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The Use of Simulation to Reduce the Domain of “Black
Swans” with Application to Hurricane Impacts
to Power Systems

Christine L. Berner,1,∗ Andrea Staid,2 Roger Flage,1 and Seth D. Guikema3

Recently, the concept of black swans has gained increased attention in the fields of risk as-
sessment and risk management. Different types of black swans have been suggested, distin-
guishing between unknown unknowns (nothing in the past can convincingly point to its oc-
currence), unknown knowns (known to some, but not to relevant analysts), or known knowns
where the probability of occurrence is judged as negligible. Traditional risk assessments have
been questioned, as their standard probabilistic methods may not be capable of predicting or
even identifying these rare and extreme events, thus creating a source of possible black swans.
In this article, we show how a simulation model can be used to identify previously unknown
potentially extreme events that if not identified and treated could occur as black swans. We
show that by manipulating a verified and validated model used to predict the impacts of haz-
ards on a system of interest, we can identify hazard conditions not previously experienced
that could lead to impacts much larger than any previous level of impact. This makes these
potential black swan events known and allows risk managers to more fully consider them.
We demonstrate this method using a model developed to evaluate the effect of hurricanes on
energy systems in the United States; we identify hurricanes with potentially extreme impacts,
storms well beyond what the historic record suggests is possible in terms of impacts.
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1. INTRODUCTION

Surprising events with potential extreme conse-
quences represent a challenge in a risk assessment
setting. There is no doubt that they contribute to
the risk a system faces, but if we cannot identify
them, how can we then manage the risk that these
surprising events introduce? Several authors have
looked into the issue of surprising events with poten-
tially extreme impacts, and our article can be seen
as a contribution to this discussion.(1–5) The aim is
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to illustrate how simulations can be used to identify
events with potential extreme impacts (the so-called
black swans), and hence reduce the potential of be-
ing surprised by these events or their severity. In the
present article, risk is defined as the consequences of
the activity and associated uncertainties, which cor-
responds to definition (d) from the Society of Risk
Analysis.(6)

As an example, we use the impact of hurricanes
on the U.S. power system in terms of power out-
ages from a single storm. The maximum peak num-
ber of customers without power in any hurricane
in the United States was approximately 8–9 million
during Hurricane Sandy, which impacted the mid-
Atlantic coast in October 2012.(7,8) The impacts of
Sandy were severe, and events such as this lead to
a number of questions. How high could the total
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number of power outages reasonably be with phys-
ically plausible storms? Are there events that might
lead to far greater outage numbers that would chal-
lenge emergency response? We show how simula-
tions with a verified and validated hurricane per-
formance prediction model can be used to identify
extreme events, with impacts much larger than any
previous level of impact. The simulation model con-
sidered has been trained and validated with the use of
historical data.(9,10) In the present article, a hurricane
scenario refers to a particular combination of a hurri-
cane track and the peak wind speed of that hurricane.
The hurricane track includes the location where the
hurricane makes landfall and its trajectory across the
United States. By the term “simulations,” we mean
the process of altering different inputs and combina-
tions of inputs to estimate some output measure of
interest. We are searching for inputs that might result
in surprising outputs, and, in general, using models
in a creative manner to increase our understanding
of the modeled phenomena. In this article, simula-
tions are only considered useful as long as the mod-
els used are verified and validated, meaning that they
have been shown to provide good out-of-sample pre-
dictive accuracy.

The next subsection includes a short review of
the concepts of surprising events, black swans, and
perfect storms (which is another term often used to
describe similar events). Section 2.1 presents exist-
ing methods, while Section 2.2 explains how our ap-
proach can be used as part of some of the existing
methods, including why a simulation model might be
useful to identify scenarios with potential extreme
impacts. The subsequent section, Section 3, intro-
duces the theory behind the use of models to identify
extreme events. Section 4 presents the model that we
will utilize in this article and the results of the case
study. Before we conclude in Section 6, we present a
discussion of our main findings in Section 5.

1.1. Classifying Surprising Extreme Events
with Extreme Impact

Surprising events with extreme consequences are
often referred to as either black swans or perfect
storms. The distinction is not always clear, and might
depend on how the different terms are defined. It
is therefore important, in our opinion, to clarify the
meaning of these terms, making sure that we know
how they are related to our example and the use of a
simulation model. The term “black swan” was popu-
larized by Nasim Taleb in 2007,(1) when he published

a book drawing an analogy between the story of the
first discovery of a black swan and a surprising event.
In the prologue, he defines a “black swan” as an
event with the following three attributes:(1, p. xxii)

“First it is an outlier as it lies outside the realm of regu-
lar expectation, because nothing in the past can convinc-
ingly point to its possibility. Second, it carries an extreme
impact (unlike the bird). Third, in spite of its outlier sta-
tus, human nature makes us concoct explanations for its
occurrence after the fact, making it explainable and pre-
dictable.”

Taleb’s definition is not the only one of a “black
swan.” Aven(2) provides a discussion of a set of dif-
ferent definitions, where he concludes that “a black
swan has to be seen as a surprising extreme event rela-
tive to present knowledge/beliefs.”(2, p. 49) This defini-
tion is elaborated in Aven and Krohn,(3, p. 9) and they
divide black swans into three types:

(a) “Events that were completely unknown to the
scientific environment (unknown unknowns)

(b) Events that were not on the list of known
events from the perspective of those who car-
ried out a risk analysis (or another stake-
holder) (unknown knowns)

(c) Events on the list of known events in the risk
analysis but judged to have negligible proba-
bility of occurrence, and thus not believed to
occur.”

We have chosen to use the definition by Aven(2)

and the further subcategorizations of Aven and
Krohn,(3) as we acknowledge that a surprise is rel-
ative to someone’s knowledge and beliefs, and that
black swans are more than unknown unknowns. A
black swan is, as mentioned above, not the only anal-
ogy commonly used to describe a surprise. Some
might also refer to a surprising event with extreme
impacts as a “perfect storm.” Patè-Cornell(4) distin-
guishes between black swans and perfect storms by
referring to the different nature of the uncertainties
related to these events. According to Patè-Cornell,(4)

perfect storms can be seen as a conjunction of rare
but known events, involving mostly aleatory uncer-
tainty (randomness), while “black swans” are related
to lack of knowledge, i.e., epistemic uncertainty.

