

tional intensive kernels. The latency of TI DSP is simulated using Code Composer Studio

(CCS) integrated development environment (version5) with built-in simulator for the DSP

under test [69], and C55x DSP Library [70] is used for kernels. All ARM and DSP code is

compiled with -O2, -Otime flag, optimized for execution time. The frequencies for all the

three cores are set at 10MHz, the same as the accelerator; the frequency for DSP is set at

108MHz, the lowest as shown in the datasheet, but the power number is scaled to 10MHz in

the results for a fair comparison. Energy consumption for the baseline cores is estimated by

multiplying latency with power consumption numbers, which is obtained from datasheets

and simulation using final chip RTL.

73

Applications Example Device Kernels
Keyword spotting Smart Watch, Smart Glass FFT, matrix vector multi-

plication, DNN
Face detection Smart Glass CNN or DNN
Seizure detection Activity Tracker, Fitness

Tracker
Quadratic classifier

Wake-on gesture (User
Identification)

Activity Tracker, Smart
Watch

Support vector machine
(SVM)

Table 4.3: Always-on applications evaluated in this work

4.5.3 Benchmarks

We evaluate both micro-benchmarks, which are one or a combination of several instruc-

tions, and full applications. The full applications we evaluated in this work is presented in

Table. 4.3.

Keyword spotting [28]: this benchmark consists of two phases: a) pre-processing

phase, where the MFCC (Mel-frequency coefficients) for a 25ms voice sample frame is

calculated. The major computations involved are a 512-pt FFT and a 400*24 matrix vector

multiplication. b) classification phase, where a set of the MFCC results are pass to a DNN

with 3 fully-connected layers. The size of the layers are 408×384, 384×384, and 384×13.

The DNN identifies the voice sample as one of the 10 keywords, OOV (out-of-vocabulary),

or silence. The classification results for each voice sample frame is then smoothed with a

moving average window to generate a final result.

Face detection: A small image is passed to a neural net to determine if it contains a

face. Two versions of face detection are evaluated in this chapter: a) DNN [34]: it uses

a DNN consisting of 2 fully-connected layers. The sizes of the layers are 16×1032 and

2×16. b) CNN [35]: a CNN is used, including convolutional layers, subsampling layers,

and fully-connected layers; 2 for each type. We implement it by laying out the 2-D patch

to a 1-D array, then treat it as a typical convolution .

Seizure detection [30]: The features of an electroencephalogram (EEG) signal is passed

to two quadratic classifiers to determine if the EEG is normal, interictal, or ictal (epilep-

74

tic). The major computations include a dimension reduction, and one or two quadratic

classifiers, which is implemented as matrix-matrix multiplication with the size of [25,2]

and [300,25], and a matrix-matrix-matrix multiplication with the size of [2,300], [2,2], and

[300,2].

User identification [71]: The users wrist movement will be sampled and passed to

a SVM classifier to determine if it is the movement pre-defined by the user. The SVM

is implemented as matrix multiplication with the size of [48:12] and [1:48], and a Vector

element-wise multiplication with a vector size of 12.

4.6 Results

In this section, we present the results on a set of micro-benchmarks to demonstrate the

benefit of using NUSA and the proposed framework. We also simulate several end-to-

end applications, and compare the results of the different accelerator designs with that of

general purpose embedded cores and DSP.

4.6.1 Pre-silicon NUSA design

We compare 6 memory layout scenarios in three categories: cache, USA, and NUSA.

Associativity of 2 is chosen for cache design.

USA is selected as the baseline. It represents the case where accesses, on average,

have the same access energy. If the requests are evenly distributed to the memory system,

half the accesses will be below the average and half above. For NUSA, designs of 1-level,

2-level, and 4-level are used as three representative memory layout scenarios. The level

number represents the maximum number of different bank sizes in the design. Banks with

smaller size are placed closer to the processing elements, and more frequently accessed

data are assigned to those nearby banks. In the end, we also evaluate the design with the

memory layout chosen by the pre-silicon framework.

75

Every layout scenario is set to have the same area constraint, determined by the area

to hold the data needed for the particular micro-benchmark being evaluated in the baseline

USA design. The configuration of USA is chosen as the cross-point on the SRAM trade-off

graph (Fig. 4.2), representing a reasonable access energy and size. The unit bank size is 2kB

with a density of 0.613µm2/bit and access energy of 0.061 bit/pJ. For the NUSA designs we

equally divide the area for each level to represent a naı̈ve approach to determining how the

design should be configured. In the NUSA framework approach, we allow the framework

described in Section 4.3 to determine the optimal division of the area for each level, which

may not be an equal division of space.

The two micro-benchmarks under test are the MAC instruction and the FFT instruction.

The dimension for the matrices in the MAC instructions are chosen as 800, 400 and 150,

and are combined as shown on the X-axis of Fig. 4.10. FFT sizes are chosen as 512, 256,

and 128, and are combined with the MAC instructions as shown in Fig. 4.11.

In Fig. 4.10,Fig. 4.11 we show the results. Each set of bars represent a set of micro-

benchmarks, and the bars within a set represent the different designs. First of all, the cache

clearly has significant overhead, on average around 40% over a scratchpad memory ar-

chitecture, even assuming a 100% hit rate. This is because the tag array and comparison

logic are relatively large for small bank sizes. Second, NUSA demonstrates advantages

over USA designs in all scenarios. As shown in the graphs, the framework can find an

optimal NUSA design given the constraints. On average the naı̈vely allocated NUSA de-

signs achieve a 1.67× improvement compared to USA. The framework further improves

the NUSA design by 1.26×, netting a total improvement of 2.1×.

4.6.2 Multi-application scheduling

It is common for wearable devices to have multiple always-on applications. Therefore,

in addition to single applications in the last section, it is meaningful to explore how the

framework would work in terms of energy and area for multiple applications.

76

1 inst:
 150

2 inst:
400 & 150

3 inst:
800 & 400 & 150

Matrix size

0.0

0.5

1.0

1.5

2.0

En
er

gy
 N

or
m

al
iz

ed
 to

 U
ni

fo
rm

 S
cr

at
ch

pa
d

Cache
USA
1_level_NUSA

2_level_NUSA
4_level_NUSA
Framework

Figure 4.10: Energy reduction with NUSA framework: MAC instructions

150 & 128pt 400, 150 &
 128pt, 256pt

800, 400, 150 &
 128pt, 256pt, 512pt

0.0

0.5

1.0

1.5

2.0

2.5

En
er

gy
 N

or
m

al
iz

ed
 to

 U
ni

fo
rm

 S
cr

at
ch

pa
d

Cache
USA
1_level_NUSA

2_level_NUSA
4_level_NUSA
Framework

Figure 4.11: Energy reduction with NUSA framework: mixture of MAC and FFT instruc-
tions

77

Two wearable device targets are evaluated, both of which contains a mixture of two

always-on applications. Fig. 4.13 shows the result for a smartwatch, with Key Word Spot-

ting (KWS) and Seizure Detection (SD); Fig. 4.12 for a smartglass, with Key Word Spotting

(KWS) and Face Detection (Face). For each device target, we evaluate five different mix-

ture of the two workloads, as represented by the first 5 sets of bars. The 6th set of bars

represent the average energy consumption of the five different workload scenarios, and the

7th set of bars represent the area of different accelerator architectures, which are shown in

different colors. Six different accelerator architectures are evaluated. Uniform memory and

generic NUSA represent designs that are agnostic to applications. Dedicated accelerators

(KWS, SD, and Face accelerator) are tailored towards one specific application. Framework

targets for both applications. A 50%/50% ratio is chosen here, but it can be changed based

on the actual usage of the wearable device.

