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ABSTRACT

Developmental biology is a study of how elaborate patterns, shapes, and functions emerge

as an organism grows and develops its body plan. From the physics point of view this is

very much a self-organization process. The genetic blueprint contained in the DNA does

not explicitly encode shapes and patterns an animal ought to make as it develops from an

embryo. Instead, the DNA encodes various proteins which, among other roles, specify how

different cells function and interact with each other. Epithelial tissues, from which many or-

gans are sculpted, serve as experimentally- and analytically-tractable systems to study pat-

terning mechanisms in animal development. Despite extensive studies in the past decade,

the mechanisms that shape epithelial tissues into functioning organs remain incompletely

understood. This thesis summarizes various studies we have done on epithelial organiza-

tion and patterning, both in abstract theory and in close contact with experiments. A novel

mechanism to establish cellular left-right asymmetry based on planar polarity instabilities

is discussed. Tissue chirality is often assumed to originate from handedness of biological

molecules. Here we propose an alternative where it results from spontaneous symmetry

breaking of planar polarity mechanisms. We show that planar cell polarity (PCP), a class

of well-studied mechanisms that allows epithelia to spontaneously break rotational symme-

try, is also generically capable of spontaneously breaking reflection symmetry. Our results

provide a clear interpretation of many mutant phenotypes, especially those that result in

incomplete inversion. To bridge theory and experiments, we develop quantitative methods

to analyze fluorescence microscopy images. Included in this thesis are algorithms to selec-

tively project intensities from a surface in z-stack images, analysis of cells forming short

viii



chain fragments, analysis of thick fluorescent bands using steerable ridge detector, and

analysis of cell recoil in laser ablation experiments. These techniques, though developed

in the context of zebrafish retina mosaic, are general and can be adapted to other systems.

Finally we explore correlated noise in morphogenesis of fly pupa notum. Here we report

unexpected correlation of noise in cell movements between left and right halves of devel-

oping notum, suggesting that feedback or other mechanisms might be present to counteract

stochastic noise and maintain left-right symmetry.
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CHAPTER 1

Introduction

This thesis is born out of my 5 years of PhD research at the University of Michigan, where I
joined a computational and theoretical biophysics group led by David K Lubensky. Purely
theoretical biophysics research can be dangerous, in the sense that it is too easy to cre-
ate models that do not correspond to biological reality. Indeed, as physicists, we often
underestimate the complexity of biological systems. Traditional physical systems tend to
be simple and elegant, and when there are complicating details one usually can work in a
regime where they are negligible. The same thing cannot be said in biology. Biological
systems are often inherently ‘messy’ and complicated, often without the clear separation
between important and negligible details that we are so used to in physical systems. It
thus can be hard (sometimes even impossible) to come up with sensible models without
guidance from experimental data.

Being a non-experimental biophysics group, we often rely on collaborations with others
to perform experiments and collect data. Hence, the work we do is as varied as the col-
laborations we have forged over the years. Looking at different biological systems, from
insect to vertebrate, is not unusual. The spectrum of analysis we do is also equally broad,
ranging from purely mathematical modeling to numerical simulation to microscopy image
processing. This variety of topics will be reflected in this thesis, where each chapter is
dedicated to a different and independent topic.

Given the wide variety of things we did, I think it is wise to delay giving introduction
and background of specific topics to the beginning of the respective chapters. This has the
advantage of making each chapter independent of each other, so readers can jump directly
to chapters that interest them without having to read the preceding ones. For the rest of
this introductory chapter, I will only give broad introduction to a theme that ties the whole
thesis together: organization and patterning of epithelial tissues.
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Developmental Biology and Self-Organization

Developmental biology studies the growth and formation of various organs. Life of an
animal starts from a single, fertilized egg cell. As it develops, the egg divides into mul-
tiple cells carrying the same genetic materials. As soon as the embryo reaches a stage
with several number of cells, more elaborate development process kicks off. This includes
differentiating specific cells into different types, reshaping tissues by exerting mechani-
cal forces, signaling and secreting morphogens, and many more. All these require precise
spatio-temporal coordination to turn the embryo into an adult animal with complex organ
shapes and functions.

While it is easy to attribute the above process to the genetic materials in the DNA, it is
important to realize that they do not contain explicit information on the eventual shape of
the animal. The DNA encodes proteins that, among other functions, determine how cells
should behave and interact with each other. This interaction between cells is arguably as
important as the genetic blueprint itself in determining the eventual outcome of the devel-
opment. The final shape of an organ then emerges from specific interaction and behavior
of the underlying cells.

It is no coincidence that many physicists find the field of developmental biology fasci-
nating: the development process sketched above resembles self-organization phenomenon
found in many physical systems, albeit in a much more complex setting. While genetic
materials specify how different cells should function and interact, the final shape of the an-
imal is an emergent result from the dynamics of the underlying cells with minimal external
intervention.

On the Organization of Epithelial Sheets

A major theme in developmental biology is self-organization of cells into functional organs.
In animal development, epithelial tissues form basic building blocks on which more com-
plex organs are sculpted [1–5]. An epithelium consists of a sheet of cells adhering tightly
to their neighbors through some specialized apical junctions. Here apical junctional pro-
teins bind neighboring cells together to form a physical barrier separating the space above
and below the tissue. This adhesion also gives the epithelial sheet its integrity and tensile
strength [6–9]. Inside each cell, the junctional protein complexes (e.g. adhesion proteins)
are connected to networks of actins and myosins, and in particular to the band of cortical
actin located right next to the junctions. These actomyosin networks in turn interact with
signaling pathways that coordinate changes in cell morphology and fate [10, 11], allowing
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remodeling of epithelial tissues through active and coordinated cell movements.
Since the epithelial cells adhere tightly to each other, it is often useful to model this

layer of cells as a two-dimensional object with mechanical integrity [12–17]. It also means
that mechanical forces can be propagated through the plane and influence tissue shape. Two
major sources of mechanical force on this plane are thought to be: (1) cell-cell adhesion
and (2) myosin-dependent cytoskeletal contraction [18, 19]. At the single cell level, these
forces allow cells to change their apical shapes and mechanically influence their immediate
neighbors. When such actions are coordinated across many cells, tissue-scale remodeling
can be achieved.

One example of collective tissue remodeling is epithelial invagination driven by apical
constriction. In this process, contraction of the acto-myosin band causes cell apical area to
shrink. When the apical area constriction is coordinated across many cells, shrinkage on
the apical surface (but not on the basal surface) of the epithelium causes the tissue to bend.
This process is important in many development processes, for example in forming ventral
furrow of Drosophila embryo [20, 21]. The ventral furrow, driven by coordinated apical
constrictions, is a stage of fly embryo development where epithelial cells at the surface
invaginate into the embryo to make internal organs of the animal.

Apical constriction-driven tissue invagination is far from being the only way nature
sculpt epithelial tissues. Activity of the acto-myosin network can induce epithelial cell
rearrangements to achieve specific goal, such as growing tissues in a certain direction [22–
27]. Similarly, cell-cell adhesion can also drive morphogenesis. It has been shown in
Drosophila eye that cadherin-mediated adhesion can generate complex patterns [13,15,28].
Differential adhesion between cells of different types is also known to facilitate cell sorting,
forming physically distinct epithelial compartments, and maintaining straight compartment
boundaries [16, 29–32]. Yet in some other cases, external mechanical stress of various
origin, transmitted throughout the tissue via cell adhesion and cytoskeletal contractility,
can also play role in tissue morphogenesis [25, 33, 34].

To achieve a more complex morphogenesis, often a preferred direction is established
and communicated throughout the epithelial tissue. This is commonly achieved in epithe-
lium through the so-called planar cell polarity (PCP) mechanism. It refers to the ability
of individual cells to assume common polarization on the apical plane of the epithelium
through asymmetric protein localizations [35–37]. The asymmetrically-localized proteins
could be some adhesion complexes, or signaling molecules that affect adhesions and cy-
toskeletal functions. Physically this amounts to breaking rotational symmetry. Directional
information can be propagated from one cell to the next through homo- or hetero-typic
binding of intercellular protein complexes. These proteins can be the same ones as the PCP
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proteins, or can be different but connected to the polarity through some signaling pathways.
It has been shown that, when combined with appropriate initial condition, PCP can reliably
and collectively orient epithelial cells along some direction [38].

Breaking rotational symmetry and picking a preferred direction allows for a more com-
plex, non-isotropic tissue remodeling that otherwise is not possible. One example is a
process called convergence-extension, where an epithelium elongates through a series of
directional cell intercalation [39–45]. Here planar cell polarity plays role in picking the
direction which cell intercalation should happen. Another classical example of PCP is the
uniform growth of bristles in Drosophila wings, where PCP determines the orientation of
the bristles that grow from the wing epithelial cells. Many other examples of PCP driving
rotationally-asymmetric development are given in [36–38, 46–50], illustrating the impor-
tance of breaking rotational symmetry to achieve complex morphogenesis.

Yet more complex organ shaping can be achieved by lowering the symmetry even fur-
ther and break reflection symmetry. This amounts to establishing chirality in the tissue
to allow for left-right asymmetric organs to be formed. Conventionally, chirality at tissue
scale is thought to originate from molecular handedness [51–58]. A classic example of
this is the nodal flow in vertebrate, where a cillia-driven fluid flow establishes left-right
axis in embryos. The rotating cillia are driven by molecular motors composed of chiral
molecules, causing them to rotate only in one direction. Another example linking molecu-
lar and tissue-scale chirality is torque-generating acto-myosin contraction that establishes
the left-right axis of C. elegans embryos [52]. Both actin and myosin are chiral, and their
contraction generates torque dipole that is then sensed by the embryos.

Despite the existence of several mechanism linking tissue chirality to molecular hand-
edness, it is not clear that if such system is always at play. Recently, there have been studies
showing that formation of several left-right asymmetric organs are driven directly by chiral
epithelial cells. Once the epithelial cells are chiral, they can drive left-right asymmetric tis-
sue remodeling through, for example, chiral cell intercalation, signaling, and force exertion.
One example is the Drosophila embryonic hindgut, which starts as a straight, symmetric
tubes that later makes a left-hand twist. The direction of the twisting is consistent in all
wildtype flies, and have been shown to originate from the left-right asymmetric interca-
lation of the epithelial cells [59–61]. Similarly, chiral epithelial cells has been shown to
initiate chiral morphogenesis in adult fly gut and genitalia [58, 60, 62].

Motivated by this, we explore an alternative mechanism where cell chirality can arise
spontaneously from PCP protein interactions. In this framework, instability in protein-
protein interactions give cells intrinsic tendency to be chiral. External cues, such as that
from molecular chirality, can then bias the system to the direction seen in wildtype. We
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show that generic PCP interactions are sufficient to produce the said chiral instability, and
that in principle no new biological machinery beyond PCP is needed to establish cellular
chirality. We show that the proposed model results in clear interpretation of many mutant
phenotypes, especially those that result in incomplete inversion.

On the Organization of the Thesis

Just as epithelial tissues have to be organized to perform specific functions, I believe proper
organization of the thesis is crucial for its usefulness. Given the wide spectrum of topics
discussed, chapters are designed to be independent of each other. More specific introduc-
tion, background, and motivation pertaining to a specific topic are given at the beginning
of each chapter.

Chapter 2 discusses a theoretical study of spontaneous chiral symmetry-breaking from
generic PCP mechanisms. Most animal body plans have some degree of left-right asym-
metry. This chirality is conventionally thought to originate from handedness of biological
molecules. However, how the chirality is transferred from molecular to tissue scales is not
clear. Here we propose an alternative paradigm where chirality results from spontaneous
symmetry-breaking. We showed that PCP systems, which are commonly found in epithelial
tissues, can generically produce this chiral instability. Our results have clear implications
for the interpretation of many mutant phenotypes, especially those that result in incomplete
left-right inversion. This work is written as a manuscript for submission to Physical Review
Letters, and will be presented as such.

Chapter 3 describes a larger, still ongoing project to understand the mechanisms pat-
terning retinal cone photoreceptors into a near crystalline array in zebrafish. In this project I
did mostly quantitative image analysis and programming to better understand and quantify
fluorescence microscopy data. Hence, emphasis will be put on describing in more details
the analysis procedures. The project spans multiple published and submitted works that
combine experiments with quantitative analyses and computer simulations. While enough
background and results will be given to put the analysis procedures into context, interested
readers are invited to read the published papers, cited in the text, for a more complete
picture.

Chapter 4 summarizes the work we did in collaboration with the Bellaïche group in
Institut Curie, Paris, where we spent wonderful 6 months of 2015 in their lab. Here we
looked at morphogenesis of Drosophila dorsal notum and how it can maintain symmetry
between its left and right halves in the presence of biological noise. At tissue scale, the
notum maintains its symmetry throughout the development. However at cellular scale, cell
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divisions and other stochastic processes impart observable noise to individual cell trajec-
tories. Hence it is unclear how the epithelial tissue can maintain its symmetry despite this
noisy movement of the underlying cells. Looking at the correlation of cell movements
between the two halves gave us insight into whether any sort of feedback or correction
mechanism is at work to counteract the noise and maintain they symmetry. We found that
the noise from both halves is non-trivially correlated and does not match predictions from
a naïve stochastic model with simple noise. Several interesting auto-correlation results are
also discussed and compared to known features of the notum morphogenesis.

Additional materials that are not central to the main story but might be of interest to
some readers looking for more details are given in the Appendices. Appendix A contains
MATLAB routines used in Chapter 3. A manuscript of our most recent work, submitted
to Nature Communications at the time of writing, is given in Appendix C and contains our
work presented in Sections 3.4 and 3.5. Readers interested in the said sections are invited
to read the manuscript for a more comprehensive picture. Appendix B gives additional
methods for Chapter 4.

Finally, it is my hope that our works outlined here contribute to the collective under-
standing of self-organization and patterning in biology. This thesis summarizes the work
I have done during my PhD years. At the very least, I hope that this thesis can benefit
others, especially future researchers in the Raymond and Lubensky labs who will continue
working on related topics.
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CHAPTER 2

Spontaneous Chiral Symmetry Breaking in
Planar Polarized Epithelia

Jeremy Hadidjojo and David K. Lubensky
Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA

(Manuscript for Physical Review Letter, May 10, 2017)

2.1 Abstract

Most animal body plans have some degree of left-right asymmetry. This chirality at the
tissue and organ level is often assumed to originate from the intrinsic handedness of bio-
logical molecules. How the chirality is transferred from molecular to tissue scale during
development, however, is not well understood. Here we propose an alternative paradigm
where tissue chirality results from spontaneous symmetry breaking, with molecular chi-
rality acting only as a weak bias that ensures that one handedness predominates over the
other. In particular, we show that systems capable of generating planar polarity, found in
many epithelial tissues, can also generically break left-right symmetry, and we identify the
key interaction parameters that must be varied to access the chiral phase. In addition to a
chiral polar phase corresponding to one found in liquid crystal films, a chiral nematic phase
with no liquid crystal analog is also possible. Our results have clear implications for the
interpretation of the phenotypes of many mutants, especially those that result in incomplete
inversion.
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A B C D

uniform nematic chiral chiral morphogenesis

Figure 2.1: Chiral morphogenesis driven by spontaneous left-right symmetry breaking.
Cells (hexagons) in an epithelial sheet have an initially uniform membrane protein distri-
bution (A) which goes unstable to an intermediate polar (not shown) or nematic (B) state
before a secondary instability to a final chiral distribution (C); in certain special cases, a
direct transition from isotropic to chiral is possible (dashed line). Cell and organ shapes
then develop a definite handedness in response to chiral protein distribution (D).

2.2 Introduction

It is only a small exaggeration to view animal development as a progressive breaking of
symmetries through which an egg’s simple shape gradually transforms into an elaborate
adult form. One example of such a broken symmetry is the reflection symmetry linking left
and right: Everything from the twist of the Drosophila gut to the orientation of the human
heart has a definite handedness, but how this handedness is reliably chosen during develop-
ment remains unclear in most cases. With few exceptions [63], researchers have typically
assumed that chirality at the cellular level and above originates directly from molecular
handedness [51–56]. In this spirit, considerable effort has gone into exploring mecha-
nisms that might directly transduce chirality from molecular to cellular scales [62, 64–66].
Here we argue that an alternative scenario, wherein cellular handedness results instead from
spontaneous left-right symmetry breaking, may be equally widespread. In this picture (Fig.
2.1), the basic mechanism of symmetry breaking does not depend on molecular chirality
and does not favor one handedness over the other. (Molecular handedness can, however,
bias this intrinsic tendency towards chirality to ensure that wildtype animals always break
symmetry in the same direction.) Specifically, we show that the planar cell polarity (PCP)
systems that determine a preferred direction in many epithelial tissues are generically also
capable of spontaneous left-right symmetry breaking. Thus, establishing cellular chiral-
ity may not require any new biological pathways or molecular mechanisms beyond those
already characterized for PCP.

Recent experiments on development of various Drosophila visceral organs have high-
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lighted the role played by cellular chirality. These organs are formed by epithelial sheets,
where approximately polygonal cells are joined together to form 2D layers of tissue (Fig-
ure 2.1, left). The cells are observed to have intrinsic handedness that drive chiral morpho-
genesis. In the embryonic hindgut twist, for example, the cells are shown to displace their
centroids chirally at an angle and have chiral DE-Cadherin protein localization around their
membranes (illustrated in Figure 2.1, middle) [59, 60]. In adult male genitalia, cells in A8
domain are seen to have chiral Myosin II distribution and undergo left-right asymmetric
T1 topological transitions that leads to clockwise tissue rotation [57]. Myosin ID has been
shown to influence the direction of handedness [57–59, 67, 68]. In embryonic gut, a muta-
tion of myosinID results in a bimodal distribution of correct and inverted, but not loss of,
chirality [69]. This suggests the presence of some mechanism that favors breaking chiral
symmetry, which then can take cues from elsewhere to consistently bias it to the correct
wildtype direction. Furthermore in the first evidence showing a connection between chi-
rality and PCP, González-Morales et. al. showed that both Ds/Fat and Fz/Dsh/Dgo PCP
pathways commonly found in epithelial tissues are involved in establishing cell chirality
for proper adult hindgut looping [58]. Guided by these observations, we asked the ques-
tion of whether PCP can lead to spontaneous chiral symmetry breaking. We show that the
chiral states can be reached from both disordered and ordered states, and it requires no new
interaction beyond those generic to PCP.

This paper is organized as follow: first we will show based on general symmetry ar-
guments that concentration of membrane proteins in a lattice of cells can have polar chiral
(P ∗) and nematic chiral (N∗) modes. For regular hexagonal cells both modes are accessi-
ble only through some intermediate, non-chiral ordered phases, and direct isotropic (I) to
either chiral mode is forbidden. Although transitions to the P ∗ phase have been described
in the context of tilted liquid crystals [70, 71], spontaneous symmetry breaking into N∗

phase is not usually present in traditional 2D systems and, to our knowledge, has not been
studied before. To understand interactions important for chirality, we take a simple mean-
field model of PCP that is initially designed to produce polar concentration [72, 73] and
show what parameters need to be varied to achieve the chiral configurations. Finally, we
will show that direct I − N∗ transition is possible in two different scenarios where: (1)
we have stretched hexagon with D2 symmetry, or (2) we have two species of proteins with
symmetrical interaction.
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Figure 2.2: Cartoons of rreducible representations and mean-field PCP model. (A) Irre-
ducible representations of protein concentration on regular hexagon (D6 point group sym-
metry). µ and ν are 1D uniform and alternating representations, respectively. Boxed: 2D
representations that transform like polar (left) and nematic (right). (B) Cartoon of protein
interactions in the mean-field PCP model described in [72]. A and B are two different
species of transmembrane proteins, and the parameters set interaction strengths between:
unlike proteins (εAB) and like proteins on the same side (ε0), unlike protein (ε1) and like
proteins (ε2) across an interface. J1, J2, T , and cmax are not drawn and are described in the
text and in ref [72].

2.3 General symmetry arguments

We begin by working out the generic behavior dictated by symmetry near an instability
from an isotropic and achiral state [74]. For concreteness, we consider a field of identical
hexagons with multiple protein speciesA,B,C, . . . concentrated on the edges, but because
they are based only on symmetry considerations, the arguments in this section apply equally
well to systems where the concentrations of proteins in the cytosol, the orientations of
cytoskeletal filaments, or similar factors play an important role. We restrict ourselves to
the spatially uniform case in which every cell has an identical protein distribution. As
usual, we expect that only one mode will initially go unstable, which must correspond to
some linear combination of protein concentrations (e.g. A−B or A+B) whose amplitude
varies from edge to edge according to a representation of the symmetry group D6 of the
hexagon. Denote the coefficients of the appropriate linear combination on the six edges as
c1, . . . , c6; these are assumed to follow the deterministic dynamics ċ = f(c). Decomposing
the 6 concentrations into irreducible representations yields the modes shown in Fig. 2.2A.
The first mode, µ, encodes the total protein number and is fixed in this study. The two
two-dimensional representations correspond to polar and nematic order parameters. In
principle, they could be expressed in terms of any linear combination of the basis vectors
shown in Fig. 2.2a. The choices of basis shown in the figure lend some convenience,
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however, since now we can write the concentrations in terms of a complex order parameter
z = φ1 + iφ2, where φ1 (φ2) is the coefficent of the corresponding basis vector. In this
formulation, reflection through the x-axis is simply complex conjugation of z, and rotation
by π/6 corresponds to multiplication of z by ei

π
3 (ei

2π
3 ) in the polar (nematic) case.

Suppose for the moment that the initial instability is towards a nematic distribution.
We can expand the dynamics of the unstable mode in a power series, keeping only terms
allowed by symmetry [74]:

ż = az + 3bz̄2 + 2c|z|2z + . . . . (2.1)

Although the general dynamics ċ = f(c) is not variational, all of the terms shown above
can be written as the gradient of an appropriate free energy; at low order, active, far-from-
equilibrium systems are hence indistinguishable from equilibrium ones. In fact, it is not
until the 4th order in the nematic expansion (8th order in polar) that we get non-variational
terms.

The bifurcation diagram corresponding to (2.1) follows a well-established pattern [74].
Writing z = reiθ, and keeping higher order terms in θ̇ than in Eq. 2.1, we obtain:

ṙ = ar + 3br2 cos(3θ) + 2cr3 + . . . , (2.2)

θ̇ = −3br sin(3θ)− dr3 sin(3θ)− 6fr4 sin(6θ) + . . . . (2.3)

To lowest order in r, the fixed point has θ = 0 or θ = π
3

depending on the sign of b,
both of which correspond to the non-chiral configuration φN1 in the nematic representation.
A similar treatment for the polar case shows that only either φP1 or φP2 is a stable fixed
point near enough to the initial bifurcation. Thus, no chiral state is smoothly accessible
from isotropic (though we note that the nematic transition is generally subcritical in r, an
interesting possibility we will address shortly).

Once some order has been established, however, there can be a secondary transitions
into a chiral state. Near enough to an initial bifurcation, we expect that r will be set pri-
marily by low order terms without angular dependence, and we can then focus on finding
the fixed point of θ from Eq 2.3, which takes the form 1:

θ̇ = −h3(r) sin(3θ)− h6(r) sin(6θ). (2.4)

This is analogous to the description of tilted liquid crystal films studied by Selinger and

1More generally, one can imagine solving for r at the fixed point as a function of θ; no qualitatively new
behavior will arise as long as r(θ) is smooth.
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Nelson [70, 71], except for the non-variational term −dr3 sin(3θ) in Eq 2.3. Note that
this and all higher order non-variational terms carry no new θ-dependence, and so their
presence does not affect the qualitative behavior of the system 2. It follows that for h6 < 0

we have continuous transition betweenN andN∗, with the angle varying smoothly between
0 ≤ θ ≤ π

3
. In the case of h6 > 0 we have discontinuous transition between two N states.

The polar case has been worked out in [70,71], and we repeat the results for comparison:
the case h12 < 0 yields continuous transition between φP1 (vertex-polarized, θ = 0) and φP2
(edge-polarized, θ = π

6
) through intermediate chiral state P ∗ with smoothly-varying θ. On

the other hand, h12 > 0 results in discontinuous transition between φP1 and φP1 with no
intervening chiral state.

Although treatment for the polar case closely parallels that of the nematic, interestingly
it leads to results with different physical interpretations. Depending on the sign of the two
lowest θ-dependent terms, close to instability the polar mode can have θ = 0, θ = π

6
, or

continuously-varying 0 ≤ θ ≤ π/3. This corresponds to locked vertex-polar V P , locked
edge-polar EP , and unlocked P ∗ phases seen in liquid crystals [70, 71]. Similar analysis
with the nematic mode gives exactly the same solutions. However, both θ = 0 and θ = π

6

correspond to the same non-chiral φN1 phase (up to a minus sign).
It is also worth noting that nematic isotropic-to-order transition is generally discontinu-

ous. This leads to an interesting possibility for a system to break both the primary rotational
and secondary chiral symmetries at the same time, with the intermediate ordered state un-
observable. This phenomenon is absent in the polar case (and thus in the classical studies
of liquid crystals) as isotropic-to-polar transition is continuous.

Finally, this result implies that polarity and chirality go together, and that known sys-
tems capable of making polarized protein concentrations can, in principle, make chiral con-
centrations with appropriate choice of parameters. However, this poses an open question
of whether the said parameter values are within the biologically-attainable range.

2.4 Mean-field PCP model

To gain some understanding on what interactions need to be tuned to make PCP chiral, we
took a simple mean-field model of PCP [72,73]. This model minimizes a free energy, but as
discussed above it is sufficient to get the generic phase behavior. Here we have two species
of membrane-bound proteins A and B that follows variational dynamics αċ = −∇cF ,
with:

2Alternatively: ignoring r, the dynamics reduces to one dimension, and θ̇ can therefore can always be
written as a gradient of some energy function.
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(2.5)

where ε’s are parameters controlling the strength of quadratic interactions of various species
(see Figure 2.2b), J’s set penalty for abrupt concentration jumps, T is temperature-like
parameter, and cmax sets the maximum protein concentration an edge can hold.

The total number of both protein species in a cell is normalized according to
∑

i lic
i
A =

1 + δ and
∑

i lic
i
B = 1 − δ. For simplicity, we choose parameters such that the energy

(2.5) is symmetric between A and B, and tune the asymmetry by giving them unequal
protein number parametrized by δ. The presence of two symmetrically-interacting species
introduces two copies of irreducible representations shown in Figure 2.2a, one for theA−B
and another for the A + B modes. Here we focus on the modes that are (approximately)
A−B for (non-)zero δ.

Although the model was designed to produce polarized concentration [72], we showed
that with appropriate choice of parameters it is capable of spontaneously breaking chiral
symmetry as predicted (Figure 2.3). Not surprisingly, nematic configuration depends on
ε1/ε2, which is the ratio of interaction favoring polar to nematic. Another key parameter is
cmax, which can be thought of setting the number of edges with high protein concentration.
In high cmax regime, configurations with few high edges are preferred. This necessarily
leads to non-chiral states in polar mode. As cmax is lowered, saturation forces distribution
of proteins into more edges, which can trigger transition into chiral states (Figure 2.3).

In the nematic regime (ε1/ε2 � 1), we observe supercritical (continuous) transition
between N and N∗ phases. For high cmax, we have chiral nematic N∗ phase with nematic
director angle 0 < θ ≤ π

2
varying continuously. Nonchiral nematic N only occurs at rela-

tively low cmax, where it is favorable for one species to occupy four opposing edges. In the
polar regime (ε1/ε2 � 1), we observe both subcritical (discontinuous) transition between
edge-polar (EP) and vertex-polar (VP) as well as supercritical transition with intervening
chiral P ∗ state, as predicted in [70, 71].

4Configurations where neighboring cells are mirror reflection of each other were checked to have higher
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Figure 2.3: Phase diagram of mean-field PCP model on regular hexagon, showing various
polar and nematic chiral phases. Dotted (solid) lines indicate (dis)continuous transitions.
ε1/ε2 is the ratio of interaction favoring polar to nematic; cmax sets maximum number of
protein an edge can hold. l = εAB = 1, ε0 = 0.02, ε2 = 0.41, J1 = 0.025, J2 =
0.03, T = 0.068 and δ = 0.1. Inset. T = 0.3 showing P ∗ region ends in a 1st-order
transition between V P and EP states, stars denote corresponding phases. Phases found by
numerically minimizing free energy (2.5) with periodic boundary condition from multiple
random starting points 4.

2.5 Direct I→ N∗ transitions

Although direct continuous I − N∗ is prohibited by D6 symmetry, we found two special
cases in which it is allowed: (1) when the cells are stretched so the symmetry is lowered to
D2 and (2) when the two protein species A and B have perfectly-symmetrical interactions.

In the first case, stretching regular hexagons splits both polar and nematic represen-
tations into four different 1D representations φP1 , φP2 , φN1 , and φN2 . Writing dynamics
expansion similar to Eq 2.1 of φN2 , one quickly sees that reflection symmetry prohibits
quadratic term and thus the system has continuous phase transition. Indeed, we verify that
the mean-field PCP model on stretched hexagons exhibits this direct continuous I − N∗

transition (Fig 2.4). Biologically, epithelial tissues are frequently under tension along some
body axis. Thus, this result suggests a way that these tissues can directly break left-right
symmetry without going through some intermediate states.

In the second case, having two symmetrical species introduces a new exchange sym-
metry to the A − B modes, forcing the dynamics to be invariant with respect to z → −z.
This excludes all even order terms in Eq 2.1, leaving only linear and cubic terms at the low-
est order that leads to a continuous phase transition. This special case might be realizable

energy for all parameters shown.
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Figure 2.4: Phase diagram of mean-field PCP model on stretched hexagon, showing direct
continuous I − N∗ transition that does not exist in D6 symmetry. The length of long and
short edges are defined as L + dL and L − dL respectively. Parameters are identical to
Figure 2.3 except dL = 0.3, J2 = −0.8, and cmax = 0.7.

in vitro using, for example, lipids. Since lipids can be synthesized without using (chiral)
enzymes, one might be able to preserve both enantiomers of the same adhesion molecule.
Weakly breaking this symmetry still preserves the chiral phase, but introduces a narrow
intervening non-chiral state (see Figure 2.5).

2.6 Discussion

In this work, we showed that polarizable systems can in general break chiral symmetry.
This suggests a scenario where PCP is responsible for the cell chirality observed in experi-
ments. In line with this story, a recent report by Gonzáles-Morales et. al. [58] demonstrated
that the classic Fat/Ds and Fz/Dsh/Dgo PCP pathways are required in maintaining left-right
asymmetry in adult fly gut looping. Here they showed that, unlike mutants of MyosinID

that shows inverted handedness, mutants of Ds exhibit complete loss of chirality suggesting
that Ds plays a central role in cell chirality.

The presence of mutants with both correct (wildtype) and inverted laterality provides
another evidence in favor of spontaneous symmetry breaking. In the fly gut mutation of
myosin ID leads to a bimodal distribution of correct and inverted looping [69]. Similarly
in male genitalia rotation, flies with impared sqh function show a mix of left- and right-
chiral cells in the A8 domain [57]. This bimodality suggests the existence of a mechanism
responsible for establishing chirality that is separate from Myosin ID, and that the latter
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might influence the former only in selecting the correct handedness. Experimentally, this
can be tested by knocking down Myosin ID to varying degrees. A model in which Myosin
ID is central in establishing chirality is predicted to simply lose laterality as more Myosin
ID function is disrupted. In contrast, a model with an independent chiral instability mech-
anism is predicted to transition from consistent wildtype laterality to random laterality (in
absence of any cues), or to inverted laterality (if there is a secondary cue favoring such) as
Myosin ID function is impaired.

PCP-based chirality also gives a natural, built-in way to couple neighboring cells. It
has been proposed that cell chirality is propagated throughout the tissue from a localized
domain termed ‘left-right organizer’ [58,75]. Here they showed that abolishing chirality in
this domain early on results in complete loss of chirality throughout the organ. Although
further studies need to be done to understand the mechanism responsible for propagating
chiral information, we note that PCP-based chirality provides a natural way to do this.