2. EXISTING METHODS USED TO IDENTIFY
EXTREME EVENTS WITH
LARGE IMPACTS

According to Taleb,(1) almost all significant his-
torical events, at the time of their occurrence, held
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the characteristics of a black swan. He uses the de-
velopment of the Internet, the market crash of 1987,
and the rise of Hitler and the subsequent war, as
events that were difficult to predict, but that have
had a large impact. It is not difficult to find more ex-
amples, and the importance of these events is clear.
It is therefore not surprising that there exist a num-
ber of methods that can be used as tools when try-
ing to identify and predict such events. The ap-
proach used in the present article has similarities to
stress testing, reverse stress testing, sensitivity anal-
ysis, and vulnerability analysis, but carries some dis-
tinctions. In the following, we offer a short explana-
tion of these methods and their relationship with our
approach.

Stress testing is an approach commonly used
in, for example, the nuclear and financial
industries.(11–14) In the nuclear industry, stress testing
has been implemented by the European Commission
to carry out “comprehensive risk and safety assess-
ments (‘stress tests’) of nuclear power plants in the
European Union and related activities.”(14, p. 1) In
the financial industry, stress tests are used to test how
banks perform if exposed to adverse economic devel-
opments. This is done to understand how resilient the
banks are, and whether or not they can deal with un-
expected extreme events.(13) In a stress test, the focus
is on the system (e.g., the bank) and its ability to with-
stand both known and unknown hazards/“stresses”
or scenarios. As pointed out by one of the reviewers
of this article, a stress test is essentially performed
by using a real-life system or a model and varying
the inputs far beyond what is normal or expected. In
our approach, the inputs are also varied, but they do
not have to go beyond what is normal or expected,
as we are looking for previously unseen combi-
nations of inputs that carry a surprising extreme
impact.

In reverse stress testing, the focus is on iden-
tifying ways in which failure of the system will re-
sult in a prespecified (typically negative and possibly
extreme) outcome. Compared to stress testing, as
the name implies, reverse stress testing works back-
ward. The first step is to specify a significant nega-
tive outcome, and the second step is to identify dif-
ferent events or combinations of events that can lead
to this outcome.(12) The main similarity between re-
verse stress testing and our approach is the focus on
severe, unwanted, and maybe also previously unex-
perienced combinations of events that together re-
sult in an extreme outcome. The difference is that our
approach searches for severe outcomes; i.e., a severe

outcome is the result of the analysis, not the starting
point.

Sensitivity analysis is commonly used in risk as-
sessment. According to Saltelli,(15, p. 579) sensitivity
analysis can be understood as “the study of how the
uncertainty in the output of a model (numerical or
otherwise) can be apportioned to different sources of
uncertainty in the model input.” This method differs
from our approach because the focus area is differ-
ent. We are not trying to identify the most sensitive
input parameter. We use the knowledge of the po-
tential variation in input parameters to see how this
might affect the model output. The aim is to create
an understanding of combinations of model inputs
(input parameters) that can create scenarios that we
have not previously experienced and do not currently
expect.

A vulnerability analysis, which in general “aims
at estimating the magnitude of the negative conse-
quences that arise given that a strain is imposed on
the system,”(16, p. 29) can be used to identify failures
with severe outcomes; see also Murray et al.(17) Ac-
cording to Haimes,(18 p. 293) “vulnerability is the man-
ifestation of the inherent states of the system that can
be exploited to adversely affect that system,” a defini-
tion similar to that of Johansson et al.(16) In these def-
initions of vulnerability, the focus is on the inherent
components of the system and, as noted by Johans-
son et al.,(16, p. 28) not “the environment in which the
system is situated.” In the present article, the system
considered is the U.S. power system, and the hurri-
cane scenarios are a combination of hurricane tracks
combined with different hurricane peak wind speeds.
The hurricane scenarios cannot be seen as an inher-
ent part of the (power) system, but as an external
hazard that potentially has an extreme impact on the
(power) system, and is therefore somewhat different
from a vulnerability analysis that focuses on the com-
ponents within the system. The following section will
explain how the use of a simulation model can be
used as a tool when searching for severe outcomes.

3. HOW CAN A SIMULATION MODEL
BE USED TO IDENTIFY EVENTS WITH
POTENTIAL EXTREME IMPACTS?

In the present article, we consider the use of
models only in situations where the model has been
verified and validated, as in Guikema et al.(9) and
Staid et al.(10) where repeated random holdout test-
ing was used to assess out- of-sample predictive ac-
curacy. The approach can formally be described as
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follows: the simulations will be performed using a
verified and validated model G with parameter X
used to predict the outcome of a quantity of in-
terest Z. We establish distributions Fi

∗ on the vec-
tor X = (X1, X2, . . . , Xn) of model parameters. We
then perform a large number m of (Monte Carlo)
samplings from these distributions, resulting in re-
alizations yj = (y1 j , y2 j , . . . , ynj ), j = 1, 2, . . . , m,
which are then plugged into the model to obtain pre-
dictions zj

∗ = G(yj ) of Z; we keep the realizations
that give us the worst predictions of Z. The sampled
yj then represents a potential future scenario that
might lead to an outcome of Z (predicted by G(yj )).
In these situations, the simulation model can be used
to create increased understanding related to inter-
actions between different phenomena and systems,
hence reducing the potential for surprises and black
swans.

Because black swans can be divided into three
types, as mentioned in Section 1.1, different ap-
proaches have to be used in order to deal with
them.(19,20) If simulations (done by the use of a simu-
lation model) are used to reduce the domain of black
swans, they have to address the three types of black
swans differently, as simulations might be useful in
different ways for different settings. Let us here con-
sider the use of simulation as a tool to reduce the do-
main of black swans types (a) through (c), in addition
to perfect storms.