The results demonstrate that the Framework works well under all workload scenarios

within the area constraint. On average, it achieves 29% energy reduction over the baseline.

On the contrary, using two dedicated accelerators only achieved 2% more energy reduction

at the expense of exceeding the area constraint. Using only one of the accelerator will

lead to sub-optimal energy consumption, especially if the accelerator cannot holds the full

content of the application and needs to fetch data from outside of the accelerator. For

instance, for the case of Smartwatch, the accelerator for Seizure Detection cannot hold all

the weights for KWS and leads to extra energy due to inefficient memory access. 2

4.6.3 Post-silicon NUSA assignment

In this section, we present an example of how applications are mapped to NUSA memory

banks in Fig. 4.14 and Fig. 4.15. The example application is Keyword Spotting (KWS).

The main kernels in KWS include: FFT operation, Mel-scale frequency filter (MSFF) for

2We conservatively assume all the data can still be hold in on-chip generic SRAMs; off-chip memory
access can further increase energy significantly.

78

KWS
Only

75%
KWS

50%
KWS

25%
KWS

Face
Only

 Average
 Energy

Area

0.6

0.8

1.0

1.2

1.4

En
er

gy
: N

or
m

al
iz

ed
 to

 U
ni

fo
rm

 M
em

or
y

4.3X 8.0X 4.0X 2.0X 3.5X 0.2X
Uniform memory
Generic NUSA
KWS + Face accelerators

KWS accelerator
Face accelerator
Framework

0.6

0.8

1.0

1.2

1.4

Ar
ea

: N
or

m
al

iz
ed

 to
 U

ni
fo

rm
 M

em
or

y

Figure 4.12: Multi-application scheduling. Smartglass: Key Word Spotting (KWS) and
Face Detection (Face)

KWS
Only

75%
KWS

50%
KWS

25%
KWS

SD
Only

Average
Energy

Area

0.6

0.8

1.0

1.2

1.4

En
er

gy
: N

or
m

al
iz

ed
 to

 U
ni

fo
rm

 M
em

or
y

1.6X3.2X 2.5X 1.9X 1.3X 1.8X
Uniform memory
Generic NUSA
KWS + SD accelerators

KWS accelerator
SD accelerator
Framework

0.6

0.8

1.0

1.2

1.4

Ar
ea

: N
or

m
al

iz
ed

 to
 U

ni
fo

rm
 M

em
or

y

Figure 4.13: Multi-application scheduling. Smartwatch: Key Word Spotting (KWS) and
Seizure Detection (SD)

79

pre-processing, and a Deep Neural Network that consists of 3 fully connected layers (FCL)

for classification. Both MSFF and FCL are implemented using the MAC instruction, while

the FFT has a dedicated CISC instruction. These kernels run sequentially.

First, the characteristics of the application is analyzed by the post-silicon framework.

The first step determines the number of active PEs for each kernel: all 4 PEs are active

for DNN FCL 1 and 2; 2 PEs are active for MSFF; and only 1 PE is active for the DNN

FCL 3 and FFT. Then, the second step reserves a temporary space for MAC instructions,

with a size equals to the smallest banks in the accelerator NUSA (L1 SRAM). With that,

we analyze the data elements for the application, as shown in Fig. 4.14. The matrix vector

multiplication kernels have four data elements: temp space (for the tiling approach de-

scribed in Sec. 3.2.2), input vector, output vector, and weights (the matrix). For FFT, there

are inputs, outputs, and weights (twiddle factor for FFT butterfly operation). Weights and

twiddle factor are the same across different iterations, so they should not be overwritten

across different kernels. Except these two, all other data elements can be overwritten and

their memory space can be shared among kernels.

Next, based on the usage characteristics, data are mapped to NUSA with the target of

lowest total access energy. Fig. 4.15 demonstrates the mapping for FFT, MSFF, and DNN

FCL 3. The mapping of DNN FCL 1 and 2 is simpler and omitted due to space limitation.

Data that are accessed most frequently, including temp space and inputs, are generally

assigned to closer SRAM banks. The temp space, inputs and outputs space for FFT in this

mapping is shared with DNN FCL 1 and 2. The gap in PE2, PE3, PE4 exists because FCL

1 and 2 inputs and outputs occupy larger space than FCL 3 and MSFF. Far-away banks

are used to store infrequently accessed data elements, mostly to store matrices for matrix

vector multiplication kernels.

80

Temp
space Inputs Outputs Weights

DNN	
layer.1

384
Bytes

624
Bytes

576
Bytes

120k
Bytes

DNN	
layer.2

576
Bytes

576
Bytes

111k
Bytes

DNN
layer.3

576
Bytes

36
Bytes

6.95k
Bytes

MSFF 576	
Bytes

72
Bytes

138k
Bytes

FFT 1.54k
Bytes

1536
Bytes

1.51k
Bytes

Access	
frequency:

Underlined	data	can	be	overlapped	across	kernels

Data	type

Kernels

Low Medium High

Figure 4.14: NUSA assignment for keyword spotting: data analysis

1/4	Layer.2	
weights

1/4	Layer.1	
weights

L1	SRAM
L2	SRAM

L3	SRAM

L4	SRAM

Lyr.3	inputs MSFF	inputs

1/2	MSFF	
weights

Layer.3	
weights

1/2	MSFF	
weights

MSFF	inputs

PE1 PE2 PE3 PE4

Temp	space Temp	space Temp	space Temp	space

FFT	weights

FFT	inputs

FFT	outputs

Lyr.3output

1/4	Layer.1	
weights

1/4	Layer.2	
weights

MSFF	output

1/4	Layer.1	
weights

1/4	Layer.2	
weights

MSFF	output

1/4	Layer.1	
weights

1/4	Layer.2	
weights

Lower	
Access	
Energy

Memory	layout	not	exactly	to	scale

Figure 4.15: NUSA assignment for keyword spotting: data assignment

81

4.6.4 Post-silicon runtime scheduling

In Fig. 4.16 and 4.17, we present the results of the runtime scheduling (post-silicon) part of

the framework. Specifically, we look at an accelerator running MAC instructions with 16

PEs.