In systems where cells have regular hexagonal symmetry, both polar and nematic chiral
states are only reachable through a secondary instability from some (non-chiral) ordered
states. Direct transition from isotropic is forbidden by symmetry. However, perfect hexag-
onal packing is rarely found in living tissue. Often epithelial cells are stretched along
some body axis. Interestingly, we found that lowering the symmetry from D6 to D2 makes
some chiral states more accessible in general. Particularly, this allows previously-forbidden
direct continuous isotropic to chiral-nematic transition. This suggest that stretching or ap-
plying tension on the tissue might be favorable for breaking chiral symmetry. Similarly,
having two protein species with perfectly symmetrical interactions can help by allowing
continuous I −N∗ transition in regular hexagonal packing. Although finding a system that
exhibits perfect exchange symmetry might be difficult in vivo, it may be realizable in vitro

using lipids synthesized non-enzymatically to preserve both enantiomers of the molecule.
Perhaps most importantly, our results suggest that spontaneous breaking of chiral sym-

metry requires no new biological pathway. Instead, we show that PCP pathways commonly
found in epithelial tissues are generically capable of producing spontaneous chiral protein
localization by appropriate modulation of various components. This can be done in many
different ways: genetically by up/down-regulation of various PCP components, biochemi-
cally by changing affinity of the interacting proteins through binding/unbinding of modifier
molecules, or even mechanically by changing cell shape or subjecting the tissue to tension.
Once chiral concentration has been established, it can be used in many ways. For example,
it could affect cell functions such as preferentially shrink and remodel junctions in a left-
right asymmetric way and drive chiral morphogenesis as observed in [57, 59, 76], or it can
be propagated out to establish chirality in neighboring cells as suggested in [58].
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Figure 2.5: Phase diagram of mean-field PCP model on regular hexagon with slight asym-
metry in A & B interactions, showing that chiral phase persists with an intervening non-
chiral state upon breaking the A-B exchange symmetry. Symmetry between proteins A and
B in the free energy is broken by giving them unequal protein number parametrized by δ:∑

i lic
i
A = 1 + δ and

∑
i lic

i
B = 1− δ. Note that at δ = 0 we have direct continuous I-N*,

with the latter phase locked at θn = 30◦.

Finally although we only consider a variational PCP model for this demonstration, we
showed that the same qualitative results still hold for non-equilibrium models. We also note
that only the noise-free, spatially-uniform hexagonal case is considered here. It is known
that fluctuations in low dimension and non-equilibrium noise can change qualitative be-
havior of a system on a long enough lengthscale [77,78], however we expect the treatment
presented here remains appropriate on shorter scales, possibly including biological tissues
with a few thousand cells or less. We also expect to see more interesting behaviors as we
include noise or allow spatial non-uniformity [79].
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CHAPTER 3

Quantitative Analysis of Fluorescence
Microscopy Images

In order to make models that are biologically relevant and predictive, one inevitably has
to come in contact with experiments and deal with biological data. As most of our data
come in the form of fluorescent microscopy images, we spent significant amount of time
analyzing and processing those images. This ranges from simply building tools to better
understand the data to extracting some quantitative measures to guide modeling and test
hypotheses. This chapter is an effort to collect all the image analysis techniques we have
successfully applied throughout the years.

In writing this chapter, emphasis is put on providing enough details of the algorithms
and decision choices with the hope that interested readers not only can understand the ratio-
nale behind the techniques, but are also able to adapt and apply them to their own problems.
Just enough biological background and results will be provided to put the techniques into
context. When a work has been published, proper citations are given and interested readers
are invited to read the published papers for more complete picture of biological relevance
and impact.

This chapter is organized as follow: First, we give a brief introduction of zebrafish
retina, where photoreceptor cells exhibit a high degree of crystalline order (Section 3.1).
Most of the image analysis work was done on this system examining the patterning mech-
anism. Section 3.2 discusses column fragment analysis of tbx2b mutant fish retina. In this
mutant, although the crystalline order is lost, there is some local remnant of wildtype order.
Section 3.3 discusses a very useful algorithm to project z-stack images by selectively taking
information from a certain surface. As most of our images came in this form, the Selective
Projection algorithm has become our standard preprocessing routine for all types of analy-
sis. Section 3.4 and 3.5 describe our most recent work in analyzing Müller glia bands and
laser ablation experiments to investigate tension anisotropy. Together they suggest a new,
more active role of Müller glia cells in epithelial patterning.
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This work is done in close collaboration with Pamela Raymond (UM MCDB) and her
lab, who did all the zebrafish experiments. Imaging data were taken by Mikiko Nagashima
and Linda Barthel from Raymond lab. Parts of this work have been published in [80, 81].

3.1 Introduction: Cone Mosaic in Zebrafish Retina

Epithelial tissues are important biological building blocks from which more complex or-
gans are sculpted [1–4]. They consist of cells packed together into 2D layers by forming
apical junctions. These specialized junctions hold the epithelial cells together and give the
tissue its mechanical integrity [6–9]. In vertebrates, the retina is an epithelial tissue that
exhibits a high degree of organization within the epithelial plane [82]. Teleost fish retina
has one of the most striking examples of this precise organization, where cone photore-
ceptor cells are arranged in a well-defined periodic pattern called the cone mosaic (Figure
3.1) [83–87]. This precise patterning involves both spatial alignment of cone cells into
straight columns and correct specification of their spectral types [38, 80]. How biology
does this, however, is not completely understood.

In this study, we focus on the retina of zebrafish Danio rerio. The retina is a thin,
hemispherical epithelium that continues to grow along with the rest of the fish. The growth
happens at the germinal zone located at the rim of the hemisphere (Figure 3.1 E). There,
cone precursor cells proliferate and are periodically added into the mature retina mosaic
[88–91]. Due to this mode of growth, new cells are added in concentric rings around the
mature retina, thereby growing it radially. This also means that the oldest cells are located
at the center of the retina, whereas progressively younger photoreceptors are found towards
the germinal zone [38, 80, 85].

Of particular interest is the marginal zone, which is located at the transition between
the germinal zone and the mature mosaic area. This is where most patterning is thought to
occur. In this marginal zone, cone precursor cells are thought to have exited cell division
but at the same time have not fully differentiated into mature photoreceptors. Interestingly,
these precursor cells are packed somewhat randomly. This is in striking contrast to near
crystalline packing of cones in the mature retina right next to them. The transition from
disordered precursor into fully-ordered mosaic cones happens abruptly within several cell
diameters long (Figure 3.1 D). Therefore, two things must happen during this transition:
the precursor cones must (1) arrange themselves to the right spatial positions and (2) dif-
ferentiate into the correct spectral subtypes, in order to match the mosaic pattern already
established in the mature area [38, 80].

Most of our work is focused on the apical side of the epithelium where photoreceptor
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Figure 3.1: Anatomy of zebrafish retina mosaic. (A-C) Cone mosaic pattern is shown
both in cartoon (A) and in actual retina sample (B) stained for UV and blue cones. Repeat-
ing unit lattice is shown in yellow box. Immunostaining against apical junctional protein
Zonula Occludens-1 (ZO-1) is used to visualize cell profiles at the level of outer limiting
membrane (OLM). (C) Rod photoreceptors insert between cone columns in mature retina.
(D-E) Growth of retina mosaic. At the margin (D), randomly-packed immature cones can
be seen next to mature cones ordered in columns. Periodically, these progenitor cells dif-
ferentiate and assume columnar order, growing the retina at the rim of the hemisphere (E,
right). Stars denote irregular shapes of Müller glia. Cartoon of retina cross-section (E,
left) shows various cone and rod photoreceptors. Mosaic pattern can be seen at the OLM,
where photoreceptor cells are tightly bound together forming zonula adherens (ZA). Figure
adapted with permission from [38].
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cells form a special type of epithelial apical junctions called Zonula Adherens (ZA in Fig-
ure 3.1 E). At this level, also known as the outer limiting membrane (OLM), cell profiles
can be visualized using antibody against Zonula Occludens-1 (ZO-1), a type of scaffolding
proteins that localizes at cell-cell junctions at the OLM. This is the level where the cone
mosaic is observed (Figure 3.1). There are four subtypes of cone photoreceptors in ze-
brafish, classified based on the absorption peak of their color pigments: red, green, blue,
and UV [92, 93]. Aside from the cones, there are two other cell types at the OLM: non-
color-specific rod photoreceptors and neural Müller glia cells. Unlike cone photoreceptors,
rod photoreceptors are known to be continuously added to the mature retina by inserting
themselves in spaces between cone columns [80, 94, 95] (Figure 3.1 C). Müller glia cells
are a type of neural glial that is present in the retina. They form thin lamellar processes
apically that wrap around the photoreceptor cells at the OLM. Conventionally, Müller glia
cell are thought to play passive, supporting role [96, 97]. However, later in Section 3.4 and
3.5 we show that these glial cells might play a more active role mechanically in establishing
the mosaic pattern.

Despite knowledge of various players making up the epithelium, little is known about
how they interact with each other and form the mosaic. Earlier work from our lab identified
two mechanisms necessary in establishing the columnar order: (1) progressive addition of
cone photoreceptors at the marginal zone as described above and (2) planar cell polarity
(PCP) in cone cells that allows them to coordinate directions and modulate interface ten-
sions [38]. They observed that the adhesion protein crumbs2b exhibits polarized concen-
tration in all cone subtypes but UV, and they showed by numerical simulation that coupling
between PCP and mechanical tension is sufficient in generating linearly-aligned column of
cells from initial random packing. Consequently, they predicted that the epithelial tissue
must be under anisotropic tension. More specifically, they hypothesized that tension of
cell junctions oriented parallel to the columns must be higher than junctions oriented in the
perpendicular direction.

A significant portion of our work was aimed towards testing these hypotheses. In the
next section we analyzed retinas of tbx2b mutant fish that, despite loss of global mo-
saic organization, still show local patterns suggestive of PCP-mediated directional inter-
action. Section 3.4 addressed the presence of thick Müller glia bands parallel to the mosaic
columns, which also extend to the unpatterned marginal zone. This suggests a role for the
glial cells in maintaining tension anisotropy and patterning cone precursor cells. Finally,
Section 3.5 analyzed experiments directly testing the stress anisotropy hypothesis by means
of laser ablation. We showed that cells immediately surrounding the lesion relaxed non-
uniformly upon ablation, implying that the retinal epithelium is under constant anisotropic
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stress.

3.2 Analysis of tbx2b Mutant Column Fragments

In the quest for understanding the mechanism patterning cone cells into straight columns,
we examined a mutant line tbx2b−/− where the cone mosaic pattern in adult retina is lost.
Genetic disruption of transcription factor tbx2b eliminates most of UV cone photoreceptors
and perturbs the long-range organization of the cone lattice normally seen in adult fish [80,
98]. In addition, tbx2b mutant retina exhibit a characteristic ‘column fragments’ appearance
where cone cells form short linear chains reminiscent of wildtype columns but with no long
range ordering, as shown in Figure 3.2.

There are a number of interesting questions one can seek to answer about the tbx2b

mutant retina. The most obvious one is what are the factors that cause the loss of mosaic
order (and therefore might play an important role in patterning the wildtype cones). In
a recent paper [80], we showed by numerical simulation that loss of UV cones during
formation of cone columns reproduces many features of the mutant retina.

However, here we focus on another quantitative analysis presented in [80] which shows
that the remaining cone photoreceptors are preferentially attached to two other cone cells,
giving the mature retina the column fragments appearance. This tendency to form 2-fold
coordination with other cone cells supports the hypothesis that all but UV cone cells exhibit
internal planar cell polarity (PCP) that helps them align to straight columns in wildtype
fish [38]. This also suggests that, although global mosaic order is lost in tbx2b retinas,
the PCP mechanism internal to the cone photoreceptors still remains largely intact and
interactions between neighboring cone cells are still directional.

The following sections will describe in detail the analysis techniques used to quantify
the coordination number of cone photoreceptors fragments in tbx2b mutant, from segment-
ing the z-projected images (Section 3.2.1), classification of segmented cells into cone and
rod photoreceptors based on rhodopsin rod reporter intensity (Section 3.2.2), and group-
ing cone cells into column fragments based on some adjacency criteria (Section 3.2.3). To
avoid over-dependency of the result on the adjacency criteria, we used two-threshold meth-
ods to establish upper and lower bounds of coordination numbers (Table 3.1), and showed
that most cone cells are attached to two other cones regardless of the criteria used. This
work has been published in [80].
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Figure 3.2: Loss of cone photoreceptor columnar order in tbx2b mutant retina. Com-
parison between mature wildtype (A, C) and tbx2b−/− mutant (B, D) retinas. Mutant reti-
nas show characteristic loss of mosaic pattern seen in wildtype. Cell profiles at OLM
are visualized by ZO-1 antibody staining (white). Transgene rh1:EGFP, sws1:EGFP, and
sws2:mCherry mark rod, UV cone, and blue cone photoreceptors, respectively. Figure
adapted from [80].
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3.2.1 Thresholding-based cell segmentation

To quantitatively show that cone cells tend to have 2-fold coordination and form column
fragments, we first need to segment the cone cells. Flat-mount transgenic tg(rh1:EGFP)

retina samples were treated with ZO-1 antibody to visualize cell profiles at the OLM. Trans-
gene rhodopsin (rh1) promoter driving expression of EGFP was used to visualize rod pho-
toreceptors (see Figure 3.3 A-C). For this experiment, maximum intensity z-projection
of the ZO-1 channel gave good enough result to be segmented by simple a edge-finding
method:

M = imadjust(M); % maximize contrast

24 M = wiener2(M); % noise reduction with adaptive Wiener filter

if edgethr == 0;

26 E = edge(M, 'canny'); % find edges with Canny method

else

28 E = edge(M, 'canny', edgethr);

end

Listing 3.1: Code snippet from FindEdges.m (Appendix A.1.1).

MATLAB implementation of Canny edge detector [99] was used on the max-projected
ZO-1 image. For thick enough ZO-1 profile, this method usually produces two lines for
every ZO-1 line, corresponding to the rising and falling edges. To fill the gap between
these two lines and get a continuous ZO-1 profile, the original image was thresholded and
added to the edge detection result. Morphological closing was then used to smooth out the
ZO-1 profile and fill remaining small holes/gaps. Partial cell profiles in contact with the
image border were removed using the built-in function imclearborder. Segmented cell
profiles were then defined as the remaining connected components, identified using built-in
function bwconncomp. MATLAB code FindEdges.m is attached in full in Appendix
A.1.1.

32 if graythr == 0;

M1 = im2bw(M, graythresh(M)); % threshold

34 graythresh(M)

else

36 M1 = im2bw(M, graythr);

end

38 E1 = E | M1; % add thresholded image to E to fill in holes

E2 = imclose(E1, strel('disk', strelsize)); % morphological closing

Listing 3.2: Code snippet from FindEdges.m (Appendix A.1.1).

3.2.2 Cell classification based on marker intensity

The resulting segmented image from the last section contains profiles belonging to both
cone and rod photoreceptors (Figure 3.3 E). To exclude the rod cells, we use information
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from EGFP channel driven by rod promoter rh1. Since EGFP is expressed in the entire rod
cells (not localized at OLM), we picked the EGFP signal at the z-slice where most of ZO-1
signal surrounding the segmented cell is present. The projection is done with a MATLAB
function ProjectRodImages.m given in Appendix A.1.2. Briefly, it identifies an area
surrounding a segmented profile using morphological dilation with circular structuring el-
ement of size 5 pixels. The algorithm then tries to find the z-slice with the highest ZO-1
average intensity in this area, from which EGFP intensity in the segmented profile is take.
This process is then repeated for all segmented profiles1.

Figure 3.3 B-C shows the projected EGFP signal in each segmented cell profiles. The
mean intensities of the profiles fall into a well-separated bimodal distribution (Figure 3.3
D) and thus can be used to classify profiles into cone (low intensity) or rod (high intensity)
photoreceptors. We used k-means algorithm [100] to perform the classification and keep
only cone profiles (Figure 3.3 F). Remaining cell profiles with area less than 25 pxiels
(likely to be Müller glial profiles) and larger than 100 pixels (mostly segmentation error)
were excluded. MATLAB code is given in Appendix A.1.3.

3.2.3 Two-threshold adjacency determination

Once we have the cone profiles segmented out, we want to join together nearby cones
into column fragments. To efficiently identify neighboring profiles, we use morphological
dilation to enlarge all cone profiles, and pairs that overlap were deemed neighbors. The
amount of dilation is set by the structuring element used in performing the morphological
operation, chosen to be a circle of radius 10 pixels. On the images we analyzed, we found
that the said radius is sufficient to make any reasonably-close pairs to overlap2. This serves
as a good starting point for a more refined criteria presented next. MATLAB code for the
dilation-based neighbor determination is given in Appendix A.1.4.

The above definition of closeness based on the presence of overlap after dilation is very
loose and includes pairs that one might not call adjacent based on the morphology. To re-
fine the adjacency determination, we use more sophisticated criteria taking into account the
known morphology of cell-cell interfaces. Adjacent cones within a column in wildtype reti-
nas are not only closely-separated but also tend to share a length of common interface. Said

1More sophisticated Selective Projection algorithm described in Section 3.3, which were developed after
this analysis, could also be used. However, given the good quality of the images from this experiment, we
expect only marginal improvements at best. Many subsequent experiments, however, would not be suitable
for this simple projection method (due to less-than-ideal image quality, difficult/impractical to segment, etc.)
and motivated the development of Selective Projection method.

2Similar result can be achieved by simply calculating distances between profiles and finding pairs within
some short distance from each other. However, for large number of segmented profiles, morphological dila-
tion approach used here is computationally faster.
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Figure 3.3: Analysis of tbx2b mutant column fragments. (A-C) tbx2b mutant retina
imaged with ZO-1 antibody staining (red) showing cell outlines and rod marker rh1:EGFP
(cyan). Maximum intensity projection of ZO-1 antibody is shown in (A, C). EGFP inten-
sity in (B, C) is taken from the slice that has strongest ZO-1 signal surrounding the cell
(see text). (D) Histogram of mean EGFP intensity in each cell showing clear separation be-
tween rod and cone cells. Cell segmentation from thresholding ZO-1 showing both rod and
cone cells (E), and with rods removed (F) based on EGFP intensity showing cone column
fragments. (G) Result of two-threshold adjacency determination on cone fragments. Red
interfaces satisfy both strict and loose criteria, while blue interfaces only satisfy the latter
(see text for details).
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in another way, we expect to see thin and long interface with high ZO-1 intensity between
two cells that are adjacent. Closely-separated but otherwise non-adjacent cones typically
have this space filled by rod photoreceptors or thicker bands of Müller glia processes.

Transforming this observation into more precise criteria, we therefore set numerical
limits on the thickness and aspect ratio of the interfacial regions of two nearby cells, defined
as the overlap region computed in the previous section3. Neighboring pairs that do not
satisfy these criteria are deemed to be non-adjacent. To avoid over dependency of the result
on these criteria, we used two-threshold method where we devised two sets of thickness
and aspect ratio parameters. The first set is designed to be less stringent, allowing most
adjacent cones to be classified correctly but might include some non-adjacent ones. At the
end of the spectrum, the second, more stringent set is designed to reject most non-adjacent
pairs at the risk of excluding small number of adjacent ones. For the images we analyzed,
we found that minimum thickness of 10 pixels and minimum aspect ratio of 2 work well
as the less-stringent threshold. For the more stringent one, we kept the same minimum
thickness and increased the aspect ratio to 2. MATLAB code is given in Appendix A.1.5.

Figure 3.3G and Figure 3.4 show the result of the two-threshold adjacency determina-
tion. Interfaces that satisfy both the loose and stringent criteria are colored red, while those
that only satisfy the latter are colored blue. The red interfaces clearly join cells into column
fragments. The blue interfaces, on the other hand, frequently give somewhat ambiguous
interfaces where it is not clear whether the two cells flanking it are adjacent or not. This,
however, provides us with good upper- and lower-bound coordination numbers.

3.2.4 Results: Most tbx2b mutant cones are 2-fold coordinated

Once we have determined the adjacency criteria, it is trivial to count the coordination num-
ber of each cone, defined as the number of other cones it is adjacent to. Figure 3.3 shows
a representative sample of ventral-nasal (VN) region of a mutant retina. The histogram in
panel C does not look very different for both low (loose) and high (stringent) set of criteria,
confirming that the qualitative feature of coordination number n is insensitive to the details
of the analysis.

We analyzed in total of 11 mutant retinas at varying locations, and the result is tabulated
in Table 3.1. In almost all of the sample analyzed, the majority of the cones are two-fold
coordinated, i.e. adjacent to two other cones. Although tbx2b retinas lost the long-range
cone crystalline pattern, lack of 3-fold coordination or higher shows that the cones are

3To define thickness and aspect ratio, we first calculated moment of inertia of the interfacial region. Then
its aspect ratio is defined as the ratio of the two principal moments, and its thickness as the smaller principal
moment.
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Figure 3.4: Infrequent 3-fold coordination of tbx2b mutant retina cone photoreceptors
suggests strongly directional interaction. (A) Ventral-nasal (VN) region of mutant retina
marked for ZO-1 antibody (white) and EGFP (green) driven by rh1 rod promoter. (B) Re-
sult of segmentation and adjacency analysis on cone cells of (A). Cone profiles are shown
in black. Red interfaces satisfy both strict and loose adjacency criteria, while blue inter-
faces satisfy only the latter. (C) Histogram of cone coordination numbers for low (blue
bars) and high (red bars) thresholds showing most cones are 1- and 2-fold coordinated.
Result remains qualitatively the same for low and high threshold. (D) Zoom around the
indicated area, showing 3-fold coordinated cells (triple asterisks). Lack of 3- or higher-fold
coordination suggest that cone cells are interacting in highly-directional manner, despite
the lack of long range mosaic order in Tbx2b retinas. Scale bars are 2 µm for A & B and 4
µm for D. Figure adapted from [80].
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Table 3.1: Most cones are 2-fold coordinated in adult tbx2b mutant retinas. D = dorsal, N
= nasal, T = temporal, V = ventral. Table adapted from [80].

Sample Region # of cones % n-fold coordination (low/high threshold)

n = 0 n = 1 n =2 n = 3 n = 4

1 D 683 31.0 / 43 51 / 47 17 / 9.2 0.9 / 0.3 0.1 / 0.0

2 N 493 2.6 / 3.0 34 / 39 57 / 53 6.3 / 5.1 0.0 / 0.0

3 T 865 7.1 / 14 37 / 47 46 / 35 9.7 / 3.7 0.3 / 0.3

4 VN 454 2.4 / 2.9 28 / 38 60 / 55 8.8 / 4.2 0.2 / 0.2

5 VN 677 1.5 / 2.1 22 / 28 51 / 51 24 / 18 0.6 / 0.6

6 VN 644 1.9 / 3.1 29 / 33 62 / 59 6.7 / 4.7 0.0 / 0.0

7 VN 765 5.9 / 7.6 52 / 56 38 / 34 4.7 / 2.7 0.1 / 0.0

8 VT 659 1.8 / 2.3 25 / 31 51 / 52 22 / 14 0.9 / 0.5

9 VT 840 1.5 / 4.2 19 / 26 53 / 54 26 / 16 1.3 / 0.7

10 VT 746 1.2 / 1.7 16 / 21 52 / 53 30 / 24 1.1 / 0.4

11 VT 932 1.7 / 2.1 22 / 31 52 / 49 22 / 17 2.5 / 1.1

not packed randomly either. Instead, they preferentially form short chains, reminiscent of
wildtype columns, that are relatively straight in the short length-scale. This suggest that the
PCP mechanism that is responsible for aligning them to columns [38] are not completely
lost, and that the cone cells still exhibit highly-directional interaction seen in wildtype.

Parameters used for the analysis are as follow: for the first, looser criteria, we require
a maximum thickness of 10 pixels and a minimum aspect ratio of 2. For the second, more
stringent criteria, these numbers are 10 pixels and 2.5, respectively. This work has been
published in [80]. Interested readers are referred to the published paper for more biological
context and relevance.
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3.3 Selective Projection of z-stack images

Most of the images we analyzed are z-stack images captured by either confocal or two-
photon fluorescence microscopes. These microscopes have good optical-sectioning capa-
bility, meaning that they will only collect photons from a thin volumetric slice of the sample
centered at the plane of focus. As a result, one can obtain pseudo-3D images by repeatedly
capturing 2D images at different z-depths. The resulting stack of 2D images is called a
z-stack image (see Figure 3.5 A-E for some examples).

Although having 3D information can be useful, frequently the object of interest for
quantitative analysis is some thin surface captured in the z-stack4. For example, in looking
at the mosaic pattern of zebrafish retinal epithelium we are mostly interested in the outer
limiting membrane (OLM) of the tissue, where photoreceptor and glial cells are tightly-
bound together forming the zonula adherens (ZA). The antibody against ZO-1 localizes
well at this level, and could be used as a marker to identify the OLM surface.

To project ZO-1 intensity z-stack into a 2D image, traditional methods include simple
projections such as the maximum-intensity projection. In max-projection, the value of a
pixel in the 2D projected image is simply the maximum across the entire depth of the z-
stack. This method (and other similar variations such as mean-, median-projection, etc) has
one big shortcoming, however, as it only works for fluorescent proteins that are localized
at the surface of interest (e.g. ZO-1 which localizes only at at intercellular contacts at the
ZA/OLM). Often we are interested in looking at some fluorescent marker that is present
throughout the depth of the epithelia (such as the gfap:EGFP transgene that marks entire
Müller glia cell, see section 3.5) at the OLM level. In this case, people traditionally resort
to masking intensities by hand, leaving only those at the OLM level – a laborious and often
imprecise method.

To achieve more accurate and reproducible projections, we developed a MATLAB pro-
gram that can automatically identify the surface of interest and create a projection by se-
lecting intensities only from that surface. Given a marker like ZO-1 that localizes to some
surface, the program can reconstruct the depth-profile of that surface and automatically se-
lect intensities of a second, non-localized fluorescent marker only from that surface. Not
only that, this method can also be used on the localized marker itself to produce a much
higher quality projection than traditional max-project allows. Since it can reject intensi-
ties away from the surface, the resulting projection usually has a much higher contrast and
less ‘ghosting’ from bright, out-of-focus objects (Figure 3.5). The quality of the projection

4Pseudo-3D capture at different z-depths is still needed here since often we cannot precisely align the
surface of interest to perfectly coincide with the focal plane. Hence one usually captures z-stack images
around the surface, then ‘flatten’ the z-stack using some projection technique post-acquisition.
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compares favorably to the result obtained by careful masking of images by hand, but higher
reproducibility and much less labor and user bias.

In the next section we will first discuss the core algorithm to do the projection. Section
3.3.2 discusses several pre- and post-processing subroutines that was employed. The order
which these subroutines were applied are given in the code in Appendix A.2. Note that
this ordering was determined empirically. One might want to add or remove certain pre- or
post-processing subroutines depending on the image to be analyzed. The main MATLAB
code Estimate_OLM_From_ZO.m (Appendix A.2.1) provides switches to easily turn
on and off different subroutines. Default parameters for these subroutines are given in the
code as well.

3.3.1 Core Algorithms

The method relies on the assumption that, for properly selected pixels, the intensity profiles
versus z-depth should have a strong peak located on the surface of interest. (How to select
such pixels will be addressed in the next section). This is true for all the ZO-1 antibody
markers we analyzed (and to some extent, gfap:EGFP markers marking Müller glia), where
it produces sharp image of cell outlines at the level of the OLM. Away from the OLM, the
ZO-1 intensity quickly fades away into some background intensity, thanks to the good
sectioning ability of confocal and 2-photon microscopes. Hence, given this ‘properly-
selected’ pixels, one should be able to estimate the location of the OLM from peaks of
the intensity vs. z-depth profiles.

3.3.1.1 Max-projection and Entropy Filtering

For a pixel to have intensity profile as described above, it must have a meaningful intensity
at the OLM. In the case of the ZO-1 marker, this means we want to select the pixels at and
between cell boundaries (Figure 3.5 A’-E’, ZO-1/red channel). If one were to select pixels
on the background or inside a cell, it is not hard to see that the intensity profile will not have
the desired peak. Hence we use as a starting point max-projection of heavily-smoothened
ZO-1 (Figure 3.5 F):

% Apply wiener2 eliminate noise before max projection

118 if p{3,2} == 1

disp('Pre-process: wiener filter...')

120 ZOblur = zeros(size(ZO));

for i = 1:nStack

122 ZOblur(:,:,i) = wiener2(ZO(:,:,i), [p{4,2} p{4,2}]);

end

124 else ZOblur = ZO;

end
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126 % Maximum projection

ZOmax = double(max(ZOblur,[],3));

128 ZOmax = ZOmax - min(min(ZOmax));

ZOmax = ZOmax ./ max(max(ZOmax));

Listing 3.3: Code snippet from Estimate_OLM_From_ZO.m (Appendix A.2.1).

The smoothing is done here using wiener2 adaptive noise filter [101], but in principle
could be done with Gaussian or any other filter. Its purpose is to suppress noise/bright
pixels that might not correspond to the OLM, and hence heavy filtering is preferred here.
The resulting image is shown in Figure 3.5 F. The max-projection can then be thresholded
very conservatively to get the desired pixels, shown in Figure 3.5 H.

In some cases, part of the field-of-view (FOV) contains background with no object.
We also have to exclude the background region from analysis. This can be done with a
class of texture filtering, whose response depends on the presence of certain texture in
the image. In our case, we used entropy filter entropyfilt which essentially calcu-
lates the entropy S = p log(p) of intensity histogram in a moving window [99]. Hence,
the output of the filter will be small in regions with no detail, and large in areas with
lots of pixel intensity variation. This texture filtering is done on a separate sub-function
Separate_ROI_from_background.m that contains other preprocessing steps to im-
prove the background-object separation. Figure 3.5 G shows the output of the entropy
filtering.

70 %% 4. Texture filter

% Currently entropy filter is used. It works fine but a little bit

slower.

72 % Alternatively it can be replaced with e.g. stdfilt or other texture

% filtering.

74

t = entropyfilt(M, ones(entropyFilterSize));

76 % normalize to [0,1]

t = t - min(min(t));

78 t = t ./ max(max(t));

Listing 3.4: Code snippet from Separate_ROI_from_background.m (Appendix
A.2.2).

We also note that, while doing the job very well, the entropy filter is also slow to run. For
very large images (much larger than 1024 × 1024) one might want to decrease the filter
size, or replace it altogether with faster texture filters such as stdfilt [99].

3.3.1.2 Finding peaks on intensity profile

Once we have successfully separated the background out and selected the candidate pixels,
we want to find peaks in their intensity profiles vs. z. The locations of the peaks give the
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Figure 3.5: Selective projection of z-stack images: example and methods. (A-E’)
Full and zoomed views of z-stack images of zebrafish retina. Antibody for junctional pro-
tein ZO-1 (red) localizes to a thin surface at the OLM, while EGFP (cyan) driven by UV
cone opsin promoter sws1 is expressed broadly throughout the apical region. (F-I) Steps
of selective projection algorithm. (F) Zoomed view of max-projection of ZO-1 with high
smoothing for detecting the OLM surface. (G) Full view heat map of texture filtering ap-
plied on (F) shows clear separation between retina and background. (H) Thresholding (F)
gives candidate pixels whose intensity profiles are used to estimate the depth of OLM sur-
face. (I) inferred depth profile of the OLM surface used for projection. (J-K’) Comparison
between traditional max-projection and Selective Projection. Note how Selective Projec-
tion produces much higher contrast and eliminate ‘shadows’ of objects away from the OLM
surface. (K’) Selective Projection of sws1-driven EGFP at the level of OLM (indicated by
ZO-1).
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depth of the surface at different locations. This depth information can then be interpolated
to construct the estimated depth profile of the entire surface. The interpolation is done by
averaging over 100×100 pixels neighborhood, weighted by Gaussian of standard deviation
10 pixels. Figure 3.6 (left) shows typical (> 80%) intensity profiles of the candidate pixels,
where each one exhibits a single prominent peak. To achieve higher accuracy, we fit the
peaks with Gaussians and locate the maxima.