First, how can a simulation model be used to
address or reduce the potential for surprises caused
by unknown unknowns? Intuitively, this seems chal-
lenging, as simulations require a model, and a model
is a representation of a known phenomenon. If the
phenomenon is known, how can a potential surpris-
ing event be seen as an unknown unknown? It seems
obvious that simulation models cannot be used to
identify new phenomena. However, they can still be
useful––if a simulation model and/or the simulations
that are carried out manage to raise questions, iden-
tifying a need for more research, where the follow-
ing research reveals a new phenomenon. For ex-
ample, today, data mining or data analytics is used
to create models and gather information from large
amounts of data. Some of these models reveal rela-
tionships between input variables and/or the output
that cannot be explained by today’s phenomenolog-
ical understandings. Occasionally, research on these
relationships identifies a new phenomenon that has
not previously been known. When this happens,
more knowledge is gained and the domain of po-
tential black swan events of type (a) caused by this

phenomenon can be seen as reduced. Black swans
type (a) have then, indirectly, been reduced by a sim-
ulation model.

For black swans of type (b), the unknown
knowns, simulation models might be even more use-
ful. Verified and validated models contain a lot of
knowledge. This knowledge can be of importance
when assessing risk, but if the model is treated like
a “black box” this knowledge might be ignored. The
knowledge is available (in the model), but is not
known to the risk analyst. If a surprising extreme
event takes place, it might be surprising because
the relevant analyst did not properly understand the
model. To avoid this, simulations can be used to cre-
ate an understanding of the relationship between the
input quantities and the predicted output. An exam-
ple is the use of simulations based on a (verified and
validated) model that is used to explain the move-
ments of an oil spill on the sea surface. When running
simulations with such a model, it is possible to create
a picture of how a coastline can be affected by an oil
spill. If the focus is on extreme impacts (which is a re-
quirement to be classified as a black swan), we might
use simulations to create a picture of where (and un-
der which weather conditions) an oil spill has to occur
in order to reach shore at a location where the impact
can be considered as particularly severe.

Black swans of type (c) refer to an event that
takes place even though the probability of its oc-
currence was judged as negligible. This probability
is to be understood as subjective and the assessor
might have assigned the probability based on weak
background knowledge. For simulation models to be
useful in this setting, they need to provide the an-
alyst with information that will change (increase)
the original probability of occurrence of this event.
For example, if the assigned probability is based on
weak knowledge, simulations can be used to increase
this knowledge, creating a better understanding of
conditions that might lead to that particular event.
In this setting, simulations provide information that
might increase the degree of belief related to the
occurrence of that specific event. If the probability
of an event is judged as extremely low or negligi-
ble, it means that the assessor has an extremely low
or negligible degree of belief related to the occur-
rence of this event. For simulationsto be useful to re-
duce the domain of black swans type (c), they have
to create an understanding and generate knowledge
that can strengthen the background knowledge of
the risk analyst (team) that assesses the (subjective)
probability.
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Simulation models can also be used to identify
potential perfect storms. Potential perfect storms can
be identified by altering the input quantities, picking
extreme rare values of the input variables to see how
these influence the output, like a sensitivity analysis.
The challenge here is to pick the combination of un-
likely (rare) input variables that will give an extreme
impact/outcome. We also need to make sure that the
combinations of input values actually are rare or un-
likely, meaning that the estimation of an input value
as unlikely/rare needs to be based on strong back-
ground knowledge. This means that the epistemic un-
certainty related to the frequentist probability of a
specific extreme input quantity has to be negligible.
We need to know how much and with what frequency
the input variable can vary. A simulation model can
then be very useful for understanding how combi-
nations might lead to extreme outputs. At the same
time, it is unlikely that anything will be done to re-
duce the domain of these events, as the probability
(relative frequency) of them occurring is extremely
low (according to the definition of perfect storm),
and the estimation of that probability (relative
frequency) is built on strong knowledge.

The present article will use an example from the
U.S. power system to show how a simulation model
can be used to uncover scenarios that were unknown
before the simulations were carried out. The example
that we will use utilizes a verified and validated sim-
ulation model for predicting power outages caused
by hurricanes in the United States; see Beck et al.,(7)

Han et al.,(21,22) Nateghi et al.,(23) Guikema et al.,(9)

and Quiring et al.(24) A power outage is defined as an
event where one or more customers lose power.(21,22)

The model is built on data from 12 previous hurri-
canes and uses factors such as gust wind speed, the
duration of winds above 20 m/s, and population den-
sity in a validated statistical model to predict power
outages. We will use simulations to identify potential
combinations of hurricane tracks and wind speeds
that have not been experienced yet and have poten-
tially extreme (surprising) consequences in terms of
power outages.

4. EXAMPLE: MODELING THE NUMBER
OF POWER OUTAGES CAUSED BY A
HURRICANE IN THE UNITED STATES

In order to get a good understanding of how a
simulation model might be useful, we performed a
case study. We wanted to see if a simulation model
can provide information or create scenarios that, if

they occur, would be considered a surprise. This does
not mean that we are trying to create the worst hur-
ricane scenario, with an extreme number of power
outages. Our focus is on surprises, e.g., finding sce-
narios where a relatively low wind speed results in a
surprisingly large number of power outages as well as
scenarios with extreme numbers of power outages.

4.1. How Does the Model Work?

The power outage forecasting model used in this
article is that of Guikema et al.(9) This model is the re-
sult of working with a large electric power utility for
a number of years to develop a power outage fore-
casting model for its service area(21–23) and then gen-
eralizing this model to be used in other locations.(9)

The model is a random forest, a form of an ensem-
ble statistical learning theory model, trained and val-
idated with past outage data. The model in the form
of Guikema et al.(9) takes as input 3-second gust wind
speed and the length of time for which wind speeds
were above 20 m/s estimated from a hurricane wind
field model, as well as population density, with all in-
puts being at the census-tract level. The wind field
model takes as input a forecast track and the central
pressure over time for a hurricane. The model pre-
dicts the number of people who will not have power,
again at the census-tract level, for the entire poten-
tially impacted area. A key aspect of the model de-
velopment is the validation testing of the model. In
developing the model, the authors used repeated ran-
dom holdout testing to examine many different types
of models and to choose the model that gave the best
out-of-sample predictive accuracy. This model pre-
dicts outages for a single hurricane given a forecast
track and intensity.