Fig. 4.16 presents the execution latency. Each set of bars represent the latencies of a

certain matrix size for a matrix vector multiplication in a MAC instruction, while the indi-

vidual bars represent activating different numbers of PEs within the same matrix size. The

execution latency is further broken down into two parts: the bottom part shows time spent

on the control core and the top part shows time in PE computation. In general, computation

time (latency on the PE) reduces with more active PEs; on the other hand, communication

time (latency on control core) increases because a) more PEs need to be programmed and

b) after PE computation finishes, more time needs to be spent on gathering all the partial re-

sults. Activating more PEs is beneficial for larger sizes of matrices, as shown in the graph.

This is because communication latency takes up a relatively less portion for these sizes.

Energy consumption for the same set of benchmarks is presented in Fig. 4.17. Each bar

is broken down into three parts: the energy spent on the control core, including the core

itself and its compiled SRAM; the energy spent on PE computation; and the energy spent on

accessing the NUSA SRAM. NUSA SRAM access energy increases with the problem size,

but mostly stays the same regardless of the number of PEs active. The energy consumption

of both the control core and the PEs are more complicated; it does not grow monotonically

with the number of PEs. This is because static power consumes a considerable portion

of total energy spent for the control core and PEs, and static power depends on the total

latency. For instance, though the control core latency increases with the number of PEs,

the energy spent on the control core may still decrease because the static power decreased

along with the total runtime.

In all, these graphs show that the latency and energy can be affected by many factors,

and both NUSA and a framework are necessary to reach the optimal design.

82

1 2
 50

4 816 1 2
 100

4 816 1 2
 250

4 816 1 2
 500

4 816 1 2
 1000

4 816

PEs actived
MAC instruction size

0

2

4

6

8

10

12

La
te

nc
y

(m
s)

Latency on control core
Latency on PE

Figure 4.16: Runtime scheduling for MAC instruction: latency for different number of PEs
activated

Figure 4.17: Runtime scheduling for MAC instruction: energy for different number of PEs
activated

83

4.6.5 End-to-end applications

In Fig. 4.18 and Fig. 4.19, we demonstrate the result of running the end-to-end always-on

applications in Table. 4.3. We compare the accelerator against general purpose embedded

cores, specifically ARM Cortex M0, M3, and M4, and a TI low-power fixed point DSP.

Experimental setup for these cores are described in Section. 4.5.1 and 4.5.2.

Latency: Fig. 4.18 show the improvement of latency against three M-class cores and

DSP. First, applications involving more computation can generally benefit more from the

accelerator, because the overhead in launching the accelerator gets amortized for bigger

kernels. For instance, keyword spotting achieves higher latency improvement than face de-

tection as it works on a larger DNN, and wake on gesture has little improvement because its

data size is very small. Second, applications running mainly matrix-vector multiplication

have larger improvement over applications running FFT and matrix-matrix multiplication.

There are two reasons for that: 1.) there are more opportunities to optimize matrix-matrix

multiplication and FFT for M-class cores and DSP, especially for the M3 and M4. Also,

M4 has comparable performance to a low-power DSP because it has good signal process-

ing support. 2.) FFT and matrix multiplication needs more PE instructions to run, which

incurs more communication overhead between the control core and the accelerator.

Energy: Fig. 4.19 show the reduction of energy consumption. Applications running

mainly matrix-vector multiplication and FFT achieve more energy reduction than matrix-

matrix multiplication. This is because matrix-vector multiplication has a more diverse

difference in terms of access frequency: vectors are accessed more times than matrices.

Even DSP has better energy efficiency than general M-cores, the accelerator still use 10X

less energy.

On average, the accelerator achieves an 8× to 28× improvement in latency, and a 10×

to 36× reduction in energy-efficiency compared to different M-class cores and a TI DSP.

84

Keyword
Spotting

Face
detection

(DNN)

Face
detection

(CNN)

Seizure
detection

Wake on
 gesture

0

10

20

30

40

50

60

La
te

nc
y

(n
or

m
al

iz
ed

 to
 a

cc
el

er
at

or
) M0 M3 M4 DSP Acc

Figure 4.18: End-to-end application: latency

Keyword
Spotting

Face
detection

(DNN)

Face
detection

(CNN)

Seizure
detection

Wake on
 gesture

0

10

20

30

40

50

60

70

80

En
er

gy
 (n

or
m

al
iz

ed
 to

 a
cc

el
er

at
or

) M0 M3 M4 DSP Acc

Figure 4.19: End-to-end application: energy

85

4.7 Related works

Accelerators in wearable devices. Due to the stringent constraint of energy, accelerators

are common in smartphones and wearable devices SoCs. Most prevailing accelerators in

wearable devices are for communication [81, 20] or computer vision [82]. Recently, deep

learning algorithms have been shown to be highly effective in a wide variety of applica-

tions. As a result, there has been significant interest in developing accelerators for such

algorithms [83, 84, 85]. They emphasize the need of optimizing memory access, which

is echoed in our work. There are also approaches for providing a complete DSP [86, 4]

or multi-core [87] solution towards wearable device kernels. Our work provides an accel-

erator design and framework specifically targeted to always-on applications in wearable

devices.

Wearable device characterization Various studies have been done on measuring and

analyzing wearable energy consumptions, including studies on Android Wear [18, 19, 88],

and Google glass [89]. Our work uses these characterizations as a point of departure.

Non-uniform memory allocation Non-uniform memory allocation schemes have been

proposed [90, 91, 92, 93, 94]. They are mostly targeted to multi-core server systems. In

contrast, our work aims at embedded system with very limited energy budget and scratch-

pad memories. In particular, we leverage the deterministic behavior for optimal energy

efficiency.

4.8 Conclusion

In this chapter, we observed that always-on applications in wearable devices execute in a

deterministic and repeatable fashion. From this observation, a new accelerator design and

framework was proposed that uses a non-uniform scratchpad architecture (NUSA). The

framework was used to determine the structure of the NUSA scratchpad, as well as a post-

silicon program schedule and data partition. Using the NUSA hierarchy and framework

86

we then presented the design of an accelerator , which was fabricated as a prototype chip.

In addition, the chapter further generalized the architecture by evaluating the latency and

energy of different designs, comparing it to both a uniform scratchpad based design and

general purpose CPU solutions. The results showed, on average, a 2.1× improvement in

energy-efficiency for NUSA designs compared to their uniform counterpart. Further results

showed that, on end-to-end applications, there was a 10× to 36× total reduction in energy

on the NUSA accelerator compared to general purpose M-class cores and DSP.

