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Abstract
Indoor releases of organic chemicals encapsulated in solid materials are major con-
tributors to human exposures and are directly related to the internal diffusion coeffi-
cient in solid materials. Existing correlations to estimate the diffusion coefficient are 
only valid for a limited number of chemical-material combinations. This paper devel-
ops and evaluates a quantitative property-property relationship (QPPR) to predict dif-
fusion coefficients for a wide range of organic chemicals and materials. We first 
compiled a training dataset of 1103 measured diffusion coefficients for 158 chemicals 
in 32 consolidated material types. Following a detailed analysis of the temperature 
influence, we developed a multiple linear regression model to predict diffusion coef-
ficients as a function of chemical molecular weight (MW), temperature, and material 
type (adjusted R2 of .93). The internal validations showed the model to be robust, 
stable and not a result of chance correlation. The external validation against two sepa-
rate prediction datasets demonstrated the model has good predicting ability within its 
applicability domain (R2

ext
>.8), namely MW between 30 and 1178 g/mol and tempera-

ture between 4 and 180°C. By covering a much wider range of organic chemicals and 
materials, this QPPR facilitates high-throughput estimates of human exposures for 
chemicals encapsulated in solid materials.
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1  | INTRODUCTION

Chemicals encapsulated in solid materials have been identified as a 
major source of passive emissions to indoor air1-3 and of transfers into 
food4 and onto skin.5 Typical examples include chemicals used as flame 
retardants in furniture and plasticizers in food contact materials (FCMs). 
To estimate the release of these chemicals from solid materials, and 
eventually consumer exposures, the diffusion coefficient, D (m2/s), for 
chemicals encapsulated in solid materials, is essential information. D de-
scribes the transport of a molecule through a material, which is specific 
for a chemical-material combination and is also influenced by ambi-
ent temperature. Experimental techniques such as chamber tests for 
building materials,6,7 and sorption/desorption experiments for polymer 

materials8-10 have enabled measurement of a limited number of chemi-
cal diffusion coefficients for building materials such as vinyl flooring, 
gypsum board, particle board, plywood, carpet, and cement,11-14 as 
well as polymer materials including polyethylene (PE), polystyrene (PS), 
polypropylene (PP), and polyvinyl chloride (PVC).4,15,16 However, given 
the limited number of chemical-material combinations with measured 
Ds, and the costly and time-consuming nature of experiments, quanti-
tative relationships are needed to complement existing measurements 
by predicting the diffusion coefficients from known physiochemical 
properties for chemicals without experimental data. This is especially 
important for high-throughput approaches where a large number of 
chemical-material combinations need to be evaluated and for which it 
is unrealistic to perform experiments on all relevant combinations.
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Several correlation methods have been developed to estimate 
the diffusion coefficients from physicochemical properties of chem-
icals.8,12,17-19 For example, Berens and Hopfenberg8 correlated the D 
to the mean molecular diameter of the diffusing molecule, using data 
on more than 20 chemicals in three glassy materials including PVC, 
PS, and polymethyl methacrylate (PMMA). Zhao et al. 19found a cor-
relation between D and vapor pressure for water and eight aromatic 
hydrocarbons in polyurethane foam (PUF). Furthermore, both Bodalal 
et al. 12 and Cox et al. 18 estimated the D as a function of molecular 
weight. The former study considered measured D data on five aro-
matics and five aldehydes in several building materials,12 while the 
latter study considered data on four alkanes in vinyl flooring.18 For 
each of these aforementioned approaches, the main limitation is that 
the correlations are specific to certain chemical classes and materials, 
for example, aldehydes in plywood, which limits their application for 
other materials and chemical classes. Addressing this research gap to 
facilitate wider applicability, Guo17 developed a method which esti-
mates the diffusion coefficient as a function of the chemical’s molar 
volume for mixed chemical classes. However, this approach is limited 
to six building materials and is developed based on a small dataset of 
limited chemical classes (≤3 chemical classes for five of the six building 
materials).

The aforementioned correlation methods consider experiments 
for building materials at room temperature, and therefore, tem-
perature is not relevant and thus not considered in the correlation 
model. For other exposure scenarios, such as transfer of chemicals 
from FCMs into food, ambient temperature is highly relevant because 
FCMs can be heated, refrigerated, or frozen. Accordingly, Begley 
et al.4 presented a correlation method to estimate the diffusion co-
efficient in nine polymer materials as a function of molecular weight 
and temperature, which is not applicable beyond the considered 
polymers.

In all, the currently available correlation methods to estimate D 
do not provide sufficient coverage of chemicals encapsulated in con-
sumer products in different use scenarios (ie, ambient temperatures). 
Developing low-tier, high-throughput methods to estimate expo-
sure to chemical in consumer products across a variety of chemical-
material combinations is a recent focus in various science-policy fields 
such as computational exposure science and life cycle assessment 
(LCA).20-25 Addressing the lack of methods to estimate D for a variety 
of chemical-product scenarios, this study aims to develop a more com-
prehensive correlation method to estimate D for wide range of organic 
compounds in multiple solid materials. More specifically, we aim to:

•	 carry out a comprehensive and extensive literature review to collect 
experimental diffusion coefficient data on a wide range of materials 
and chemicals.

•	 use multiple linear regression (MLR) techniques to establish the re-
lationship between the diffusion coefficient and various predictor 
variables including physiochemical properties, material properties, 
and environmental characteristics.