A small fraction (< 20%) of the profiles will exhibit irregular shapes shown in Figure
3.6 (right) that do not lend easy estimation of the OLM. Some common causes for bad
profiles are: (1) exhibiting two or more peaks with comparable intensity (either due to
presence of strong speckle/noise or weak intensity at the OLM level), or (2) having broad
and low peaks. These bad profiles can be identified by some simple criteria, such as the
standard deviation/width of the fitted Gaussian, ratio between highest and second highest
peaks, etc. They are then excluded from analysis.

Once the peak location of all the ‘good’ intensity profiles are found, they are interpo-
lated to the entire surface. This interpolation is necessary to cover regions without sig-
nificant ZO-1 intensity, such as the interior of cells, as well as for pixels excluded above.
Gradient-based speckle detection can also be done here to detect large jumps in depths,
usually caused by bright noise or objects away from the OLM. Projection of any marker
(including the marker used to estimate the surface) can then be done by picking intensities
only at z-position specified by the estimated surface profile5.

The full code is attached in Appendix A.2. Other than the main algorithm described
above, the code also contains some other pre- and post-processing routines, some of which
are described below. The order in which different routines are employed are given in the
code in Appendix A.2.

3.3.2 Misc: Pre- and Post-Processing Routines

In most image analysis tasks, employing appropriate pre- and post-processing techniques
can improve the output of the analysis significantly, sometimes even more than tweak-
ing/switching the core algorithm. Here we discuss several of these techniques. Most of
them are either available as a built-in MATLAB functions or a simple combination of them.
Some techniques however are not available readily in MATLAB, and we relied on external
programs such as ImageJ/Fiji.

5An option to project by taking Gaussian-weighted average of several slices around the maximum is
available in the code. Practically, however, we found that rounding the depth to the nearest integer and taking
intensities only from that slice produces sharper image in many cases we encountered. This is true especially
when the step-size between subsequent z-slices is small enough such that features stay in focus in two or
more slices.
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Figure 3.6: Selective Projection of z-stack images: intensity profiles. Representative
samples of intensity profiles showing good (left) profiles that were used for OLM estima-
tion, and bad (right) profiles that were discarded. Profiles without clear and well-defined
peaks were classified bad and excluded from analysis. This can be due to: presence of
multiple/ambiguous peaks, broad or irregular profiles, etc. Note how smoothened max-
projection and texture filtering (step F-H in Figure 3.5) selects only pixels with significant
intensity peak at OLM. As a result, most (> 80%) of the intensity profiles analyzed fall
into the good category.

3.3.2.1 Noise reduction

This is arguably the single most important pre-processing technique. It usually involves
trade-off between effectiveness and reduction in image resolution/sharpness. Most of the
time, we use MATLAB’s built-in adaptive noise filtering wiener2, which adapts the
strength of the denoising to the statistics of the surrounding region. In areas with large
intensity variance, the filter performs little smoothing. On the other hand where the vari-
ance is low, wiener2 performs more aggressive smoothing. This achieves superior noise
suppression in flat areas while at the same time does a good job in maintaining edge sharp-
ness [99].

In almost all cases we encountered, we found wiener2 to perform equally or better
than Gaussian blur, while taking negligible extra computation time.

3.3.2.2 Background compensation

Images sometimes can have light fall-off, due to either uncorrected optical vignetting
(where edges and corners of an image tend to be darker due to uncorrected objectives)
or fluorescence bleaching. An example of the latter is when scanning multiple tiles with
overlap for stitching. The overlap regions, necessary for aligning adjacent images before
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stitching, are inevitably scanned twice and thus tend to be less bright due to optical bleach-
ing. This can be corrected by estimating and correcting for overall signal intensity when
close to uniform illumination is desired (e.g. when stitching multiple images to produce a
single image with much larger field of view).

To correct for uneven illumination, we first have to estimate how this illumination varies
spatially. A common way to do this is to measure how background intensities vary over
the image. This relies on the assumption that any unevenness or fall-off in illumination
affects both the signal and the background. To get the latter, we applied morphological
closing with large structuring element to the image (see [99, 102] for good reviews on
morphological operations). This will pick minimum intensity in a large area defined by the
structuring element, and the spatial profile of this intensity can be used to non-uniformly
scale the original image to correct for spatial intensity variation [99].

Note that a possibly undesired side effect of this is that it will increase noise intensity
in the areas with significantly lower illumination. For applications where noise intensity is
crucial (e.g. edge detection, segmentation, etc.) one might want to apply noise reduction
to these areas before and/or after the illumination correction, or even skip it altogether.

% Background compensation

144 bgm = imclose(ZOmax, strel('disk', p{7,2}));

scale = max(max(bgm)) ./ bgm;

146 scale(isinf(scale)) = 1; % background was set to Inf

scale(~bgmMask) = 0;

148 if p{6,2} == 1

disp('Pre-process: background compensation...');

150 ZOmax = ZOmax .* scale;

end

152 ZOmax(~bgmMask) = 0;

Listing 3.5: Code snippet from Estimate_OLM_From_ZO.m (Appendix A.2.1).

3.3.2.3 Contrast enhancement

Contrast enhancement can help improve analysis by maximizing the use of available dy-
namic range (i.e. all the 256 values in 8-bit, or 216 values in 16-bit images, etc). The
simplest method is just to scale the pixel intensities to fit the dynamic range. Although
easy, this is sometimes not enough since it scales the entire image uniformly, potentially
leaving some regions still low in contrast [99]. A more advanced contrast-limited adap-
tive histogram equalization (CLAHE) method is available in MATLAB as adapthisteq
(see also similar non-adaptive variation histeq). It works locally in tiles and transforms
the intensity histogram to match certain distribution (usually uniform, but other distribu-
tions can be equally used) [103]. Note that enhancing contrast necessarily makes noise
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more prominent, so one might want to experiment interleaving this with noise reduction
routines.

154 % CLAHE

if p{8,2} == 1

156 disp('Pre-process: CLAHE...');

nTiles = floor( size(ZOmax) ./ p{9,2} );

158 ZOmax = adapthisteq(ZOmax, 'NumTiles', nTiles);

end

160 ZOmax(~bgmMask) = 0;

Listing 3.6: Code snippet from Estimate_OLM_From_ZO.m (Appendix A.2.1).

3.3.3 Conclusion

The Selective Projection algorithm is very useful and has become our default approach in
projecting z-stack images. It produces higher quality projections of markers localized to
a specific z-level than it is possible with traditional, non-selective methods. When used in
conjunction with non-localized markers, it enables selecting intensity only at the level of
the localized marker (or, with slight modification, a fixed distance from it).

The algorithm has been used in our published and unpublished analyses of various
fluorescent markers, in conjunction with the ZO-1 OLM marker, such as: expression of
non-localized reporter of rod photoreceptors rh1:EGFP (published in [80]), expression of
non-localized reporter trβ2:tdTomato marking red cones and several non-photoreceptor
cells (unpublished), and sws1:EGFP promoter specific to UV cones (unpublished). Re-
cently we have also successfully applied the method to project non-localized marker of
Müller glial cells gfap:EGFP on its own without any localized marker. The gfap:EGFP

marker has ZO-like localization at the OLM, but forms stalk-like processes above and be-
low OLM. In this case, very rough masking of the processes away from OLM helped the
algorithm to lock into the ZO-like pattern of gfap:EGFP expression at OLM6. Without it,
one would need to do very careful masking to achieve the same result.

MATLAB code for Selective Projection and various auxiliary routines described above
are included in Appendix A.2.

6The rough masking was done by painting black parts of the images clearly far from OLM, based on
morphology. One could do it equally well in Adobe Photoshop or any other image manipulation software.
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3.4 Ridge Analysis of Müller Glia Bands

To elucidate the mechanisms leading to the ordered photoreceptor packing in mature retina,
we look for hints at the marginal region of the retina where growth takes place. Located
at the periphery of the mature retina, this marginal zone is characterized by the presence
of disordered cone precursor cells [88–91]. These precursor cells are thought to have not
yet fully differentiated to specific spectral types, but otherwise are known to have exited
proliferation cycle (i.e., no longer dividing). Unlike mature cones that form near crystalline
order, these progenitor cells clearly lack the spatial ordering seen in mature retina. As the
retina grows, precursor cells periodically differentiate into mature cones with the correct
spectral types and align themselves spatially to match the pattern already defined in the
mature area. Here we look at the role of another type of cells called Müller glia in helping
the cone cells form linear columns.

Müller glia is a type of neural glia cell that is present in the retina. Classically thought
to give support to other cells, they form lamellar processes that wrap around photoreceptor
cells apically [96,97]. However, we found that the thickness of these processes at the OLM
varies depending on the direction along the plane of epithelium. Along the direction of
the column of the mature retina, Müller glia processes form thick ‘bands’ that separate one
column from the next. In contrast Müller glia form relatively thin layers between two cones
in the same column. (see Figure 3.7).

We report that the thick Müller glia bands normally associated with the mature retina
extend into the marginal zone where columnar ordering is not yet established. Therefore
we hypothesize that Müller glia cells might play a role in guiding the precursor cells into
straight columns as they mature and join the mosaic pattern. A related hypothesis that
Müller glia cells help bear tension, based on the observation that the thickness of the bands
is correlated with the expected tissue stress anisotropy, is tested by performing and analyz-
ing laser ablation experiments, presented in Section 3.5 and in [81].

In this section we describe in more detail the image analysis technique to show in an
unbiased way that the glial cells indeed form thick bands at the margin along the direction
corresponding to column orientation in the mature area. Both the works presented in this
section and in Section 3.5 are included in our most recent manuscript, currently in consider-
ation for publication at Nature Communications and is attached in Appendix C. Interested
readers are invited to read the full manuscript for more biological context.
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Figure 3.7: Detection of thick inter-column Müller ridges. Mature retina showing
columns of cone photoreceptor with ZO-1 antibody staining (A) showing cell profiles and
gfap:EGFP transgene (A’) marking Müller glia cells at the OLM. Note how the latter form
thick bands between adjacent columns (A’-A”). Column direction is indicated by yellow
arrows. Ridges of gfap:EGFP as detected by 4th order ridge filter described in the text
(after non-maximum suppression, B-B’). Thick intercolumn bands produce long continu-
ous lines, while thin within column lamellae tend to produce short and perpendicular lines.
FFT on gfap picks up the direction of the columns (C). Selecting only lines parallel to the
column (and eliminating short line fragments, see text for details) produces cleaner ridge
lines that now correspond only to the thick inter-column bands, as desired (D-D’). In (A-
A”, B, D) Selective Projection algorithm (Section 3.3) was used to project EGFP signal at
the level of OLM as indicated by ZO-1.
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3.4.1 Steerable ridge filter

Optical section z-stack images were obtained from the margins of flat-mounted retinas of
transgeninc fish tg(gfap:EGFP) as described in [81]. Transgene for glial fibrillary acidic
protein gfap, a Müller glia-specific promoter, was used to identify the said glial cells. An-
tibody against ZO-1 was used to visualize cell profiles at the level of the OLM. Since
gfap:EGFP is expressed throughout the glial cells from apical to basal, we used the Selec-
tive Projection method described in Section 3.3 in conjunction with the ZO-1 antibody to
project the EGFP signal at the level of the OLM. As expected, Müller glia cells in mature
retina form thick bands running along and between two adjacent columns (see Figure 3.7).

The between-column bands have some characteristic thickness that is roughly equal
to the gap between adjacent columns, and is significantly different than the thickness of
lamellar processes between cones in the same column. Hence we can use ridge filter of
certain thickness and orientation to detect and isolate only the thick bands. Here we used a
steerable version of such filter described in [104].

A steerable filter is defined as an orientation-specific filter that can be expressed as
a linear combination of a small set of base filters. The advantage of using a steerable
filter is mostly computational: it allows efficient computation of the same filter rotated
through many different angles. Since any rotation of the filter can be expressed as a linear
combination of the base filters, one only need to compute convolutions with the base filters.
If a non-steerable filter was used, one would then need to have many copies of the same
filter rotated at discrete angles and apply all of them to the image.

A publicly-available ImageJ implementation of the steerable filter by the same au-
thors [104] was used. Briefly, it takes as input a gray scale image and returns two numbers
at every pixel: (1) angle orientation of the filter that best fit the image in the region sur-
rounding that pixel and (2) the response/magnitude of that optimal filter. We used 4th order
ridge detector [104] and found that a width of 10 pixels worked best in discriminating the
thick, between-column bands from thin, within-column lamellae. (We will later change
the width slightly to 8 pixels when analyzing the marginal zone, as the bands are slightly
thinner there). Non-maximum suppression (available as ‘Refine feature’ function in the
plug-in) was used on the magnitude of the output to obtain single pixel wide lines along
the center of the ridges. This is a common edge thinning technique that works by suppress-
ing all pixels except those that are local maxima along the perpendicular direction of the
ridges [99, 102].

As expected, the above series of operations produce mostly long, continuous lines along
the thick inter-column bands (see Figure 3.7 B-B’). Thin within-column lamellae are some-
times detected, but they tend to be much shorter in length and oriented perpendicular to the
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Figure 3.8: Ridge detection of Müller glial bands in mature retina. (A-A’) Selective
projection of EGFP (magenta) driven by Müller glia-specific promoter gfap showing thick
bands between columns of photoreceptors and thin lamellae within columns (A). Cell pro-
files at the OLM is visualized by ZO-1 antibody (green, A’). Yellow arrows indicate column
orientation. (B) Ridge lines showing orientation of EGFP bands detected by the ridge anal-
ysis described in the text. (C-C’) Overlay of ridge lines on top of EGFP (C) and ZO-1 (C’)
intensities. Note how the ridge lines correctly divide photoreceptor cells into columns in
C’. In (A-A’, C-C’) Selective Projection algorithm (Section 3.3) was used to project EGFP
signal at the level of OLM as indicated by ZO-1.

column. The next section on FFT-based filtering attempts to remove the latter while keep-
ing the former mostly intact, with the goal to eventually have ridge lines only at the thick
Müller glia bands.

3.4.2 Directional filtering of ridge lines using Fast Fourier Transform

To filter out unwanted ridge lines from anything other than the thick intercolumn glial
bands, we leverage on the observation that these ‘false positive’ lines are mostly short
and perpendicular to the column direction. Taking Fast Fourier Transform (FFT) on the
projected EGFP image immediately gave us with the orientation of the columns θc (Figure
3.7 C). Using the orientation output from the ImageJ plug-in described earlier, we can
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efficiently accept only ridge pixels with orientation θ that deviates less than certain limit θ∗

from the column orientation: |θ − θc| < θ∗. This allows for some flexibility in accepting
the ridge pixels, as not all correctly-identified ridge pixelss are perfectly parallel to θc. We
found that θ∗ ≈ 30◦ gives good balance between removing most of the false positives and
keeping the desired ridges intact.

Further filtering was done based on the length of the continuous lines. We calculated
the unbroken length of the ridge lines and eliminate those shorter than 20 pixels. The
remaining ridge lines are shown to faithfully capture the thick Müller glia bands between
adjacent columns (Figure 3.7 D-D’).

3.4.3 Results

Figure 3.8 shows the analysis result on mature area of the retina. As expected, ridge lines
follow the thick Müller glia bands and, when superimposed on ZO-1, nicely delineate the
columns.

Applying the same analysis to the marginal zone (with slightly smaller filter width as
mentioned above) confirms our earlier observation that the thick Müller bands do indeed
extend beyond the mature area well into the unpatterned marginal zone (Figure3.9).

The presence of spatial ordering of Müller glia cells before column formation leads to
an interesting hypothesis that these glial cells might somehow help the cone cells organize
into straight columns as they mature. Combined with laser ablation result that thick Müller
bands correlate with direction of higher tension (Section 3.5), this suggest that tension
anisotropy might already be present early in the marginal zone before column formation.
Taken together, this suggests a new, more active role of Müller glia cells in patterning
epithelial tissues.

42



Figure 3.9: Ridge detection of Müller glial bands at the margin. (A-B”) Two represen-
tative images showing the persistence of the ridge lines into the marginal zone. Antibody
against ZO-1 (green) highlight cell profiles at the OLM, while gfap-driven EGFP (ma-
genta) marks Müller glia cells. Yellow arrows indicate the last mature columns that can
be identified from ZO-1 images. Dashed lines indicate the marginal zone where imma-
ture photoreceptor cells are packed randomly. Note in (A’ & B’) how Müller glia bands
are already established in the marginal zone. (A” & B”) show ridge lines divide progenitor
cells into batches that presumably will join the mature retina at subsequent cycles, although
columnar order is not yet established. Selective Projection algorithm (Section 3.3) was used
to project EGFP signal at the level of OLM as indicated by ZO-1.
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3.5 Analysis of Laser Ablation Experiment on Zebrafish
Retina

In an earlier publication of our lab, we hypothesized that zebrafish retina tissue is subjected
to anisotropic stress across the plane of the epithelium, and that this stress anisotropy is
essential for patterning the cones into columns [38]. The paper focused on studying the
mechanisms that lead to formation of straight columns of mature photoreceptor cells, from
an initially disordered packing, at the proliferation/’marginal’ zone (see Figure 3.1D). In
the model presented there, mature cone cells have the ability to planar-polarize by localiz-
ing concentrations of some planar cell polarity (PCP) proteins in non rotationally-invariant
way. These PCP proteins are then thought to modulate effective membrane tension by in-
creasing adhesion (or equivalently, lowering interfacial tension) between adjacent cones in
the same column. Hence, collective and consistent polarization of cells across the epithe-
lium will cause the increase of junctional tension along the direction of the column relative
to the perpendicular direction, and was shown that, together with progressive growth, it is
sufficient to recreate the columnar order [38].

To achieve consistent polarization across all cones, the presence of some global ori-
enting signal is required. We hypothesized that tissue-wide anisotropic mechanical stress
plays this role [38, 80]. The retinal tissue is experiencing anisotropic stress due to ocular
pressure and the presence the annular ligament, a rigid ring-like structure that holds the
retinal epithelium near its periphery. This is supported by the observation that the mo-
saic order is absent in the larval-remnant region of the retina when the annular ligament
is not yet present [38, 85, 105], and mosaic pattern arises as the fish grow and develop the
ligament.

Here we tested the hypothesis that the retinal epithelium is under anisotropic tension by
performing a laser ablation experiment ( [81], also see Appendix C). A high power pulsed
laser was used to selectively ablate Müller glial processes, thought to ‘glue’ photoreceptors
together and support the anisotropic tension, and create holes in the tissue which will relax
according to the mechanical stress present (see Appendix C for details on the experimental
method). If the epithelium is under isotropic stress, we expect the ablated region to relax
uniformly into circular shape. On the other hand, if the tissue is under anisotropic stress,
we then expect the tissue to relax into an ellipsoidal shape with the long axis aligned with
the direction of high stress. By tracking the recoil of cells around the ablation region,
we can infer the anisotropic deformation that happens after ablation and showed that it is
consistent with our hypothesis that mechanical tension is higher along direction parallel to
the columns.
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This work, along with that presented in Section 3.4, are included in a manuscript cur-
rently under consideration for publication at Nature Communications. The manuscript is
attached in Appendix C.

3.5.1 Analysis Method

The data we have is in the form of z-stack images of live fish retina, taken right before abla-
tion and at roughly 5 and 20 minutes after ablation. The experiment is performed on double-
transgenic fish expressing gfap:EGFP and trβ2:tdTomato transgenes in the pigment-free
mutant background. gfap is a promoter specific to the Müller glial cells and is expressed
throughout the glia. It is used both to target Müller glial processes for ablation and to visu-
alize the mosaic pattern at the level of the outer limiting membrane (OLM). At the OLM the
Müller glia processes wraps around the photoreceptors, giving what effectively is an outline
of their membranes. The cell tracking and deformation analysis described below is done
at this level. The second transgene trβ2 is a promoter marking red cone photoreceptors7

and is used to check for photoreceptor damage (or rather, lack of thereof) after ablation.
Ideally we want to eliminate only the tension-supporting glia and not the photoreceptors
themselves. The presence of tdTomato signal, together with loss of EGFP after ablation,
indicates that glial cells were successfully eliminated and at the same time red cones were
left undamaged.

Since Leica’s 2-photon microscope was used for image acquisition, the Z-stack im-
ages were saved in Leica’s proprietary ‘.lif’ format. We used Leica’s ‘LAS X’ application
(whose lite version is freely available for download from their website) to open the files
and export the z-stack as tiffs8. To obtain the mosaic at the level of the OLM, we projected
the EGFP channel using Selective Projection method described in Section 3.39. We cannot
use simple max-projection in this case since gfap:EGFP expression is not localized at the
OLM, but extends to the regions above and below it. The Selective Projection algorithm is
designed to look for and only project ‘sharp features’ such as the OLM, and ignore more
fuzzy structures. However to obtain the best possible projection, we usually mask most of

7It has been shown in [106] that trβ2 is expressed in red cone progenitor line that also give rise to hor-
izontal and retinal ganglion cells. However, both the horizontal and ganglion cells migrate basally upon
differentiation and only red cone photoreceptors remain at the OLM of adult retina.

8LAS X Version 1.1.0.12420 was used.
9In contrast to the previous sections, here we do not have ZO-1 antibody marking the OLM since we are

working with live fish. Nevertheless, at the OLM the gfap:EGFP gives cell outlines similar to the ZO-1,
while forming stalk-like processes far from it. We found that the Selective Projection algorithm does a decent
job to recognize the ZO-like profiles of gfap:EGFP and is able to reject most of the stalk-like processes. To
further improve the projection result, we did rough masking of the gfap:EGFP processes as described in the
text.
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the Müller glial processes by painting the image black with large brush on ImageJ. This
should take little amount of time and even very rough masking will significantly reduce
artifacts due to misidentification of the OLM. See Section 3.3 for details.

To quantify deformation as the tissue relaxes after ablation, we tracked both rod and
cone photoreceptors 2-3 cell diameter thick surrounding the ablation region identified by
loss of EGFP signal (see figure 3.11A). The centroids of the tracked cell were manually
identified using ImageJ’s ‘Multi-point’ tool and the coordinates were then exported to
MATLAB. We experimented with various ways to automate detection of the cell centroids,
including various combinations of morphological operations, edge detection methods, and
watershed segmentation. However, we found that none of the automated procedures are
able to identify cells with the desired accuracy and consistency. The problem lies mainly in
the poor quality of the EGFP signal, especially at 20 minutes after ablation or longer (see
figure 3.11A”-A”’). Since the number of images to be analyzed are not too large (8 ablation
and 6 control retinas), we decided that it is more efficient to track cell positions manually.

3.5.1.1 Correcting for Sample Tilt

The raw z-stack images taken by the confocal microscope often have the sample tilted with
respect to the focal plane of the microscope. Experimental constraints limit our ability
to align the sample plane accurately. Worse still, as we are imaging live fish, the angle
between the plane of the OLM (where we can see and track outline of cells) and the focal
plane often change (see figure 3.10). If not accounted properly, a change of plane tilt
angle between two images will show as strain along some axis. To correct for this, we
numerically rotated the 3D coordinate of the cell centroids on each image, such that the
OLM is parallel to the focal plane of the microscope.

To do this, we used the z-depth information from the Selective Projection algorithm
(see 3.3). Briefly, the program does z-projection by trying to recognize sharp features (in
this case, EGFP intensities at the level OLM), and select fluorescent signals only from this
level. The program has an option to output the reconstructed surface (i.e. z-depth as a
function of 2D coordinates xi = (xi, yi)

>), which are then used to obtain z-values z0
i at

each centroid position x0
i before ablation. This gives pre-ablation cell centroid coordinate

in 3D space r0i = (x0
i , y

0
i , z

0
i )
>. We then fitted this collection of points with a plane using a

least-square method similar to section 3.5.1.2 below. Such plane can be described by two
vectors: a vector pointing to an (arbitrary) point on the plane w0 and a normal vector n̂0.

To align different planes from different images, it is easiest to rotate every single one
such that their normal vector points along the z-axis, i.e. n̂ = (0, 0, 1)>. This can be
accomplished by rotating every centroid coordinate r0i to ri according to Rodrigues rotation
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Figure 3.10: Change in tilt angle of the OLM with respect to the imaging focal plane.
Cross-section view of live adult retinas on x-z plane with gfap:EGFP expressions (green)
marking Müller glia cells. (A-A’) Typical change in tilt angle between pre- (A) and post-
ablation (A’) images. Red arrows indicate the outer limiting membrane (OLM) where
photoreceptor cells are tracked. Ablation and analysis regions (white bars) are chosen to
be far enough from the marginal zones (yellow bars) so that they are relatively flat. (B-B’)
Example of extreme tilting that can occur before (B) and after ablation (B’). Samples with
significant change in tilt angle (> 15◦) such as this are excluded from analysis.
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formula:
ri = r0i cosα + (k× r0i ) sinα + k(k · r0i )(1− cosα), (3.1)

where k = n̂0 × n̂ and α = n̂0 · n̂ are rotation axis and rotation angle, respectively. 2D
centroid coordinates xi on the (rotated) plane of OLM can then be obtained from ri for 2D
deformation analysis.

The above procedure was repeated for all pre- and post-ablation images. Note that since
we are imaging near the margin of the retina, the actual plane of OLM is almost always
curved (see Figure 3.10). When fitting a plane through the tracked cells, we assume that
the cells are far enough from the margin such that the OLM is locally flat. The goodness of
this assumption can be checked by computing the fitting residual (root-mean-square error)
– high residual suggests that the assumption does not hold very well. In our cases, most of
the residuals are low, on the order of the z-resolution of the imaging, suggesting that the
areas we are working on are indeed locally flat. MATLAB code given in Appendix A.3.1.

3.5.1.2 Least Square Deformation

We assumed that the deformation on the plane of the OLM is affine and can be written as:

ŷi = Mxi + b (3.2)

for some d-by-d matrix M and d-by-1 offset vector b. xi is d-by-1 vectors of pre-ablation
(tilt-corrected) coordinate the i-th cell, while ŷi is the coordinate obtained after transforma-
tion 3.2 above. The dimension d is 2 in this case (i.e. we assume the deformation happens
primarily on the plane of the epithelium), but can in principle take higher values. We then
want to find M and b that minimizes the mean-squared error between the transformed ŷi

and the actual post-ablation (tilt-corrected) coordinates yi for all N cells tracked:

min
M,b

R(M,B), (3.3)

where:

R =
N∑
i=1

‖yi − ŷi‖2 =
N∑
i=1

‖yi −Mxi − b‖2 . (3.4)

Following the usual approach to solve ordinary least square problem (see, for exam-
ple, [100]), we can write the above equation more compactly in full matrix notation by
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concatenating the N coordinates into augmented matrices defined as follow:

X̃ =

[
1 1 ... 1

x1 x2 ... xN

]
,

ˆ̃
Y =

[
1 1 ... 1

ŷ1 ŷ2 ... ŷN

]
,

Ỹ =

[
1 1 ... 1

y1 y2 ... yN

]
, M̃ =

[
b M

]
. (3.5)

Then we can write equation (3.2) simply as ˆ̃
Y = M̃X̃, and the least-square problem of

equation (3.4) as:

R =
∑

i

∥∥∥yi − M̃xi

∥∥∥
= tr(Ỹ>Ỹ)− tr(Ỹ>M̃X̃)− tr(X̃>M̃>Ỹ) + tr(X̃>M̃>M̃X̃). (3.6)

To find M̃ that minimizes equation (3.5), set ∂R

∂M̃
= 0. This gives:

M̃ = ỸX̃>(X̃X̃>)−1, (3.7)

from which M and b can be extracted using definition (3.5). Note that the matrix X̃X̃>

has dimension d-by-d and is independent of the number of cell N , so the method remains
appropriate for large scale analysis where, in typical applications,N can be arbitrarily large
but the dimension d remains low.

Note that we assumed that the deformation is affine (equation 3.2) and along the plane
of the epithelium. To verify that this is indeed a good assumption, we can calculate the
residual (root-mean-square error) of the fitting. For all the samples included in the analysis
(i.e. those not exhibiting extreme tilt), we found that the residuals are low (Tables 3.2-3.3).
This suggests that the deformation is indeed affine.

3.5.1.3 Polar Decomposition

The transformation encoded in M contains both elastic deformation of the epithelium as
well as rigid rotation (e.g. from movement of live fish and/or microscope stage between
acquisitions). To account for possible rotation, we performed polar decomposition on M,
defined as:

M = UP, (3.8)

where U is unitary and P is positive-semidefinite Hermitian. (In our case M is necessarily
real, so it follows that U and P are orthogonal and PSD symmetric, respectively.)
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U and P are given as follow:

P = (M>M)1/2

U = MP−1. (3.9)

The angle φ of the rigid rotation between the images can then be easily computed from
U. In our case it turns out that this angle is small (≈ 1◦ on average), suggesting that the
microscope stage does not rotate much (although it does have significant amount of linear
drift as measured by b). Live fish movement typically results not only in rotation but also
drastic change in tilt plane. Samples with unambiguous fish movement (abrupt jumps or
distortions on z-stack images) were identified manually during visual inspection stage prior
to analysis and were excluded.

The amount and direction of the (principal) strains are given by the eigenvalues and
eigenvectors of P, respectively. Anisotropy is then defined as the ratio of the difference of
the principal strains to their average. The angle θ that the eigenvectors make with respect
to the x-axis can also be easily computed. Ideally, the eigenvector corresponding to the
larger eigenvalue (i.e. largest relaxation) should point parallel to the column direction
where tension is highest. However we found that in some experiments this is not always
the case, although the deviation is always less than 45◦. This discrepancy could be caused
by ablation that is not perfectly circular. Since a single Müller glial process wraps multiple
photoreceptor cells at the OLM, it is practically-impossible to create perfectly-isotropic
ablation by targeting Müller glial processes. MATLAB code for the entire analysis is given
in A.3.2.

3.5.2 Results

We analyzed two groups of data: experiment and control groups. In the experiment group,
Müller glia processes were ablated with high-power laser, causing photoreceptor cells to
recoil away from each other. In the control groups, the exact same protocol was followed
except that the ablation step was done with the laser turned off. See [81] for details on
experimental methods. Analysis for ablation and control groups are presented in Tables
3.2 and 3.3. Note that x- and y-strains are strain perpendicular and parallel to the columns,
respectively.

Figure 3.11 A-A”’ shows tracked cells around ablation region. x- and y-strains are
plotted in Figure 3.11 E-F. Our result shows that, while there is no significant difference
(p = 0.1128) in x-strain (perpendicular to the columns) between control and ablation
groups, the latter shows significantly higher y-strain (parallel to the columns) compared
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Figure 3.11: Laser ablation of Müller glial processes. (A-A”) Live imaging time course
of targeted Müller glial ablations in Tg(gfap:EGFP) (green) and Tg(trβ2:tdTomato) (red)
juvenile zebrafish. Photoreceptor profiles tracked for strain analysis (white dots). (A’-
A”’) Hole in sheet of Müller glial processes at the OLM. Relaxation of surrounding
retinal epithelium at 9 min (A’), 27 min (A”), and 54 min (A”’) after ablation. (B-B’)
Tg(trβ2:tdTomato)+ Red cones survive Müller glial ablation. (C-D) Schematic of pre-
(C) and post-ablation (D). Cone cells tracked for strain analysis are marked by ‘x’. (E-F)
Mechanical strain perpendicular (x-strain, E) and parallel (y-strain, F) to retinal margin.
Strains greater and smaller than 1 represent stretching and compression, respectively. Each
retina is represented by a different shaped symbol (n=6 controls; n=8 experimental). Hori-
zontal axis is time interval between ablation and middle of the post-ablation imaging scan;
two or three post-ablation scans collected for each retina. Scale bars: 5 µm (A”’ and B’).
Selective Projection algorithm (Section 3.3) was used to project EGFP and tdTomato. Fig-
ure adapted from [81].
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to control (p = 0.0008). p-values were obtained using the (univariate) Welch’s unequal-
variance test [107, 108]. Confirming this, Hotelling’s multivariate unequal-variance test
[108, 109] using both x- and y- strains also shows significant (p = 0.0002) difference be-
tween the two groups.