4.2. Simulation Method

The simulation model generates virtual tropi-
cal cyclones and estimates the power outages from
each one. Because of the built-in randomness in the
storm generation process, we run the simulation a
large number of times in order to identify the high-
impact storm scenarios (hurricane peak wind speed
and trajectory). We run the simulation for a set of ini-
tial wind speeds (defined as the maximum 1-minute
sustained wind of the storm) to evaluate the im-
pact of storms of different strengths. We evaluate the
impacts for storms with maximum intensity of 170
knots, 150 knots, 125 knots, 100 knots, 75 knots, 50
knots, and 34 knots, corresponding to 88 m/s, 77 m/s,
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64 m/s, 51 m/s, 39 m/s, 26 m/s, and 17 m/s, respec-
tively. The maximum peak wind speed of 170 knots
was chosen as this is close to the peak wind speed
experienced during Typhoon Haiyan in the Philip-
pines in 2013, arguably the strongest tropical cyclone
on record. The lowest peak wind speed of 34 knots
was used as we were interested in potential surprising
events, and a large number of power outages given
a peak wind speed of 34 knots would definitely be
seen as a surprise. To compare, the peak wind speed
(1-minute sustained) for Hurricane Katrina was ap-
proximately 150 knots, while Sandy had a peak wind
speed of approximately 100 knots.

The simulation structure is the same for each ini-
tial wind speed. For each iteration of the simulation,
we generate a virtual storm using the following steps.
First, we sample a starting location for the storm.
This can either be a landfall location along the U.S.
coastline or a point offshore but still within impact-
range of the U.S. coastline. We generate the move-
ment of the storm using a random forest statistical
model. This model is trained on data from historical
storm tracks in the same region of the coastline at
which the storm is located. This allows us to generate
storms that behave similarly, but are not identical, to
past tropical cyclones. In this way, we create storm
tracks that have not previously occurred, but that
still can be seen as realistic and within the realm of
possibility. As we generate each new track point for
the storm movement, we simultaneously keep track
of the 1-minute sustained wind speeds at each point
along the storm’s path. If the storm is over land, we
decay the wind speeds with each time step accord-
ing to the decay model of Kaplan and DeMaria.(25)

We continue to generate storm movement until the
wind speeds fall below the threshold for a tropical
depression.

The storm track and intensity (central pressure
over time) are then used as inputs to a wind field
model. This calculates the wind field along the
storm’s path for the entire area of impact. We
evaluate it at the census-tract level, and the wind
field estimates the 3-second gust wind speed and
the duration of wind speeds above 20 m/s for each
census tract within reach of the storm. These two
wind parameters, along with the population of each
census tract, are then used as inputs for the power
outage prediction model. For each storm, we predict
the fraction of the population expected to lose power
in each census tract.

In order to evaluate the results, the coastline was
divided into four impact zones. Storms behave differ-

Table I. Historical Hurricanes in Period from 1948 to 2012,
Divided by Zone

Location

Number of
Hurricanes from

1948 to 2012

Average
Number of

Hurricanes per
Year

Maximum Wind
Speed on Record

Zone 1 103 1.6 165 knots
(85 m/s) (Camille,

1969)
Zone 2 43 1.7 111 knots

(57 m/s) (Isabell,
1964)

Zone 3 57 0.9 128 knots
(66 m/s) (Andrew,

1992)
Zone 4 49 0.8 113 knots

(58 m/s) (Helene,
1958)

ently in the Gulf of Mexico and the North Atlantic,
for example, and the impacts have the potential to be
very different because of the locations of major cities,
areas of high population density, and storm move-
ment. Thus, we looked at each zone separately when
assessing the impact. The first zone stretches along
the Gulf of Mexico from the Texas-Mexico border to
the edge of the Florida peninsula. The second zone
covers the western side of the Florida peninsula. The
third zone covers the eastern side of Florida up to the
Florida-Georgia border. The fourth zone stretches
from Georgia to Maine, covering the rest of the U.S.
Atlantic coast. Table I gives an overview of the av-
erage annual number of historical hurricanes in each
of the different zones. The hurricanes simulated in
zones 3 and 4 were initiated both onshore and off-
shore, but still within impact range of the U.S. coast-
line. The hurricanes in zones 1 and 2 were initiated at
landfall (onshore) because in these zones, hurricanes
are unlikely to move parallel to the coast, staying off-
shore and causing damage.

For each wind speed evaluated, we simulated
a total of approximately 5,000 virtual storms for
hurricanes with onshore landfall locations and a total
of 20,000 virtual storms for the offshore locations;
see process 1 in Fig. 1. The difference is because we
found it more challenging to achieve convergence for
offshore tracks. This resulted in a different number
of hurricane scenarios in the different zones, as
shown in Table II. In addition, the tracks identified
as the “top 10” tracks in each zone were rerun
for all peak wind speeds; see processes 2 and 3 in
Fig. 1. The “top 10” tracks are the 10 hurricanes
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Fig. 1. Summarization of simulation methodology.
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Table II. Number of Simulations for Peak Wind 170 Knots and
150 Knots

Peak Wind Speed Zone Replications

170 knots/88 m/s 1 3,506
2 1,016
3 4,930
4 15,070

150 knots/77 m/s 1 3,529
2 1,004
3 4,848
4 15,152

with the highest related number of power outages
identified in process 1 in Fig. 1. This resulted in 60
additional storms for each peak wind speed, when
including the original “top 10” storms for each peak
wind speed; we refer to these as the “top 70” tracks
(10 tracks for each of the 7 peak wind speeds).

4.3. Simulation Results

The methodology described in Section 4.2 re-
sulted in an evaluation of 1,960 different hurricane
scenarios. These 1,960 hurricane scenarios include 70
tracks for each of the 7 peak wind speeds, in each of
the 4 zones (70 × 7 × 4 = 1960). Fig. 2 illustrates
a subset of tracks from these 1,960 hurricane scenar-
ios. The subset includes the tracks with the highest
predicted number of power outages (from process 1)
for a peak wind speed of 34 knots and 125 knots
(17 m/s and 64 m/s), with the different colors illustrat-
ing the different zones where the hurricanes make
landfall (colors visible in on-line version).

The maximum number of power outages was,
based on process 1, found for a hurricane in zone 4
with a peak wind speed of 150 knots (77 m/s), and
not 170 knots (88 m/s), which would have been ex-
pected. Consequently, we decided to run processes 2
and 3. The purpose was to see how an altered peak
wind speed would influence the predicted number of
power outages, given that the hurricane track was
kept constant. When we, in process 3, increased the
peak wind speed from 150 knots to 170 knots, keep-
ing the hurricane track constant, the predicted num-
ber of power outages increased from 51 million to
54 million power outages. This shows that while
stronger storms are estimated to have more outages,
as expected, at these high wind speeds, there is sig-
nificant sensitivity to the storm track.