•	 perform internal and external validations to characterize the validity 
and predictive power of the developed correlation.

As the material type is a categorical property variable and is not 
related to the chemical’s molecular structure, we call this correlation a 
quantitative property-property relationship (QPPR) instead of a quan-
titative structure-activity relationship (QSAR). This QPPR provides a 
more advanced correlation method to estimate the diffusion coeffi-
cients of organic compounds compared to previous studies, as it cov-
ers a wide range of solid materials and physiochemical properties, and 
also considers the effect of temperature. By providing reliable esti-
mates of this key diffusion parameter for a large number of chemicals, 
this method will facilitate high-throughput assessments of chemical 
emissions and human exposures for chemicals encapsulated in solid 
materials relevant for chemical alternatives assessment (CAA), risk as-
sessment, and LCA.

2  | MATERIALS AND METHODS

2.1 | Dataset

Experimental diffusion coefficient data were compiled from 68 refer-
ences from the peer-reviewed scientific literature. The initial dataset 
contained a total of 1124 records covering 161 unique chemicals and 
88 distinct solid materials (provided in Appendix S2). Experimental 
data expressed in cm2/s were converted to m2/s. There are different 
types of diffusion coefficients reported in the literature, so harmoni-
zation of these data was performed to develop a consistent dataset. 
For diffusion coefficients measured in liquid sorption experiments, 
the “intrinsic” diffusion coefficients, corrected for the swelling of ma-
terials, were collected.10 Sorption of the liquid molecules inside the 
solid material may cause swelling of the material, which would lead 
to decreased observed diffusion coefficients and thus need to be 
corrected.10 For porous materials consisting of pore space and solid 
material, two types of models can be used to describe the chemical 
transport through these materials. The one-phase model considers 
the porous material as an assumed homogeneously mixed material, 
so an “apparent” diffusion coefficient is used to describe the chemical 
diffusion through such imaginary material.7 In contrast, the multiphase 
model considers the material as a mixture of pores and solid parts, 
and the chemical diffuses mainly through the pores if the pores are 

Practical Implications
•	 The quantitative property-property relationship devel-

oped by this study provides a more comprehensive corre-
lation method to estimate the diffusion coefficients, as it 
covers a wide range of organic chemicals and solid materi-
als, and also considers the effect of temperature. This 
model provides the basis for facilitating high-throughput 
estimates of indoor human exposures for chemicals encap-
sulated in solid materials relevant for several science-pol-
icy fields, such as chemical alternatives assessment (CAA), 
risk assessment (RA), and life cycle assessment (LCA).
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interconnected, or through the pores and solid parts alternately if the 
pores are isolated from each other. The gas-phase diffusion through 
the pores, which can be described by an “effective” diffusion coef-
ficient, is assumed to be much faster than the diffusion through the 
solid parts.7 Haghighat et al.,7 has demonstrated that the “apparent” 
diffusion coefficient is equivalent to the “effective” diffusion coeffi-
cient (De) divided by the material phase-gas phase partition coefficient 
(Kma). Thus, for porous materials the “apparent” diffusion coefficients 
reported in studies were collected.26 For studies where only the De 
and Kma were reported,27-29 they were converted to “apparent” dif-
fusion coefficients using the aforementioned method. Data were 
excluded for studies where only the “effective” diffusion coefficients 
were reported.

From the initial dataset, 21 records were excluded from further 
analyses because they involve chemicals that are inorganic, chemicals 
for which no CAS number could be identified, or chemicals that are 
polymer chains with varying molecular weights. The final considered 
dataset thus includes 1103 records for 158 unique chemicals and 87 
materials.

2.2 | Modeling methods

2.2.1 | Multiple linear regression

An MLR analysis was performed to identify and quantify the effect 
of different parameters on the diffusion coefficient. The MLR model 
takes the following general form:

where log10D is the logarithm of the diffusion coefficient (m2/s), α 
is the intercept; X1 to Xn are independent variables related to physi-
ochemical properties, such as molecular weight, molar volume, and 
vapor pressure, and/or environmental characteristics like tempera-
ture; β1 to βn are regression coefficients for the respective independ-
ent variables X1 to Xn; and M1 to Mm are dummy variables for the solid 
materials, with one dummy variable per type of material. A dummy 
variable equals 1 for the material type it represents, and equals 0 for 
all other materials; for example, M1=1 for material type=1, M1=0 for 
material types 2 to m. b1 to bm are regression coefficients for the re-
spective dummy variables M1 to Mm. The number of m is equal to the 
number of material types considered −1, as the material type with the 
highest number of measured D data is used as the reference material 
type and does not require a dummy available in the MLR. Note that 
the MLR model gives one coefficient for each material type, while 
a material type can represent a single pure substance such as cal-
cium silicate, a composite material such as vinyl flooring and gypsum 
board, or a group of similar materials such as wooden boards. Details 
of the material types will be discussed later. This regression equation 
also implies that the material coefficients (b1 to bm) and the physi-
ochemical property coefficients (β1 to βn) are independent of each 
other, which if corroborated by internal and external validations 
(Section 2.3), allow for the maximum prediction coverage in terms 
of chemical-material combinations. All regression coefficients were 

estimated by the least squares (LS) method. All regression analyses 
were performed using IBM SPSS Statistics version 23 (IBM corpora-
tion, Armonk, NY, USA).