Our result shows that the adult retina epithelia are under anisotropic stress. Higher y-
strain relative to the perpendicular direction supports our hypothesis that thick Müller glia
bands along columns support higher tension than thinner lamellae seen in the perpendic-
ular direction (see also Chapter 3.4 on analysis of thick Müller glia bands). This tension
differential might be important in coordinating PCP in cone cells and pattering them into
straight columns, as suggested in [80]. This work is included in our recently-submitted
manuscript [81], attached in Appendix C.
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Table 3.2: Ablation group data

Name Time after
ablation
(mins)

No of cells x-principal
strain

y-principal
strain

Principal
axis angle
θ◦

RMSE de-
formation
(px)

RMSE
plane fit
(px)

Fish 1 9 51 1.00 1.06 5 1.7 35
26.5 51 1.01 1.19 -1 4.3 89

Fish 31 5.5 53 1.09 1.01 -40 2.9 32
25 53 1.03 1.14 21 4.1 32

Fish 32 5.5 51 1.00 1.06 27 4.0 49
21.5 51 1.03 1.10 38 5.2 36

Fish 34 6 48 1.00 1.03 23 2.2 31
8 48 1.01 1.04 37 3.0 42
19.5 48 1.08 1.04 -37 2.9 25

Fish 35 2.5 54 1.05 1.03 -33 2.8 48
6.5 54 1.04 1.08 27 3.6 51
12 54 1.04 1.11 17 4.3 49
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Table 3.2: Ablation group data (continued)

Name Time after
ablation
(mins)

No of cells x-principal
strain

y-principal
strain

Principal
axis angle
θ◦

RMSE de-
formation
(px)

RMSE
plane fit
(px)

Fish 37 4 59 1.00 1.05 -16 3.7 29
7.5 59 1.02 1.10 -10 5.1 29
10.5 59 1.01 1.22 -7 7.8 30

Fish 38 4 50 1.00 1.08 14 4.0 33
7 50 1.04 1.11 14 4.5 27
21.5 50 0.97 1.20 12 7.6 86

Fish 30 9.5 49 1.00 1.03 -30 2.7 32
19.5 49 1.02 1.07 -22 3.8 39
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Table 3.3: Control group data

Name Time after
ablation
(mins)

No of cells x-principal
strain

y-principal
strain

Principal
axis angle
θ◦

RMSE de-
formation
(px)

RMSE
plane fit
(px)

Fish 18C 6 50 1.00 1.02 24 2.1 25
23.5 50 0.99 1.03 8 3.1 23

Fish 19C 2 45 0.99 1.02 35 1.8 39
22.5 45 1.15 1.08 -6 2.6 29

Fish 20C 3.5 53 0.97 1.03 -2 1.8 24
20.5 53 0.95 1.07 3 2.9 25

Fish 21C 4.5 53 0.96 1.02 7 2.3 29
21 53 1.02 1.06 18 3.2 24

Fish 22C 5 57 0.99 1.00 0 1.5 14
21 57 0.94 1.02 -1 2.1 26

Fish 23C 4 54 0.99 1.01 -12 1.5 34
15.5 54 0.95 1.03 -3 2.1 36
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CHAPTER 4

Correlation Analysis of Morphogenetic Noise

During development, animals frequently have to make laterally-symmetric organs. This
perfect development between pairs of left and right organs is crucial for proper function
and survival of the individuals. For example, Drosophila left and right wings grow to re-
markable size and shape precision. Although there are some variations between different
individuals, within the same animal the relative size between the left and right wings is
controlled very precisely. It has been proposed that this precision is essential to the individ-
ual’s fitness and ability to fly [110–113]. However, how biology achieves this precision in
the presence of stochastic noise is not at all obvious. Often these left and right organs grow
from different tissues on different sides of the animal (e.g. in the case of fly, left and right
wings grow from different larval imaginal discs), and whether there is feedback between
them coordinating their development is still hotly-debated [114–116].

This work is a collaboration with Yohanns Bellaïche from Institut Curie, Paris, who
hosted us during our 6-month stay in early 2016. Working on Drosophila pupa dorsal
thorax (also known as notum), they have established a state-of-the-art technique for high
spatial- and temporal-resolution live imaging of large scale epithelial remodeling that hap-
pens during metamorphosis. They can capture live movies at 5 minutes resolution for over
24 hours and digitally track everything that happens during this period, including cell move-
ments, apical contractions, divisions, and apoptosis. This yields a wealth of information on
what is happening at the cellular scale as the tissue is being sculpted.

The final adult thorax is composed of symmetrically-shaped left and right halves, sep-
arated by a straight midline running along the anterior-posterior axis. Embedded in each
half are 7 macrochetae that have stereotypical positions and shapes. Their unique shapes
provide easy ways to quantify the symmetry between the two halves and, together with the
midline, serve as landmarks to measure relative positions across the tissue. Although the
notum maintains symmetrical shapes and macrochetae positions throughout development,
this symmetry does not extend to cellular level. At this scale, cells are packed randomly
and thus their positions and numbers do not have clear correspondence between the left and
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right halves1. Cell division and apoptosis, too, happen stochastically and are not in mirror
symmetry at the individual cell level. This stochasticity in turn imparts significant noise
(i.e. wiggles) in individual cell trajectories. Given this randomness, it is not clear how the
notum is able to maintain its symmetry throughout the remodeling process.

Although the movies were acquired for a different purpose2, we thought they could shed
some light to an interesting question: How growth and morphogenesis are coordinated in
development to produce symmetrical organs despite noisy cell movements. We should
point out that we became interested in this question after reading an internship report by
Anaïs Bailles that claimed this noise has unexpected scaling like ∆x∆t. A naïve model
based on the assumption that the noise on both halves is random and uncorrelated predicts
that the noise should diminish like the volume of the averaging window (∆x)2∆t (see
Section 4.2). If the claim is true, this would mean that the noise is not uncorrelated and
suggest that more complex mechanisms, such as those involving feedback or coordination
between the two halves, are at play.

Naturally, we proceed by first verifying the claim above. We showed, by means of
data collapse, that the noise between the two halves does scale unexpectedly like ∆x∆t.
Unfortunately, only one movie has the full notum with both sides visible, and the remaining
has only half of the notum visible3. We then tried various analyses on the hemi-notum
movies in an attempt to extract the same information. Although some of the things we
tried ended up being scraped for various reasons, there are things we can learn from them.
Thus, these methods are included in Appendix B for future reference. Finally, we obtained
auto-correlation maps for the hemi-nota as a function of space and time, and found some
curious negative correlations at 15-20 minutes time-lag.

4.1 Introduction

The Drosophila dorsal notum is a monolayer epithelial tissue at the back of the animal.
Starting at around 10 hours after pupa formation (hAPF), it undergoes various morpho-
genesis processes that shape it into the adult thorax (Figure 4.1). This large scale tissue
remodeling, which last for about 24 hours, includes several rounds of cell divisions, apop-

1Exception to this are the number and location of stereotypical cells, such as those forming macrochetae.
2The notum movies are published as part of their works in elucidating the role of Fat/Dachsous PCP

pathways in notum morphogenesis [117] and formulating new quantitative framework to analyze tissue de-
formation [118].

3This is related to the fact that the movies were originally taken for different purposes. In their published
work using the same dataset [117, 118], they argued that both hemi-nota from the same animal are identical
for their analysis. In addition, segmenting the cells requires substantial manual labor to correct for mistakes
made by automated segmentation algorithm. Both of these favor collecting data for just half of the notum.
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Figure 4.1: Fly dorsal notum. (A-B’) Drosophila dorsal notum () is shown in adult fly
(A-A’) and pupa (B). Yellow dots indicate the position of the macrochetae, while midline is
shown as blue dashed line in A’, and can also be seen as bright central line in B’. A frame
grab from the full notum movie is shown in B’, and zoomed in C showing GFP intensity
from E-Cadherin:GFP. In this and subsequent figures, head (anterior) is always oriented to
the right and tail (posterior) to the left. Data provided by Bellaïche group and is published
in [117, 118].
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toses, delaminations, cell rearrangements, and collective cell flows (among other thing, to
form neck invagination just anterior to it) [118]. Also happening during this period is the
formation of macrochetae – organs that will grow bristles in the adult animal – which can
be easily identified during the latter half of morphogenesis from their unique shape. They
are also highly symmetrical in location between the left and right halves of the notum.
The two halves are separated by a midline, where cells form continuous junctions that run
straight along the anterior-posterior axis.

The notum was imaged in flies carrying Cadherin:GFP construct to label adherens junc-
tions. Live imaging of the pupae was done for about 24 hours between 14 and 28 hours
after pupa formation (hAPF) at every 5 minutes. A confocal spinning disk microscope
(Nikon) was used to acquire 18-28 z-slices (0.5 µm/slice) at several overlapping positions
that were then stitched together to give full (or half) view of the notum. A full-notum movie
was constructed from 24 such overlapping tiles, while half-notum movies contained 10-12
overlapping positions. See [117,118] for more details on imaging procedure. Hemi-notum
movies were acquired the same way except that only positions covering one half of the
notum were imaged. In total, one full-notum movie and 3 hemi-notum movies were col-
lected (available as Supplemental Video in [117, 118]). For hemi-notum analyses (Section
4.4), we digitally split the full-notum movies along the midline to generate two additional
hemi-notum movies that were analyzed independently.

Prior to analysis, the movies were segmented through multiple iterations of automatic
and manual rounds as described in [118]. Cells were then tracked using a custom MATLAB
algorithm developed by the Bellaïche group, taking into account cell division, apoptosis,
and movement into and out of the imaging field of view. Altogether, around 7.7 × 106

cell contours were segmented and tracked across the five hemi-notum movies [118]. This
yields a wealth of information of time and location of cell rearrangements, flows, divisions,
and apoptosis throughout the morphogenesis. Their respective contributions to the overall
tissue remodeling has been quantified in a recently publish work by Guirao et. al. [118].
For this study, however, we are particularly interested in looking at the movement of the
cell centroids.

We observed that individual cell movements are particularly noisy – they jiggle around
some mean flow in a random and non-symmetrical fashion. Several mechanisms contribut-
ing to this noisy movement are stochastic cell division and apoptosis (which, although
happen at the same general area, are not perfectly symmetrical at cellular scale between
left and right hemi-nota). It is still unclear how this noise is compensated during devel-
opment (or, indeed, if it needs to be compensated at all) to achieve the desired accuracy
between the two halves. We will show in Sections 4.3 and 4.4 that the noise appears to be
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correlated, suggesting that some mechanism is possibly regulating it.

4.2 Model of left-right velocity correlation

We start by assuming that, in absence of noise, both left and right hemi-nota of the same
animal share a common morphogenetic flow ~u(~x, t). The actual observed cell movements
might not be exactly the same between left and right due to the presence of noise, and can
be written as:

~vL(~x, t) = ~u(~x, t) + ~ξL(~x, t)

~vR(~x, t) = ~u(~x, t) + ~ξR(~x, t), (4.1)

where the zero-mean noise terms ~ξL and ~ξR are assumed to be white and uncorrelated:

ξL = ξR = ξLξR = 0, (4.2)

where the averaging ( · ) is over different realizations of the noise.
We expect the noise to have common strength that decays as we average over larger

space and time. More specifically, we expect it to decay like the volume of the averaging
box Ω = (∆x)2(∆t):

〈ξL〉2 = 〈ξR〉2 = σ2 ∝ (∆x)−2(∆t)−1, (4.3)

where 〈 · 〉 denotes averaging over space-time box Ω.
Let us also define the mean and variance of the morphogenetic flow ~u averaged over

some space and time centered at (~x′, t′) as:

〈~u〉~x′,t′ = ~U(~x′, t′) (4.4)

var(~u)~x′,t′ = ∆2(~x′, t′). (4.5)

Then we can calculate the correlation between left and right flow velocities ~vL and ~vR in
terms of the above quantities4:

R = corr(~vL, ~vR) =
cov(~vL, ~vR)√

var(~vL) var(~vR)
=

∆2

∆2 + σ2
. (4.6)

4Here we assume that the average over box volume is the same as the average over noise realizations.
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This can be normalized such that it scales simply with ∆x and ∆y:

R

1−R
=

∆2

σ2

∝ (∆x)2(∆t). (4.7)

This equation gives the expected scaling of left and right correlation in terms of the size of
averaging window.

Another quantity that is expected to scale with Ω is the variance of the difference of the
two velocities:

var(~vL − ~vR) = 〈~vL − ~vR〉2 − 〈~vL − ~vR〉
2

= 2σ2

∝ (∆x)−2(∆t)−1. (4.8)

Equations 4.7 and 4.8 give the expected scaling of two easily-computed quantities as
a function of different averaging intervals ∆x and ∆t, assuming that the noise is uncorre-
lated. Deviation from the expected scaling would imply either that the noise between left
and right is not uncorrelated, or that they have long range correlation. As previously men-
tioned, this work was motivated by Anaïs’ claim that the correlation scales like (∆x)(∆t),
which suggest that the noise is potentially correlated and/or a mechanism more interesting
than the simple model above is at play.

In equations 4.7 and 4.8, we essentially use the velocity from both halves to subtract off
the (unknown) morphogenetic flow ~u(~x, y). This leaves us only with the noise from both
halves, which then we know how they are expected to scale. Clearly, this trick works only
for the movie containing the full notum. For the hemi-nota movies, where only either the
left or right half of the notum are visible, the best we can do is to calculate the variance of
either left or right velocity, given by:

var(~vL) = 〈~vL〉2 − 〈~vL〉
2

= ∆2 + σ2. (4.9)

We see that the price we pay for only using half the notum is that we cannot eliminate ∆2.
Recall that ∆2 is the variance of the morphogenetic flow (which can and does vary over
space and time). This is saying that with half notum we cannot tell the difference between
variation caused by the noise versus actual variation of the underlying mean flow. We will
see in Section 4.4 that ∆2 is non-negligible, and that prevented us from getting nice data
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collapse like we had in the full-notum case.

4.3 Analysis of full-notum movie

To calculate left-right correlation from the full-notum movie, two averaging windows of
size (∆x,∆x,∆t) were setup at corresponding locations on both the left and right halves.
∆x and ∆t are specified in units of pixels (0.32 µm/pixel) and frame number or time-step
(5 minutes/frame), respectively. vL and vR were then calculated as the average velocities of
cells with centroids inside the window. ∆x was varied between 16 ≤ ∆x ≤ 256 in powers
of two, while ∆t was varied independently between 1 ≤ ∆t ≤ 24 in unit step.

For each combination of ∆x and ∆t, the averaging windows were translated by ∆x
4

in
both spatial directions and by unit step in time to cover the entire movie. When a window
contains a region with no segmented cells (which usually happens near the edges of the
notum), velocities from both sides are discarded. This resulted in several thousand pairs of
vL and vR averaged at different ∆x and ∆t. We then calculated the correlation coefficient
R and the variance var(vL − vR) in equations 4.7 and 4.8.

To check that the noise does not follow the scaling predicted by the uncorrelated noise
model in Section 4.2, we plotted the normalized correlation versus volume Ω = (∆x)2(∆t)

(Figure 4.2A). It is pretty clear that the data points do not collapse as predicted by the
model, suggesting some correlation is present in the noise. We then plotted the normal-
ized correlation and variance against ∆x∆t and obtained data collapse (Figure 4.2B-C),
confirming Anaïs’ claim that the noise scales like ∆x∆t.

At this point, it is pretty clear that either: (1) the noise as defined by equation 4.1
is correlated, or (2) our assumption that both left and right halves share common mean
morphogenetic flow ~u(~x, t) is somehow incorrect. One biologically-plausible scenario that
would explain the latter is that if morphogenesis of the left and right halves are not syn-
chronized (e.g. one is significantly delayed with respect to the other). To check relative
morphogenesis progression of the two halves, we followed a method to register develop-
ment time described in [117,118]. It has been observed that the posterior part of the notum
exhibit strong but transient rotational flow. By aligning these peaks of rotation rate, defined
to be 18:40 hAPF, one can synchronize development times across animals. We applied the
same analysis independently on both halves of the full notum to check whether there is any
significant discrepancy in their development.

Plot of rate of rotation for both halves of the full notum is shown in Figure 4.3. It shows
that both halves are already synchronized, at least according to this measurement. (This is
really not surprising, since they are from the same animal.)
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Figure 4.2: Scaling of noise in full-notum movie. (A) Normalized correlation coefficient
does not collapse when plotted against volume Ω = (∆x)2(∆t). (B-C) Data collapse of
normalized correlation (B) and variance of left-right velocity difference (B) when plotted
against (∆x)(∆t). See also equations 4.7 & 4.8.
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Figure 4.3: Rate of rotation of left and right halves of full notum show that they
are in synchrony, suggesting that delayed morphogenesis is not the cause for the observed
correlated noise. Rate of rotation is computed as the anti-symmetric part of the deformation
tensor 1

2
(∂vx
∂y
− ∂vy

∂x
) on the scutellum near the midline, and time on x-axis is given in unit of

movie frame number (multiples of 5 minutes starting at 13:55 hAPF). See [118] for more
details on the use of scutellum rotation rate as biological reference time.

To summarize, so far we have demonstrated that the noise between both halves does not
satisfy the naïve model presented in equation 4.1 with white uncorrelated noise. We have
also ruled out one biologically-plausible scenario where morphogenesis of the two halves
happens at a different rate or time. Ideally, we would like to perform further analysis
on more than one sample. However, since segmenting and tracking additional full-notum
movies are prohibitively expensive5, we decided to focus our attention on the available
hemi-notum movies instead.

4.4 Analysis of half-notum movies

For the rest of the analysis involving hemi-notum movies, we split the full-notum movie
digitally near the midline to make two additional hemi-notum movies. A total of 5 hemi-
nota movies were analyzed independently. The movies were segmented and tracked as

5We have also explored ways to analyze new movies without having to perform costly segmentation. We
tried to use particle image velocimetry (PIV), including a more advanced variation with deformable win-
dows, to get velocity field without having to perform segmentation and cell tracking. Briefly, PIV produces
displacement field by correlating an image with another taken shortly after. However we found that even with
the more sophisticated window-deformation PIV, we could not get velocity field that accurately matches the
tracking result. This was a useful exercise nonetheless, and it is discussed in more detail in Appendix B.1.
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Figure 4.4: Variance of velocity of hemi-notum does not show nice data collapse (B)
as it does in the full-notum case (A). In hemi-notum, only velocities from one half of the
notum are available, and thus the variance does not scale as the noise (see equation 4.9).
Panel (A) is previously shown in Figure 4.2 and is replicated here for comparison.

described in section 4.3 and in [118]. Averaging windows of varying size were set up as
before. However since we did not have the other half of the notum to compare against, all
we could do was to calculate the variance of the average velocities on the hemi-nota.

4.4.1 No data collapse on hemi-notum average velocity

Plot of the variance of vL as a function of ∆x∆t is given in Figure 4.4. Clearly it lacks
the nice data collapse we previously had on the full-notum case. One can understand this
in several ways. First, using equation 4.9, one can see that the price we pay of just using
one half of the notum is that we have an additional ∆2 term. This term generally will
scale differently with respect to ∆x and ∆t, thus destroying the data collapse. Another
equivalent way to understand the problem is that by realizing the difficulty in separating
noise from meaningful morphogenetic movements (i.e. the ’signals’). The average velocity
at a given point is assumed to be the sum of the meaningful morphogenetic flow plus noise.
The morphogenetic flow, however, is unknown and varies in time and space. Hence with
only half the notum, we have no clear way to identify and separate the noise from the
average movements6.

6We explored some ideas to better define the meaningful morphogenetic noise, and hence the noise, by
using interanimal averages. This follows the analysis by Guirao et. at. [118] to create universal archetypal
morphogenesis map of the notum by averaging over different animals. However we found that, for our
purposes, slight variation between animals is enough to throw the analysis off. Due to this interanimal
variation, the remainder velocity after subtraction with the archetypal morphogenesis flow is still highly-
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Figure 4.5: Auto-correlation of hemi-notum movies. Two concentric windows of differ-
ent sizes (left) are used to estimate the amount of noise. Auto-correlation averaged across
all time and positions (right) shows significant negative correlation at about 15-20 min-
utes time-lag for all hemi-nota. Control is calculated as cross-correlation between different
hemi-nota (colored circular markers). Sizes of averaging windows are 128×128×1 (large)
and 64× 64× 1 (small).

4.4.2 Auto-correlation with different window sizes

Another approach we tried is to calculate average velocities using two concentric averag-
ing windows of different sizes (Figure 4.5, left). We expect that the larger window gives
averaged velocity closer to the true morphogenesis flow7, while the smaller window will
produce a noisier average. Hence we define the difference of the two average velocities as
the noise. We are then interested in looking at the autocorrelation of this noise with some
time lag.

Figure 4.5 shows the average autocorrelation as a function of the time lag for all 5 hemi-
nota, labeled as different colors of circular markers. Size of the large window was 128x128
pixels-by-1 frame (5 minutes), and the small window was 64x64x1. Auto-correlation was
averaged over all time and spatial locations with 50% overlap between adjacent averaging
windows. As a control, we calculated average cross-correlation between different animals.
Note that all hemi-nota show consistent and significant negative correlation at around 15-
20 minutes. While it potentially suggests something interesting is at play, we first have to
rule out less interesting possibilities.

A possible case of the negative correlation we cannot rule out at the moment is cell
division. It is known that epithelial cells tend to increase their apical area just prior to cy-

correlated. See Appendix B.2 for more details.
7This is limited by the scale over which the morphogenesis flow itself varies.
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tokinesis. This swelling has the effect of pushing the surrounding cells away, and possibly
drawing them back close again once the division is complete. It is thought that the whole
process happens at roughly the same time-scale, making it a possible candidate to explain
the negative auto-correlation. To examine this further, we decided to compute the spatial
map of this auto-correlation and compare that to what is known about the distribution of
cell divisions in the system [118].

4.4.3 Spatial map shows regions of positive and negative autocorrela-
tions

To compute spatial auto-correlation maps, a similar approach was used except that we
do not average over spatial locations. To compensate for lack of spatial averaging, time
averaging was increased to 24 frames (2 hours) to keep the number of data points rea-
sonable. Figures 4.6 and 4.7 show representative correlation maps at 5 and 20 minute
time-lags, respectively. At 5 minutes lag, we see strong positive auto-correlations at the
posterior-distal part of the notum (also known as the ’scutellum’). Towards the end of the
morphogenesis, negative correlations start to emerge at center near the midline. At 20 min-
utes time-lag, negative correlations are seen at the scutellum part where it was previously
positively-correlated. The map at 20 minutes time-lag does not change much over time,
with the overall notum remains slightly negative. All 5 hemi-nota analyzed share the same
qualitative features.

Though interesting, the implications of these correlation maps are not entirely clear.
The scutellum area with strong positive and negative correlations corresponds to the area
where active tissue remodeling happens most prominently. However the timing and loca-
tion do not quite match that of cell divisions. It is known that cell divisions happen in two
rounds, first at around 19 hAPF covering the whole notum and second at around 24 hAPF
mostly at the scutellum. The positive and negative correlations of the scutellum, however,
remain roughly constant throughout the entire movie.

4.5 Conclusion

In this work, we showed that noisy cell movement during Drosophila pupa notum morpho-
genesis does not follow a naïve model where the observed movement is simply the sum
of morphogenetic flow and some uncorrelated noise term. Rather, study of the full-notum
movie suggests that the noise might be correlated and has non-trivial ∆x∆t scaling. This
is different than the expected (∆x)2∆t scaling one would expect from white, uncorrelated
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Figure 4.6: Spatial map of auto-correlation at 5 minutes time-lag, showing strong
positive correlation at the distal-posterior scutellum area. Strong negative correlation de-
velops at the middle of the notum towards the end of the metamorphosis. Time window for
averaging are given in hours after pupa formation (hAPF).

Figure 4.7: Spatial map of auto-correlation at 20 minutes time-lag showing negative
correlation at the distal-posterior scutellum area.
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noise. However, lack of more full-notum movies has prevented us from elucidating its
biological significance.

Backing the above result using hemi-notum movies proved to be more complicated
than it was initially expected. Lack of the other half of the notum means that separating
meaningful morphogenesis movements from noise is no longer trivial. Approaches in es-
timating the meaningful morphogenesis flow were presented, though lacking the clarity of
simple comparison of the full-notum. We believe that analysis of full-notum movies still
offers the best way to confirm the presence of correlated noise, as well as to elucidate the
mechanisms responsible for it. However, the laborious nature of performing segmentation
and cell tracking on the movies has limited our ability in obtaining more full-notum data.

Finally, we are grateful to Yohanns Bellaïche for providing the data and helpful discus-
sions. This project would not have been possible without his collaboration. We also thank
Jesus Lopez-Gay and Floris Bosveld for performing the experiments and processing the
movies, Boris Guirao and Stéphane Rigaud for providing segmentation and tracking MAT-
LAB routines, and to the entire Bellaïche group for their hospitality during our wonderful
stay in Paris.
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APPENDIX A

MATLAB Codes

This appendix contains MATLAB codes discussed in Chapter 3. All codes were tested
in Version R2014a. When appropriate, values of free parameters used in the analyses are
listed in brackets at the beginning of each code.

A.1 Analysis of tbx2b Mutant Column Fragments

A.1.1 FindEdges.m

function N = FindEdges(M, strelsize, edgethr, graythr)

2

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 % Function to perform edge detection-based cell segmentation.

% Tested to work well on clean, high contrast images, such as: ZO-1 with

6 % antigen retreival.

%

8 % M : grayscale input image (e.g. ZO-1 max-projection)

% strelsize : structuring element size for imclose smoothing/gap filling

10 % Larger values better fill gaps, but will produce rounder cell

% profiles

12 % (recommended value: varies between 1-5 depending on image)

% edgethr : threshold for Canny edge detection (0-1).

14 % : (default: 0 = automatic threshold)

% graytresh : threshold for BW conversion.

16 % Set to 0 to set automatic threshold using Otsu's method.

% (default = 0)

18 %

% Jeremy Hadidjojo (hjeremy@umich.edu), 2013

20 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

22

M = imadjust(M); % maximize contrast

24 M = wiener2(M); % noise reduction with adaptive Wiener filter

if edgethr == 0;

26 E = edge(M, 'canny'); % find edges with Canny method

else

28 E = edge(M, 'canny', edgethr);
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end

30

32 if graythr == 0;

M1 = im2bw(M, graythresh(M)); % threshold

34 graythresh(M)

else

36 M1 = im2bw(M, graythr);

end

38 E1 = E | M1; % add thresholded image to E to fill in holes

E2 = imclose(E1, strel('disk', strelsize)); % morphological closing

40

N = ~E2;

42 N = imclearborder(N);

imagesc(N);

codes/FindEdges.m
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A.1.2 ProjectRodImages.m

1 function R = ProjectRodImages(N,S)

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Find z-slice image sharpest for a particular cell and extract rod channel

5 % (green) for that cell. Cell outline is Red, and rod stain is Green.

% N = segmented BW image (for example, from FindEdges.m)

7 % S = cell of z-stacks (from ReadImageSequence.m)

%

9 % Free parameter:

% strelsize: size of structuring element for dilation

11 % (default: 5 pixels, but may be adjusted depending on image resolution)

%

13 % Created by: Jeremy Hadidjojo (hjeremy@umich.edu)

% Created on: 05/21/13

15 %

% Last modified on:

17 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

19

strelsize = 5;

21 Strelement = strel('disk', strelsize);

23 R1 = uint8(zeros(size(N)));

R = uint8(zeros(size(S{1})));

25 CC = bwconncomp(N); % find connected component

L = labelmatrix(CC);

27 Ncomp = CC.NumObjects

Nslice = length(S);

29

% extract Red and Green channels;

31 Red = cell(Nslice,1);

Green = cell(Nslice,1);

33 for i = 1:Nslice

Red{i} = S{i}(:,:,1);

35 Green{i} = S{i}(:,:,2);

end

37

for i = 1:Ncomp

39 if mod(i,100)==0

sprintf('Processing cells %d/%d', i, Ncomp) % progress indicator

41 end

Comp = (L == i); % get i-th component

43 CompPacked = bwpack(Comp); % pack BW image to improve performance of

imdilate below

CompDilate = imdilate(CompPacked, Strelement, 'ispacked');

45 CompDilate = bwunpack(CompDilate, size(Comp,1)); % unpack

Outline = CompDilate - Comp; % get outline surrounding Comp

47 OutlineInd = find(Outline);

49 % find z-slice with sharpest outline

Val = zeros(1,Nslice);

51 for j = 1:Nslice

Val(j) = sum( Red{j}(OutlineInd) );
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53 end

55 [~,ind] = max(Val); % z-slice index with highest ZO intensity around Outline

CompIndex = find(Comp);

57 R1(CompIndex) = Green{ind}(CompIndex);

end

59

R(:,:,1) = im2uint8(bwperim(N)); % red channel = segmented perimeter

61 R(:,:,2) = R1; % green channel = rod staining

codes/ProjectRodImages.m
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A.1.3 SeparateRodsCones.m

function [Rods,Cones, Im] = SeparateRodsCones(N,R,th)

2

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 % Separate rods and cones from the segmentation N based on the intensity of

% rod staining R

6 %

% ** Requires statistic toolbox for K-means clustering **
8 %

% N = segmented BW image (e.g. from FindEdges.m)

10 % R = projected rod staining intensity (from ProjectRodImages.m)

%

12 % Free parameters:

% Amin and Amax (set in line 29 below), minimum and maximum area of

14 % normal cells. Cells with area outside this range are excluded.

%

16 % Created by: Jeremy Hadidjojo (hjeremy@umich.edu)

% Created on: 05/23/13

18 % Last modified on:

%

20 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

22 R = R(:,:,2);

CC = bwconncomp(N);

24 L = labelmatrix(CC);

Stats = regionprops(N, R, 'MeanIntensity', 'Area', 'PixelIdxList');

26 A = [Stats.Area];

28 % Filter cell with absurd area

Amin = 25;

30 Amax = 200;

idx = find( (A < Amin) | (A > Amax) );

32 for i = 1:length(idx)

px = Stats(idx(i)).PixelIdxList;

34 N(px) = 0;

end

36

CC = bwconncomp(N);

38 L = labelmatrix(CC);

Stats = regionprops(N, R, 'MeanIntensity', 'Area', 'PixelIdxList');

40 A = [Stats.Area];

I = [Stats.MeanIntensity];

42

if th == 0 % do k-means

44 idx = kmeans(I',2); % k-means clustering on intensity

ConesInd = find(idx==1);

46 RodsInd = find(idx==2);

MaxI = max(I(ConesInd));

48 sprintf('Max cone intensity: %f', MaxI)

else

50 ConesInd = find(I<=th);

RodsInd = find(I>th);

52 end
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54 hist(I(ConesInd))

hold on

56 hist (I(RodsInd))

hold off

58

Cones = ismember(L, ConesInd);

60 Rods = ismember(L, RodsInd);

Im = zeros(size(R));

62 Im(Cones) = R(Cones);

Im(Rods) = R(Rods);

codes/SeparateRodsCones.m
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A.1.4 FindNeighborsDilate.m

1 function [A,LabMat] = FindNeighborsDilate(BW, strelsize)

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Find neighbors based on morphological dilation. Dilate a cell and see

5 % which other cell it overlaps with.