Processes 2 and 3 resulted in additional hurri-
cane scenarios, created based on the “top 70” tracks.
However, the difference between the maximum pre-
dicted number of power outages found among the
“top 10” tracks from process 1 and the new “top 70”
tracks was small. This is not surprising, as the CDF
and convergence plots, presented in Figs. 3 and 4,
suggest that there are sufficient replications to reach
the tail of the different distributions. The maximum
number of power outages found for each peak wind
speed, from processes 1 to 3, is presented in Fig. 5.

For zone 2 (the west coast of Florida), we
can see, based on the CDF functions presented in
Fig. 3(b), that the maximum number of power out-
ages stabilizes for peak wind speeds of 100–125 knots
(51–64 m/s). This means that most people in this
area are without power when the peak wind speed
reaches approximately 100–125 knots. The same sta-
bilizing trend can be seen for zone 4; this is also sup-
ported by the CDF and convergence plots presented
in Fig. 3(d) and Fig. 4(d). For the hurricanes mak-
ing landfall in zone 1 (the Gulf of Mexico) and in
zone 3 (the east coast of Florida), the peak wind
speed and the number of power outages appear to
have a more linear relationship. For zone 1, how-
ever, there seems to be some stabilization after the
peak wind speed reaches 150 knots (77 m/s). Fig. 6
shows the two hurricanes from zone 1 with the same
track but with different peak wind speeds. The hurri-
cane presented in Fig. 6(a) has a peak wind speed of
170 knots (88 m/s) and an estimated number of
power outages of 10.9 million. Fig. 6(b) shows the
same hurricane track, but with a peak wind speed of
150 knots (77 m/s). The related number of power
outages is 10.5 million, which is not very different
from the predicted number of outages related to
the same track but with an increased wind speed
(170 knots). The hurricane tracks related to the high-
est number of power outages in zone 3 (generated by
process 1) can be seen in Appendix A.

The highest numbers of power outages are,
not surprisingly, related to the strongest peak wind
speeds, and occur in the highest populated areas
(zone 4). Fig. 7(a) shows the hurricane scenario with
the largest number of power outages, 54 million.
This hurricane scenario has a peak wind speed of
170 knots (88 m/s) and occurs in zone 4 (the East
Coast of the United States north of Florida). When
the peak wind speed of the hurricane presented in
Fig. 7(b) is reduced to 150 knots (77 m/s), the related
number of power outages is 3 million less than that
of the hurricane presented in Fig. 7(a). The gradient
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Fig. 2. (a) Top 10 tracks in each zone with maximum peak wind speed of 34 knots (17 m/s) and (b) top 10 tracks in each zone with maximum
peak wind speed of 125 knots (64 m/s).

range from red to light yellow indicates the gradual
decrease from a high to low fraction of power out-
ages. Red illustrates that approximately 100% of the
population has lost power.

Fig. 8 illustrates the probability related to the dif-
ferent predicted number of power outages given a
hurricane scenario with a specific peak wind speed
making landfall in a specific zone. Fig. 8 shows the
tail of the cumulative distribution for the number of
power outages given four different scenarios. These
four scenarios are considered as surprising either be-
cause the total number of power outages is extremely
large, or because the total number of power outages
is surprisingly large given a relatively weak hurri-
cane. We can see that the tails of these cumulative
distribution functions are heavier than what is typi-
cally seen in F-N curves, meaning that there is not a
very rapid decrease in probability when the number
of power outages increases. Qualitatively, this sug-
gests that it would be easy to understate the proba-
bility of the very bad outcomes without a model to
estimate their conditional likelihood.

4.4. Interpretation and Discussion of Results

The highest number of power outages predicted
for any of the hurricane scenarios generated was
54 million; see Fig. 7(a). This is more than five times
the highest number of power outages ever recorded
in the United States during Hurricane Sandy. Hur-
ricane Sandy had a severe impact, but even though
the peak wind speed of 100 knots (51 m/s) was
high, it is not extreme. Some might therefore have
been surprised by the impact caused by this hur-
ricane. According to our results, a hurricane with
the same peak wind speed as Hurricane Sandy mak-
ing landfall in zones 3 or 4 could potentially lead
to an even higher number of power outages. Our
simulations identify a scenario with approximately

35 million power outages in zone 4 for a storm
with 100 knots (51 m/s) wind speed. The red line in
Fig. 5 indicates the number of power outages from
Hurricane Sandy.

With the red line in Fig. 5 as a reference, our sim-
ulations show that 10 million power outages are pos-
sible for all wind speeds in zone 4, except 34 knots
(17 m/s). That a peak wind speed of 50 knots (26 m/s)
potentially results in approximately 10 million power
outages is a surprising result. This wind speed is sub-
stantially weaker than for Hurricane Sandy. Accord-
ing to the Saffir-Simpson Hurricane Wind Scale, this
is not even a hurricane category 1 (NOAA).(27) The
National Weather Service Forecast Office(28) writes
that a category 1 hurricane has:

Winds 74–95 mph (64-82 kt or 119–153 km/hr). Storm
surge generally 4–5 ft above normal. No real damage
to building structures. Damage primarily to unanchored
mobile homes, shrubbery, and trees. Some damage to
poorly constructed signs. Also, some coastal road flood-
ing and minor pier damage.

That a hurricane scenario with a maximum wind
speed less than a hurricane category 1 potentially
can result in 10 million power outages is arguably
even more surprising than the 54 million power out-
ages related to the scenarios where the maximum
wind speed is 170 knots (88 m/s). As mentioned in
the above section, for each peak wind speed, we
kept the 10 scenarios with the highest number of re-
lated power outages. For the scenarios with a peak
wind speed of 50 knots (26 m/s), the related num-
ber of power outages, from process ranged from
8.2 million to 10.6 million in zone 4. This illustrates
the deviation between the different tracks that a hur-
ricane might have, all with a severe impact. The aim
of our simulations has been to provide an overview
of potential future hurricane scenarios that could
be considered surprising. These hurricane scenarios
clearly demonstrate that it is not only extreme and
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Fig. 3. (a) CDF for all peak wind speeds in zone 1, (b) CDF for all peak wind speeds in zone 2, (c) CDF for all peak wind speeds in zone 3,
and (d) CDF for all peak wind speeds in zone 4.

unlikely wind speeds that potentially result in large
number of power outages. Furthermore, this knowl-
edge might be relevant when considering the need
for upgrades of the power system.