87

CHAPTER 5

Conclusions

This thesis focus on characterizing and building heterogeneous mobile platforms in the age

of “dark silicon”. With Dennard scaling is reaching its physical limits, technology scal-

ing has enabled increasing on chip integration to the extent that, in the near future, a chip

will have more transistors than can be simultaneously powered on within the peak power

and temperature budgets. The problem, therefore, is how to best utilize the abundance of

transistors in the dark silicon era. This problem is more severe on mobile platforms, espe-

cially emerging IoT and wearable devices, due to their strict power envelope and energy

budget. Heterogeneous architecture with specialized hardware is an effective way to utilize

the limited active transistor count. To guide heterogeneous mobile platform design, ana-

lyzing current and near-future mobile workloads and building specialized hardware based

on the analysis is essential. To this end, this dissertation starts with a quantitative analysis

of current mobile applications on smartphones, followed by an accelerator-based solution

for efficient execution of wearable workloads, with an emphasis on machine learning and

signal processing kernels.

5.1 Summary

The first part of the thesis focuses on a study of mobile device utilization.

We considered how multi-core processors in mobile devices are being used. We have

shown that current mobile applications cannot effectively use a large number of cores, by

88

analyzing a wide range of common mobile applications, and calculated the Thread Level

Parallelism (TLP) of these applications. The average TLP across all categories is 1.46,

which shows that mobile apps are utilizing less than 2 cores on average. Instead, we sug-

gest that a flexible system that can accommodate both high performance and good energy-

efficiency is a more preferable choice for current mobile applications. We find out that

TLP behavior exhibits peaks and valleys rather than remaining constant. User experience,

which is critical for mobile applications, also varies by different application scenarios and

different users. A system with the flexiblity to satisfy both high performance and good

energy-efficiency for different program phases is a good choice for mobile devices.

The second part of the thesis consists of a low-power accelerator design for always-on

applications used in wearable devices.

We observed that always-on applications in wearable devices execute in a deterministic

and repeatable fashion. This design takes advantage of this determinism by replacing the

traditional cache based architecture with a non-uniform scratchpad architecture (NUSA).

The framework was used to determine the structure of the NUSA scratchpad, as well as a

post-silicon program schedule and data partition. Using the NUSA hierarchy and frame-

work we then presented the design of an accelerator. A fabricated prototype accelerator is

also presented as an illustration of the technique. In addition, the chapter further general-

ized the architecture by evaluating the latency and energy of different designs, comparing it

to both a uniform scratchpad based design and general purpose CPU solutions. The results

showed, on average, a 2.1× improvement in energy-efficiency for NUSA designs compared

to their uniform counterpart. Further results showed that, on end-to-end applications, there

was a 10× to 36× total reduction in energy on the NUSA accelerator compared to general

purpose M-class cores and DSP.

89

5.2 Future Directions

This work has mostly focused on the characteristic and design of CPU and ASIC. There are

many other important components on a heterogeneous mobile platform that are worth in-

vestigating. Mobile GPU would be an good example, as future mobile applications requires

rich graphics experience as well as heavy computations. Sample use case can be running

augment reality applications with image recognition, with speech recognition running in

the background. This problem becomes more interesting with the fast moving trend of

deep learning — running some computational kernels in deep learning are faster and more

energy efficient on GPGPU (General-purpose computing on graphics processing). Mean-

while, graphics workloads, which directly affects user experience, should not be affected.

To investigate and analyze existing and near-future graphics workloads (games, VR) and

computational workloads (deep learning), then design hardware and software solutions to

co-execute them may be one topic to explore [95, 96, 97, 98].

In this work, we analyzed the components individually, and mostly assume the compo-

nent the workload will be executing on is pre-determined statically. To dynamically adjust

workload assignment to different components, based on the characteristics of the workload,

environment, and user need, will be an interesting problem. This issue is briefly touched in

Section. 4.3.2, where the proposed framework can decided whether it is beneficial to run a

certain workload on the general purpose embedded core, or on the accelerator. A more in

depth and broad discussion can be a research topic to explore [99, 100, 101, 102].

90

BIBLIOGRAPHY

[1] Shafique, M., Garg, S., Henkel, J., and Marculescu, D., “The EDA Challenges in the
Dark Silicon Era: Temperature, Reliability, and Variability Perspectives,” Proceed-
ings of the 51st Annual Design Automation Conference, DAC ’14, ACM, New York,
NY, USA, 2014, pp. 185:1–185:6.

[2] Goulding-Hotta, N., Sampson, J., Venkatesh, G., Garcia, S., Auricchio, J., Huang,
P. C., Arora, M., Nath, S., Bhatt, V., Babb, J., Swanson, S., and Taylor, M., “The
GreenDroid Mobile Application Processor: An Architecture for Silicon’s Dark Fu-
ture,” IEEE Micro, 2011, pp. 86–95.

[3] Flautner, K., Uhlig, R., Reinhardt, S., and Mudge, T., “Thread-level parallelism and
interactive performance of desktop applications,” Proceedings of the ninth interna-
tional conference on Architectural support for programming languages and operat-
ing systems (ASPLOS), 2000.

[4] “Ultra Low Power Integrated Platform for Connectivity and Audio/Voice/Sensing,”
http://www.chipex.co.il/_Uploads/dbsAttachedFiles/CEVA.
pdf.

[5] Dennard, R. H., Gaensslen, F. H., Rideout, V. L., Bassous, E., and LeBlanc, A. R.,
“Design of ion-implanted MOSFET’s with very small physical dimensions,” IEEE
Journal of Solid-State Circuits, 1974, pp. 256–268.

[6] Schaller, R. R., “Moore’s Law: Past, Present, and Future,” IEEE Spectr., Vol. 34,
No. 6, June 1997, pp. 52–59.

[7] Haghbayan, M. H., Rahmani, A. M., Weldezion, A. Y., Liljeberg, P., Plosila, J.,
Jantsch, A., and Tenhunen, H., “Dark silicon aware power management for many-
core systems under dynamic workloads,” 2014 IEEE 32nd International Conference
on Computer Design (ICCD), 2014, pp. 509–512.

[8] Venkatesh, G., Sampson, J., Goulding, N., Garcia, S., Bryksin, V., Lugo-Martinez,
J., Swanson, S., and Taylor, M. B., “Conservation cores: reducing the energy of
mature computations,” 2010.

[9] Hardavellas, N., Ferdman, M., Falsafi, B., and Ailamaki, A., “Toward Dark Silicon
in Servers,” IEEE Micro, Vol. 31, No. 4, July 2011, pp. 6–15.