%

7 % BW = binary image input

% strelsize = size of structuring element

9 % A = output adjacency matrix (i.e.: A(i,j) = 1 if i & j are neighbors, 0

% otherwise)

11 %

% Created by: Jeremy Hadidjojo (hjeremy@umich.edu)

13 % Created on: 06/30/13

% Last modified on:

15 %

% List of modifications:

17 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

19

21 CC = bwconncomp(BW);

L = labelmatrix(CC);

23 Ncomp = CC.NumObjects

Strelement = strel('disk', strelsize);

25

A = zeros(Ncomp,Ncomp);

27

for i = 1:Ncomp

29 Mask = L==i;

Mask = bwunpack(imdilate( bwpack(Mask), Strelement, 'ispacked' ), size(Mask,1));

31 LMasked = L(find(Mask));

[~,~,val] = find(LMasked);

33 val = unique(val);

35 for j = 1:length(val)

A(i,val(j)) = 1;

37 A(val(j),i) = 1;

end

39 end

41 A = A - eye(size(A));

LabMat = L;

codes/FindNeighborsDilate.m
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A.1.5 RefineNeighbor.m

function [A1,I] = RefineNeighbor(A,LabMat,StrelSize)

2

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 % Refine neighbor/adjacency A found by FindNeighborsDilate.m based on the

% follwing extra condition:

6 % When cells i & j are subjected to morphological closing with

% structuring element of size StrelSize, the region R filled between the

8 % cells i & j must have area greater than Amin.

%

10 % M = grayscale ZO image

% A = adjacency matrix to be refined (from FindNeighborsDilate.m)

12 % LabMat = label matrix of the segmented image (from FindNeighborsDilate.m)

% StrelSize = size of structuring element to determine overlap region

14 % (default = 10)

%

16 % Other free parameters (see also: paper and thesis text):

% dmin (default 10)

18 % AspectRatioMin (default: 2 for loose, 2.5 for stringent)

%

20 %

% Created by: Jeremy Hadidjojo

22 % Created on: 07/01/13

% Last modified on:

24 %

% List of modifications:

26 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

28

% Minimum separation

30 dmin = 10;

AspectRatioMin = 2;

32

A = triu(A);

34 [i,j] = find(A);

Strelement = strel('disk', StrelSize);

36

length(i)

38

I1 = zeros(size(LabMat));

40 I2 = I1;

Amin = 20;

42

for k = 1:length(i)

44 L = ismember(LabMat, [i(k), j(k)]);

46 % morphological closing

R = logical(imclose(L,Strelement) - L );

48 Stats = regionprops(R, 'Area', 'MajorAxisLength', 'MinorAxisLength', 'PixelIdxList'

, 'Orientation');

50 if isempty(Stats)

A(i(k),j(k)) = 0;

52 A(j(k),i(k)) = 0;
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continue

54 end

56 % Area

[Area,ind] = max([Stats.Area]); % pick only the largest connected component (

index ind)

58 if Area < Amin

A(i(k),j(k)) = 0;

60 A(j(k),i(k)) = 0;

continue

62 end

pxlist = Stats(ind).PixelIdxList;

64

% Angle

66 % angle of centroid-to-centroid

Stats0 = regionprops(logical(L), 'Centroid');

68 centr = cat(1, Stats0.Centroid);

dx = centr(1,1) - centr(2,1);

70 dy = centr(1,2) - centr(2,2);

theta0 = atand(-dy/dx); % (-) sign due to how matlab handle images

72

% angle of filled region

74 theta = Stats(ind).Orientation;

dtheta = abs(theta - theta0);

76

if (dtheta <= 45) || (dtheta >= 135)

78 d = Stats(ind).MajorAxisLength;

l = Stats(ind).MinorAxisLength;

80 else

l = Stats(ind).MajorAxisLength;

82 d = Stats(ind).MinorAxisLength;

end

84 R = l-d;

86 lmin = d * AspectRatioMin;

88 if (d > dmin && l > lmin)

I1(pxlist) = 1;

90 else

I2(pxlist) = 1;

92 A(i(k),j(k)) = 0;

A(j(k),i(k)) = 0;

94 end

96 end

98 A1 = logical(A + A');

100 I = cat(3,logical(LabMat),I1,I2);

codes/RefineNeighbor.m
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A.2 Selective Projection of z-stack images

A.2.1 Estimate_OLM_From_ZO.m

function [mi02_projection, ZO_projection, ZOmax, zpos_double] = Estimate_OLM_From_ZO(S,

Smi02)

2

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 % Function to estimate OLM and do selective projection.

%

6 % Picks out z-slice corresponding to strongest ZO signal, construct the

% surface of the ZO (i.e. OLM), then selectively-project another

8 % fluorescence marker onto this level.

%

10 % S = cell containing z-stack of RGB images. Use 'ReadImageSequence.m' to

% generate S.

12 % Smi02 = (OPTIONAL) grayscale image stack containing fluorescence marker

% to be projected onto ZO. If using this input, then S must also be

14 % grayscale image stack (not RGB cell) containing ZO marker. (i.e. if the

% image has dimension row x col and there are n stacks, then S and Smi02

16 % are (row x col x n) matrix of uint8)

%

18 % Default parameter values: see parameter table below.

%

20 % Created by: Jeremy Hadidjojo (hjeremy@umich,edu), May 2015

% Last modified: 02/23/16

22 %

% Version history:

24 % 04/29/15 function created

% 05/01/15 added texture filtering and background compensation

26 % created parameter table for easy parameter change

% 12/01/15 added description header

28 %

% 02/23/16

30 % - added rejection of peaks broader than MaxStdev - useful for mi02

% and other non-localized marker

32 % - fixed bad parameter reference for nFitPoints (now -> p{19,2})

%

34 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

36

%% Parameter Table

38

% To simplify various tunable parameters, let's make a table of all the

40 % parameters

42 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Input parsing %

44 p{1,1}='ZO channel'; p{1,2}=1; % ZO RGB channel from image (

not used if input is 2 stacks with ZO and mi02 separated)

p{2,1}='mi02 channel'; p{2,2}=2; % mi02 RGB channel from image (

not used if input is 2 stacks with ZO and mi02 separated)

46 % (Red = 1, Green = 2, Blue =

3)
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48 % Preprocessing %

p{3,1}='wiener2'; p{3,2}=1; % Whether to do wiener filter

denoising before max projection

50 p{4,1}='wiener2 size'; p{4,2}=5; % Size of wiener2 filter

% NOTE: This is NOT noise

reduction for the output ZO/mi02 projection (see below for these)

52 % hence aggressive setting is

recommended to minimize picking wrong Z-slice due to noise/speckles!

54 p{10,1}='Mask out background'; p{10,2}=1; % Whether to try to mask out

background using entropy filter (Separate_ROI_from_background.m)

p{11,1}='Mask threshold'; p{11,2}=0.5; % Threshold for entropy filter

56

p{5,1}='ZOmax threshold'; p{5,2}=0.7; % Threshold for ZO max

projection to pick out areas with significant ZO signal

58 % (0 = use Otsu's method to

determine threshold automatically (NOT recommended!) )

60 p{6,1}='Background compensation'; p{6,2}=1; % Whether to do background

compensation/subtraction

p{7,1}='Background comp size'; p{7,2}=50; % Size for calculating

background compensation (imclose)

62

p{8,1}='CLAHE'; p{8,2}=1; % Whether to do adaptive

histogram equalization (CLAHE)

64 p{9,1}='CLAHE size'; p{9,2}=25; % CLAHE window size

66

% Projection %

68 p{19,1}='nFitPoints'; p{19,2}=1; % No of frames +/- from peak

considered in calculation of mean and variance

% (0 = only peak frame is used)

70

p{18,1}='MaxStdev'; p{18,2}=Inf; % Maximum standard deviation

of intensity peak before it is rejected (useful for mi02 and other non-ZO marker)

72 % Value should roughly be the

thickness of marker in frame number (Inf = never reject)

74 p{12,1}='Remove Speckles'; p{12,2}=1; % Whether to remove points with

large z value deviation from the neighborhood

p{13,1}='Z threshold'; p{13,2}=4; % z deviation threshold for

removal

76 p{14,1}='Remove speckles strel size'; p{14,2}=25; % strel size for imopen

smoothing (~ max size of speckles that can be removed)

78

% Postprocessing %

80 p{15,1}='Output backgrd compensation'; p{15,2}=1; % Whether to do background

compensation/equalization on output image

p{16,1}='Background comp size'; p{16,2}=50; % Size for calculating

background compensation (imclose)

82

p{17,1}='Output imadjust'; p{17,2}=0; % Whether to adjust intensity

of output image
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84

86 fsize = 10; % filter size (must be odd integer)

fvar = 2; % filter variance

88 nProjectAvg = 1; % no of slices to be averaged above and below mean

90 %% extract ZO channel from stack S

tic

92

[row,col,~] = size(S{1});

94 nStack = length(S);

ZO = zeros(row, col, nStack);

96 mi02 = zeros(row, col, nStack);

98 if nargin == 1

% If input is just one stack, extract ZO and mi02 from different color

100 % channels

for i = 1:nStack

102 ZO(:,:,i) = S{i}(:,:,p{1,2});

mi02(:,:,i) = S{i}(:,:,p{2,2});

104 end

else

106 % else if given as 2 separate stacks, simply convert them to cell array

ZO = cell2mat( permute(S,[2 3 1]) );

108 if ~isempty(Smi02)

mi02 = cell2mat( permute(Smi02,[2 3 1]) );

110 else

mi02 = ZO;

112 end

end

114

%% Image Preprocessing

116

% Apply wiener2 eliminate noise before max projection

118 if p{3,2} == 1

disp('Pre-process: wiener filter...')

120 ZOblur = zeros(size(ZO));

for i = 1:nStack

122 ZOblur(:,:,i) = wiener2(ZO(:,:,i), [p{4,2} p{4,2}]);

end

124 else ZOblur = ZO;

end

126 % Maximum projection

ZOmax = double(max(ZOblur,[],3));

128 ZOmax = ZOmax - min(min(ZOmax));

ZOmax = ZOmax ./ max(max(ZOmax));

130 %ZOmax = imadjust(ZOmax);

132 % Entropy filter to mask out background

if p{10,2} == 1

134 disp('Pre-process: entropy filter to mask background...')

[bgmMask, texture] = Separate_ROI_from_background(ZOmax, 0, p{11,2});

136 ZOmax(~bgmMask) = 0;

ZOmax = imadjust(ZOmax);

138 else
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bgmMask = ones(size(ZOmax));

140 texture = NaN(size(ZOmax));

end

142

% Background compensation

144 bgm = imclose(ZOmax, strel('disk', p{7,2}));

scale = max(max(bgm)) ./ bgm;

146 scale(isinf(scale)) = 1; % background was set to Inf

scale(~bgmMask) = 0;

148 if p{6,2} == 1

disp('Pre-process: background compensation...');

150 ZOmax = ZOmax .* scale;

end

152 ZOmax(~bgmMask) = 0;

154 % CLAHE

if p{8,2} == 1

156 disp('Pre-process: CLAHE...');

nTiles = floor( size(ZOmax) ./ p{9,2} );

158 ZOmax = adapthisteq(ZOmax, 'NumTiles', nTiles);

end

160 ZOmax(~bgmMask) = 0;

162 %% Get pixels with fairly bright ZO signal

164 % Easy way is to threshold the ZO maximum projection with fairly

% conservative threshold.

166 ZOthreshold = p{5,2};

if ZOthreshold == 0

168 ZOthreshold = graythresh(ZOmax);

end

170 ZOthresh = im2bw(ZOmax, ZOthreshold);

[row_px, col_px] = find(ZOthresh); % find nonzero pixels

172 npixel = length(row_px); % no of nonzero pixels

174 % for each nonzero pixel, collect the ZO intensity vs. z-position to a

% vector ZOintensities.

176 ZoIntensities = zeros(npixel, nStack);

for i = 1:npixel

178 ZoIntensities(i,:) = reshape( ZOblur(row_px(i),col_px(i),:), 1, nStack );

end

180

%% Calculate mean and variance (fit to Gaussian)

182

% Find peaks/maxima for each pixel

184 [~, maxPos] = max(ZoIntensities, [], 2);

186 % Mean & variance of Gaussian

average = zeros(npixel,1);

188 variance = zeros(npixel,1);

190 nFitPoints = p{19,2};

disp('Finding peaks in intensity...')

192 for i = 1:npixel

% Get starting and ending indices of z-slices included in fitting
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194 startPos = maxPos(i) - nFitPoints;

endPos = maxPos(i) + nFitPoints;

196

% Include cases where not all maxPos +/- nFitPoints slices are

198 % available in the image stack

if startPos < 1

200 startPos = 1;

end

202 if endPos > nStack

endPos = nStack;

204 end

206 r = startPos:endPos;

208 IntTemp = ZoIntensities(i, r);

IntTemp = IntTemp ./ sum(IntTemp); % normalize

210 product1 = r.*IntTemp;

averageTemp = sum(product1);

212 average(i) = averageTemp;

variance(i) = sum(r.*product1) - average(i)^2;

214

% If variance is greater than MaxStdev^2, reject data and set both average

216 % and variance to zero

if variance(i) > p{18,2}^2

218 average(i) = 0;

variance(i) = 0;

220 end

end

222

%% Put mean and variance into a matrix of the size of the image

224

zpos_mean = zeros(row,col);

226 zpos_var = zeros(row,col);

for i = 1:npixel

228 zpos_mean(row_px(i),col_px(i)) = average(i);

zpos_var(row_px(i),col_px(i)) = variance(i);

230 end

232 %% Remove Speckles

% Speckles can be identified by looking at curvature smoothness, i.e. when

234 % the Z-position of a pixel is very different from the surrounding values

% then it is likely to be a speckle/dust.

236 % A fast way to get the z-value of the neighborhood is to do morphological

% opening. (Ideally we'd like to do meadian, but it is hard/slow to do with

238 % losts of missing data like in our case).

if p{12,2} == 1

240 disp('Removing speckles...')

242 m1up = zpos_mean; % 2 versions: one removes

speckles above, and the other one below

m1dn = zpos_mean;

244 mask1 = m1dn==0;

246 m1dn(mask1) = max(max(m1dn)); % down: replace zeros with max

before applying imopen
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248 m1up = imclose(m1up, strel('disk', p{14,2})); % up: replace values with max

of the neighborhood

m1dn = imopen(m1dn, strel('disk', p{14,2})); % down: replace values with min

of the neighborhood

250

m2dn = abs(zpos_mean - m1dn); % deviation from neighborhood

252 m2up = abs(zpos_mean - m1up);

m2dn(mask1) = 0;

254 m2up(mask1) = 0;

256 maskSpeckles = (m2dn > p{13,2}) | (m2up > p{13,2}); % find deviation greater

than p{13,2}

258 zpos_mean(maskSpeckles) = 0; % set those to zero

260 end

262 %% Fill gap and smoothen using Gaussian filter

264 % convert NaN's back to zero, so when multiplied with the filter it won't

% make any contribution

266 disp('Constructing smooth z surface...')

mask = isnan(zpos_mean);

268 zpos_mean(mask) = 0;

zpos_var(mask) = 0;

270

zpos_nnz = double(zpos_mean > 0); % to calculate weight, ignorning missing data

272

% Fill gap using big gaussian filter

274 fgauss = fspecial('gaussian', [100 100], 10);

fval = imfilter(zpos_mean, fgauss, 'replicate');

276 fnonzero = imfilter(zpos_nnz, fgauss, 'replicate');

fval = fval./fnonzero;

278

mask = zpos_mean == 0;

280 zpos_mean(mask) = fval(mask);

282 % Smoothen usiing gaussian filter (specified in parameter setting)

if mod(fsize,2) == 0

284 fsize = fsize + 1;

end

286 fgauss = fspecial('gaussian', [fsize fsize], fvar);

zpos_mean = imfilter(zpos_mean, fgauss, 'replicate');

288

zpos_mean(~bgmMask) = 0;

290 zpos_double = zpos_mean;

zpos_mean = uint8(zpos_mean);

292

%% Project mi02 and ZO signal

294

% Get mi02 signal from z-slice obtained from the mean (zpos_mean)

296 % !!! Future: do weighted average of a few slices based on zpos_var !!!

298 disp('Projecting images based on z surface...')
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if nProjectAvg > nFitPoints

300 error('nProjectAvg cannot be bigger than nFitPoints')

end

302 mi02_projection = zeros(row,col);

ZO_projection = zeros(row,col);

304 x = [-nProjectAvg:nProjectAvg];

306 % Calculate weight from gaussian with variance equals to mean variance

meanVar = mean(zpos_var(zpos_var>0));

308 if (meanVar == 0) || isnan(meanVar)

meanVar = 1;

310 end

weight = exp(-1*x.^2/(2*meanVar));

312

for i = 1:nStack

314 mi02Temp = zeros(row,col);

ZOTemp = zeros(row,col);

316 mask = zpos_mean == i; % pixels that have mean at position i

weightCum = 0; % cumulative sum of weight, for normalization

318

for j = 1:length(x)

320 k = i - x(j); % k is the current z-slice position

322 % If slice is outside stack, continue/break

if (k < 1) || (k > nStack)

324 continue

end

326

mi02Slice = double(mi02(:,:,k));

328 ZOSlice = double(ZO(:,:,k));

mi02Temp(mask) = mi02Temp(mask) + mi02Slice(mask) .* weight(j);

330 ZOTemp(mask) = ZOTemp(mask) + ZOSlice(mask) .* weight(j);

weightCum = weightCum + weight(j); % cumulative sum of weight

332 end

334 % normalize and store

weightCum(weightCum==0) = 1;

336 mi02_projection(mask) = mi02Temp(mask) ./ weightCum;

ZO_projection(mask) = ZOTemp(mask) ./ weightCum;

338 end

340 temp1 = min(ZO_projection(bgmMask));

temp2 = min(mi02_projection(bgmMask));

342 ZO_projection(~bgmMask) = temp1;

mi02_projection(~bgmMask) = temp2;

344

ZO_projection = ZO_projection - min(min(ZO_projection));

346 ZO_projection = ZO_projection ./ max(max(ZO_projection));

mi02_projection = mi02_projection - min(min(mi02_projection));

348 mi02_projection = mi02_projection ./ max(max(mi02_projection));

350 %% Post-processing before output

352 % Background subtraction

if p{15,2} == 1
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354 disp('Post-process: background subtraction...')

bgm = imclose(ZO_projection, strel('disk', p{16,2}));

356 scale = max(max(bgm)) ./ bgm;

%fs = fspecial('average', 2*p{7,2});

358 %scale = imfilter(scale, fs, 'replicate'); % smoothen

scale(isinf(scale)) = 1;

360 scale(~bgmMask) = 0;

362 mi02_projection = mi02_projection .* scale;

ZO_projection = ZO_projection .* scale;

364

% Clip values higher than 1

366 mi02_projection(mi02_projection>1) = 1;

ZO_projection(ZO_projection>1) = 1;

368 end

370 % Convert to uint8/uint16 before output

ZOmax = max(double(ZO),[],3);

372 ZOmax = ZOmax./max(max(ZOmax));

374 ZO_projection = ZO_projection./max(max(ZO_projection));

mi02_projection = mi02_projection./max(max(mi02_projection));

376

img = S{1};

378 img_info = whos('img');

imclass = img_info.class;

380

if strcmp(imclass, 'uint8')

382 mi02_projection = im2uint8(mi02_projection);

ZO_projection = im2uint8(ZO_projection);

384 ZOmax = im2uint8(ZOmax);

elseif strcmp(imclass, 'uint16')

386 mi02_projection = im2uint16(mi02_projection);

ZO_projection = im2uint16(ZO_projection);

388 ZOmax = im2uint16(ZOmax);

end

390

% Adjust intensity

392 if p{17,2} == 1

mi02_projection = imadjust(mi02_projection);

394 ZO_projection = imadjust(ZO_projection);

ZOmax = imadjust(ZOmax);

396 end

398 disp('DONE!')

toc

codes/Estimate_OLM_From_ZO.m
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A.2.2 Separate_ROI_from_background.m

function [MaskOut, texture] = Separate_ROI_from_background(ImageIn, showHistogram,

thresh)

2

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 % Function to identify and extract region of interest in an image (i.e.

% region with cells) from the background (i.e. region without cells) using

6 % entropy filtering.

% Regions with high entropy (high dynamic range of pixel intensity) usually

8 % contain signals, whereas region with low entropy (uniform intensity +

% noise) are usually background.

10 %

% ImageIn = grayscale input image

12 % showHistogram = whether to show histogram of entropy

% thresh = entropy threshold between signal and background

14 %

% MaskOut = binary mask, 1 = region of interest (with cells) and 0 =

16 % background

% texture = entropy of ImageIn

18 %

% Free parameters:

20 % thresh (set in Estimate_OLM_From_ZO.m)

%

22 % Procedures: 1. Noise reduction

% 2. Background subtraction (to correct for uneven

24 % illumination)

% 3. CLAHE

26 % 4. Texture analysis (e.g. entropy filter)

% 5. Thresholding to obtain binary mask

28 % 6. Postprocessing

%

30 %

% Created by Jeremy Hadidjojo (hjeremy@umich.edu), 04/29/15

32 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

34

36 %% Parameters

38 % structuring element sizes

strelSize1 = 25; % for imopen to get background intensity

40 strelSize2 = 75; % for imopen in post-processing to remove small isolated

patches in MaskOut

strelSize3 = 25; % for imclose in post-processing to remove small gaps in

MaskOut

42 strelSize4 = 10; % for imerode to erode/tighten up the mask

strelSize5 = 0; % for imdilate to enlarge the mask

44

ClaheTiles = 32; % Number of tiles for CLAHE

46 entropyFilterSize = 21; % size of square neighborhood for entropy filter (must be odd)

48

%% 1. Noise reduction

50
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M = im2uint8(imadjust(ImageIn));

52 M = wiener2(double(M));

54 %% 2. Backgroud subtraction

56 bgm = imopen(M, strel('disk', strelSize1));

M = M - bgm;

58

% normalize to [0,1]

60 M = M - min(min(M));

M = M ./ max(max(M));

62

%% 3. CLAHE

64

M = adapthisteq(M, 'NumTiles', [ClaheTiles ClaheTiles]);

66 % normalize to [0,1]

M = M - min(min(M));

68 M = M ./ max(max(M));

70 %% 4. Texture filter

% Currently entropy filter is used. It works fine but a little bit slower.

72 % Alternatively it can be replaced with e.g. stdfilt or other texture

% filtering.

74

t = entropyfilt(M, ones(entropyFilterSize));

76 % normalize to [0,1]

t = t - min(min(t));

78 t = t ./ max(max(t));

80 %% 5. Tresholding

% Currently threshold is obtained by Otsu's method. This works fine for the

82 % images that I have analized, but if it doesn't one can always pick the

% threshold in a different way (e.g. local minima in histogram curve,

84 % k-means, manual threshold, etc.)

86 % Set zeros to NaN, so it will not bias thresholding value when an image

% has significant of 'black' region.

88 t(t==0) = NaN;

90 if nargin < 3 || thresh == 0

thresh = graythresh(t);

92 end

t1 = im2bw(t, thresh);

94

if showHistogram

96 figure

hold on

98 hist(t(:), 100);

y0 = ylim;

100 plot([thresh thresh], y0, 'r')

hold off

102 end

104 %% 6. Post-processing
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106 % fill holes

t1 = imfill(t1, 'holes');

108 % Clean up small isloated patches

t1 = imopen(t1, strel('disk', strelSize2));

110 % Remove small gaps

t1 = imclose(t1, strel('disk', strelSize3));

112 % Erosion to shrink the mask slightly

t1 = imerode(t1, strel('disk', strelSize4));

114 % Erosion to shrink the mask slightly

t1 = imdilate(t1, strel('disk', strelSize5));

116

MaskOut = t1;

118 if nargout == 2

texture = t;

120 end

codes/Separate_ROI_from_background.m
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A.3 Analysis of Laser Ablation Experiment on Zebrafish
Retina

A.3.1 EstimatePlaneInclination.m

function [w, b, theta, rmse] = EstimatePlaneInclination(X_3d)

2

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 % Find least square fit of plane to zpos at coordiates given in X.

% Assuming 2D plane equation of z = w'*x + b, where w and b are the

6 % gradient and offest vectors, respectively. Then from w calculate the

% direction and angle of tilt.

8 %

% X_3d: 3D coordinate of cells (see EstimateTransformation.m)

10 %

% No free parameter.

12 %

% Jeremy Hadidjojo (hjeremy@umich.edu), 2016

14 %

% List of changes:

16 % - initial version

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

18

X = X_3d(:,1:2);

20 Z = X_3d(:,3);

22 %% Least Square Fitting

24 %%%

% Augmented coordinates are defined as follow:

26 % xtil = [1, x, y]'

% Xtil = [xtil_1, xtil_2, ..., xtil_n]

28 % wtil = [b, w1, w2]'

%%%

30

n = size(X,1);

32 Xtil = cat(1, ones(1,n), X');

XXt = Xtil * Xtil';

34 wtil = XXt \ Xtil * Z; % wtil = (Xtil*Xtil')^-1 * Xtil * Z

36 b = wtil(1);

w = wtil(2:3);

38

if nargout > 2

40 theta = atand(norm(w));

end

42

%% Calculate root mean square error

44 Z_predict = w'*X' + b;

Z_error = Z_predict' - Z;

90



46 rmse = sqrt(sum(Z_error.^2));

codes/EstimatePlaneInclination.m
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A.3.2 EstimateTransformation.m

1 function [b,M,D,theta1,theta2,anis,rmse_def] = EstimateTransformation(X,Y,zposX,zposY,

zscale, writeToFile)

3 % Find 2D least square transformation between X and Y.

% Assuming transformation is homogeneous and can be written as Y = M*X + b,

5 % for some 2x2 matrix M and 1x2 vector b.

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% X, Y = n-by-2 data matrices

9 % Xtil, Ytil = n-by-3 augmented data matrices, obtained by padding the

% first column of X/Y with ones.

11 % zposX = 2D matrix of surface depth (obtained from output of

% Estimate_OLM_From_ZO.m)

13 % zscale = ratio of the pixel size along z axis to x axis. Pixel

% size on x and y axis are assumed equal. To obtain this

15 % value, check metadata on raw '.lif' files and look for

% voxel size.

17 % (zscale = 1.8/0.095 for the images we analyzed)

% writeToFile = (true/false) whether to write analysis result as

19 % 'DeformationAnalysis.txt' in working directory.

%

21 % Free parameter:

% zscale (default 1.8/0.095, but depends on microscope aquisition

23 % parameter -- see metadata in '.lif' file)

%

25 %

% M and b are 2-by-2 and 1-by-2 transformation matrix and vectors,

27 % respectively, such that given X, the predicted Y is Ypredict = X*M + b.

% Mtil is augmented M, obtained by inserting b above M (ie Mtil = [b; M]).

29 % In terms of Mtil, we can write the above as Ypredict = Xtil*Mtil.

%

31 %

% Created by: Jeremy Hadidjojo (hjeremy@umich.edu), 10/16/15

33 %

% Last modified:

35 % - JH 05/21/16: added output: root mean squared error

% - JH 08/30/16: fit planes through points and correct for tilt by

37 % rotating to plane of focus

%

39 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

41

%% Estimate tilt plane and correct

43

% create 3D coordinates from X and Y by using height information from zposX

45 % and zposY

[row,col] = size(zposX);

47 X_2d = round(X);

Y_2d = round(Y);

49

indX = sub2ind([row,col], X_2d(:,1), X_2d(:,2)); % convert to linear indices

51 indY = sub2ind([row,col], Y_2d(:,1), Y_2d(:,2));
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53 heightX = zposX(indX) * zscale;

heightY = zposY(indY) * zscale;

55

X_3d = cat(2, X, heightX);

57 Y_3d = cat(2, Y, heightY);

59 % Fit plane to data points

[wX, ~, thX, rmseX] = EstimatePlaneInclination(X_3d);

61 [wY, ~, thY, rmseY] = EstimatePlaneInclination(Y_3d);

63 % make wX and wY 3D vectors and normalized

wX(3) = sum(wX.^2);

65 wX = wX ./ norm(wX);

wY(3) = sum(wY.^2);

67 wY = wY ./ norm(wY);

69 % Axis of rotation kX and kY are just cross product between z_hat and w_hat

z_hat = [0, 0, 1]';

71 kX = cross(z_hat, wX);

kY = cross(z_hat, wY);

73

% normal vector of the planes

75 nX = cross(wX, kX);

nX = nX ./ norm(nX);

77 nY = cross(wY, kY);

nY = nY ./ norm(nY);

79

% angle of rotation

81 thetaX = acosd( dot(nX, z_hat) );

thetaY = acosd( dot(nY, z_hat) );

83

% Rotation matrices using Rodrigues formula

85 % R = I + sin(theta)*K + (1-cos(theta))*K^2

% where K is the matrix cross product of rotation axis k

87 K_X = [0, -kX(3), kX(2); ...

kX(3), 0, -kX(1); ...

89 -kX(2), kX(1), 0];

91 K_Y = [0, -kY(3), kY(2); ...

kY(3), 0, -kY(1); ...

93 -kY(2), kY(1), 0];

95 R_X = eye(3) + sind(thetaX)*K_X + (1-cosd(thetaX))*K_X*K_X;

R_Y = eye(3) + sind(thetaY)*K_Y + (1-cosd(thetaY))*K_Y*K_Y;
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% Apply rotation to X_3d and Y_3d. After rotation the planes of X and Y

99 % should now be parallel to microscope's plane of focus.

X_3d_rot = R_X * X_3d';

101 Y_3d_rot = R_Y * Y_3d';

X_3d_rot = X_3d_rot';

103 Y_3d_rot = Y_3d_rot';

105 % Extract just the 2D component for deformation analysis

X = X_3d_rot(:,1:2);

107 Y = Y_3d_rot(:,1:2);
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109 %% Least square fitting

% Solution to least square: Mtil = (Xtil'*Xtil)^(-1) * Xtil'*Ytil

111 % Remember once we have Mtil, prediction Ypredict given X can be easily

% computed: Ypredict = X*M + b = Xtil*Mtil.