For the highest peak wind speeds, we can see
that how the hurricane moves, where it makes land-
fall, and its trajectory have the largest influence on
the predicted number of power outages, not the peak
wind speed. This is especially relevant in zones 2 and
4 (and to some degree zone 1), where we can see

that the maximum number of power outages seems
to stabilize when the peak wind speed is around 125–
150 knots (64–77 m/s); see Figs. 3 and 4. For zone
4, we can see that the CDF functions for peak wind
speeds above 125 knots (64 m/s) are very similar,
which will be further addressed in Section 5.3. For
zone 3, we can see a more linear relationship be-
tween an increase in peak wind speed and the re-
lated number of power outages. A possible expla-
nation is the trajectory of the hurricanes in zone 3.
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Fig. 4. (a) Convergence plot for zone 1, (b) convergence plot for zone 2, (c) convergence plot for zone 3, and (d) convergence plot for
zone 4.

As the wind speed in this zone increases, the
hurricane reaches further inland, increasing the im-
pacted area of these hurricanes. In zone 4, on the
other hand, most damage is caused if the hurricane
follows the east coast, and an increase in wind speed
will not lead the hurricane further inland or cover
(much) more of the coast. If the hurricane should
change direction and move further inland, it will
not necessarily increase the number of power out-

ages, as the highest population density is close to the
coast.

Prior to our simulations, most people would
likely have expected that the largest number of
power outages would be related to a hurricane mov-
ing along the east coast of the United States because
this is the highest population density area. That a
strong hurricane hitting the east coast of the United
States potentially leads to large numbers of power
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Fig. 5. Maximum number of power out-
ages for each peak wind speed, compared
with Hurricane Sandy.

Fig. 6. (a) Fraction of people without power in zone 1 for the worst storm found for 170 knots (88 m/s) wind speed. The predicted number
of power outages is 10.9 million. (b) Fraction of people without power in zone 1 for the worst storm found for 150 knots (77 m/s) wind speed.
The predicted number of power outages is 10.5 million.

outages has been highlighted in other studies also.
The National Infrastructure Simulation and Analysis
Center(28) has performed a study looking at the im-
pact of a category 3 hurricane in the New England
area. It has used a maximum wind speed of
49 m/s (110 mph), and predicted that 21.5 million
people could lose power if the simulated hurricane
should occur.(28)

This is close to the present simulations that run
with a peak wind speed of 100 knots (51 m/s). Fig.
9 presents the fraction of people without power for
two different hurricane scenarios that are quantita-
tively similar to the NISAC scenario, with a peak
wind speed of 100 knots. As we can see, our hurri-
cane scenarios include a larger impacted area, and
the related number of power outages is 36 million
(Fig. 9(a)) or 30 million (Fig. 9(b)). Both of these

scenarios provide a higher prediction than NISAC,
which makes sense as the impact area considered is
larger. However, both studies produce results where
the potential number of outages is higher than previ-
ously experienced. The study performed by NISAC
can also be seen as an argument of why extreme num-
bers of power outages might not be a surprise at least
for the scientific community, after they have seen the
results of simulated storms.

The results from the present simulations show a
substantial gap between the number of power out-
ages experienced in the United States and the iden-
tified potential. We argue that this is an important
finding, as this information can be used to evalu-
ate the need for measures to potentially reduce the
number of power outages caused by strong winds
as well as measures to respond to much larger loss
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Fig. 7. (a) Fraction of people without power in zone 4 for the worst storm found for 170 knots (88 m/s) wind speed. The predicted
number of power outages is 54.7 million. (b) Fraction of people without power in zone 4 for the worst storm found for 150 knots
(77 m/s) wind speed. The predicted number of power outages is 52.7 million.

of power events than previously experienced. These
measures can be implemented in the days before a
hurricane hits. These simulation results can also pro-
vide guidance to support longer-term system harden-
ing planning.

Evaluating risk reducing measures is, however,
challenging without addressing the likelihood of the
different hurricane scenarios. Table I provides an
overview of the number and strength of historical
hurricanes registered between 1948 and 2012. We can
see that most hurricanes make landfall in zone 1. For
zone 4, where our simulations lead to the highest
number of power outages, the number of storms is
approximately half of what is seen in zone 1. During
the 64 years from 1948 to 2012, there was an aver-
age of 0.77 storms each year in zone 4. If we assume
that the occurrence and strength of the historical
hurricanes is representative for the future hurricanes
in the United States, we can say that it is likely that
we will experience a hurricane in this area during
the next couple of years. However, the relevance
of these historical data is debated.(10) This discus-
sion is influenced by the potential impact that cli-
mate warming might have on future hurricane sce-
narios, with regard to location, intensity, and the
number of expected hurricanes per year (frequency).
According to Staid et al.,(10) researchers seem to
agree that the hurricanes will intensify, while changes
in both the location and frequency are seen as more
uncertain. Predicting these parameters is therefore
challenging, especially when considering potential
hurricane scenarios 20 years from now. When mak-
ing predictions related to next year’s hurricane sce-
narios, it is easier to consider historical data as

relevant and the uncertainty related to the inten-
sity, fraction, and location of next year’s hurricanes
can be considered as low. However, in order to
perform long-term planning and evaluate different
measures that can improve the U.S. power system,
long-term predictions are necessary. The lack of
knowledge related to the future hurricane scenarios
(epistemic uncertainty, due to potential future con-
sequences of climate change) reduces the relevance
of the historic hurricane fraction, location, and inten-
sity. This uncertainty is important to keep in mind
when discussing potential future hurricane scenarios
and evaluating the need for risk reducing measures.