91

http://www.chipex.co.il/_Uploads/dbsAttachedFiles/CEVA.pdf
http://www.chipex.co.il/_Uploads/dbsAttachedFiles/CEVA.pdf

[10] Esmaeilzadeh, H., Blem, E., St Amant, R., Sankaralingam, K., and Burger, D., “Dark
silicon and the end of multicore scaling,” Proceedings of the 38th annual Interna-
tional Symposium on Computer Architecture (ISCA), 2011.

[11] Kanduri, A., Rahmani, A. M., Liljeberg, P., Hemani, A., Jantsch, A., and Tenhunen,
H., A Perspective on Dark Silicon, Springer International Publishing, Cham, 2017,
pp. 3–20.

[12] Halpern, M., Zhu, Y., and Reddi, V. J., “Mobile CPU’s rise to power: Quantifying the
impact of generational mobile CPU design trends on performance, energy, and user
satisfaction,” 2016 IEEE International Symposium on High Performance Computer
Architecture (HPCA), March 2016, pp. 64–76.

[13] “Power Management in Intel Architecture Servers,” .

[14] Zhu, Y. and Reddi, V. J., “WebCore: architectural support for mobileweb browsing,”
Proceedings of the 41th annual International Symposium on Computer Architecture
(ISCA), 2014.

[15] Gutierrez, A., Dreslinski, R. G., Wenisch, T. F., Mudge, T., Saidi, A., Emmons, C.,
and Paver, N., “Full-system analysis and characterization of interactive smartphone
applications,” Workload Characterization (IISWC), 2011 IEEE International Sym-
posium on, 2011.

[16] Yang, L., Dick, R., Memik, G., and Dinda, P., “HAPPE: Human and Applica-
tion Driven Frequency Scaling for Processor Power Efficiency,” Mobile Computing,
IEEE Transactions on, 2013.

[17] Blake, G., Dreslinski, R. G., Mudge, T., and Flautner, K., “Evolution of thread-level
parallelism in desktop applications,” Proceedings of the 37th annual International
Symposium on Computer Architecture (ISCA), 2010.

[18] Liu, R. and Lin, F. X., “Understanding the Characteristics of Android Wear OS,”
Proceedings of the 14th Annual International Conference on Mobile Systems, Appli-
cations, and Services, MobiSys ’16, ACM, New York, NY, USA, 2016, pp. 151–164.

[19] Liu, R., Jiang, L., Jiang, N., and Lin, F. X., “Anatomizing System Activities on Inter-
active Wearable Devices,” Proceedings of the 6th Asia-Pacific Workshop on Systems,
APSys ’15, ACM, New York, NY, USA, 2015, pp. 18:1–18:7.

[20] Chen, Y., Lu, S., Kim, H. S., Blaauw, D., Dreslinski, R. G., and Mudge, T., “A
low power software-defined-radio baseband processor for the Internet of Things,”
2016 IEEE International Symposium on High Performance Computer Architecture
(HPCA), March 2016, pp. 40–51.

[21] Hinton, G. E., “Mapping Part-whole Hierarchies into Connectionist Networks,” Ar-
tif. Intell., Vol. 46, No. 1-2, Nov. 1990, pp. 47–75.

92

[22] Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P., “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, Vol. 86, No. 11, Nov 1998,
pp. 2278–2324.

[23] Socher, R., Recursive deep learning for natural language processing and computer
vision, Ph.D. thesis, Stanford, 2014.

[24] Hauswald, J., Kang, Y., Laurenzano, M. A., Chen, Q., Li, C., Mudge, T., Dreslinski,
R. G., Mars, J., and Tang, L., “Djinn and tonic: Dnn as a service and its implica-
tions for future warehouse scale computers,” ACM SIGARCH Computer Architecture
News, Vol. 43, ACM, 2015, pp. 27–40.

[25] Kang, Y., Hauswald, J., Gao, C., Rovinski, A., Mudge, T., Mars, J., and Tang, L.,
“Neurosurgeon: Collaborative Intelligence Between the Cloud and Mobile Edge,”
Proceedings of the Twenty-Second International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, ASPLOS ’17, ACM, New
York, NY, USA, 2017, pp. 615–629.

[26] Hauswald, J., Laurenzano, M. A., Zhang, Y., Li, C., Rovinski, A., Khurana, A.,
Dreslinski, R. G., Mudge, T., Petrucci, V., Tang, L., and Mars, J., “Sirius: An Open
End-to-End Voice and Vision Personal Assistant and Its Implications for Future
Warehouse Scale Computers,” Proceedings of the Twentieth International Confer-
ence on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’15, ACM, New York, NY, USA, 2015, pp. 223–238.

[27] Wilpon, J. G., Rabiner, L. R., Lee, C.-H., and Goldman, E., “Automatic recognition
of keywords in unconstrained speech using hidden Markov models,” IEEE Transac-
tions on Acoustics, Speech, and Signal Processing, 1990.

[28] Shah, M., Wang, J., Blaauw, D., Sylvester, D., Kim, H.-S., and Chakrabarti, C., “A
fixed-point neural network for keyword detection on resource constrained hardware,”
Signal Processing Systems (SiPS), 2015 IEEE Workshop on, 2015.

[29] Fernández, S., Graves, A., and Schmidhuber, J., “An Application of Recurrent Neu-
ral Networks to Discriminative Keyword Spotting,” Proceedings of the 17th Inter-
national Conference on Artificial Neural Networks, 2007.

[30] Gajic, D., Djurovic, Z., Di Gennaro, S., and Gustafsson, F., “Classification of EEG
signals for detection of epileptic seizures based on wavelets and statistical pattern
recognition,” Biomedical Engineering: Applications, Basis and Communications,
2014.

[31] Qu, H. and Gotman, J., “A patient-specific algorithm for the detection of seizure
onset in long-term EEG monitoring: possible use as a warning device,” IEEE Trans-
actions on Biomedical Engineering, 1997.

[32] Ghosh-Dastidar, S., Adeli, H., and Dadmehr, N., “Principal component analysis-
enhanced cosine radial basis function neural network for robust epilepsy and seizure
detection,” IEEE Transactions on Biomedical Engineering, 2008.

93

[33] Güler, N. F., ı́beyli, E. D., and Güler, I., “Recurrent Neural Networks Employing
Lyapunov Exponents for EEG Signals Classification,” Expert Systems with Applica-
tions: An International Journal, Oct. 2005.

[34] “The database of faces,” http://www.cl.cam.ac.uk/research/dtg/
attarchive/facedatabase.html.

[35] Garcia, C. and Delakis, M., “Convolutional face finder: a neural architecture for
fast and robust face detection,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, Nov 2004.

[36] Lawrence, S., Giles, C. L., Tsoi, A. C., and Back, A. D., “Face recognition: a convo-
lutional neural-network approach,” IEEE Transactions on Neural Networks, 1997.

[37] Rifkin, R. and Klautau, A., “In defense of one-vs-all classification,” Journal of ma-
chine learning research, No. Jan, 2004, pp. 101–141.