2.2.2 | Grouping of materials and initial regressions

To reduce the number of dummy variables, to avoid over-fitting of the 
MLR model, and to have a minimum of 10 records and three differ-
ent chemicals per material type to ensure enough variability, the 87 
original materials were grouped into 32 consolidated material types, 
based on the similarity of the regression coefficients and the material 
types (see Appendix S1, Section S1). Thus m=31 in Equation (1), with 
polyethylene terephthalate (PET) as the 32nd and reference material, 
as it is the material with most reported diffusion coefficients.

In previous studies, either the chemical’s molecular weight (MW), 
molar volume (MV) or vapor pressure (VP) has been used as predictor 
of the diffusion coefficient in a given material.12,17-19 Begley et al.4 
also suggested that the logarithm of the diffusion coefficient var-
ies linearly with the inverse of the absolute temperature (1/T). Thus, 
the initial regression was performed to identify which of the above 
variables (MW, MV, VP, and 1/T) are best predictors of the diffusion 
coefficients of compounds encapsulated in the 32 material types, 
that is, to identify X1 to Xn in Equation (1). Details of the initial re-
gression process are presented in Appendix S1, Section S2. Results 
of the initial regression model suggest that the log-molecular weight 
and the inverse of the absolute temperature are the most important 
predictors, and therefore the employed MLR model takes the follow-
ing form:

where MW is the chemical’s molecular weight (g/mol) and T is the 
absolute temperature (K).

The model performance of using log-molecular weight and molec-
ular weight as predictors were very close when using the training data-
set (1103 records, m=31), but the model using log-molecular weight as 
predictor was finally selected as it performs better for high-molecular-
weight chemicals (Section 3.3.3).

2.2.3 | Temperature dependence

Studies have shown that the activation energy of diffusion is a con-
tributor to the temperature dependence of the diffusion coefficient 
and varies as function of both the material and the chemical proper-
ties.4,30,31 Thus, ideally a specific temperature correction coefficient 
should be used for each chemical-material combination. As data 
availability is not sufficient to determine chemical-specific tempera-
ture coefficients for each of the 32 materials, and as chemical prop-
erties seem to have limited influence on the activation energy,4,30 we 
followed the strategy of Begley et al.,4 differentiating temperature 
coefficients for a limited number of material groups, applying one 
generic temperature coefficient for all chemicals within each mate-
rial group. Begley et al.4 have introduced a variable τ to adjust the 

(1)log10 D=α+β1 ⋅X1+⋯+βn ⋅Xn+b1 ⋅M1+⋯+bm ⋅Mm

(2)log10 D=α+βlog10 MW ⋅ log10 MW+β1∕T ⋅
1

T
+b1 ⋅M1+…+bm ⋅Mm
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temperature coefficient for two groups of materials, where τ equals 
0 or 1577 for nine different polymers, which corresponds to acti-
vation energy of 86.9 kJ/mol for e.g. LDPE or 100 kJ/mol for e.g. 
HDPE. To analyze the temperature dependency of the diffusion 
coefficients in our dataset, we first plotted log10D against 1/T for 
each of the 32 material types (Appendix S1, Section S3). The plots 
generally show as expected4 an inverse relationship in which log10D 
is decreasing with increasing 1/T, different materials exhibiting dif-
ferent slopes. As variability in diffusion coefficient is higher between 
than within given studies, we first determined a temperature coef-
ficient for each chemical-material type-study combination, and then 
calculated an average temperature coefficient for each material type 
by averaging all temperature coefficients belonging to the same ma-
terial type. The analysis of the material-specific temperature coef-
ficients showed that the material types can be grouped into three 
categories: (i) high-, (ii) medium-, and (iii) low-coefficient categories, 
with three corresponding values for the temperature coefficient ad-
justment factor τ, which are given later in Section 3.1. Details are 
presented in Appendix S1, Section S3.3. The adjusted MLR model 
takes the following form accordingly:

2.2.4 | Final regression

To avoid multicollinearity problems in the MLR model and to avoid 
the influence of the material type “Limited-data material group” on 
the temperature coefficients, we fixed the temperature coefficients 
determined using Equation (3) and thus the final regression takes the 
following form:

where the dependent variable is log10D – (β1/T+τ)/T instead of log10D, 
with the values of β1/T and τ obtained from Equation (3) and presented 
later in Section 3.1. In this final regression, all 1103 records of meas-
ured D data were utilized including the material type “Limited-data 
material group,” leading to m=31 material types, plus one reference 
material type, PET, with bPET=0.

2.3 | Model validation

Validation of the final MLR model (Equation 4) was performed using 
the QSARINS software, version 2.2.1 (www.qsar.it) which is devel-
oped by Gramatica et al.32,33

2.3.1 | Internal validation

The MLR model’s capacity to predict portions of the training dataset 
was evaluated in an internal validation process, using two techniques 
for internal validation in QSARINS. The first one is the leave-more-out 
(LMO) cross-validation technique, which iteratively and randomly ex-
clude a certain percentage of the measured diffusion coefficient data, 

and then computes the regression coefficients with the remaining 
data and uses those coefficients to make predictions for the excluded 
ones.33 We used 1000 iterations and the percentage of the excluded 
elements was set as 20%.