113

n = size(X,1);

115 % Create augmented vector Xtil

Xtil = cat(2, ones(n,1), X);

117 N = Xtil' * Xtil;

119 % Least square regression of Mtil

Mtil = ( Y'*Xtil/N )';

121

M = Mtil(2:end,:);

123 b = Mtil(1,:);

125 %% Polar decomposition

127 % Polar decomposition: M = U*P

% where U is unitary, P is PSD hermitian

129 % i.e. decompose M into on-axis deformation P and rotation U

P = (M'*M)^(1/2);

131 U = M/P;

133 % Rotation angle from U, in degrees

theta1 = atan2d(U(2,1), U(1,1));

135

% Spectral decomposition of P

137 [V,D] = eig(P);

139 % Strain anisotropy: difference between strain along both axes

anis = 2*( (D(2,2)-D(1,1))/trace(D) );

141

% Angle of principal axes from x and y

143 theta2 = atand(V(2,1)/V(1,1));

145 %% Calculate root mean squared error

147 Yp = Xtil*Mtil; % predicted Y for given X

ydif2 = (Y - Yp).^2; % subtract from actual value of Y

149 rmse_def = sqrt( mean( sum(ydif2,2) ) );

151 % %% Calculate apparent compression due to change in plane tilt angles

%

153 % if nargin > 2

% [wX, ~] = EstimatePlaneInclination(zposX, X, zscale);

155 % [wY, ~] = EstimatePlaneInclination(zposY, Y, zscale);

%

157 % axisX = atan2d(wX(2), wX(1));

% th = atan2d(wX(1), wX(2));

159 % axisY = atan2d(wY(2), wY(1));

%

161 % thetaX = atand(norm(wX));

% thetaY = atand(norm(wY));
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163 %

% compression = cosd(thetaY)/cosd(thetaX);

165 %

% M = [compression, 0; 0, 1];

167 % R = [cosd(th), -sind(th); sind(th), cosd(th)];

% M1 = R*M*R'

169 %

% fprintf('wX = (%.2f,%.2f); thetaX = %.2f deg; tilt axis = %.2f deg\n', wX(1), wX

(2), thetaX, axisX)

171 % fprintf('wY = (%.2f,%.2f); thetaY = %.2f deg; tilt axis = %.2f deg\n', wY(1), wY

(2), thetaY, axisY)

% fprintf('Compression due to tilt (assume both axes are the same): %f\n',

compression)

173 % fprintf('CompressionX : %f, compressionY : %f\n', M1(1,1), M1(2,2))

% end

175

%% Write to file

177 if writeToFile == 1

filename = 'DeformAnalysis.txt';

179 fid = fopen(filename, 'w');

count = 0;

181 while fid == -1

count = count + 1;

183 filename = ['DeformAnalysis', num2str(count), '.txt'];

fid = fopen(filename, 'w');

185 end

187 rmse_plane = max(rmseX,rmseY);

189 fprintf(fid, 'No of pts \t x-principal strain \t y-principal strain \t Principal

axes angle \t Principal strain anisotropy \t RMSE deformation \n');

fprintf(fid, '%d \t %f \t %f \t %f \t %f \t %f \t %f \n', n, D(1,1), D(2,2), theta2

, anis, rmse_def, rmse_plane);

191

fclose(fid);

193

end

codes/EstimateTransformation.m
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APPENDIX B

Additional Methods for Chapter 4: Correlation
Analysis of Morphogenetic Noise

This Appendix gives details on several unsuccessful attempts in analyzing the correlated
noise of Drosophila notum. Though we ended up not using the methods below, we spent
quite a bit of time on it and learned something useful, hence the rationale of documenting
them. The following materials are supplemental to the main text found in Chapter 4 and
are not essential in understanding the main story. Readers are suggested to first read that
chapter, and go to the following sections only when prompted by the main text.

B.1 Particle Image Velocimetry (PIV) as alternative to cell
segmentation and tracking

In Section 4.3, we found non-trivial correlation between the two halves of the full-notum
movie. We would like to perform the analysis on more movies containing both sides of the
notum. Segmenting such movies, however, requires very significant manual effort. Hence
we were looking for ways to extract velocity fields without directly segmenting the cells.
Particle image velocimetry (PIV) does exactly that.

PIV infers displacement of some features between two images taken at a short time
apart. It is initially developed to infer flow fields of a fluid with high density of injected
tracer particles [119,120]. Due to the high density, tracking individual particles is no longer
possible. Flow fields are instead inferred by matching shifted patterns between two images.

Conventional PIV works by first chopping the initial image into small windows. For
each of these windows, it then tries to find the best match on the second image by means
of correlation. The displacement of this window is then simply the difference of the initial
and the matched positions. By repeating this over all windows, one can obtain the dis-
placement field between the two images. In practice, not all windows will produce reliable

96



Figure B.1: Comparison between traditional and window-deforming PIV. Traditional
PIV without window deformation (A-A’) shows poor correlation with tracking (A) and
strong ’peak-locking’ (i.e. tendency to result in integer displacements, A’). Using more
advanced window-deforming PIV improves correlation with cell tracking slightly (B) and
eliminates peak-locking (B’).

displacement. Various filterings are employed to identify possible matching errors, where
values are then extrapolated from the surrounding, more reliable ones [119–122].

To infer velocity fields from the movies, we applied PIV on E-Cadherin:GFP fluores-
cence intensity images. We use a freely-available MATLAB-based software called MatPIV
to perform the core PIV computations [123, 124]. The software was modified slightly to
make it work with existing algorithms developed by Guirao et. al. and to ensure the PIV
windows are identical to the averaging windows of cell tracking. At a glance, it works very
well, producing velocity fields that are qualitatively very similar to cell tracking1. How-
ever, upon closer examination it is clear that the PIV velocities do not correlate very well
with the average velocities from cell tracking (Figure B.1 A). Furthermore, the PIV veloc-
ities show clear ’peak-locking’ (Figure B.1 A’). It refers to a behavior where classical PIV
displacements are biased towards integer values due to discreteness of the pixels, and is

1In fact, cell tracking algorithm developed by Guirao et. al. uses PIV information as a guide for tracking
the cells [118].
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well-documented in the PIV community [121, 122].
To eliminate peak-locking, we used a more sophisticated PIV algorithm that allows

deformation of the windows in addition of translations. This is done iteratively, where in
the first iteration the windows are simply translated without deformation. In subsequent
iterations, however, the windows are not only translated but also deformed based on the
previous displacement field. This process is repeated until some convergence criteria is met.
We used another freely-available, MATLAB-based package called PIVlab (again, modified
to make it work with existing codes) to perform PIV with window deformation [125–127].

Figure B.1 B-B’ shows the improvement obtained by using window-deformation PIV.
Notably, the velocity histogram in panel B’ shows no sign of peak-locking and it matches
the histogram from cell tracking pretty well. However, panel B shows that the correlation
between PIV and tracking velocities is still not good enough.

We think that this discrepancy is due to the fundamental difference between cell track-
ing and PIV. In cell tracking, velocities are given in terms of the position of cell centroids.
In PIV, however, the velocity depends on image correlation of the size of the PIV window
(typically between 32 × 32 and 128 × 128). In addition, PIV is also more sensitive to
changes in cell membranes (since it is directly working on the E-Cadherin:GFP intensity).
It is thus unclear to us how the PIV velocities are related to that of cell tracking, and what
correlation of the former would mean physically. Hence we decided to abandon the PIV
approach and stick to cell tracking whenever we can.

B.2 Subtracting morphogenesis flow using across-animal
averages

In our study of hemi-notum movies (Section 4.4), we had difficulties separating noise from
morphogenesis movements. As the pupa transforms into an adult fly, the dorsal notum ep-
ithelium undergoes stereotypical remodeling that is qualitatively the same across different
animals. One example is the flow of cells towards the head that begins at around 24 hAPF
and coincides with an invagination between the notum and the head that will eventually
form the adult neck. Since these morphogenetic movements are necessarily correlated be-
tween left and right, we have to completely remove this flow before we can quantify noise
correlation. Failing to remove this morphogenesis movement completely will clearly pro-
duce undesired correlations. For the full-notum, we can achieve this subtraction by taking
velocity differences between the left and right halves. This is not possible with hemi-nota
movies.

98



Figure B.2: Correlated velocities remain after archetype subtraction. Shown are two
archetype-subtracted velocity fields from different hemi-nota movies. Both fields are cal-
culated at 18 hAPF, and are representative of the other three hemi-nota. The remainder
velocities are highly-correlated and do not resemble noise at all. Although all wildtype
flies share the same stereotypical notum morphogenesis, different individuals also have
unique slight variations that are not captured by the archetype model.

We came up with an idea to eliminate the morphogenetic movements using across-
animal averages. This idea originated from our discussions with the people in the Bellaïce
lab as they try to construct stereotypical picture of notum morphogenesis. Termed the
’archetype’ model, it is obtained by averaging cell movements across different animals
after proper space and time registration [118]. We obtained the archetype flow from their
analysis published in [118]. We hoped that subtracting the archetype flow will eliminate
the morphogenetic movements and leave us only with the noise we are interested in.

Figure B.2 shows the velocity field obtained by subtracting the archetype flow from
two hemi-notum velocity fields. One can immediately see a problem there: the remain-
der velocity fields are highly-correlated and do not look like noise at all. This is precisely
due to interanimal variations. Although all wildtype flies share common qualitative mor-
phogenesis, no two individuals are exactly the same when it comes to precise quantitative
measurement. The archetype flow captures the features common across different animals,
but one should not expect this to precisely match the morphogenesis movement of a specific
individual.

At the same time, this highlights the inherent difficulty in extracting the noise from just
half of the notum. The problem is precisely that we do not have a good way to know and
subtract the morphogenetic flow from the observed cell movements. As the reader will see
when reading the rest of the story in Section 4.4, this is the problem we encounter over and
over again. Thus, we believe that the best way to address the correlated noise we found in
Section 4.3 is to analyze both left and right hemi-nota from the same animals.
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Abstract 

Regularly spaced, homotypic neuronal mosaics are characteristic of the vertebrate retina, but 

the lack of correlation between different cell types suggests an absence of heterotypic 

interactions. The teleost cone photoreceptor mosaic is a unique exception: in zebrafish, Red, 

Green, Blue, and UV cones organize into a crystalline array with defined, neighbor relationships, 

but mechanisms patterning this multiplex mosaic are not understood. Live imaging of the 

growing retinal margin in transparent juvenile zebrafish with cell-specific, fluorescent reporters 

revealed parallel bands of N-cadherin-stabilized Müller glial apical processes and a precise 

spatial arrangement of Red and UV cones at the onset of differentiation, prior to expression of 

planar polarized adhesion and packing into single cell width columns. Laser ablation of Müller 

glia revealed that they support anisotropic mechanical tension in the retinal epithelium.  We 

conclude that mechanical forces acting through glial scaffolding contribute to formation and 

maintenance of the multiplex photoreceptor mosaic.  
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Introduction 

A defining characteristic of the nervous system is its modular architecture, with precise spatial 

segregation and regular arrangement of cellular components and circuits.  The vertebrate retina 

is an exceptionally clear example of this organizational property (Cook and Chalupa, 2000; Eglen, 

2006; Galli-Resta et al., 2008; Hoon et al., 2014). The retina is a specialized neural epithelium 

comprised of six major types of neurons stratified into distinct layers (Dowling, 2012). Within 

each cellular layer, most types of retinal neurons are arranged in evenly spaced arrays, called 

mosaics, which effectively ‘tile’ the retinal surface and allow for systematic and complete 

sampling of the visual space (Wässle and Riemann, 1978). Surprisingly, the mosaic distributions 

of different types of retinal neurons are independent and uncorrelated (Cameron and Carney, 

2004; Kram et al., 2010; Rockhill et al., 2000).  The cellular mechanisms that assemble these 

homotypic retinal cell mosaics include tangential cell dispersion in response to repulsive, local, 

cell-cell interactions among like-cell types (Galli-Resta et al., 1997; Reese and Galli-Resta, 2002), 

and in some cases, selective cell death (Galli-Resta et al., 2008). The result is creation of an 

‘exclusion zone’ around individual neurons, which is sufficient to explain the regular mosaic 

spacing (Galli-Resta et al., 1999).  

The only example of correlated heterotypic cell spacing in the neural retina is in teleost fish, 

where different cone spectral subtypes are arranged into precise crystalline lattice arrays 

(Engström, 1963; Lyall, 1957; Marc and Sperling, 1976).  These multiplex cone mosaics, which 

exhibit a diversity of patterns across fish species, are a unique teleost feature not seen in cone 

photoreceptors in other vertebrate retinas, e.g. birds (Kram et al., 2010) or primates (Marc and 

Sperling, 1977; Wikler and Rakic, 1991). Clearly, the mechanisms that pattern homotypic 

mosaics are insufficient to explain teleost cone mosaic arrays, which have intriguing similarities 

to the Drosophila compound eye (Raymond and Barthel, 2004; Rister and Desplan, 2011). We 

have very limited knowledge of the organizational strategies that build the teleost cone mosaic 

and not even the most basic information about how cell fate determination, spatial 

arrangement, and cell packing are coordinated during formation of these heterotypic lattice 

arrays.  
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In zebrafish four spectrally and morphologically distinct cone photoreceptor subtypes (Red, 

Green, Blue, and Ultraviolet, UV) are organized at the apical retinal surface into a rectangular 

lattice consisting of a repeated motif of 12 cells in a precise ratio of 4 Red : 4 Green : 2 Blue: 2 

UV (Salbreux et al., 2012). Rows of Blue and UV single cones alternate with rows of Red and 

Green double cone pairs that radiate outward from the optic disc, and in the orthogonal planar 

dimension, single-cell-wide columns of cones display an internal, reiterative, mirror image 

symmetry that includes all four subtypes (Fig. 1A-C). Rod photoreceptors also have specified 

positions in the lattice (Fadool, 2003) and are preferentially inserted between cone columns, a 

territory also occupied by thin processes extended from Müller glial cells whose bodies remain 

below the photoreceptor layer (Salbreux et al., 2012). This regular lattice array is a feature only 

of the adult zebrafish retina; cone photoreceptors in the embryonic and early larval retina are 

evenly spaced in homotypic mosaics, but lack the heterotypic lattice pattern (Allison et al., 2010).  

The majority of cells in the adult fish retina are generated by persistent neurogenesis from 

proliferating retinal progenitors located in a circumferential germinal zone at the retinal margin 

(Allison et al., 2010; Centanin et al., 2011; Raymond et al., 2006), which creates cohorts of cones 

that organize into single-cell-width columns parallel to the growing margin [Fig. 1C and (Allison 

et al., 2010; Raymond and Barthel, 2004; Salbreux et al., 2012)].  

 

 As in all epithelia, the apical surface of the vertebrate retina (known as the outer limiting 

membrane, OLM) is stabilized by zonula adherens junctions, which are unusual in the retina 

because they include both heterotypic intercellular adhesions between photoreceptors and 

Müller glia and homotypic adhesions between Müller glia (Williams and Arikawa, 1990). These 

specialized intercellular junctions contain the classical Ca++-dependent homophilic cell adhesion 

molecule, N-Cadherin, which is expressed only in Müller glia (Liu et al., 2001a; Liu et al., 2002; 

Raymond et al., 2006), and the actin-binding, scaffolding protein, Zonula Occludens-1 (ZO1) 

(Gosens et al., 2008).  Similar to other epithelia, retinal adherens junctions are linked to the 

actin cytoskeleton through cadherin-catenin complexes (Harris and Tepass, 2010; Williams and 

Arikawa, 1990), which in other epithelia regulate changes in cell shape and position via tension 

sensing mechanisms that can dynamically alter the actomyosin cytoskeleton (Twiss and de Rooij, 

2013).  The transmembrane Crumbs proteins localize just apical to the zonula adherens 

junctions of the OLM in a zone that extends apically from the zonula adherens into the 

photoreceptor myoids and inner segments (Gosens et al., 2008; Salbreux et al., 2012; Zou et al., 
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2012).  Although the Crumbs complex has a well-established role in apicobasal epithelial polarity, 

the recent demonstration that the extracellular domain of Crumbs proteins mediates 

homophilic intercellular adhesion directly between cone photoreceptors in zebrafish suggests an 

additional potential role in the formation and/or maintenance of the cone mosaic pattern 

(Letizia et al., 2013; Thompson et al., 2013; Zou et al., 2012).  Importantly, the distribution of 

Crumbs2a and Crumbs2b shows planar cell polarity in several cone subtypes, concentrating at 

the interfaces of cones within columns, not between the columns (Raymond et al., 2014; 

Salbreux et al., 2012; Zou et al., 2012).   

 

In earlier work (Raymond et al., 2014; Salbreux et al., 2012), we argued that the arrangement 

during mosaic formation of cone cells into straight, single-file columns must reflect an 

underlying anisotropy in mechanical stresses within the retinal sheet, with a large tensile stress 

parallel to the columns and much weaker forces in the orthogonal direction.  (Interestingly, this 

implies that high mechanical tensions are carried by cell-cell junctions with low Crumbs 

concentrations, consistent with findings of a similar correlation between planar polarized 

localization of Crumbs complex proteins and junctional tensions in Drosophila (Hafezi et al., 

2012; Kaplan et al., 2011; Kaplan and Tolwinski, 2010; Roper, 2012; Simone and DiNardo, 2010).)  

We were unable, however, to measure this stress anisotropy directly.  Indeed, current methods 

for measuring mechanical forces in intact tissues remain limited (Campas, 2016; Sugimura et al., 

2016).  One of the more widely-used techniques is laser ablation, wherein the mechanical force 

supported by a given element before its ablation is estimated from the recoil of surrounding 

cells after the element is ablated (Colombelli and Solon, 2013; Rauzi and Lenne, 2011; 

Shivakumar and Lenne, 2016).  Although this approach does not give absolute force 

measurements, it has been successfully used to determine the degree of stress anisotropy in 

epithelial sheets in vivo (Behrndt et al., 2012; Bonnet et al., 2012; Lynch et al., 2013).  Here, we 

adapt this method to probe the role of glial cells in establishing the ordered, columnar cone cell 

packing in zebrafish retina. 

 

More specifically, in this study we explore the temporal sequence of photoreceptor mosaic 

formation with non-invasive live imaging and targeted cell ablation in living juvenile zebrafish 

retina, providing the first in vivo view of how the multiplex photoreceptor mosaic is created.  

Our results show that cone photoreceptor cell fate specification and correct spatial positioning 
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occur prior both to cell packing into linear columns and to planar polarized distribution of 

Crumbs, but roughly coincident with the first appearance of parallel lines of Müller glial cell 

processes that presage the formation of cone columns.  Laser-mediated ablation of Müller glia 

near the retinal margin in living fish provided evidence of the predicted anisotropic tension in 

the retinal epithelium (Salbreux et al., 2012).  We propose that the network of Müller glial apical 

processes linked by N-cadherin junctional contacts sustains the anisotropic mechanical forces 

that contribute to the alignment of cone photoreceptors.  These studies reveal an unexpected 

role for Müller glia in organizing differentiating cones into linear columns in the teleost fish 

retina.  

 

Results 

 

Remodeling of apical profiles at the retinal margin reflects dynamic and gradual maturation of 

the cone mosaic 

As we previously reported (Salbreux et al., 2012) the apical epithelial profiles of photoreceptors 

(rods and cones) and Müller glial processes at the level of the OLM can be visualized by 

immunostaining for the zonula adherens scaffolding protein, Zonula Occludens 1 (ZO1) in retinal 

flat-mounts (Fig. 1A).  The identity of these apical profiles was verified in transgenic zebrafish 

lines with fluorescent reporters driven by promoters specific for Müller glia (gfap), rods 

(rhodopsin), cones (cone alpha transducin), UV cones (sws1 opsin), Blue cones (sws2 opsin), and 

Red cones (trβ2) (Raymond et al., 2014; Salbreux et al., 2012; Suzuki et al., 2013).  The ZO1 

profiles of each cell type have distinctive shapes (Fig. 1A,B), with some variations related to 

topographical position (data not shown).  UV and Blue cones have rounded or elliptical profiles 

(Fig. 1B, magenta and blue, respectively).  Paired Red and Green double cones form a theta-

shape with a flattened interface (Fig. 1B, red and green).  Rods are smaller and round (Fig. 1B,C, 

black).  Lamellar processes of Müller glia completely enwrap each rod and cone within the retina 

and at the level of the OLM (Bringmann et al., 2006; Ramón y Cajal, 1972).  Between cone 

columns, the apical profiles of Müller glia expand into polygonal shapes that occupy spaces 

between the rods (Fig. 1B, and (Salbreux et al., 2012)).  Figure 1C is a cartoon illustrating the 

alignment of the photoreceptor mosaic lattice on the hemispheric retinal surface: orthogonal to 

the margin, rows of Blue and UV cones alternate with rows of Red and Green cones, and parallel 

to the margin, cones are organized into single-cell-wide columns with a 12-cell repeating order: 
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Red-Green-UV-Green-Red-Blue-Red-Green-UV-Green-Red-Blue.  The cone columns are 

separated by parallel bands of rods and Müller glia.  Neurogenesis continues in the proliferative 

germinal zone at the retinal margin (grey circles) adding annuli of new cells to the growing retina 

(Allison et al., 2010; Raymond and Barthel, 2004), so that successive cohorts of newly 

differentiated cones are incorporated appositionally into the pre-existing mosaic.  Within the 

differentiated retina, rods (but not cones or Müller glia) are continuously produced by 

proliferating, dedicated rod progenitors (Raymond, 1985; Stenkamp, 2011), and accumulate in 

the inter-column bands.  This precise spatiotemporal pattern allows us to examine in a single 

preparation successive stages in building this multiplex photoreceptor mosaic.   

 

To systematically describe how the photoreceptor mosaic is established in the post-embryonic 

retina from proliferative retinal progenitors in the germinal zone at the retinal margin, we 

imaged retinal flat-mounts with ZO1 immunocytochemistry in rapidly growing juvenile zebrafish.  

We found that apical epithelial profiles at the OLM show gradual and dynamic changes from 

proliferative, to differentiating, to differentiated zones (Fig. 1D, Fig.1 supplemental figure and 

supplemental video).  In order to minimize surgical damage to the retinal tissue, especially near 

the retinal margin, this preparation retains the retinal pigment epithelium (RPE), an epithelial 

layer that is physically separated from the neural retina (Dowling, 2012), but closely apposed to 

the proliferative epithelium in the germinal zone (Fig. 1 supplemental figure 1B).  Therefore, the 

z-stack maximum projection shown in Figure 1D (and supplemental figure 1A) represents two, 

superimposed epithelia, but the profiles of RPE cells are easily distinguished by their distinctive 

large hexagonal shapes (Fig. 1D”’, dashed polygon).  Retinal progenitors in the proliferative 

germinal zone are identified with a mitotic cell marker, pH3 (Fig. 1D”’ and supplemental figure 

1B’, 1B”), and their apical profiles are heterogeneous in size with a variety of polygonal shapes 

and flattened boundaries between neighbors (Fig. 1D, 1D”’).  These dividing cells represent both 

multipotent and committed retinal progenitors that together generate all types of retinal 

neurons and Müller glia (Centanin et al., 2011; Raymond et al., 2006).  At the central border of 

the pH3-labeled zone, cells with profiles at the apical surface become restricted to 

photoreceptors and Müller glia, as committed inner retinal neurons detach and migrate basally 

(Agathocleous and Harris, 2009; Suzuki et al., 2013).  The transition between proliferating and 

differentiating zones is represented in this preparation by the reduced sizes and rounded shapes 

of some profiles (Fig. 1D, 1D”, dots, presumptive photoreceptors) and the irregular, sharply 
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polygonal shapes of the Müller glia  (Fig. 1D, 1D”, asterisks).  However, the ordered 

photoreceptor mosaic pattern is not yet apparent in this differentiating zone.  In particular, 

these presumptive cones have not yet begun to express mature photoreceptor reporters, such 

as Tg(sws1:EGFP) or Tg(sws2:mCherry), in which a fluorescent reporter is driven by the UV or 

blue opsin promoter, respectively (Raymond et al., 2014).  In the adjacent, more central zone, 

the crystalline array of the photoreceptor mosaic pattern emerges (Fig. 1D, 1D’).  

 

Cone cell fate commitment and precise spatial arrangement precedes column organization  

To understand how cell fate determination, spatial arrangement, and cell packing are 

coordinated as new cells are incorporated into the mosaic at the growing retinal margin, we 

used transgenic reporter lines to visualize specific cell types.  A previous study with live imaging 

and lineage tracing in embryonic zebrafish showed that the thyroid receptor beta 2 (trβ2) 

promoter drives expression of a fluorescent reporter selectively in a subset of retinal 

progenitors that give rise exclusively to selected types of inner retinal neurons and to Red cones, 

but not to other cone types, and that the transgene expression is retained in differentiated Red 

cones (Suzuki et al., 2013).  We first asked whether this transgenic reporter is expressed 

similarly in the germinal zone in juvenile Tg(trβ2:tdTomato) zebrafish.  In radial retinal sections 

of Tg(trβ2:tdTomato) zebrafish only a subset of proliferative retinal progenitors in the germinal 

zone are trβ2:tdTomato+ (Fig. 2A – 2C), including mitotic figures (Fig. 2B, B’), confirming that 

some retinal progenitors express trβ2:tdTomato in the post-embryonic retina.  More 

peripherally in the germinal zone, trβ2:tdTomato+ retinal progenitors are basally located, in 

regions containing differentiating inner retinal neurons (Fig. 2C, C’ arrows).  This is consistent 

with the previous report that the  lineage of trβ2:tdTomato+ progenitors in the embryonic 

retina includes horizontal cells and ganglion cells, although these inner retinal neurons do not 

retain expression of the transgene after they differentiate (Suzuki et al., 2013).  The 

trβ2:tdTomato+ cells with cuboidal nuclei at the apical surface in the differentiating zone (Fig. 

2A, A’ bracket) are committed to the Red cone identity. 

To provide a dynamic view of the spatial arrangement of trβ2: tdTomato+ presumptive Red 

cones, we developed a live imaging technique to examine the retinal margin in young juvenile 

fish with multi-photon confocal microscopy.  The retina cannot be visualized in living, wild-type 

(pigmented) zebrafish after the first ~2 weeks of development (Jusuf et al., 2013; Wan et al., 
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2016) except through the pupil, and in that case, only the fundus can be seen, not the retinal 

periphery (Duval et al., 2013).  To visualize cells at the retinal margin, we crossed transgenic 

reporter lines into a pigment-free double mutant genetic background, albino (slc45a2)b4/b4; 

roya9/a9 (named ‘ruby’) in which both melanin and iridophore pigments are largely abolished and 

adult fish are almost transparent (Ren et al., 2002).  To label all photoreceptors, we used a 

second transgene, crx:mCFP, in which membrane-targeted CFP is expressed in both presumptive 

photoreceptor progenitors and mature cone and rod photoreceptors under the control of the 

crx promoter (Liu et al., 2001b; Suzuki et al., 2013).  We then imaged the retinal margin in living 

fish through all the outer layers (sclera, choroid, RPE) from the dorsal side of the eye.  These in 

vivo images confirm that in the proliferative germinal zone, trβ2:tdTomato+ progenitors are not 

regularly spaced (Fig. 2D and Fig. 2 supplemental video, asterisks).  A regular spatial 

arrangement first appears in the pre-column zone when the photoreceptor cells start to 

differentiate, and their axons create the outer plexiform layer (OPL), which is defined by a dense 

band of crx:mCFP labeling basal to the cone nuclei (Fig. 2D’ arrow).  These immature cones have 

not yet developed an apical inner and outer segment, structures that are prominently labeled by 

mCFP in more central, differentiated cones (Fig. 2D’ and Fig. 2 supplemental video).  

 

In the cohort of presumptive cones that constitute the first column to emerge at the margin (Fig. 

2D” and Fig. 2 supplemental video), successive trβ2:tdTomato+ Red cones are separated 

alternately by one (presumptive Blue cone) or three (presumptive Green-UV-Green cone) 

profiles (Fig. 2D” and supplemental video, white dots), a pattern that is consistent with the 

mature mosaic (Fig. 1B).  In the three-cone interval between successive trβ2:tdTomato+ Red 

cones, the central profile is typically larger (Fig. 2D” and supplemental video), which we 

previously described as characteristic of immature UV cones (Raymond et al., 2014; Salbreux et 

al., 2012).  The spatial arrangements of trβ2:tdTomato+ Red cones and crx:mCFP+ cone profiles 

in the initial cone column are also correctly aligned with the adjacent column (Fig. 2D”’ and 

supplemental video), so that differentiating trβ2:tdTomato+ Red cones are already incorporated 

into the hexagonal pattern of Red cones in the mosaic (Fig. 1B, 2D”’).  These results indicate that 

post-mitotic, immature Red and UV cone photoreceptors are already correctly positioned when, 

or soon after, they acquire their subtype identities. 
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The hexagonal pattern of trβ2:tdTomato+ Red cones can also be visualized in flat-mount retinal 

preparations labeled with ZO1 (Fig. 2E-E”).  Note the single large profiles of presumptive UV 

cones located in the middle of each hexagon (Fig. 2E-E”).  Flat-mount retinas from the UV cone 

transgenic reporter line, Tg(sws1:EGFP), confirmed that these large rounded profiles are UV 

cones in the mature retina, and the regularity of the mosaic array allows these distinctive 

profiles to be identified in the peripheral retina prior to onset of expression of the UV opsin 

transgene (Fig. 2 supplemental figure).  These results together confirm that cone cell fate 

determination and spatial arrangement of Red and UV cones occurs prior to packing into a 

regular lattice.  

 

 

Planar-polarized Crumbs distribution appears just prior to columnar packing  

In the mature mosaic array, Crumbs 2b (Crb2b) proteins show planar polarized localization to 

intra-column, but not inter-column, interfaces of the apical processes (myoid and inner 

segments) of Red, Green, and Blue cone photoreceptors (Salbreux et al., 2012; Zou et al., 2012).  

Crb2b is not expressed in UV cones, rods, or Müller glia, although Crumbs 2a is expressed in all 

these cell types (Zou et al., 2012).  In planar views the distribution of Crb2b immunoreactivity 

creates 'ladders' consisting of four parallel segments that separate pentameric units of Green-

Red-Blue-Red-Green cones (Salbreux et al., 2012; Zou et al., 2012).  In the growing retinal 

margin, Crb2b ladders appear nearly simultaneously in immature cones immediately adjacent to 

the first contiguous column (Fig. 3A-3A”, arrow).  This restricted, planar polarized localization of 

Crb2b at cone-cone interfaces indicates that the immature Red, Green, and Blue cones have 

acquired their identity and directionality prior to columnar packing.  (Although it is formally 

possible that at this stage the fate of presumptive Green and Blue cones has not been fully 

specified, there are no other grounds to suspect the binary Green/Blue fate choice late in 

differentation that would then be needed.) However, these polarized Crb2b adhesive 

interactions occur after the initial differentiation and spatial patterning of Red and UV cones, as 

shown by regularly-spaced, large UV profiles located peripheral to the Crb2b ladders (Fig. 3A-

3A”, white dots).  These observations suggest that the initial cell fate determination and spatial 

patterning of cones in the pre-column zone involves a Crb2b-independent mechanism. 

 

Immature rod photoreceptors are correctly positioned in the pre-column zone 
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Interestingly, an equivalent planar polarized localization of Crb2a forming 'ladders' is not seen in 

the differentiating, pre-column zone, even though planar polarized distribution of both Crb2b 

and Crb2a in the apical processes of Red, Green, and Blue cones is a prominent feature of the 

mature mosaic (Salbreux et al., 2012).  Instead, the most prominent Crb2a immunostaining 

appears in clusters of four small rings positioned inside the trβ2:tdTomato+ hexagons and 

surrounding the central UV cone (Fig. 3B-3B”, inset arrows).  This location is consistent with the 

positions of the initial rods in the larval zebrafish retina, which are found at the corners of UV 

cones (Fadool, 2003).  It is known that the Crumbs complex mediates rod photoreceptor apical 

morphogenesis in developing zebrafish retina (Hsu and Jensen, 2010), and in mature regions of 

the retina, strong Crb2a immunoreactivity at the level of OLM surrounds the profiles of rods 

labeled with the rhodopsin transgene, Tg(rh1: EGFP) (Fig. 3C-3C”).  Although the transgene 

driven by the rhodopsin promoter is expressed later in differentiated rod photoreceptors, and 

does not label the clusters of four Crb2a+ rings in the differentiating pre-column zone at the 

margin, together these data strongly suggest that immature rod photoreceptors are also 

precisely positioned prior to packing into a regular lattice. 

 

To further evaluate whether rods exist in the differentiating pre-column zone, we analyzed the 

ratio of trβ2:tdTomato+ Red cones to trβ2:tdTomato-negative (other cone types and rod) 

photoreceptor cells visualized by their apical profiles in ZO1-labeled retinal flat-mounts.  

Irregular polygonal profiles of Müller glia were excluded from the cell counts.  We predicted a 

1:2 ratio of trβ2:tdTomato+ Red cones to trβ2:tdTomato-negative (Green + Blue + UV) cones, if 

only cones, but not rods, were present (Fig. 4A, B).  This prediction is based on the following 

assumptions: (1) In the hexagonal pattern composed of six Red cones, each Red cone is shared 

by three hexagons, for a total of two Red cones per hexagon; (2) Each hexagon includes one UV 

and two Green cones; (3) Two Blue cones are shared by two hexagons for a total of one Blue 

cone per hexagon.  However, if four rods are present at the corners of each UV cone, then we 

predict the ratio of trβ2:tdTomato+  to trβ2:tdTomato- profiles to be 1:4 (Fig. 4A, B). 