[38] Boser, B. E., Guyon, I. M., and Vapnik, V. N., “A training algorithm for optimal mar-
gin classifiers,” Proceedings of the fifth annual workshop on Computational learning
theory, ACM, 1992, pp. 144–152.

[39] Gao, C., Gutierrez, A., Rajan, M., Dreslinski, R. G., Mudge, T., and Wu, C.-J., “A
study of mobile device utilization,” Performance Analysis of Systems and Software
(ISPASS), 2015 IEEE International Symposium on, 2015, pp. 225–234.

[40] Gao, C., Gutierrez, A., Dreslinski, R., Mudge, T., Flautner, K., and Blake, G., “A
study of Thread Level Parallelism on mobile devices,” Performance Analysis of Sys-
tems and Software (ISPASS), 2014 IEEE International Symposium on, 2014.

[41] “Odroid Wiki,” .

[42] “ftrace - Function Tracer,” .

[43] Huang, Y., Zha, Z., Chen, M., and Zhang, L., “Moby: A Mobile Benchmark Suite for
Architectural Simulators,” Performance Analysis of Systems and Software (ISPASS),
2014 IEEE International Symposium on, 2014.

[44] Pandiyan, D., Lee, S.-Y., and Wu, C.-J., “Performance, Energy Characterizations
and Architectural Implications of An Emerging Mobile Platform Benchmark Suite:
MobileBench,” Workload Characterization (IISWC), 2013 IEEE International Sym-
posium on, 2013.

[45] Böhmer, M., Hecht, B., Schöning, J., Krüger, A., and Bauer, G., “Falling Asleep
with Angry Birds, Facebook and Kindle: A Large Scale Study on Mobile Applica-
tion Usage,” Proceedings of the 13th International Conference on Human Computer
Interaction with Mobile Devices and Services, 2011.

[46] Gomez, L., Neamtiu, I., Azim, T., and Millstein, T., “RERAN: Timing- and touch-
sensitive record and replay for Android,” Software Engineering (ICSE), 2013 35th
International Conference on, 2013.

94

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

[47] “big.LITTLE Processing with ARM Cortex-A15 & Cortex-A7,” .

[48] “Variable SMP A Multi-Core CPU Architecture for Low Power and High Perfor-
mance,” .

[49] Khubaib, K., Suleman, M. A., Hashemi, M., Wilkerson, C., and Patt, Y. N., “Mor-
phcore: An energy-efficient microarchitecture for high performance ilp and high
throughput tlp,” Proceedings of the 45th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, 2012.

[50] Petrica, P., Izraelevitz, A. M., Albonesi, D. H., and Shoemaker, C. A., “Flicker:
A Dynamically Adaptive Architecture for Power Limited Multicore Systems,” Pro-
ceedings of the 40th Annual International Symposium on Computer Architecture
(ISCA), 2013.

[51] Lukefahr, A., Padmanabha, S., Das, R., Sleiman, F. M., Dreslinski, R., Wenisch,
T. F., and Mahlke, S., “Composite cores: Pushing heterogeneity into a core,” Pro-
ceedings of the 2012 45th Annual IEEE/ACM International Symposium on Microar-
chitecture, 2012.

[52] Carroll, A. and Heiser, G., “An analysis of power consumption in a smartphone,”
Proceedings of the 2010 USENIX conference on USENIX annual technical confer-
ence, 2010.

[53] Miller, R. B., “Response Time in Man-computer Conversational Transactions,” Pro-
ceedings of Fall Joint Computer Conference, Part I, 1968.

[54] Hayenga, M., Sudanthi, C., Ghosh, M., Ramrakhyani, P., and Paver, N., “Accurate
system-level performance modeling and workload characterization for mobile inter-
net devices,” Proceedings of the 9th workshop on MEmory performance: DEaling
with Applications, systems and architecture, 2008.

[55] Van Berkel, C., “Multi-core for mobile phones,” Proceedings of the Conference on
Design, Automation and Test in Europe (DATE), 2009.

[56] Ma, X., Deng, Z., Dong, M., and Zhong, L., “Characterizing the Performance and
Power Consumption of 3D Mobile Games,” Computer, IEEE transaction on, 2013.

[57] Canali, C., Colajanni, M., and Lancellotti, R., “Performance Evolution of Mobile
Web-Based Services,” Internet Computing, IEEE, 2009.

[58] Sunwoo, D., Wang, W., Ghosh, M., Sudanthi, C., Blake, G., Emmons, C. D., and
Paver, N. C., “A structured approach to the simulation, analysis and characterization
of smartphone applications,” Workload Characterization (IISWC), IEEE Interna-
tional Symposium on, 2013.

[59] Binkert, N., Beckmann, B., Black, G., Reinhardt, S. K., Saidi, A., Basu, A., Hest-
ness, J., Hower, D. R., Krishna, T., Sardashti, S., Sen, R., Sewell, K., Shoaib, M.,
Vaish, N., Hill, M. D., and Wood, D. A., “The Gem5 Simulator,” SIGARCH Comput.
Archit. News, 2011.

95

[60] Chayong Lee, E. K. and Kim, H., “The AM-Bench: An Android Multimedia Bench-
mark Suite,” Technical Report, School of Computer Science, Georgia Institute of
Technology, 2012.

[61] “GFXBench: unified graphics benchmark based on DXBenchmark (DirectX) and
GLBenchmark (OpenGL ES),” .

[62] “Aurora Softworks: Quadrant,” .

[63] Simunic, T., Benini, L., Acquaviva, A., Glynn, P., and De Micheli, G., “Dynamic
voltage scaling and power management for portable systems,” Proceedings of the
38th annual Design Automation Conference (DAC), 2001.

[64] Gao, C., Gutierrez, A., Rajan, M., Dreslinski, R. G., Mudge, T., and jean Wu, C., “A
study of mobile device utilization,” Performance Analysis of Systems and Software
(ISPASS), 2015 IEEE International Symposium on, 2015.

[65] Pannuto, P., Lee, Y., Kuo, Y.-S., Foo, Z., Kempke, B., Kim, G., Dreslinski, R. G.,
Blaauw, D., and Dutta, P., “MBus: An Ultra-Low Power Interconnect Bus for Next
Generation Nanopower Systems,” Proceedings of the 42nd International Symposium
on Computer Architecture, ISCA ’15, 2015.

[66] Thoziyoor, S., Muralimanohar, N., Ahn, J. H., and Jouppi, N. P., “CACTI 5.1,”
Technical Report HPL-2008-20, HP Labs, 2008.

[67] “TMS320VC5509A Fixed-Point Digital Signal Processor,” http://www.ti.
com/product/TMS320VC5509A.

[68] “µVision IDE,” http://www2.keil.com/mdk5/uvision/.