The second technique for internal validation is the Y-scrambling 
procedure, which demonstrates that the model is not the result of 
chance correlation. In this procedure, the experimental responses (in 
our study, the temperature-adjusted diffusion coefficients) are shuf-
fled at random and used with the original predictors to establish an 
MLR model. If the original MLR model is internally valid, the perfor-
mances of the scrambled models should be much worse than the orig-
inal model.33 We used 1000 iterations for the Y-scrambling.

2.3.2 | External validation

We also evaluated the model ability to provide reliable predictions on 
new datasets in a so-called external validation process, using the fol-
lowing two approaches.

The first approach was to split the existing dataset (1103 re-
cords) into one training dataset and one prediction datasets. The 
training dataset was used to generate regression coefficients of 
the MLR model, and then, the MLR model was applied to the pre-
diction set to examine the prediction performances of the model. 
Three kinds of splitting were performed using existing options in 
the QSARINS software (see Appendix S1, Section S5.1 for details) 
by random percentage (20% of the entire dataset randomly selected 
as the prediction set, 80% rest to the training set), by response and 
by structure (data first ordered by responses of the temperature-
adjusted diffusion coefficient, or by the first axis of principal compo-
nent analysis (PCA) of the descriptors, respectively). We introduced 
a fourth kind of splitting by studies, as variability across studies for 
a given material is in general larger than variability within a given 
study, yielding similar sample sizes of approximately 880 data for 
the training set and 220 data for the prediction set (Appendix S1, 
Table S3).

The second approach of external validation was to use the entire 
collected dataset (1103 records) as the training set and to use an en-
tirely separate dataset as the prediction set. For the prediction set, 
two datasets were used. The first one is a database of diffusion coef-
ficients from the United States Food and Drug Administration (FDA), 
which is a “database available upon request” for guidance for indus-
try (http://www.fda.gov/Food/ucm081818.htm), and includes non-
peer-reviewed diffusion coefficient data reported by industry. This 
dataset includes 191 records of experimental diffusion coefficients 
of 46 chemicals in 22 materials which are mainly polymers used for 
FCM (Appendix S1, Section S5.1). The quality and reliability of these 
data are not characterized by FDA. The second prediction dataset 
is constructed from several studies conducted before 1982,34-36 
referenced in an EPA report.37 This dataset, designated as “Data by 
1982,” includes 281 records of measured diffusion coefficients of 
92 chemicals in eight polymer materials, also including self-diffusion 
(Appendix S1, Section S5.1). Data for both prediction sets are pro-
vided in Appendix S2.

(3)log10 D=α+βlogMW ⋅ log10 MW+
β1∕T+τ

T
+b1 ⋅M1+…+bm ⋅Mm

(4)log10 D−
β1∕T+τ

T
=α+βlogMW ⋅ log10 MW+b1 ⋅M1+…+bm ⋅Mm

http://www.qsar.it
http://www.fda.gov/Food/ucm081818.htm
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2.3.3 | Applicability domain

The analysis and definition of the applicability domain (AD) of models 
is a fundamental issue that must be addressed in QSAR and QPPR 
studies. The study of AD can provide information on the reliability 
of the model predictions, that is, if the chemicals are inside the AD, 
the predictions are interpolated and are more reliable; if the chemicals 
are outside the AD, the predictions are extrapolated and less reliable, 
because effects can occur outside the AD that do not exist within the 
AD.38 Three complementary methods were applied to define the AD 
of the diffusion coefficient QPPR: the range of model predictors, the 
leverage approach, and the PCA of the model predictors.39 More ex-
planation of these methods is provided in Appendix S1, Section S6.1. 
In our analysis, chemicals are considered inside the AD if they are 
viewed inside AD by all three methods, whereas chemicals are consid-
ered outside AD if they are viewed outside AD by all three methods, 
and finally chemicals that fall inside the AD for only one or two meth-
ods are considered as “borderline”.

3  | RESULTS AND DISCUSSION

3.1 | Temperature dependence of the diffusion 
coefficient

The compiled dataset of 1103 records including 158 chemicals and 
32 material types shows that the diffusion coefficient in solid materi-
als decreases with decreasing temperature, as demonstrated by the 
highly significant negative regression coefficient for the variable 1/T, 
with β1∕T=−4440 (K) with a standard error (SE) of 164 (K) and P<.001 
in Equation 2 (Appendix S1, Section S3.1). This is in agreement with 
previous studies.4,30,31 This general tendency of decreasing diffusion 
with increasing 1/T is well illustrated by the example of PET, the mate-
rial with the most data available (Figure 1A - see Appendix S1, Figure 
S1 for other materials). To further refine the coefficient for the tem-
perature variable into specific materials groups, Figure 1B illustrates 
well for methyl methacrylate (MMA) homopolymer the importance of 
first determining a temperature coefficient for each separate study 
and material-chemical combination (Section 2.2.3) and then averaging 
the temperature coefficients across studies. The molecular weight-
normalized diffusion coefficients show a negative linear relationship 
with 1/T within each of the three experimental studies of Figure 1B,40-42  
with similar regression coefficients of −4530 (K), −5704 (K), −3415 (K), 
averaging −4550 (K) with an SE of 305 (K). However, as the absolute 
log10MW-normalized diffusion coefficients reported by Hennebert 
et al.42 are much higher than those reported by the other two stud-
ies, doing one regression with all data from the three studies would 
result in a non-significant temperature coefficient (P-value of .19),  
thus demonstrating the importance to first perform temperature re-
gressions using data from the same study and for the same chemical.