 

The counting was carried out by automated method (Materials and Methods).  Cell profiles at 

the level of the OLM, as determined by ZO1 immunoreactivity, were segmented and classified 

based on the presence of trβ2:tdTomato fluorescent reporter (Fig. 4 supplemental figure 1).  

The measured ratio of trβ2:tdTomato+  to trβ2:tdTomato-  profiles was 1: 4.87, n=2 retinas, 780 
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total cells counted (Fig. 4C); samples from three additional retinas were also counted by visual 

inspection, and the ratios were within the range of the two automated samples.  These results 

support the inference that rods are present in the pre-column zone.  The strongly labeled, 

Crb2a+ rings in the predicted positions for rods in the trβ2:tdTomato+ Red cone hexagons 

implies spatial coordination of these initial rods, even though a crystalline lattice array of 

photoreceptors is not yet present.   

 

As mentioned above, unlike cones, rod photoreceptors are continuously produced by dedicated 

precursors derived from Müller glia and seeded into the mature retina during retinal growth 

(Raymond, 1985; Stenkamp, 2011), where they accumulate preferentially between cone 

columns (Salbreux et al., 2012).  It is unclear, however, whether the initial rods located at each 

corner of the UV cones at the growing margin derive from retinal progenitors in the germinal 

zone or from mitotic divisions of early Müller glia.  In examining retinal margins in the Müller glia 

reporter line, Tg(gfap:EGFP),  we found multiple examples of GFP+ mitotic figures in the 

peripheral pre-column zone (Fig. 4 supplemental video and supplemental figure 2), which is 

consistent with (but not proof that) rods are produced from Müller glia-derived rod precursors 

at the growing margin as they are in central retina. 

 

Spatial analysis of Müller glial processes reveals organization into parallel bands prior to 

formation of cone columns 

The apical processes of Müller glia expand at the level of the OLM and form both homotypic 

adherens junctions and heterotypic adherens junctions with photoreceptors (Salbreux et al., 

2012; Williams and Arikawa, 1990).  In retinal flat-mount preparations with ZO1 immunostaining, 

the cytoplasmic GFP Müller glial reporter surrounds the profiles of rods and cones, forming 

relatively thin intra-column lamella, and thicker inter-column expansions (Fig. 5 supplemental 

figure).  To examine the temporal coordination between morphological maturation of Müller 

glial apical processes and emergence of the hexagonal pattern of trβ2:tdTomato+ Red cones, we 

imaged living, juvenile, double transgenic fish, Tg(gfap: EGFP; trβ2: tdTomato), in the pigment-

free ruby genetic background.  Immature Müller glia begin to express GFP weakly in the 

peripheral proliferative germinal zone (Fig. 5A-D and supplemental videos 1 and 2).  Intensity of 

the GFP fluorescent reporter increased as Müller glia differentiated and expanded their apical 

processes laterally to surround photoreceptor profiles at the level of the OLM (Fig. 5A-A”, B-B”, 
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magenta dots, and supplemental video 2).  The repeating pattern of one and then three 

presumptive cones between successive Red cones, seen with the crx:mCFP reporter above (Fig. 

2D), can also be visualized in the profiles of Müller glial processes that surround presumptive 

cones (Fig. 5A”, C”, D’’, white filled and open dots).  These observations suggest that 

differentiating Müller glial apical processes provide a scaffold to organize photoreceptors at the 

level of OLM in the differentiating pre-column zone. 

 

In the mature photoreceptor mosaic, Müller glial apical processes are preferentially distributed 

into parallel, inter-column bands (Fig. 5 supplemental figure).  We next examined whether a 

similar distribution exists in the pre-column zone, thereby providing a potential glial scaffold for 

organizing cones into columns.  We used ZO1 immunoreactivity (Fig. 5E) to selectively capture 

the GFP-labeled Müller glial profiles at the level of the OLM (Fig. 5E'), and applied a ridge 

analysis algorithm, available as an Image J plugin (Fig. 5E”) (Jacob and Unser, 2004) that uses 

steerable filters to detect the presence and orientation of Müller glial bands.  Variations in 

thickness of the Müller glial bands were revealed by tuning the width of the filter.  We found 

that not only are the Müller glial bands that occupy the spaces between adjacent columns 

consistently thicker, but they also have a consistent direction parallel to the mature columns, 

even in the pre-column region where the differentiating photoreceptor cells are not yet packed 

into columns (Fig. 5E’’-E’’’).  These results suggest that a Müller glial scaffold organizes the 

spatial arrangement of cones into parallel columns. 

 

Photoreceptor differentiation includes loss of N-cadherin expression, whereas Müller glia 

show enhanced N-cadherin adhesive interactions in the mature mosaic  

The suggestion that Müller glia organize the spatial arrangement of cones in the pre-column 

zone would require heterotypic intercellular interactions between Müller glia and differentiating 

cone photoreceptors.  Previously we reported that N-Cadherin transcripts (cdh2) and protein 

are expressed by retinal progenitors in the germinal zone and by differentiated Müller glia, but 

not by mature photoreceptors (Liu et al., 2001a; Liu et al., 2002; Nagashima et al., 2013; 

Raymond et al., 2006).  However, these studies did not consider immature photoreceptors 

recently produced at the retinal margin.  The retinal progenitors (neuroepithelial cells) in the 

germinal zone form zonula adherens junctions through homophilic intercellular N-cadherin-
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mediated adhesion (Williams and Arikawa, 1990).  We hypothesize that immediately after 

withdrawing from the cell cycle, post-mitotic, immature cone photoreceptors transiently retain 

N-cadherin expression, so that during their initial phase of differentiation, they participate in N-

cadherin-mediated intercellular junctions with Müller glia.  

To examine the expression and distribution of N-Cadherin during maturation of the 

photoreceptor mosaic, we used in situ hybridization with cdh2 probes on retinal cross-sections 

from juvenile fish.  We detected cdh2 transcripts in the germinal zone and in adjacent immature 

cone photoreceptors (Fig. 6A, A’, A’’, arrow).  The cdh2 signals became undetectable in 

differentiating photoreceptors more centrally in the laminated retina (Fig. 6A, A’’’), where cdh2 

expression was restricted to Müller glia, identified by the GFP reporter in Tg(gfap:EGFP) fish (Fig. 

6A, A’, A’’, arrowheads).  Consistent with cdh2 transcript expression, N-Cadherin 

immunoreactivity was also detected at the level of the OLM in differentiating cones in the pre-

column zone, but the signal intensity decreased in the mature differentiated mosaic (Fig. 6B-B”).  

Strong punctate staining of ZO1 co-localized with N-cadherin was apparent in the inter-column 

bands in the mature mosaic (Fig. 6B-B”), consistent with expression of N-Cadherin in homophilic 

adherens junctions between Müller glia.  

 

In the pre-column zone, we noticed that a subset of ZO1-labeled apical profiles were negative 

for N-Cadherin (Fig. C-C”’, white asterisks).  These small, round N-Cadherin-negative ZO1 profiles 

are likely to be immature rod photoreceptors, since they were located at each corner of the 

large UV profiles (Fadool, 2003).  The lack of N-Cadherin expression in differentiating rods is 

consistent with their production from committed rod progenitors that lack apical processes and 

divide in the outer nuclear layer (Raymond, 1985; Stenkamp, 2011). 

 

Intracellularly, N-Cadherin links to actomyosin via catenin complexes to regulate cytoskeletal 

contractility that controls cell shape and position; this contractile activity is mediated by 

phosphorylation of Myosin light chain II (Lecuit et al., 2010; Takeichi, 2014).  We therefore 

examined immunolocalization of activated phospho-MyosinII (pMyoII) in differentiating cones 

and Müller glia.  Because the anti N-cadherin and pMyoII were both rabbit antibodies, for this 

experiment we used mouse anti-Pan-Cadherin, the localization of which is identical to N-
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Cadherin.  In the pre-column zone, pMyoII co-labeled with Cadherin in the rounded profiles of 

immature cone photoreceptors (Fig. 6D, D’, D’’, E, E’, E’’).  In the mature mosaic, pMyoII was 

predominately co-localized with Cadherin puncta in Müller glial processes between cone 

columns (Fig. 6D, D’, D’’, F, F’, F’’).  These results suggest that immature cones and Müller glia in 

the pre-column zone remodel their apical profiles through Cadherin-catenin-mediated 

actomyosin contractility, and that in the mature mosaic, Müller glia generate contractile forces 

in parallel bands between cone columns.  

 

Anisotropic tension in Müller glia organizes the photoreceptor lattice   

Previous work suggested that highly anisotropic mechanical stresses within the retinal 

epithelium mediate cone mosaic formation and maintenance (Salbreux et al., 2012).  These 

studies further pointed to planar polarized adhesive interactions mediated by Crumbs2a and 

Crumbs2b between adjacent cones along a column as one possible source of this anisotropy  

(Salbreux et al., 2012; Zou et al., 2012).  The distribution of activated phospho-Myosin II in 

puncta representing N-Cadherin-mediated adherens junctions in inter-column bands of Müller 

glial suggests that actomyosin-mediated contractile forces might also be anisotropic.  

 

To test this hypothesis, we applied multi-photon laser ablation to destroy Müller glia in living 

juvenile transgenic zebrafish carrying the gfap:EGFP reporter in the pigment-free mutant 

background.  We targeted one or more individual Müller glial radial process near the cell body in 

the INL, which destroyed the entire cell and selectively abolished the apical Müller glial 

processes at the OLM (Fig. 7 supplemental figure) without damaging photoreceptors, as 

visualized by trβ2:tdTomato+ Red cones (Fig. 7A’).  The ablation created a hole in the sheet of 

Müller glial processes at the level of the OLM (Fig. 7A, 7A’ and Fig. 7 supplemental figure).  We 

then examined relaxation of the epithelium after ablation by tracking the position of 

photoreceptors immediately surrounding the hole over a period of several minutes (Fig. 7A-A”’).  

As a control, we repeated the same procedure, but with the laser turned off at the ablation 

stage. We examined 8 ablated and 6 control retinas and measured the tissue deformation 

(strain) perpendicular (x-strain) and parallel (y-strain) to the retinal margin.  These are plotted in 

Figures 7B and C, respectively.  Control (unablated) retinas showed no significant changes in 

photoreceptor positions after repeated imaging (strain values ~ 1.0).  After Müller glial ablation, 

we found no significant difference in x-strain perpendicular to the margin around the ablation 
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(Welch’s unequal-variance, p-value = 0.1128).  Parallel to the margin, however, measures of y-

strain indicated significant elongation even at the earliest time-point (~5 minutes after ablation), 

and the amount of elongation increased with time (p-value = 0.0008).  These observations imply 

that Müller glial processes support a substantial tensile mechanical stress along the cone 

columns.  Combined with the observation that Müller glia cells form thick, phospho-Myosin-rich 

bands between cone columns parallel to the margin, these results suggest that Müller glia 

generate anisotropic mechanical tension across the retinal epithelium that could mediate the 

formation and maintenance of the photoreceptor lattice. 

- 

Discussion   

 

Several distinctive features of the photoreceptor mosaic array in the zebrafish retina make this a 

particularly compelling model for studying the formation of orderly spatial arrangements and 

cell packing in vertebrate epithelia.  Firstly, exquisitely precise rules operating at the level of 

individual photoreceptor cells determine the relative positions and identities of cone spectral 

subtypes and rod photoreceptors in the crystalline lattice array (Engström, 1963; Fadool, 2003; 

Salbreux et al., 2012). Although mosaics with evenly spaced distributions of specific cone 

subtypes are found in other vertebrate retinas (Kram et al., 2010; Marc and Sperling, 1977; 

Wikler and Rakic, 1991), and highly ordered arrays of sensory neuron hair cells are a prominent 

feature of the auditory epithelium in the mammalian cochlea (Kelley, 2007), neither these nor 

any other example of epithelial cell patterning in vertebrates involves a multiplex, heterotypic 

spatial order that specifies the identity of individual cells and their neighbors.   

 

Secondly, although there is a characteristic average spacing between cones of the same subtype 

at the onset of differentiation in embryonic zebrafish (Raymond et al., 1995; Takechi et al., 

2003), the highly-ordered, multiplex, lattice of photoreceptor rows and columns is not present 

in the embryonic and early larval retina, but instead emerges during larval development in 

association with changes in ocular mechanics, as the anterior chamber of the eye completes its 

differentiation (Allison et al., 2010; Soules and Link, 2005).  We previously argued that, in adult 

zebrafish mutants with increased intraocular pressure, the resultant alteration in the retina’s 

mechanical environment disrupts the regular photoreceptor array (Jusuf et al., 2013; Salbreux et 

al., 2012).   
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Finally, continuous growth of the post-embryonic teleost fish eye involves proliferation of retinal 

progenitors sequestered in a germinal zone at the anterior retinal margin, where discrete annuli 

of new cells are added to the existing retina (Agathocleous and Harris, 2009; Perron and Harris, 

2000; Raymond et al., 2006).  This appositional growth mode allows all stages in establishing the 

photoreceptor mosaic – from proliferation of progenitors to organization of the mature pattern 

– to be examined in a single preparation.  Although the comparative optical transparency of 

zebrafish embryos allows live imaging and time-lapse studies of early retinal development 

(Godinho et al., 2005; Jusuf et al., 2013; Suzuki et al., 2013), accumulation of melanin pigment in 

the retinal pigmented epithelium and invasion of the outer layers of the eye by neural crest-

derived melanophores and iridophores precludes live imaging after early larval stages.  Here, 

using pigmentation mutants that lack melanin and guanine (iridophore) pigments (Ren et al., 

2002), we report the first live imaging study of neurogenesis at the retinal margin in living 

juvenile zebrafish.  

 

At the growing retinal margin at least two separate events must occur as newly generated cells 

join the multiplex photoreceptor mosaic: Cells must acquire a specific identity and they must 

rearrange into a rectangular crystalline lattice.  Which comes first – cell fate or cell packing?  

How are these events coordinated? Knowing the sequence of cellular changes will provide clues 

to mechanisms that establish the multiplex lattice pattern.  Our major findings are summarized 

in the schematic model in Figure 8.  The apical profiles of neuroepithelial cells in the germinal 

zone are irregular polygons (Fig. 8, right), typical of proliferating epithelia (Farhadifar et al., 

2007; Gibson et al., 2006), with adherens junctions stabilized by N-cadherin and ZO-1 (Cavey and 

Lecuit, 2009; Harris and Tepass, 2010; Takeichi, 2014).  As presumptive photoreceptors 

withdraw from the cell cycle and begin to differentiate (Fig. 8, center), their apical profiles 

become rounder and smaller, and they label strongly for activated, phospho-Myosin II, 

consistent with apical constriction mediated by actomyosin contractility (Lecuit and Lenne, 

2007; Lecuit et al., 2010).  Parallel ridges of Müller glial processes aligned with the retinal margin 

also become visible as at this stage; although these processes completely surround the 

photoreceptors at the level of the OLM, they form thicker, straighter, more prominent lines 

between the presumptive cone columns than within the columns.  In this pre-column zone, we 

propose that the different photoreceptor subtypes already show the basic features of their final 
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spatial pattern:  They are distributed in a repetitive pattern with heterotypic correlations, and in 

particular, cones of a given subtype have the correct number of nearest neighbors of the correct 

(different) subtypes.  On the other hand, the size of the cone profiles at the level of the OLM 

and the spacing between adjacent cones is still quite variable, and the organization of the cones 

into straight columns parallel to the margin is not yet apparent.  The presumptive cone cells 

thus cannot yet be said to have fully organized themselves into their final, highly regular, 

crystalline packing.  This ordered packing, characterized by straight columns, narrow 

distributions of cone sizes and spacings, and planar-polarized localization of Crumbs complex 

proteins, is attained only in the mature retina (Fig. 8, left). 

 

A number of specific markers together with distinctive morphological characteristics support the 

inference that correct spatial patterning of cone subtypes and rods is roughly coincident with 

the onset of photoreceptor differentiation and precedes their packing into a precise lattice array.  

The most compelling evidence comes from analysis of the trβ2:tdTomato transgene, which 

labels fate-committed, proliferative Red cone progenitors and mature Red cones (Suzuki et al., 

2013).  In the mature mosaic, Red cones are spaced in a hexagonal pattern, and as they begin to 

differentiate in the pre-column zone, as evidenced by axonal outgrowth to create the outer 

plexiform (synaptic) layer of the retina, they are appropriately positioned with reference to the 

hexagonal pattern of Red cones in the adjacent mosaic.  Time-lapse, lineage tracing of trβ2: 

tdTomato+ progenitors in embryonic zebrafish retina showed that the terminal mitotic division 

of these progenitors produces two Red cones (Suzuki et al., 2013), suggesting that the post-

mitotic, presumptive Red cone daughter cells must move apart tangentially as they differentiate.  

Tangential migration is an important mechanism to establish homotypic mosaics of other retinal 

cells (Cook and Chalupa, 2000; Galli-Resta et al., 1997; Reese and Galli-Resta, 2002), and 

tangential movement of horizontal cells has been observed with time-lapse imaging in 

embryonic zebrafish retina (Godinho et al., 2005).  Local, homotypic repulsive interactions of 

developing dendrites contributes to evenly spaced mosaics of non-photoreceptor retinal 

neurons (Reese and Galli-Resta, 2002), and although photoreceptors do not have dendrites, 

they do possess ‘telodendria’, fine fibers radiating from the axon terminal (Kolb and Jones, 

1985) that mediate gap junction connections between cones (O'Brien et al., 2004).  A time-lapse 

imaging study of Tg(trb2: tdTomato; crx: mCFP) zebrafish embryonic retinas suggested that 
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differentiating Red cones have telodendria (Suzuki et al., 2013), which could provide repulsive 

signals driving tangential migration.  

 

Although a specific marker is not available for differentiating UV cones (the UV opsin transgene 

sws1:EGFP is not expressed until later stages in cone differentiation), distinctively large, round 

cone profiles are present in the center of the Red cone hexagon in the pre-column zone, at 

locations predicted by the row pattern of UV cones in the adjacent mosaic.  The precocious 

appearance of properly spaced, presumptive UV cones in the differentiating pre-column zone is 

intriguing, since tbx2b mutant zebrafish, in which UV cones largely fail to differentiate, have 

severe defects in the multiplex photoreceptor mosaic pattern, even though other cone subtypes 

are produced in the correct ratio (Raymond et al., 2014). 

 

Additional evidence supporting the inference that cell fate of cone and rod photoreceptors is 

established in the correct ratio prior to column packing is that the ratio of trb2: tdTomato+ 

differentiating Red cones to other presumptive cone and rod photoreceptors in the 

differentiating pre-column zone is close to the predicted ratio of 1:4 in the mature, multiplex 

mosaic.  Furthermore, the first contiguous single-cell wide column of cones to emerge from the 

pre-column zone contains the correct ratio of cone subtypes, in that trb2: tdTomato+ Red cones 

are separated, alternately, by one and then three cones.  That these cones already have 

established their correct identity is supported by the ‘ladder-like’ planar polarized pattern of 

Crb2b immunoreactivity, which localizes to the cell-cell interfaces between pentameric cone 

units (Green-Red-Blue-Red-Green) within a column in the mature mosaic (Salbreux et al., 2012; 

Zou et al., 2012).  These pentameric Crb2b ‘ladders’, each separated by an intervening (Crb2b-

negative) presumptive UV cone, are already apparent immediately peripheral to the first 

contiguous column of cones.  The mechanisms through which presumptive cones select their 

spectral cell identity in zebrafish are not understood, although the process likely involves 

stepwise cell fate decisions driven by binary transcriptional switches regulating specific opsins 

and other features that distinguish cone subtypes in both vertebrate and invertebrate species, 

including mammals and fruit flies (Boije et al., 2015; Rister and Desplan, 2011; Swaroop et al., 

2010).  
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Based on the results presented here, we propose a novel function for retinal Müller glia as 

organizers of the multiplex photoreceptor mosaic.  This idea is supported by observations from 

three distinct stages in photoreceptor differentiation, corresponding respectively to the pre-

column zone, the transition from the pre-column zone to the mature mosaic, and the mature 

mosaic.   

 

The first line of evidence concerns the organization of glial cells in the pre-column zone.  In the 

mature mosaic, apical processes of Müller glia establish a periodic scaffold parallel to the retinal 

margin, consisting of apical expansions that surround rod photoreceptors and that are 

preferentially localized between cone columns (Salbreux et al., 2012).  In the pre-column zone, 

the apical expansions of differentiating Müller glia surround differentiating cone and rod 

photoreceptors but are less regularly shaped.  Unexpectedly, we nonetheless found that the 

developing apical processes of immature Müller glia throughout the pre-column zone are 

preferentially distributed in periodic, linear bands parallel to the retinal margin that prefigure 

the cone columns.  This is the earliest manifestation of a linear alignment of cones, suggesting 

that Müller glia play a causal role in aligning presumptive cones into the lattice pattern.    

 

Within the pre-column zone, presumptive rod and cone photoreceptors show high levels pMyoII, 

indicative of strong cortical constriction.  N-cadherin and ZO-1 localize to adherens junctions 

between Müller glia and presumptive cones, as well as to Müller glia-Müller glia junctions.  

These localization patterns suggest that forces generated by the actomyosin cortical network in 

photoreceptors and tension sensors in cadherin-mediated cell-cell adhesions likely mediate a 

gradual evolution in cell shape and position across the pre-column zone (Lecuit et al., 2010; 

Takeichi, 2014; Twiss and de Rooij, 2013).  At the transition from the pre-column zone to the 

mature mosaic, however, there is an abrupt reorganization of both adhesion molecules and 

pMyoII.  In the photoreceptors, N-cadherin expression is lost and levels of cortical pMyoII 

decrease, even as planar-polarized Crb-mediated adhesion appears between photoreceptors 

within columns.  This change in the predominant photoreceptor adhesion molecules would 

favor a decrease in the length of cone cell-Müller cell junctions and a corresponding increase in 

the length of cone-cone junctions, consistent with the observed retraction of the Müller 

processes into straighter bands and expansion of contacts between cone photoreceptors within 

columns.  At the same time, punctate adherens junctions colocalizing with high levels of pMyoII 
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appear between Müller glia cells, suggesting that the glial processes actively contract and 

straighten to corral the photoreceptors into the correct positions within the columns.  Thus, our 

data point to a dynamic remodeling of adhesion molecules and cytoskeleton as a potential 

driving force for the cell shape and position changes that create the final, highly ordered 

photoreceptor packing at the transition from the pre-column zone to the mature multiplex 

mosaic.  (A similar scenario has been proposed in some other, simpler epithelial systems (Bao 

and Cagan, 2005; Cavey and Lecuit, 2009; Hayashi and Carthew, 2004; Kafer et al., 2007; Lecuit 

et al., 2010; Twiss and de Rooij, 2013).)  

 

In the mature mosaic, parallel bands of Müller glia stabilized by N-cadherin-mediated adherens 

junctions alternate with single-cell-wide columns of cones held by planar polarized Crb2b 

adhesive interactions.  The concentration of activated pMyoII in punctate adherens junctions 

between Müller glia suggests that these glial bands remain under tension, forming a physical 

barrier between cone columns and contributing to mechanical stress anisotropies in the 

epithelial sheet, in analogy to the role of the contractile actomyosin cables that separate cells at 

compartment boundaries in the developing Drosophila wing (Monier et al., 2011) or that 

establish cell columns in the Drosophila embryonic ventral epidermis (Kaplan et al., 2011; Kaplan 

and Tolwinski, 2010; Simone and DiNardo, 2010).  Thus, remarkably, a function that is 

performed by the cortical cytoskeleton inside the epithelial cells in these Drosophila systems 

would, in the vertebrate retina, instead be taken over by narrow apical processes extending up 

from glial cells in a different layer to interpose themselves between the photoreceptors at the 

level of the OLM.  We directly demonstrated this mechanical function for the Müller glia through 

laser ablation:  When an individual Müller glial cell is targeted at the level of the INL, its 

processes are lost from a compact region of the OLM, which then preferentially expands in the 

direction parallel to the retinal margin.  This indicates that, before ablation, the glial processes 

had been exerting a tensile mechanical force parallel to the margin.  [Notably, almost all 

previous applications of laser ablation to probe tissue mechanics have either directly targeted 

particular junctional structures or made large cuts across the epithelial surface, on the scale of 

many cell diameters; here, in contrast, we were able to take advantage of the retina’s unique 

architecture to remove cells of one type and so to demonstrate a specific mechanical function 

for cellular processes whose width can be as small as tens of nanometers (Tarboush et al., 

2012)].  Hence, within the mature retinal mosaic, Müller glial processes contribute to and 
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transduce a large anisotropy in tensile mechanical stresses, most likely through pMyoII-

mediated active cytoskeletal contraction.  This anisotropy, in turn, has been predicted to be 

essential for maintaining the highly ordered, columnar cone photoreceptor packing (Salbreux et 

al., 2012).   

 

Müller glia have been implicated as important players in many different aspects of retinal 

biology, including neuronal development and differentiation, structural support of the complex, 

laminated cytoarchitecture, regulation of metabolic and homeostatic functions, and modulation 

of neuronal activity (Bringmann et al., 2006; Reichenbach and Bringmann, 2013; Willbold and 

Layer, 1998).  Direct measurements of the viscoelastic properties of isolated Müller glial cells 

show they provide a soft, compliant mechanical substrate to accommodate activity-dependent 

local swelling in synapses and to facilitate neurite outgrowth within the synaptic layers of the 

retina (Lu et al., 2006; Lu et al., 2013; Reichenbach and Bringmann, 2013).  In retinal explants, 

Müller glia respond to mechanical stretch of the retina orthogonal to the surface with increased 

calcium levels and changes in gene expression, suggesting that they act as tension sensors 

(Lindqvist et al., 2010).  A recent study measured the biomechanical properties of embryonic 

zebrafish retinas and demonstrated that the radial processes of Müller glial cells are under 

tension and act like a springs to hold the retinal tissue together along the apical-basal dimension 

(MacDonald et al., 2015).  Müller glia in post-embryonic teleost fish have additional roles in that 

they divide mitotically to generate neuronal progenitors, which migrate to the appropriate 

retinal layer along the radial glial fiber (Lenkowski and Raymond, 2014; Nagashima et al., 2013; 

Raymond and Rivlin, 1987; Stenkamp, 2011; Willbold and Layer, 1998), similar to the neuronal 

progenitors that derive from radial glia in the developing mammalian brain (Ever and Gaiano, 

2005; Gotz and Barde, 2005).  Recently, radial glia have also been implicated as key players in 

shaping tissue-level deformations such as gyrification (folding) of the mammalian cerebral 

cortex (Borrell and Gotz, 2014), and in the developing cerebellum, the related Bergmann glia 

establish anchoring centers that shape cerebellar foliation (Sudarov and Joyner, 2007).  All of 

these examples primarily affect organization along the apical-basal dimension of the 

neural/retinal epithelium.  In contrast, the present study proposes that Müller glia mediate 

spatial patterning of photoreceptors in the planar surface dimension though dynamic processes 

involving cell adhesion and cortex contractility.  

 



122 
 

 

 

 

 

 

Materials and Methods 

 

Zebrafish 

Wild-type TL zebrafish and transgenic lines Tg(trb2: tdTomato) and Tg(crx:mCFP) (Suzuki et al., 

2013), Tg(-3.7rho:EGFP)kj2 (Hamaoka et al., 2002); Tg(-5.5sws1: EGFP)kj9 (Takechi et al., 

2003) ,Tg(-3.2sws2: mCherry)mi2007 (Salbreux et al., 2012), and Tg(gfap:EGFP)mi2002 

(Bernardos and Raymond, 2006) were crossed into the ‘ruby’ genetic background (Ren et al., 

2002), with two independent, pigment mutations, albino(slc45a2)b4/b4 and roya9/a9 (Zebrafish 

International Resource Center, Eugene, OR).  We also generated triple pigment mutants, 

albino(slc45a2)b4/b4, roya9/a9, nacre(nac)w2w2,  identical to the crystal fish described recently 

(Antinucci and Hindges, 2016), but we found that including the nacre mutation, which increases 

the number of iridophores (Lister et al., 1999), resulted in more chromatophores surrounding 

the eye; even though depleted of pigment the chromatophores retained endogenous 

fluorescence, which obscured retinal imaging.  Fish were maintained at ~28C on a 14/10 hour 

light/ dark cycle with standard husbandry procedures (Westerfield, 1990).  The Institutional 

Committee on the Care and Use of Animals at the University of Michigan approved all protocols. 

  

Tissue preparation for retinal flat-mounts 

Adult zebrafish were placed in the dark for 3 hours prior to dissection.  After euthanizing by 

rapid chilling/hypothermia and cervical transection, the eye was enucleated and a small hole 

was made ventrally at the choroid fissure.  With microscissors, the ventral hole was extended 

along the radial axis of the eyeball for orientation.  The lens was removed, the eyecup was 

placed in phosphate buffered saline (PBS), and the neural retina was gently removed from the 

pigmented retinal epithelium with forceps, except at the peripheral retinal margin, where the 

overlying pigmented retinal epithelium was retained to preserve the retinal germinal zone.  

Short relaxation cuts were made along the perimeter, and the retina was fixed in 4% 

paraformaldehyde with 5% sucrose in 0.1M phosphate buffer (PB), pH 7.4, at 4C overnight.  For 
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retinal cross sections, the cornea was punctured and the eyeball was fixed intact in 4% 

paraformaldehyde with 5% sucrose in PB, pH 7.4, at 4C overnight.  After rinsing with 5% sucrose 

in PBS, the lens was carefully removed, and the tissue processed for cryosectioning as previously 

described (Barthel and Raymond, 1990). 

 

Immunocytochemistry 

Flat-mount retinal immunocytochemistry was performed as previously described (Raymond et 

al., 2014).  For antigen retrieval, retinas were treated with 10 mM sodium citrate in 0.05% 

Tween 20 (pH 6.0) in boiling water for 5 minutes, and then removed from the heating plate and 

allowed to cool in the hot water for 5 minutes.  After rinsing in PB with 0.5% Triton-X100, free-

floating retinas were incubated in blocking buffer (10% normal goat serum, 1% Tween 20, 1% 

Triton X100, 1% DMSO in PBS, pH7.4, with 1% sodium azide) for 2 hours.  Secondary antibodies 

were diluted in PB with 0.5% normal goat serum, 1% Tween 20, 1% Triton X100, 1% DMSO in 

PBS (pH7.4) with 1% sodium azide, and the incubations performed at room temperature 

overnight.  Tissues were washed in the diluting buffer, and the retinas were mounted on 

microscope slides with Prolong Gold or Prolong Diamond (Invitrogen, Carlsbad, CA) with the 

photoreceptor side down.  

 

Primary antibodies included mouse anti-Zonula Occludens-1, 1:200 (Invitrogen, Carlsbad, CA); 

rabbit anti-phospho histone 3, 1: 200 (Cell Signaling technology, Danvers, Massachusetts); rabbit 

anti-dsRed, 1: 200 (Clontech, Mountain View, CA); rabbit anti-GFP, 1:500 (Invitrogen, Carlsbad, 

CA); mouse anti-zs5 (Crb2a), 1:200 (Zebrafish International Resource Center, Eugene, OR); rabbit 

anti-Crb2b, 1:200 (gift from Xiangyun Wei, University of Pittsburgh); rabbit anti-N-Cadherin, 

1:200 (Abcam, Cambridge, UK); mouse anti-pan-Cadherin, 1: 200 (Abcam, Cambridge, UK); 

rabbit  anti-phospho-Myosin Light Chain 2 (Ser 19), 1:200 (Cell Signaling Technology, Danvers, 

MA).  Secondary antibodies included anti-mouse DyLight 549, 1: 400 (Jackson ImmunoResearch, 

West Grove, PA or Thermo Fisher Waltham, MA); anti-rabbit DyLight 647, 1: 400 (Jackson 

ImmunoResearch, West Grove, PA or Thermo Fisher, Waltham, MA).  