[69] “Code Composer Studio (CCS) Integrated Development Environment (IDE),”
http://www.ti.com/tool/ccstudio.

[70] “SPRC100 TMS320C55x DSP Library (DSPLIB),” http://www.ti.com/
tool/sprc100.

[71] Cornelius, C., Peterson, R., Skinner, J., Halter, R., and Kotz, D., “A wearable system
that knows who wears it,” Proceedings of the 12th annual international conference
on Mobile systems, applications, and services, ACM, 2014.

[72] Lin, F. X., Wang, Z., and Zhong, L., “K2: A Mobile Operating System for Hetero-
geneous Coherence Domains,” Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and Operating Systems, ASP-
LOS ’14, ACM, New York, NY, USA, 2014, pp. 285–300.

[73] Kumar, R., Farkas, K. I., Jouppi, N. P., Ranganathan, P., and Tullsen, D. M., “Single-
ISA Heterogeneous Multi-Core Architectures: The Potential for Processor Power
Reduction,” Proceedings of the 36th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO 36, IEEE Computer Society, Washington, DC, USA,
2003, pp. 81–.

96

http://www.ti.com/product/TMS320VC5509A
http://www.ti.com/product/TMS320VC5509A
http://www2.keil.com/mdk5/uvision/
http://www.ti.com/tool/ccstudio
http://www.ti.com/tool/sprc100
http://www.ti.com/tool/sprc100

[74] Gordon, M. S., Hong, D. K., Chen, P. M., Flinn, J., Mahlke, S., and Mao, Z. M.,
“Accelerating Mobile Applications Through Flip-Flop Replication,” Proceedings of
the 13th Annual International Conference on Mobile Systems, Applications, and Ser-
vices, MobiSys ’15, ACM, New York, NY, USA, 2015, pp. 137–150.

[75] Chen, Y., Chiotellis, N., Chuo, L. X., Pfeiffer, C., Shi, Y., Dreslinski, R. G., Grbic,
A., Mudge, T., Wentzloff, D. D., Blaauw, D., and Kim, H. S., “Energy-Autonomous
Wireless Communication for Millimeter-Scale Internet-of-Things Sensor Nodes,”
IEEE Journal on Selected Areas in Communications, Vol. 34, No. 12, Dec 2016,
pp. 3962–3977.

[76] Chen, Y., Lu, S., Fu, C., Blaauw, D., Dreslinski, R. G., Mudge, T., and Kim, H. S.,
“A Programmable Galois Field Processor for the Internet of Things,” 2016 IEEE In-
ternational Symposium on High Performance Computer Architecture (HPCA), 2017.

[77] Li, Z., Dong, Q., Saligane, M., Kempke, B., Yang, S., Zhang, Z., Dreslinski, R.,
Sylvester, D., Blaauw, D., and Kim, H. S., “3.7 A 1920x1080 30fps 2.3TOPS/W
stereo-depth processor for robust autonomous navigation,” 2017 IEEE International
Solid-State Circuits Conference (ISSCC), Feb 2017, pp. 62–63.

[78] Bang, S., Wang, J., Li, Z., Gao, C., Kim, Y., Dong, Q., Chen, Y. P., Fick, L., Sun,
X., Dreslinski, R., Mudge, T., Kim, H. S., Blaauw, D., and Sylvester, D., “14.7 A
288 uW programmable deep-learning processor with 270KB on-chip weight storage
using non-uniform memory hierarchy for mobile intelligence,” 2017 IEEE Interna-
tional Solid-State Circuits Conference (ISSCC), Feb 2017, pp. 250–251.

[79] Chen, Q., Yang, H., Mars, J., and Tang, L., “Baymax: QoS Awareness and Increased
Utilization for Non-Preemptive Accelerators in Warehouse Scale Computers,” Pro-
ceedings of the Twenty-First International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’16, ACM, New York,
NY, USA, 2016, pp. 681–696.

[80] Hsu, C.-H., Zhang, Y., Laurenzano, M. A., Meisner, D., Wenisch, T., Dreslinski,
R. G., Mars, J., and Tang, L., “Reining in Long Tails in Warehouse-Scale Computers
with Quick Voltage Boosting Using Adrenaline,” ACM Trans. Comput. Syst., Vol. 35,
No. 1, March 2017, pp. 2:1–2:33.

[81] Lin, Y., Lee, H., Woh, M., Harel, Y., Mahlke, S., Mudge, T., Chakrabarti, C., and
Flautner, K., “SODA: A Low-power Architecture For Software Radio,” Proceedings
of the 33rd Annual International Symposium on Computer Architecture, ISCA ’06,
IEEE Computer Society, Washington, DC, USA, 2006, pp. 89–101.

[82] Barry, B., Brick, C., Connor, F., Donohoe, D., Moloney, D., Richmond, R.,
O’Riordan, M., and Toma, V., “Always-on Vision Processing Unit for Mobile Ap-
plications,” IEEE Micro, 2015, pp. 56–66.

97

[83] Chen, Y.-H., Emer, J., and Sze, V., “Eyeriss: A Spatial Architecture for Energy-
efficient Dataflow for Convolutional Neural Networks,” Proceedings of the 43rd In-
ternational Symposium on Computer Architecture, ISCA ’16, 2016.

[84] Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y., and Temam, O., “DianNao:
A Small-footprint High-throughput Accelerator for Ubiquitous Machine-learning,”
Proceedings of the 19th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS ’14, 2014.

[85] Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J., Li, L., Chen, T., Xu, Z., Sun,
N., and Temam, O., “DaDianNao: A Machine-Learning Supercomputer,” Proceed-
ings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO-47, 2014.

[86] Wu, M., Iyer, R., Hoskote, Y., Zhang, S., Zamora, J., Fabila, G., Klotchkov, I., and
Bhartiya, M., “Design of a low power SoC testchip for wearables and IoTs,” 2015
IEEE Hot Chips 27 Symposium (HCS), 2015.

[87] Tan, C., Kulkarni, A., Venkataramani, V., Karunaratne, M., Mitra, T., and Peh, L.-S.,
“LOCUS: Low-power Customizable Many-core Architecture for Wearables,” Pro-
ceedings of the International Conference on Compilers, Architectures and Synthesis
for Embedded Systems, CASES ’16, ACM, New York, NY, USA, 2016, pp. 11:1–
11:10.

[88] Liu, X. and Qian, F., “Measuring and Optimizing Android Smartwatch Energy Con-
sumption: Poster,” Proceedings of the 22Nd Annual International Conference on
Mobile Computing and Networking, MobiCom ’16, 2016.

[89] LiKamWa, R., Wang, Z., Carroll, A., Lin, F. X., and Zhong, L., “Draining Our
Glass: An Energy and Heat Characterization of Google Glass,” Proceedings of 5th
Asia-Pacific Workshop on Systems, 2014.