Table 1 presents the average temperature coefficients and their 
standard errors for each of the 32 consolidated material types. Based 
on the values of the temperature coefficients (unit in K), the 32 ma-
terial types can be grouped into three categories: (i) high-coefficient 

category with relatively high (absolute value) temperature coefficients 
(<−5000), that is, materials in which diffusion coefficients are highly 
sensitive to the change in temperature, (ii) medium-coefficient category 
with temperature coefficients in between (−5000<(β1/T + τ)<−3000), 
and (iii) low-coefficient category with relatively low (absolute value) 
temperature coefficients (>−3000), that is, materials in which diffusion 
coefficients are least sensitive to the change in temperature. Details 
for the grouping of temperature coefficients can be found in Appendix 
S1, Section S3.3.

The temperature coefficients β1/T and τ used in Equation (4) for 
each of the three temperature dependency material categories are 
obtained from the regression using the MLR model of Equation S3-2 
(Appendix S1, Section S3.3), yielding values of β1∕T=−3486 ± 299 (K)  
and τhigh=−2391 ± 356 (K),τmedium=0 (K) andτlow = +1676 ± 510(K).  
Thus, for the high-, medium-, and low-coefficient categories, the 
final temperature coefficients (β1/T+τ) are −5877 (K), −3486 (K), and 
−1810 (K), corresponding to activation energy of 113, 66.7, and 
34.7 (kJ/mol), respectively. Begley et al.4 also aggregated nine types 
of polymer materials into two temperature categories, with activa-
tion energy of 100 and 86.9 (kJ/mol), which have similar values with 
the high- and medium-coefficient categories in the present paper, to 
which these nine polymer materials are assigned. These results in-
dicate that the categorization of the temperature coefficient in the 
present paper is consistent with previous studies, while extending the 
QPPR to a wider range of materials.

F IGURE  1 Relationship between the diffusion coefficient D 
(corrected for log10MW) and the inverse of temperature for (A) 
polyethylene terephthalate (PET), and (B) methyl methacrylate 
(MMA) homopolymer. The units of D and molecular weight (MW) are 
m2/s and g/mol, respectively
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3.2 | Final QPPR and model fitting

Using the full dataset (1103 records) and Equation (4), the final MLR 
model for predicting the diffusion coefficient in solid materials is as 
follows:

where D is the diffusion coefficient (m2/s), MW is molecular weight (g/
mol), T is absolute temperature (K), b and τ (K) are the material-specific 
coefficients presented in Table 2. This model is provided as an excel 
model in Appendix S3 to facilitate application. The standard errors for 
the intercept (6.39) and the coefficient of log10 MW (−2.49) are 0.29 
and 0.13, respectively. An SE of 1.17 of the final model (Equation 5) 
indicates that the 95% confidence interval (CI) of the predicted re-
sponse, log10D-(τ−3486)/T, is the predicted value±2.30. The 95% CI 
of the log10D cannot be directly calculated, but the average absolute 
difference between predicted and measured log10D is 0.83 across the 
whole dataset (1103 records), and 95% of this absolute difference is 
below 2.54.

(5)
log10 D−

τ−3486

T
=6.39 −2.49 ⋅ log10 MW+b

N=1103,R2= .932,R2
adj

= .930, SE=1.17, RMSE=1.15

ANOVA:F=457, df=32,P< .0001

TABLE  1 Temperature dependence of diffusion coefficient in the 32 consolidated material types (all numbers are in the unit of K)

Category Consolidated material type

Mean 
coefficient of  
1/T

SD between 
studies

Coefficient value for Equation (5)

β1/T τ β1/T+τ

High-coefficient 
category

PP homopolymer −6665 2354

    −3486 −2391 −5877

Polyethylene terephthalate (PET) −6567 2399

General polystyrene (PS) −5713 3560

Polyethylene naphthalate (PEN) −5449 1940

PP copolymer −5384 1194

High-density polyethylene (HDPE) −5294 1124

Medium-coefficient 
category

MMA homopolymer −4549 1145

    −3486 0 −3486

ABS, EVOH −4222 n/a

High-impact polystyrene (HIPS) −4215 n/a

Polyamide (PA) −4179 1854

MMA copolymer-medium or low density −4056 1272

Polyethylene (PE, LDPE, LLDPE) −3713 536

Limited-data material group n/a n/a

Calcium silicate n/a n/a

Carpet n/a n/a

Glass, Stainless steel n/a n/a

Vinyl acetate-based polymers n/a n/a

Cement n/a n/a

Low-coefficient 
category

Gypsum board n/a n/a

    −3486 1676 −1810

Plywood n/a n/a

Flexible PVC −2917 2618

Other wooden boards −2411 888

Polychloroprene (CR) −2127 286

Vinyl flooring −1951 n/a

Polystyrene foam (XPS, EPS) −1806 n/a

Polyurethane foam-based materialsa −1705 699

Synthetic rubber −1326 205

Ethylene-propylene rubbers −1145 300

Natural rubber (NR) −939 337

Rigid polymers −510 1552

Paper −312 n/a

Gypsum and cellulose ceiling tile 331 294

aThis material type refers to low-density polyurethane foams with a density of 0.005-0.03 g/cm3.
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TABLE  2 Material-specific coefficients for Equation (5)

Consolidated material type

Coefficient b
b+(τ+2391.15)/T 
at 25°CCoefficient SEa P-value τ (K)