5. DISCUSSION OF SIMULATION RESULTS
IN A RISK ANALYSIS CONTEXT

The simulations presented in Section 4 were car-
ried out to get a better understanding of whether and,
if so, how a simulation model can be used to reduce
the domain of surprising extreme events. For the hur-
ricane example used in this article, the phenomenon
is to a large degree known. There is strong knowledge
related to how hurricanes affect the power system.
The uncertainties related to the number of power
outages given a specific hurricane scenario are mostly
caused by random variation (randomness). That is, if
the detailed hurricane scenario (hurricane track and
peak wind speed) is known, the related number of
power outages can be considered as subject to ran-
dom variation. However, our outage model is fully
deterministic given the full set of model inputs. The
randomness in outages is randomness in what is real-
ized in practice for a given hurricane. There is strong
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Fig. 8. Tail of cumulative distribution function for number of power outages, X, for four different scenarios.

Fig. 9. (a) Fraction without power, given
a hurricane with a peak wind speed of
100 knots (51 m/s). Predicted number of
power outages is approximately 36 mil-
lion. (b) Fraction without power, given
a hurricane with a peak wind speed of
100 knots (51 m/s). Predicted number of
power outages is approximately 30 mil-
lion.
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knowledge related to the number of power outages
given a specific hurricane scenario (a relationship
modeled by the power outages model). However,
there is lack of knowledge related to the future hur-
ricane scenarios, especially their future tracks and in-
tensity. We do not know the details of how hurricane
frequency, intensity, and landfall location will change
in response to climate change.(10) This uncertainty
is epistemic. In addition, the model is built on his-
torical data and there is epistemic uncertainty re-
lated to whether or not the model will be repre-
sentative for the future. For example, one source of
epistemic uncertainty is related to the population:
Will large groups of the population move, so that
there are more (less) people living in other areas
than assumed in the model? Also, if major revisions
and updates are done on the power system, this can
influence the prediction accuracy of the model used,
and is not accounted for in the simulations performed
in the present article. Uncertainties related to future
hurricane scenarios therefore include both aleatory
and epistemic uncertainty. This is in accordance with
Patè-Cornell’s(4) observation; in real-life situations,
most surprises occur when we have a combination
of both aleatory and epistemic uncertainty. Mak-
ing a clear distinction between “perfect storms” and
“black swans” in real life is therefore, in our opin-
ion, difficult. By elimination, we can conclude that,
as future hurricane scenarios are influenced by more
than aleatory uncertainty, they cannot be addressed
as perfect storms. We are therefore considering black
swans as the most appropriate term in this article.

5.1. Reducing the Domain of Black Swans
and Perfect Storms

Section 3 presented a set of arguments related to
what a simulation model and its simulations would
have to provide in order to reduce the domain of
different types of black swans. Based on our simu-
lations, we see that the simulation model is useful
in different ways in order to reduce the domain of
black swans. However, in some situations, they are
more useful than others. In the following, we will
use the hurricane example to see how these simu-
lations have provided information that can be used
to reduce the domain of the different types of black
swans. Our thinking follows the same lines as Kaplan
and Garrick,(29, p. 12) namely, that “[i]f we know there
is a hole in the road around the corner, it poses less
risk to us than if we zip around not knowing about it.”
Their argument being that awareness on its own can

be enough to reduce risk. However, we believe that
the information (knowledge) has to be used in order
to reduce risk. In our situation that means that the
information has to be used either to reduce the prob-
ability of a hurricane occurring (not generally possi-
ble), or the impact should a hurricane occur. We ar-
gue that our simulations provide information that can
be used to emphasize the importance of investing in
measures that can be used to reduce the impact of a
hurricane.

The main advantages of the simulations are,
in our opinion, related to black swans of types
(b) and (c). Distinguishing between (b) and (c) is
challenging as it depends on the original belief of the
different stakeholders (utility companies, politicians,
laypeople, etc.). Let us consider two groups of
relevant stakeholders that are asked to assign a
probability to the event, “a hurricane result in more
than 30 million power outages.” Some do not even
consider the event that an hurricane might result in
more than 30 million power outages; let us call them
group 1. The other group thinks that it can happen,
but that the probability of its occurrence is so low that
it can be ignored, group 2. If a hurricane resulting in
more than 30 million power outages occurs, it will,
for both groups 1 and 2, be seen as a surprise with
extreme consequences––a black swan. For group 1,
it was a black swan type (b), while for group 2 it was
a black swan type (c). The aim of our simulations
has been to provide information that can change
the original belief of these groups by illustrating the
possibility for extreme number of power outages.

One of the reviewers of an earlier version of the
present article wanted to know if our results could
actually be seen as surprising should they occur. To
respond to this question, we sent an informal email
to a set of relevant stakeholders to create an un-
derstanding of their perceptions related to potential
hurricane scenarios. These individuals included both
leading experts on hurricane-induced power outages
and members of the general public. None of them
had seen the result of this article. The question raised
was: “What would a particularly bad hurricane look
like in the US in terms of number of outages?” We
got a range of different answers, but the similarity
between them was that they were far from the sce-
narios that we have identified. The highest number
suggested was 30 million, and that was suggested as a
“worst case scenario.”

Our results indicate that there is a potential for
hurricanes with almost two times as many power
outages as predicted by the experts, and more than
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five times the number of power outages experienced
during Hurricane Sandy. Even for relatively low
peak wind speeds (50 knots [26 m/s]), a hurricane
moving along the East Coast (north of Florida) can
result in more power outages than Hurricane Sandy.
This is the information that will influence the origi-
nal beliefs in groups 1 and 2 (and also those reply-
ing to our informal survey). For group 1, this knowl-
edge means that a larger number of power outages
need to be considered, and included in the risk as-
sessment. Group 2 can use this insight to reevaluate
the probability of experiencing more power outages
than seen so far, potentially concluding that the event
can no longer be ignored due to negligible probabil-
ity. That way, the risk analysts (and relevant stake-
holders) in groups 1 and 2 will not be that surprised
if a hurricane results in more than 30 million power
outages. This insight should be used to evaluate the
need for risk reducing measures,(30) and potentially
reduces the domain of black swans types (b) or/
and (c).

For black swans of type (a), it is more challenging
to see how our simulations can be useful. However,
they are not completely irrelevant for black swans
type (a), and in our example we can see that the sim-
ulations identify a question: “Why does the number
of power outages stabilize when the peak wind speed
reaches 125 knots (64 m/s) in zones 2 and 4 and not
in Zone 3?” Investigating questions like this can re-
veal new information (or potential areas for model
improvements). For our example, this is relatively
unlikely, but in general, simulations can raise inter-
esting and important questions that can be used to
direct and prioritize research. In this way, research
can generate new knowledge and identify new phe-
nomenon, potentially reducing the domain of black
swans type (a).