[90] Carter, N. P., Agrawal, A., Borkar, S., Cledat, R., David, H., Dunning, D., Fry-
man, J., Ganev, I., Golliver, R. A., Knauerhase, R., Lethin, R., Meister, B., Mishra,
A. K., Pinfold, W. R., Teller, J., Torrellas, J., Vasilache, N., Venkatesh, G., and Xu,
J., “Runnemede: An Architecture for Ubiquitous High-Performance Computing,”
Proceedings of the 2013 IEEE 19th International Symposium on High Performance
Computer Architecture (HPCA), HPCA ’13, 2013.

[91] Guo, Y., Zhuge, Q., Hu, J., Qiu, M., and Sha, E. H. M., “Optimal Data Allocation for
Scratch-Pad Memory on Embedded Multi-core Systems,” 2011 International Con-
ference on Parallel Processing, 2011.

[92] Majo, Z. and Gross, T. R., “Matching Memory Access Patterns and Data Placement
for NUMA Systems,” Proceedings of the Tenth International Symposium on Code
Generation and Optimization, CGO ’12, ACM, New York, NY, USA, 2012, pp.
230–241.

98

[93] Muddukrishna, A., Jonsson, P. A., and Brorsson, M., “Locality-aware Task Schedul-
ing and Data Distribution for OpenMP Programs on NUMA Systems and Manycore
Processors,” Sci. Program., Vol. 2015, Jan. 2016, pp. 5:5–5:5.

[94] Blagodurov, S., Zhuravlev, S., Dashti, M., and Fedorova, A., “A Case for NUMA-
aware Contention Management on Multicore Systems,” Proceedings of the 2011
USENIX Conference on USENIX Annual Technical Conference, USENIXATC’11,
USENIX Association, Berkeley, CA, USA, 2011, pp. 1–1.

[95] Kato, S., Lakshmanan, K., Rajkumar, R., and Ishikawa, Y., “TimeGraph: GPU
Scheduling for Real-time Multi-tasking Environments,” Proceedings of the 2011
USENIX Conference on USENIX Annual Technical Conference, USENIXATC’11,
USENIX Association, Berkeley, CA, USA, 2011, pp. 2–2.

[96] Park, J. J. K., Park, Y., and Mahlke, S., “Chimera: Collaborative Preemption for
Multitasking on a Shared GPU,” Proceedings of the Twentieth International Confer-
ence on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’15, ACM, New York, NY, USA, 2015, pp. 593–606.

[97] Wang, Z., Yang, J., Melhem, R., Childers, B., Zhang, Y., and Guo, M., “Simulta-
neous Multikernel GPU: Multi-tasking throughput processors via fine-grained shar-
ing,” 2016 IEEE International Symposium on High Performance Computer Archi-
tecture (HPCA), March 2016, pp. 358–369.

[98] Yang, H., Breslow, A., Mars, J., and Tang, L., “Bubble-flux: Precise Online QoS
Management for Increased Utilization in Warehouse Scale Computers,” Proceedings
of the 40th Annual International Symposium on Computer Architecture, ISCA ’13,
ACM, New York, NY, USA, 2013, pp. 607–618.

[99] Du Bois, K., Eyerman, S., Sartor, J. B., and Eeckhout, L., “Criticality Stacks: Identi-
fying Critical Threads in Parallel Programs Using Synchronization Behavior,” Pro-
ceedings of the 40th Annual International Symposium on Computer Architecture,
ISCA ’13, ACM, New York, NY, USA, 2013, pp. 511–522.

[100] Saez, J. C., Prieto, M., Fedorova, A., and Blagodurov, S., “A Comprehensive Sched-
uler for Asymmetric Multicore Systems,” Proceedings of the 5th European Confer-
ence on Computer Systems, EuroSys ’10, ACM, New York, NY, USA, 2010, pp.
139–152.

[101] Suleman, M. A., Mutlu, O., Qureshi, M. K., and Patt, Y. N., “Accelerating Criti-
cal Section Execution with Asymmetric Multi-core Architectures,” Proceedings of
the 14th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS XIV, ACM, New York, NY, USA, 2009,
pp. 253–264.

[102] Koufaty, D., Reddy, D., and Hahn, S., “Bias Scheduling in Heterogeneous Multi-
core Architectures,” Proceedings of the 5th European Conference on Computer Sys-
tems, EuroSys ’10, ACM, New York, NY, USA, 2010, pp. 125–138.

99

	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	Heterogeneous Mobile Platforms
	Contributions
	Organization

	Background
	Mobile Platforms
	Mobile Device Utilization
	Metrics
	Early Studies on TLP

	The status quo for wearables

	Wearable Applications
	Deep Learning Algorithms
	General Structures
	MLP (Multilayer Perceptron)
	CNN (Convolutional Neural Network)

	Always-on applications for wearables
	Keyword spotting
	Seizure detection
	Face detection
	Wake on user gesture

	An Analysis of Mobile Device Utilization
	Introduction
	Methodology
	System Setup
	Measurement
	TLP
	GPU utilization

	Benchmarks
	Web browser
	Video Player
	Music Player
	Image Viewer
	Communication
	Games
	Social Networking
	Navigation
	Office
	File Browser
	Background

	Results
	Overall Results
	Core Scaling
	Heavy Load Scenarios
	Background Applications
	Multi-tab Web Browsing

	Alternative Architecture
	Little Cores
	A9 and Krait CPUs

	GPU

	Suggestions
	TLP vs. Time
	Energy Efficiency of Big and Little Cores
	Thread CPU Time Distribution

	Related works
	Mobile Device Workload Characterization
	Mobile Benchmarks
	Parallelism in Programs
	Mobile Device Power Consumption

	Conclusion and Discussion

	A Low Power Accelerator for Always-On Applications in Wearable Devices
	Introduction
	Background
	Always-on applications
	Keyword spotting
	Seizure detection
	Face detection
	Wake on user gesture

	The status quo for wearables
	Non-uniform scratchpad architecture

	Accelerator design framework
	Pre-silicon
	Determine the kernels for acceleration
	Determine the data element characteristics
	Determine the NUSA configuration
	Determine the number of processing elements

	Post-silicon
	Determine the number of active PEs
	Tailor applications towards NUSA
	Assign the data layout for the scratch-pads
	Generate the code

	Accelerator design example
	Architecture
	Operation
	Instruction set
	Support for convolution

	Design evaluation
	Accelerator
	Baseline
	Benchmarks

	Results
	Pre-silicon NUSA design
	Multi-application scheduling
	Post-silicon NUSA assignment
	Post-silicon runtime scheduling
	End-to-end applications

	Related works
	Conclusion

	Conclusions
	Summary
	Future Directions

	Bibliography