Calcium silicate 1.17 .29 <.0001 0 9.19

Carpet −1.23 .28 <.0001 0 6.79

Cement 0.330 .226 .15 0 8.35

Ethylene-propylene rubbers −6.32 .29 <.0001 1676 7.32

Flexible PVC −8.51 .31 <.0001 1676 5.13

General polystyrene (PS) 2.04 .30 <.0001 −2391 2.04

Glass, Stainless steel −8.57 .38 <.0001 0 −0.550

Gypsum and cellulose ceiling tile −1.24 .31 <.0001 1676 12.4

Gypsum board −5.77 .30 <.0001 1676 7.87

High density polyethylene (HDPE) 5.11 .20 <.0001 −2391 5.11

High-impact polystyrene (HIPS) −7.11 .27 <.0001 0 0.907

Methyl methacrylate (MMA) copolymer-medium or low 
density

−7.73 .21 <.0001 0 0.294

Methyl methacrylate (MMA) homopolymerb −7.84 .31 <.0001 0 0.175

Natural rubber (NR) b −3.60 .27 <.0001 1676 10.0

Other wooden boardsc −6.72 .21 <.0001 1676 6.92

Paper −8.53 .34 <.0001 1676 5.11

Plywood −5.61 .34 <.0001 1676 8.03

Polyamide (PA) −5.40 .16 <.0001 0 2.62

Polyacrylnitrile butadiene styrene (ABS), Ethylene vinyl 
alcohol (EVOH)

−4.97 .23 <.0001 0 3.05

Polychloroprene (CR) −6.31 .35 <.0001 1676 7.33

Polyethylene (PE, LDPE, LLDPE) −1.65 .16 <.0001 0 6.37

Polyethylene naphthalate (PEN) −1.16 .28 <.0001 −2391 −1.16

Polyethylene terephthalate (PET)d 0.00 .15 n/a −2391 0.00

Polystyrene foam (XPS, EPS) −8.32 .29 <.0001 1676 5.32

Polyurethane foam-based materialse −7.35 .25 <.0001 1676 6.30

PP copolymer 4.79 .28 <.0001 −2391 4.79

PP homopolymer 4.53 .15 <.0001 −2391 4.53

Rigid polymersf, b −11.9 .25 <.0001 1676 1.70

Synthetic rubber −5.93 .32 <.0001 1676 7.71

Vinyl acetate-based polymersg −0.459 .326 .16 0 7.56

Vinyl flooring −6.77 .21 <.0001 1676 6.87

Limited-data material grouph See footnotes

aStandard error.
bCoefficients should be taken with care due to large variations between studies.
cIncludes Particleboard, Oriented strand board (OSB), Medium-density fiberboard (MDF), High-density board, and Wood chamber wall.
dReference material (in bold).
eThis material type refers to low-density polyurethane foams with a density of 0.005 to 0.03 g/cm3.
fIncludes polyether ether ketone (PEEK), rigid PVC, polytetrafluoroethylene (PTFE), and polycarbonate.
gIncludes ethyl vinyl acetate (EVA), polyvinyl acetate (PVA), and polyvinyl acetate polyacrylic acid copolymer.
hThe coefficient b for this group is −2.26 with an SE of 0.18, and the coefficient τ is 0. “Limited-data material group” includes data from 20 different mate-
rials, so the accuracy of the coefficients is low and they are not recommended for use in predicting diffusion coefficients. This group includes alginate film, 
balance, decorative and overlay layers of wooden flooring, cellulose, epichlorhydrin-dimethylamine polymer (EDP), epoxy/acryic copolymer, latex, MMA/
Butyl methacrylic (BMA) copolymer-very low density, nanocomposite polyamide, paint, pectin film, pectin/alginate composite film, polydimethylsiloxane 
(PDMS) membrane, polyisoprene (PI) membrane, polyoctenamer (PO) membrane, polyoxymethyene, polytrimethylene terephthalate (PTT), polyvinylidene 
chloride (PVDC), and silicone.



     |  1135HUANG et al.

This MLR model shows excellent fitting of the experimental data, 
with an adjusted R-square of 0.932 and a root mean square error 
(RMSE) of 1.15. The model fit is highly significant with an ANOVA  
P-value smaller than .0001. Figure 2A shows the scatter plot of exper-
imental vs predicted responses, which aligns well with the 1:1 line. In 
this MLR model, the response (dependent variable) is the temperature-
adjusted log diffusion coefficient, that is, log10D-(τ−3486)/T, instead 
of log10D, in order to fix the temperature coefficients and to avoid 
multicollinearity problems, as mentioned in Section 2.2.4. The resid-
ual plot (Figure 2B) shows that the residuals are distributed evenly 
throughout the dataset, again indicating the good fit of the linear 
model for the data.

The key predictors other than temperature in the MLR model are 
the material type and the molecular weight of the diffusing chemical. 
The regression coefficient when considering log-molecular weight is 
equal to −2.49, indicating that the diffusion coefficient decreases with 
increasing molecular weight. This implies that larger molecules diffuse 
more slowly compared to smaller molecules in solid materials, which 
is intuitive and consistent with findings from previous studies.4,12,17,18 
However, although the molecular weight is a highly significant predic-
tor (P<.0001), it explains <10% of the total variance of the diffusion 
coefficient (Appendix S1, Section S4).