 

All flat-mount retinal preparations were imaged with a Zeiss AxioImage ZI Epifluorescent 

Microscope (Carl Zeiss Microimaging, Thornwood, NY) equipped with an ApoTome attachment 
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for optical sectioning using structured illumination, and processed with Adobe Photoshop CS6 

Extended (Adobe Systems, San Jose, CA). 

 

In situ hybridization  

In situ hybridization was performed as previously described (Raymond et al., 2006).  After 

rehydration and proteinase K treatment, retinal cross-sections were incubated with digoxigenin-

labeled RNA probes for cdh2 in Hauptmann’s hybridization solution at 65C overnight.  Sections 

were then washed, treated with alkaline phosphatase conjugated anti-digoxigenin antibody 

(Roche, Basel, Switzerland), and blocked with Maleate Blocking solution.  The signal was 

detected with Fast Red (Roche, Basel, Switzerland). 

 

Cell counts  

 

Optical section z-stack images were obtained from the margins of flat-mounted retinas of 

transgenic Tg(trβ2:tdTomato) immunostained with antibody to ZO1.  Cell profiles at the level of 

the OLM were obtained by selectively projecting the ZO1 channel using a MATLAB program 

developed in-house.  The program reconstructs the OLM surface three-dimensionally by 

averaging the ZO1 signal with a Gaussian kernel in the z-direction and interpolating in the x- and 

y-directions.  This reconstructed surface was then used to selectively capture the tdTomato 

signals at the level of the OLM. 

 

The cell profiles from ZO1 were then segmented using watershed algorithms with manually-

placed seeds.  Irregularly-shaped Müller glial profiles were excluded by hand at this stage.  

Average tdTomato intensity at the level of the OLM for each segmented profile was then 

calculated and clustered into trβ2:tdTomato positive and negative groups using a k-means 

algorithm(MacKay, 2003). 

 

Müller glia ridge analysis  

Optical section z-stack images were obtained from the margins of flat-mounted retinas of 

transgenic Tg(gfap:EGFP) immunostained with antibody to ZO1.  Profiles of GFP-labeled Müller 

glial cells were projected into the level of OLM (marked by ZO1) using the MATLAB program 
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described above under Cell Counts, selectively capturing GFP-labeled Müller glial profiles only at 

the level of the OLM.  

 

Ridge detection using an anisotropic steerable filter was performed using a publicly available 

ImageJ plugin (Jacob and Unser, 2004).  Briefly, for each pixel in the original image, the filter 

returns a value indicating how anisotropic (i.e., ridge-like) the intensity field in the vicinity of the 

pixel is and an angle corresponding to the optimal ridge orientation.  The “Refine features” 

function of the plugin then suppresses pixels with low ridge-like scores and isolated pixels with 

higher scores that do not form part of continuous ridge lines (Jacob and Unser, 2004). We found 

that a 4th order filter with width of 8 pixels (corresponding to the typical thickness of GFP signals 

between columns) best discriminates the thick, between-column expanded apical glial profiles 

from the thinner, within column lamellae, based on the least number of false positives. The 

former give mostly long, straight ridge lines parallel to the column, whereas the latter tend to 

appear as many short, curved ridge lines. To eliminate most of the latter and keep only the 

former, the ridge angles θ  and intensities returned by the filter were imported into MATLAB, 

where they were compared to the direction cθ  of the columns, defined by applying a Fast 

Fourier Transform to the unfiltered image.  (The direction with the largest Fourier amplitude is 

perpendicular to the columns.)  Pixels with deviation |𝜃𝜃 − 𝜃𝜃𝑐𝑐| more than 300 from the direction 

of the columns are deemed spurious and were eliminated.  To further filter the result, ridges 

less than 20 pixels long were also removed.  (If the same procedure is applied, but keeping pixels 

with angles near a value other than the correct column direction cθ , few or no long ridges 

remain; thus, long, straight Müller glial ridges can be detected only parallel to the columns, as 

expected.) 

 

Live imaging 

Juvenile zebrafish (0.74-1.19 cm body length, exclusive of the tail) were anesthetized with 0.336 

mg/ml Tricaine S/MS-222 (Western Chemical Inc., Ferndale, WA).  When opercular movements 

ceased, the fish was placed in a 50mm glass bottom Petri dish with a No. 1.5 coverslip (MatTek 

Corporation, Ashland MA) and oriented dorsal side down, tipped laterally so that the dorsal 

aspect of one eye was directly apposed to the coverslip.  Kimwipe tissues (Sigma-Aldrich, St. 

Louis, MO) moistened with anesthetic water were used to stabilize the fish during imaging.  The 
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fish remained anesthetized in the imaging chamber for up to 1 hour.  Continued viability was 

confirmed by the presence of a heart beat and blood flow to peripheral tissues.   

 

Confocal z-stack images were captured with a Leica TCS SP8 LSCM (Leica Microsystems, Wetzlar, 

Germany) equipped with a tunable Chameleon 2-photon Ti:Sapphire laser (Coherent, Santa 

Clara, CA) and Leica 40X PL APO CS2 Water Immersion lens, 1.1 NA with 650 µm working 

distance.  The Multiphoton (MP) laser was tuned to 800 nm and Leica HyD hybrid detectors 

tuned to 450-500 nm for Cyan; 500-550 nm for EGFP; 576-650 nm for tdTomato.  The Argon 

laser (Excitation: 488 nm Emission: HyD 524-561 nm for EGFP; Excitation: 514 nm Emission: HyD 

577-745 nm for tdTomato) was also used for capturing images of the germinal zone and far 

peripheral retinal margin, but laser penetration was insufficient for capturing signals from more 

central retina.  For post-acquisition processing, z-stacks were loaded into the Leica Application 

Suite X (Leica Microsystems, Wetzlar, Germany), Image J (https://imagej.nih.gov/ij/), or Imaris 

8.3.0 (Bitplane, Zurich, Switzerland) software for volume rendering and maximum intensity 

projection videos.  

 

 

Müller glial ablation and analysis of epithelial tension 

Juvenile zebrafish Tg(gfap:EGFP) were immobilized and imaged as described above.  Pre-

ablation and post-ablation MP images were acquired at 400 Hz acquisition speed with a 

resolution of 512 x 512 pixels in the xy dimension with a 1.8 µm interval between optical 

sections in the z-dimension.  Targeted ablation of the radial process of an identified Müller glial 

cells was performed at the level of a single optical section 25-50 µm below the OLM.  Up to 5 

individual, isolated Müller glia were targeted in each retina with 700-900 nm diameter circles 

created by the ‘Region of Interest’ tool and centered on the radial fiber.  Ablation was 

performed with the Chameleon 2-photon Ti:Sapphire laser tuned to 800 nm at maximum power 

output with acquisition speed of 10 Hz and zoom factor 12x. 

 

Confocal z-stack images of the gfap:EGFP Müller glial reporter were selectively projected using 

the MATLAB routine described above under Cell Counts.  The program reconstructs the OLM 

surface three-dimensionally by averaging the fluorescent signal with a Gaussian kernel in the z-

direction and interpolating in the x- and y-directions, and selectively capturing the fluorescent 
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signal only at the OLM.  The reconstructed surface was also used to estimate and correct for 

inclination of the OLM plane due to sample tilt.  Radial fibers of Müller glial cells were masked 

manually when needed to achieve a cleaner projection.  The centroid positions ( , )T
i i ix y=r  of 

photoreceptor profiles surrounding the lesion area were then tracked in ImageJ and imported to 

MATLAB.  Sample tilt was corrected by estimating the orientation of the OLM from the 

projection algorithm and rotating ir .  Tissue deformation was estimated by finding the affine 

transformation 0ˆ f
i i= +r Mr b  of the initial photoreceptor positions 0

ir  that minimizes the 

mean-squared deviation 0 2f
i i

i
− −∑ r rM b  between the transformed positions ˆ f

ir and the 

actual positions f
ir of the same photoreceptors at a given time after ablation.  The residuals 

after this transformation at 0-15 minutes, 15-30 minutes, and >30 minutes after ablation are 

approximately 13%, 19%, and 23% of typical neighboring cell distance, respectively, indicating 

that the predominant deformation is indeed affine.  For control experiments, the first two 

corresponding figures are 7% and 11% (there is no control with >30 minutes after ablation).  

Rotation of the images across samples was corrected by computing the polar decomposition 

=M UP , where U  is unitary and P  is positive semi-definite.  Strain magnitude and 

orientation were then calculated as the eigenvalues and eigenvectors of P , with the 

eigenvector approximately along the cone columns identified with the y- strain and the 

eigenvector approximately perpendicular to the columns as the x-strain.  (The directions of the 

principal strain axes typically deviate by 20 degrees or less from the orientation of the columns, 

and in only one case does the deviation exceed 35 degree, making the identification of one of 

the principal strain axes as the one along the column direction unambiguous.  Much of the 

variability in principal strain directions that does exist appears to be attributable to irregularities 

in the shapes of lesioned regions.)  For statistical analysis, strains at all different times after 

ablation were grouped together and compared against control.  Welch’s unequal-variance test 

suggested that there is statistically significant difference between ablation and control y-strain 

(p=0.0008), but not x-strain (p=0.1128).  Confirming this, Hotelling’s multivariate unequal-

variance test using both x- and y-strain shows significant (p=0.0002) difference between 

ablation and control groups. 
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 Figure legends  

 

Figure 1.  Emergence of the photoreceptor mosaic in rapidly growing juvenile zebrafish. 

(A) Photoreceptor mosaic visualized by ZO1 immunocytochemistry on flat-mount retina.  (B) 

Each cone profile is pseudo-colored to represent spectral identity (UV cones in magenta); rods 

are indicated with black.  (C) Schematic showing emergence of the photoreceptor mosaic from 

the proliferative germinal zone (g.z.).  The bracket (?) indicates the transition area of 

differentiating photoreceptor and Müller glial cells (the pre-column zone), which is the main 

focus of the present investigation.  (D) Immunocytochemistry for ZO1 (green) in a flat-mount 

preparation of the retinal margin including the overlying retinal pigmented epithelium in a 

juvenile zebrafish (z-stack maximum projection).  The retinal germinal zone is in the center, the 

ciliary and iris epithelium is on the right and mature retina is on the left.  (See also Figure 1 

supplemental video and Figure 1 supplemental figure.) (D’) High magnification image of the 

mature photoreceptor mosaic.  (D’’) High magnification image of the differentiating, pre-column 

zone.  Rounded profiles of immature photoreceptors are indicated by dots and irregular 

polygonal shapes of Müller glial apical profiles are indicated by asterisks.  (D’’’) High 

magnification of the proliferative germinal zone with mitotic marker pH3 (magenta).  Profile of a 

retinal pigment epithelial cell is indicated by the dashed line.  Note that the apical cell profiles of 

the pH3+ nuclei cannot be identified in this maximum projection view due to parallax (see 

Figure 1 supplemental figure 1B’.)  Scale bars: 10 µm (A, B, D, D’’’); 5 µm (D’, D’’). 

 

Figure 2.  Spatial arrangement of cones is already patterned in the differentiating pre-column 

zone.   

(A-C) Retinal cross-section in a transgenic fish, Tg(trβ2: tdTomato) (red).  The nuclei are stained 

with Hoechst (gray).  The retinal germinal zone is to the right (asterisks), central retina is to the 

left, and differentiated retina is laminated: ganglion cell layer (GCL), inner nuclear layer (INL), 

and outer nuclear layer (ONL).  Differentiating Red cones with cuboidal nuclei in the ONL are 

trβ2: tdTomato+ (arrow).  At the central edge of the germinal zone, some apically localized 

mitotic retinal progenitors (bracket) are positive for trβ2: tdTomato.  In this region, inner retinal 

neurons have withdrawn from the cell cycle, and retinal lamination has commenced.  (B, B’) 

Mitotic trβ2: tdTomato+ progenitor.  (C, C’) Peripheral trβ2: tdTomato+ cells migrating basally to 

differentiate into inner retinal neurons (arrows).  (D-D”’) Live imaging of a double transgenic 
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juvenile fish, trβ2: tdTomato (red) and crx: mCFP (cyan).  (See Figure 2 supplemental video for 

the complete z-stack series.) (D) Single z-level focal plane, with the xy-crosshair on a trβ2: 

tdTomato+ cell in the proliferative zone, where labeled cells do not exhibit a regular distribution.  

(See also Figure 2 supplemental video, white asterisks.)  The xz and yz slice views are shown in 

the flanking panels.  (D’) Single z-level focal plane, with the xy-crosshair on a trβ2: tdTomato+ 

cell in the first cone column in the differentiating zone.  Differentiating trβ2: tdTomato+ cells 

that have begun to form axonal processes (arrow) exhibit regular spatial patterning.  (D”) The 

first cone column is composed of trβ2: tdTomato+ Red cones alternately separated by one 

(presumptive UV) and three (presumptive Green-Blue-Green) cone profiles.  (See also Figure 2 

supplemental video.) (D”’) The trβ2: tdTomato+ Red cones are immediately incorporated into 

the hexagonal pattern of Red cones in the mosaic.  (E-E”) Retinal flat-mount 

immunocytochemistry for ZO1 (green) in a Tg(trβ2: tdTomato) fish (red).  (E) z-stack maximum 

projection of ZO1 channel.  (E’) A single z-level focal plane, with the tdTomato channel focused 

at the ZO1 level in the pre-column zone.  Large presumptive UV cone profiles in the middle of 

each Red cone hexagon are indicated by white dots in the inset.  (E”) Merged image of ZO1 and 

trβ2: tdTomato+ channels.  Scale bars: 20 µm (A’); 5 µm (B’); 10 µm (C’, D’’, D’’’, E’’). 

 

Figure 3.  Spatial patterning of cones precedes planar polarized Crumbs localization.   

(A-A”) Retinal flat-mount immunocytochemistry for Crb2b (magenta) and ZO1 (green) at the 

retinal margin.  (A) Single z-level focal plane image of Crb2b channel at the ZO1 level in the pre-

column, differentiating zone.  (Note that due to curvature of the retinal surface, the equivalent 

ZO1 level in central retina to the left is in a different focal plane.) Crb2b is planar polarized, 

localizing to the interfaces between Green-Red-Blue-Red-Green pentameric units of cones 

within a column.  The distinctive Crb2b 'ladder' first appears in the pre-column zone (arrow) 

prior to the first continuous cone column.  The large presumptive UV cone profiles (white dots) 

extend further out toward the margin.  (A’) z-stack maximum intensity projection of ZO1 

channel.  (A”) Merged image of Crb2b and ZO1.  (B-B”) Crb2a immunocytochemistry (magenta) 

at the retinal margin with Tg(trβ2: tdTomato) (green).  (B) The strongest Crb2a staining at the 

level of the OLM is between cone columns in small rings (inset).  (B’, B'') The Crb2a+ rings 

(arrows) are not co-labeled with trβ2: tdTomato, but are at each corner of the UV cones in the 

centers of the trβ2: tdTomato+ Red cone hexagons.  (C-C”) Crb2a immunohistochemistry 

(magenta) in the mature retinal mosaic in the transgenic rod line, Tg(rh1: EGFP) (green).  Crb2a+ 
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rings form chains aligned parallel to the margin between cone columns.  (C’, C”) The Crb2a+ 

rings surround rh1: EGFP+ rod photoreceptors.  Scale bars: 10 µm (A’’, B’’, C’’). 

 

Figure 4.  Rod photoreceptors are incorporated into the cone mosaic as it emerges from the 

proliferating zone.    

(A) Schematic of photoreceptor mosaic.  Large circles of red, green, blue, and magenta (UV) 

represent types of cone photoreceptors.  Small black circles represent rod photoreceptors.  

Hexagonal pattern of red cones is indicated by white dotted lines.  (B) The expected ratio of 

trβ2+ (Red) to trβ2- (Green+Blue+UV) photoreceptor profiles as defined by ZO1 immunostaining 

(see Figure 1D) is 1:2, if rod photoreceptors are not present.  The expected ratio of trβ2+ (Red) 

to trβ2- (Green+Blue+UV+rod) is 1:4, if rod photoreceptors are present.  (C) Results from 

automated cell counting analysis of two retinas (n=780 total cells counted).  (See also Figure 4 

supplemental figure 1.)  

 

Figure 5.  Parallel bands of Müller glial scaffolding appear simultaneously with differentiating 

cones. 

 (A-D) Live imaging of the retinal margin in a double transgenic juvenile fish Tg(trβ2: tdTomato) 

(red) and Tg(gfap:EGFP) (green).  (See Figure 5 supplemental videos 1 and 2 for the complete z-

stack focal series.) (A-A”) Maximum projection of z-stack series.  Individual cone profiles are 

enwrapped by Müller glia.  Immature Müller glia weakly express EGFP reporter in the 

proliferative zone (toward right).  (B-D) Single z-levels focused on pre-column (B), and patterned 

(C, D) areas.  (B-B”) As Müller glia differentiate, the intensity of EGFP reporter increases, and 

apical processes enwrap the differentiating trβ2: tdTomato+  Red cones in the pre-column zone 

(magenta dots).  (C-C” and D-D”) The trβ2: tdTomato+ differentiating Red cones (filled white 

dots) form a hexagonal pattern (A-A’’).  Within a column, adjacent trβ2: tdTomato+ Red cones 

are separated by one (presumptive UV) and three (presumptive Green-Blue-Green) cones (open 

white dots).  (E-E’’’) Ridge analysis applied to Müller glial profiles identified in a Tg(gfap: EGFP) 

(green) retinal flat-mount with immunocytochemistry for ZO1 (magenta).  (Also see Figure 5 

supplemental figure.) Discrete bands (ridges) of Muller glial apical processes aligned parallel to 

the margin extend into the zone of differentiating cone photoreceptors, prior to packing into 

single cell width columns.  Arrows (E-E’’) indicate the location of the first ordered column of 

cone photoreceptors that can be clearly discerned from cell outlines at the level of the OLM (E); 
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ridges of fluorescently marked Müller glia clearly extend multiple columns farther into the 

germinal zone (E’-E’’’).  Scale bar: 5 µm (D’’). 

 

Figure 6.  N-cadherin is associated with actomyosin mechanical forces in differentiating cones 

in the pre-column zone and with Müller glia inter-column bands in the mature mosaic.  

(A-A”’) In situ hybridization for cdh2 (white or magenta) in a retinal cross-section from Müller 

glial reporter line, Tg(gfap:EGFP) (green).  Proliferating progenitors in the germinal zone, 

immature photoreceptors (arrow), and mature Müller glia (arrowheads) express cdh2 

transcripts.  Mature photoreceptors do not express cdh2.  (B-B”)  Retinal flat-mount 

immunocytochemistry for ZO1 (magenta) and N-Cadherin (green) at the retinal margin.  (C-C”’) 

High magnification image of the boxed region in B-B”.  In the pre-column zone, N-Cadherin 

localizes to circular cone profiles and strong puncta (arrows) outside photoreceptor profiles.  In 

the mature mosaic, immunoreactivity of N-Cadherin decreases around cone profiles and N-

Cadherin signal accumulates between the cone columns in punta that co-localize with ZO1.  N-

Cadherin-negative profiles of presumptive rods (yellow dots) localize to the corners of large, 

presumptive UV profiles (white dots).  (D-D”) Retinal flat-mount immunocytochemistry for 

phospho-Myosin light chain II (magenta) and pan-Cadherin (green).  (E-E”) High magnification 

image of pre-column zone (yellow boxed region); pMyoII and pan-Cadherin co-localize to 

profiles of cone photoreceptors.  (F-F”) High magnification image of mature mosaic area (white 

boxed region); pMyoII and pan-Cadherin co-localize to puncta between the cone columns 

(arrows).  ONL: outer nuclear layer; INL: inner nuclear layer.  Scale bars: 10 µm (A’’’, B’’’, D’’). 

 

Figure 7.  Müller glia mediate anisotropic mechanical forces in the retinal epithelium.  

(A-A”) Live imaging time course series of targeted Müller glial ablations in a double transgenic 

Tg(gfap: EGFP) (green) and Tg(trβ2: tdTomato) (red) juvenile zebrafish.  Photoreceptor profiles 

tracked for strain analysis are marked by dots.  (A’) Targeted ablation of Müller glia introduces a 

hole in the sheet of Müller glial processes at the apical surface of the retinal epithelium.  (Also 

see Figure 7 supplemental figure.) Relaxation of the retinal epithelium surrounding the ablated 

region at 27 min (A”) and 54 min (A”’) after ablation; note the elongation of the dark, ablated 

region in the vertical direction over time.  Times indicated represent the mid-point of the 

confocal imaging series.  (B-C) Mechanical strain perpendicular to (x-strain, B) and parallel to (y-

strain, C) the retinal margin after targeted ablation of Müller glia.  Strains greater and smaller 
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than 1 represent stretching and compression, respectively.  Each retina is represented by a 

different shaped symbol (n=6 controls; n=8 experimental).  The horizontal axis gives the time 

interval between the ablation and the middle of the post-ablation imaging scan; two or three 

post-ablation scans were collected for each retina.  (B) Perpendicular to the margin, control (no 

ablation) and experimental retinas show no significant differences (p=0.1128, Welch’s unequal 

variance).  (C) After selective ablation of Müller glia, the retinal epithelium relaxed significantly 

in the dimension parallel to the margin, y-strain > 1 (p=0.0008, Welch’s unequal variance).  Scale 

bar: 5 µm (A’’’). 

 

Figure 8.  A model for how the multiplex photoreceptor mosaic is patterned by anisotropic 

tension, glial scaffolding, and planar polarized cell adhesion. 

A) lateral view and B) planar view of sequential changes in apical cell profiles and expression and 

localization of cell-cell adhesion complexes (N-cadherin, Crumbs2b, and ZO-1) as photoreceptors 

and Müller glia progress from proliferative retinal progenitors in the germinal zone (right) to 

differentiating cells in the pre-column zone (center) to fully differentiated components of the 

mature cone mosaic (left).  Colored cell profiles, cone photoreceptors (UV cones in magenta); 

dark yellow cells (center and left panels), Müller glia; light yellow cells (lower right panel), 

undifferentiated precursors.  See Discussion for additional details.  

 

Figure 1 supplemental figure.  Maximum projection z-stack and lateral slice view of retinal 

margin illustrating shape and position of mitotic figures. 

(A) Snap shot from a 3D-reconstruction of the retinal margin and retinal pigmented epithelium 

in a flat-mount preparation immunostained for ZO1 (green).  Proliferative, differentiating 

(pre-column), and differentiated (mature mosaic) zones of the retina are labeled.  (B-B”) 

Lateral view of ZO1 (green) and pH3 (magenta) immunocytochemistry.  (B) The retinal 

pigment epithelium (arrow) and neural retinal epithelium (arrowhead) are closely apposed, 

especially in the proliferative zone.  (B’) The pH3+ mitotic cells are tilted with respect to the 

plane of the retinal epithelium, and the resultant parallax precludes identifying the profiles 

of pH3+ mitotic cells in the ZO1 channel in a maximum z-stack projection (e.g., Fig. 1D').  (B’, 

B”’) Proliferating endothelial cells in the circumferential blood vessel (yellow arrow) of the 

vitreal circulation, which lies below the retinal germinal zone  

(B) (Raymond et al., 2006), are also labeled by pH3 (asterisks).  Scale bar: 20 µm (A). 
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Figure 2 supplemental figure.  Immature UV cones have large rounded apical profiles in the 

pre-column area. 

(A, A’) Retinal flat-mount immunocytochemistry for ZO1 (green) in the mature UV cone reporter 

line, Tg(sws1: EGFP) (magenta).  The onset of the sws1 opsin transgene is delayed until after 

formation of cone columns.  (A’) The precision of the mosaic pattern allows profiles that are 

Tg(sws1: EGFP)-negative to be identified as UV cones (magenta dots), and the position and 

shape of the large rounded profiles in the pre-column zone (white dots) suggests that these are 

presumptive UV cones.  Note the appearance of a new row and column (yellow dot) in this 

region, a pattern defect called a ‘Y-junction’ (Nishiwaki et al., 1997), which is analogous to an 

edge dislocation in crystals grown on curved surfaces, and is required to accommodate the 

increased perimeter with continued retinal growth.  Scale bar: 10 µm. 

 

Figure 4 supplemental figure1.  Segmentation and classification of photoreceptor profiles. 

Selective projection of ZO1-labled cell profiles (A, A’’) and trβ2:tdTomato+ Red cones (A’, A’’) in 

the pre-column zone of a retinal flat-mount.  Panel A’’’ shows the tdTomato signal intensity at 

the level of the segmented cell profiles, which was used for the automated classification and 

counting procedure described in the Methods. 

 

Figure 4 supplemental figure 2.  Some Müller glial cells undergo mitosis in the pre-column 

zone. 

(A) Maximum z-stack projection of live imaging from a double transgenic fish Tg(gfap: EGFP) 

(green) and Tg(trb2: tdTomato) (red).  The xy-crosshairs (red-yellow) indicate the mitotic figure 

of a GFP+ Müller glial cell, and the xz and yz slice views are shown in the flanking panels.  In this 

example, the mitotic figure of a GFP+ Müller glial cell is at the apical surface.  (B) Another 

example of a mitotic GFP+ Müller glial cell, in which the nucleus is located in the inner nuclear 

layer.  (See also Fig. 4 supplemental video for a 3D-reconstruction.)  Scale bars: 10 µm (A, B). 

 

Figure 5 supplemental figure.  Müller glial apical processes are preferentially distributed into 

parallel, inter-column bands. 

(A-A”) Retinal flat-mount immunocytochemistry for ZO1 (magenta) in the Müller glial transgenic 

reporter line, Tg(gfap: EGFP).  Müller glial processes (GFP+) completely surround the profiles of 
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individual rods and cones, forming relatively thin intra-column lamella, and thicker inter-column 

expansions.  Refer to Fig. 1 for description of columns.  

 

Figure 7 supplemental figure.  3D reconstruction demonstrates complete ablation of targeted 

Müller glia near the retinal margin. 

Confocal z-stack series of Tg(gfap: EGFP)-labeled Müller glial processes from the level of the 

outer limiting membrane (OLM) to the cell body before (A) and 9 min after laser ablation (B).  

Multi-photon laser ablation targeted the radial process at a depth of 25-50 µm, between the 

OLM and the level of the cell body (~63 µm below the OLM in this example).  Three targeted 

Müller glial cell bodies and processes are indicated by asterisks.  (B) Multi-photon laser ablation 

targeting the radial glial process at a single z-level successfully destroyed the cell body and 

ascending processes of Müller glia (asterisks) and created a hole in the sheet of Müller glial 

processes at the level of OLM.  The surrounding Müller glia remained intact (magenta dots), 

except for one cell close to the cluster of three targeted cells, which disappeared after the 

ablation (rectangle).  The difference in the relative distance from OLM to the cell bodies of 

surviving Müller glia before and after ablation (-63 µm and -64.8 µm) is consistent with a 

previous report that radial processes of Müller glial in embryonic zebrafish retinas function like a 

spring, providing tension in the plane perpendicular to the apical surface (MacDonald et al., 

2015).  Scale bar: 5 µm (A, B). 

 

Figure 1 supplemental video.  3D-reconstruction of the peripheral retina and overlying retinal 

pigmented epithelium demonstrates the close apposition of these two epithelia at the retinal 

germinal zone. 

3D-reconstruction (maximum intensity z-projection) of the retinal margin in a flat-mount 

preparation of neural retina and overlying retinal pigmented epithelium, immunostained for 

ZO1 (green).  

 

Figure 2 supplemental video.  Live imaging of the photoreceptor mosaic emerging at the 

retinal margin in rapidly growing juvenile zebrafish. 

Confocal z-stack series of live imaging at the dorsal retinal margin in a double transgenic fish 

Tg(trβ2:tdTomato) in red and Tg(crx:mCFP) in cyan.  The crx promoter is expressed in all cone 

and rod photoreceptors.  The trb2: tdTomato+ proliferative retinal progenitors are randomly 
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distributed in the most peripheral region of the germinal zone (asterisks).  The first cone column 

(arrow) is composed of trb2: tdTomato+ Red cones alternately separated by profiles of one or 

three presumptive cones (white dots), as predicted by the organization of cone types in a 

column in the mature mosaic.  Differentiated cones develop apical projections, including 

conical-shaped outer segments that are strongly labeled by the crx:mCFP reporter.   

 

Figure 4 supplemental video.  Müller glial cell mitotic figure within the inner nuclear layer in 

the pre-column zone. 

3D-reconstruction (maximum intensity z-projection) of a mitotic Müller glia (arrowhead) labeled 

by the Tg(gfap:EGFP) reporter in a living fish.  Mitosis in this example occurs in the inner nuclear 

layer where Müller glial nuclei are normally positioned.  This is consistent with the generation of 

rod-committed precursors from asymmetric divisions of Müller glia in the zebrafish retina.  (See 

also Figure 4 supplemental figure 2B.)  

 

Figure 5 supplemental video 1.  Müller glial apical processes provide scaffolding for 

differentiating photoreceptor cells.   

3D-reconstruction (maximum intensity z-projection) of live imaging from a double transgenic 

fish, gfap:EGFP (green) and trβ2:tdTomato (red).  Müller glial processes extend laterally at the 

level of OLM to surround profiles of individual Red cones and other photoreceptors.  Processes 

of the early differentiating Müller glia near the germinal zone have not yet enwrapped cell 

bodies of photoreceptors below the OLM. 

 

Figure 5 supplemental video 2.  Red cones in the pre-column zone (magenta dots) and in the 

mature mosaic (white dots) are surrounded by Müller glial scaffolding. 

A higher magnification video of a portion of the field shown in Figure 5 supplemental video 1.  

Weak GFP signals of immature Müller glia first appear in the proliferative zone (toward the 

right).  The intensity of the GFP signal increases in differentiating Müller glia and their processes 

surround photoreceptors, including differentiating trβ2:tdTomato+ Red cones (magenta dots) at 

the level of the OLM.  Emergence of the hexagonal distribution of trβ2:tdTomato+ Red cones 

(white dots) is accompanied by morphological maturation of Müller glia. 

 



Figure C.1: Emergence of the photoreceptor mosaic in rapidly growing juvenile ze-
brafish. See manuscript caption page for details.
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Figure C.2: Spatial arrangement of cones is already patterned in the differentiating
pre-column zone. See manuscript caption page for details.

147



Figure C.3: Spatial patterning of cones precedes planar polarized Crumbs localiza-
tion. See manuscript caption page for details.
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trβ2+ trβ2- ratio trβ2+/trβ2-
Retina 1 72 302 4.19
Retina 2 62 344 5.55

Total 134 646 4.87

Figure C.4: Rod photoreceptors are incorporated into the cone mosaic as it emerges
from the proliferating zone. See manuscript caption page for details.
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Figure C.5: Parallel bands of Müller glial scaffolding appear simultaneously with
differentiating cones. See manuscript caption page for details.
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Figure C.6: N-cadherin is associated with actomyosin mechanical forces in differen-
tiating cones in the pre-column zone and with Müller glia inter-column bands in the
mature mosaic. See manuscript caption page for details.
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Figure C.7: Müller glia mediate anisotropic mechanical forces in the retinal epithe-
lium. See manuscript caption page for details.
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Figure C.8: A model for how the multiplex photoreceptor mosaic is patterned
by anisotropic tension, glial scaffolding, and planar polarized cell adhesion. See
manuscript caption page for details.
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Figure C.9: Figure 1 supplemental figure. See manuscript caption page for details.
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Figure C.10: Figure 2 supplemental figure. See manuscript caption page for details.
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Figure C.11: Figure 4 supplemental figure 1. See manuscript caption page for details.
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Figure C.12: Figure 4 supplemental figure 2. See manuscript caption page for details.
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Figure C.13: Figure 5 supplemental figure. See manuscript caption page for details.
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Figure C.14: Figure 7 supplemental figure. See manuscript caption page for details.
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