5.2. Benefits and Challenges when Using Simulation
Models to Identify Potentially
Surprising Scenarios

Simulations can provide useful insight when
evaluating the costs related to the implementation
of risk reducing measures. For the situation consid-
ered in this article, the simulations provide insight
that should be used when considering the future costs
of power outages in the United States. These costs
are relevant inputs when evaluating the need for up-
graded power systems. A report from the Economic
Development Research Group(31) argues that the
best way to estimate the magnitude of future costs

(caused by power outages) is to consider the scale
of historical costs. When only considering historical
costs, a tacit assumption is made; namely, that the his-
torical cost related to power outages is representative
for the future. This assumption ignores important
uncertainties related to future costs as our simula-
tions show that there is a potential for (significantly)
higher numbers of power outages than seen so far.
In addition, some researchers argue that climate
change will influence future hurricanes. However,
the effect of climate change on future hurricanes
is not that clear.(10) Updates to the power system
can be considered as a risk reducing measure, where
the aim is to reduce the number or/and duration
of power outages. In addition, simulation models
are useful when performing emergency planning and
preparation. How can and should we prepare for ex-
treme hurricane scenarios? What can be done in or-
der to reduce the consequences as much as possi-
ble? These questions are important, and very diffi-
cult to answer without insight about potential future
hurricane scenarios and their severity. Insights about
potential future scenarios are also valuable during
design. In this phase, simulations can create useful
inputs when evaluating the need for robust and/or
resilient solutions.

Another benefit of using simulations is related to
early warning signals. Simulations do not directly cre-
ate early warning signals, but simulations can iden-
tify extreme impact scenarios. Knowing what these
scenarios look like can be used to recognize rele-
vant information, signals, and interactions quicker
than if these scenarios were unknown.(32) Van der
Merwe(32, p. xxi) illustrates how scenario thinking can
create awareness by referring to last time you pur-
chased a car; “What did you notice when you drove
your [new] car onto the streets? You probably no-
ticed how many people were driving the same car!”
This makes it seem like there were many more of
these cars than before your purchase. This is a good
example of how background knowledge influences
the details or signals to which attention is given. Be-
fore buying a new car, that car did not have any
special meaning; there was no reason to look for
a car of that particular type. By the use of sim-
ulations, we can create awareness related to po-
tential future scenarios, making it easier to know
what to look for and recognize the early warning
signals.

The challenges related to the use of simulations
are to a large degree dependent on the verification
and validation of the simulation model used and
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relevance of the data that the model is based on.
Simulations based on a model that cannot be justi-
fied can create scenarios that are not only imprecise,
but also misleading. The importance of using a veri-
fied and validated model cannot be underestimated.
In addition, simulations might in some situations be
very resource demanding.

6. CONCLUSIONS

In the present article, we have seen how simula-
tions, through increased insight, can reduce the do-
main of black swans. Here, we concluded that the
use of simulations was most useful when reducing
the domain of black swans of types (b) and (c), the
unknown knowns and the known events where the
probability is judged as negligible. For black swans
type (a), the unknown unknowns, we concluded that
it was difficult to see how simulations directly could
be used to identify new phenomenon, which would
have been necessary to reduce the domain of black
swans caused by an unknown phenomena. However,
we argue that, in some situations, simulations can be
used to identify areas where more research poten-
tially leads to understanding and identification of a
new phenomenon, creating new knowledge that indi-
rectly might reduce the domain of the unknown un-
knowns.

By using a simulation model to predict the po-
tential future number of power outages, we have in-
creased the understanding of the potential impact a
hurricane might have on the U.S. power system. We
have seen that the number of power outages experi-
enced so far (in the United States) is low compared
to the potential, and that relatively low peak wind
speeds can result in large number of power outages.
The most surprising simulation result is related to a
relatively weak hurricane with a track along the east
coast of the United States (north of Florida). The
1-minute maximum wind speed is 26 m/s and
the predicted number of power outages is above
10 million, larger than previously experienced any-
where in the United States. The largest predicted
number of power outages is also related to a hurri-
cane with a track along the east coast of the United
States, with a maximum wind speed of 77 m/s. The
predicted number of 54 million power outages is five
times higher than the highest experienced number of
power outages in the United States. This is important
information that should be included when evaluating
the need for risk reducing measures.
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the online version of this article at the publisher’s
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Figure A.1 Simulated hurricane track with peak wind
speed of 150 knots (77 m/s), zone 1. Related number
of power outages is 9.2 million.
Figure A.2 Simulated hurricane track with peak wind
speed of 125 knots (64 m/s), zone 1. Related number
of power outages is 7.4 million.
Figure A.3 Simulated hurricane track with peak wind
speed of 100 knots (51 m/s), zone 1. Related number
of power outages is 6.0 million.
Figure A.4 Simulated hurricane track with peak wind
speed of 170 knots (88 m/s), zone 3. Related number
of power outages is 22.5 million.
Figure A.5 Simulated hurricane track with peak wind
speed of 150 knots (77 m/s), zone 3. Related number
of power outages is 20.2 million.
Figure A.6 Simulated hurricane track with peak wind
speed of 125 knots (64 m/s), zone 3. Related number
of power outages is 16.3 million.
Figure A.7 Simulated hurricane track with peak wind
speed of 100 knots (51 m/s), zone 3. Related number
of power outages is 13.3 million.
Figure A.8 Simulated hurricane track with peak wind
speed of 50 knots (26 m/s), zone 4. Related number
of power outages is 10.6 million.
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Figure A.9 Simulated hurricane track with peak wind
speed of 170 knots (88 m/s), zone 2. Predicted num-
ber of power outages is 9.7 million.
Figure A.10 Simulated hurricane track with peak
wind speed of 150 knots (77 m/s), zone 2. Predicted
number of power outages is 9.5 million.

Figure A.11 Simulated hurricane track with peak
wind speed of 125 knots (64 m/s), zone 2. Predicted
number of power outages is 9.5 million.
Figure A.12 Simulated hurricane track with peak
wind speed of 100 knots (51 m/s), zone 2. Predicted
number of power outages is 8.5 million.