The 31 dummy variables for the material types reflect the material 
dependency and account for most of the total variance of the diffusion 

coefficient, indicating that the diffusion coefficient in solid materials 
is strongly dependent on the material type. As “PET” was used as the 
reference material in the regression, the value of its coefficient b is 
zero (Table 2). For each of the other material types, the coefficient b, 
combined with the temperature coefficient τ, that is, b+(τ+2391)/T, 
determines the difference in log diffusion coefficient between that 
material type and PET, as PET has a temperature coefficient τ of 
−2391 (K) (Table 2, last column). Chemicals in material types with high 
values of b+(τ+2391)/T diffuse quicker than in material types with low 
values. Therefore, under room temperature (T=298.15 K), the values 
of b+(τ+2391)/T and the corresponding diffusion coefficients tend to 
be lower in dense, rigid materials such as glass, stainless steel, methyl 
methacrylate (MMA) polymers, polyethylene naphthalate (PEN), and 
rigid polymers including polyether ether ketone (PEEK), rigid PVC, 
polytetrafluoroethylene (PTFE), and polycarbonate (Table 2). In con-
trast, the values of b+(τ+2391)/T and the corresponding diffusion 
coefficients can be up to 13 orders of magnitude higher in flexible 
or porous materials, such as gypsum, wood, rubber, and polyurethane 

F IGURE  2 Values of log10D-(τ−3486)/T predicted by the final 
QPPR (Equation 5) vs (A) experimental values, and (B) residuals. The 
dotted line in (A) indicates the 1:1 line. The units of D and T are m2/s 
and K, respectively
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foam-based materials (Table 2). It should be noted that the compo-
sition and properties of a given material type may vary considerably 
depending on the intended use, as well as over time as material substi-
tutions are made and production procedures differ. Thus, the material 
type coefficients in Table 2 actually represent an average composition 
and diffusion behavior for the specific material types.

The significance of the material type coefficient only indicates that 
the coefficient bs of these material types are significantly different 
from the reference material type, PET, but if another material type 
was selected as the reference material, the regression coefficients and 
statistical significance of all materials would change. Thus, the insignif-
icance of the regression coefficients for material type variables does 
not indicate that those material types do not have a relevant influence 
on the diffusion coefficient. As a result, we keep all 31 material type 
dummy variables in the final regression to retain as much information 
as possible.

The MLR model given in Equation (5) contains material-specific 
variables, so it is only valid for the 32 material types presented in 
Table 2. For materials that do not belong to those 32 types, we built 
another generic QPPR to predict the diffusion coefficients, which is 
presented in Appendix S1, Section S4, which should be used with cau-
tion because of higher uncertainties.

3.3 | Model validation results

3.3.1 | Internal validation

For the 20% LMO cross-validation, the correlation coefficient, Q2
LMO 

for the 1000 iterations ranges from 0.89 to 0.95, with an average of 
0.93, and a root mean square error for cross-validation (RMSEcv) av-
erage of 1.19. Both the Q2

LMO and RMSEcv are similar to the R2 and 
RMSE computed using the full dataset, which is 0.93 and 1.15, re-
spectively. These results indicate that when fitted to a random 80% of 

the dataset the model is still able to predict the remaining 20% of the 
dataset, meaning that the model is internally stable.

For the Y-scrambling, the average R2
Yscr

 and Q2
Yscr for the 1000 iter-

ations are 0.029 and −0.033, respectively, which are much smaller than 
the R2 and Q2

LMO of the original model. The RMSE for Y-scrambling, 
RMSEYscr, is 4.36 which is much higher than the RMSE and RMSEcv 
of the original model. These results demonstrate that no correlation 
exists between the scrambled responses and the predictors. Thus, 
chance correlation for the original model can be ruled out.

Overall, the internal validation demonstrates that the MLR model 
represented by Equation (5) is robust and stable, and is not a result of 
chance correlation.

3.3.2 | External validation

As described in Section 2.3.2, the first method of external validation 
was to split the full dataset (1103 records) into training set and predic-
tion set, and four types of splitting were performed, including splitting 
by a random 20%, by ordered response, by ordered structure, and by 
studies. Six criteria for external validation were computed and are pre-
sented in Table 3. The R2ext is the determination coefficient of the pre-
diction set data using the model calculated using the training set data. 
The other five criteria, Q2

F1,
43 Q2

F2,
44 Q2

F3,
45 γ2

m
,46 and CCC,47 are ex-

ternal validation criteria proposed by different studies, which evaluate 
various aspects of the model’s external prediction ability. These crite-
ria are usually in accordance with each other but can sometimes give 
contradictory results,47 so they need to be evaluated together. Chirico 
and Gramatica48 have proposed threshold values for these different 
criteria, which are presented in Table 3. For the first three types of 
splitting (by random 20%, by ordered response, and by ordered struc-
ture), the R2ext are higher than 0.9, and all of the other five criteria pass 
the threshold values and are also higher than 0.9, indicating good pre-
diction ability of the model calculated using only the training set data. 

External validation 
criteria R2ext Q2

F1 Q2
F2 Q2

F3 r2
m

CCC

Threshold >.70 >.70 >.70 >.65 >.85

Splitting by random 
percentage

.92 .92 .92 .92 .90 .96

Splitting by ordered 
response

.94 .94 .94 .95 .93 .97

Splitting by ordered 
structure

.94 .94 .94 .94 .91 .97

Splitting by studies .85 .85 .84 .85 .78 .92

FDA dataset as 
prediction set

.80 .77 .77 .60 .71 .89

Data by 1982 as 
prediction set

.93 .93 .92 .90 .85 .95

R2ext, determination coefficient of the prediction set external data; Q2
F1, correlation coefficient pro-

posed by Shi et al.; Q2
F2, correlation coefficient proposed by Schuurmann et al.; Q2

F3, correlation coef-
ficient proposed by Consonni et al.; r2

m
, determination coefficient proposed by Ojha et al.; CCC, 

concordance correlation coefficient proposed by Chirico and Gramatica.

TABLE  3 External validation results
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In these three types of splitting, the data were assigned to the training 
and prediction data sets either randomly or alternately (by ordered re-
sponse or structure), so it is likely that a portion of the data from each 
study was assigned to the training set, while the remaining portion of 
the data was assigned to the prediction set. As a result, the prediction 
set is well within the AD defined by the training set (Appendix S1, 
Figures S2-S7), so it is expected that the model calculated using the 
training set can well predict the prediction set.

For the fourth type of splitting, splitting by studies, data from 30 
studies were selected as the prediction set, while data from the re-
maining 48 studies constituted the training set. Thus, all data from one 
study and for one particular material will be either in the training or 
in the prediction set, so the validation using this splitting is close to a 
truly “external” validation. Most of the prediction set is inside the AD 
defined by the training set except for two data points (Appendix S1, 
Figures S8-S9). As a result, the R2ext dropped to 0.85, and the values 
of the other five validation criteria are apparently lower than those for 
the above three types of splitting, reflecting that variability is higher 
between than within studies. The five validation criteria nevertheless 
all pass the threshold values (Table 3), indicating that the model calcu-
lated using the training set has good prediction ability.

As a second method of external validation, the 1103 data points 
from the 68 studies were used as the training set, and additional data 
from an FDA database and from studies before 1982 were used as 
two separate prediction sets. As presented in Table 3, when using 
FDA dataset as the prediction set, the R2ext is reduced to 0.80 which 
is lower than the R2ext for the above four types of splitting. Four of 
the five validation criteria pass the threshold values, while Q2

F3 does 
not pass the threshold. In contrast, when using data by 1982 as the 
prediction set, the R2ext is 0.93, which is very close to the R2 of the 
training dataset (Section 3.2). The absolute difference between pre-
dicted and measured log10D averages 2.20 (95th percentile of 5.53) 
for the FDA dataset, and averages 1.08 (95th percentile of 2.68) for 
the data by 1982. Figure 3 presents the comparison between model 
predicted and experimental responses for these two prediction sets. 
Data from both prediction sets are generally distributed close to the 
1:1 line, but the FDA data are more dispersed compared to the training 
set data, while the data by 1982 are almost as compact as the training 
set data. The FDA data lack documentation of experimental details, so 
their quality may not be as good as the data reported in peer-reviewed 
literature. Also, when the FDA polymer types were linked to our con-
solidated material types, mismatches may have occurred due to lack of 
description of the polymers in the FDA dataset, which may lead to in-
accuracies in model predictions. Overall, however, our QPPR performs 
reasonably well on these two fully external datasets, demonstrating its 
good predictive ability.

3.3.3 | Applicability domain

We performed the analysis of the model’s AD using the three ap-
proaches explained in Section 2.3.3. The model being evaluated is 
the final MLR model presented in Equation (5), which was calculated 
using the training set of 1103 data points collected from 68 studies 

obtained from the peer-reviewed literature. For the analysis of AD, 
we focus on the two external prediction datasets: the FDA dataset 
(189 data points) and the data by 1982 (239 data points). Detailed 
results of the AD analysis are presented in Appendix S1, Section S6.1.

Combining the three methods, none of the data points in both 
prediction sets fell out of the AD. For the FDA dataset, the majority 
of the data points were inside the AD, while 15 data points were on 
borderline of AD. Similarly, only 35 data points from the data by 1982 
were on borderline of AD. Thus, it is valid to use the present QPPR to 
make reliable estimates of diffusion coefficients for all data points in 
the two prediction sets. The physiochemical property space covered 
by the QPPR is mainly determined by the chemical’s molecular weight, 
which ranges from 30 to 1178 g/mol. The vapor pressure at 25°C may 
also be a relevant property, which ranges from 9.8∙10−29 to 5.2∙105 Pa. 
The range of log10D covered by the QPPR is from −22.1 to −5.2 where 
D is measured in m2/s.

As mentioned in Section 2.2.2, the model performances of using 
log-molecular weight and molecular weight as predictors were very 
close to each other when using the training dataset. However, residual 
analysis and external validation showed that log10 MW is a more stable 
predictor than MW when handling high-molecular-weight chemicals, 
which becomes prominent for the FDA dataset, which includes cer-
tain chemicals with molecular weight higher than 1500 g/mol. While 
none of the data points in the FDA dataset fell out of the AD using 
the log10 MW model, 11 data points would be outside AD using the 
MW model. Details are presented in Appendix S1, Section S6.2. Thus, 
log10 MW instead of MW was selected as a predictor in the final QPPR 
(Equation 5).

Schwope et al.37 suggested that the linear relationship between 
log10D and log10 MW may only be valid for a certain range of molec-
ular weight, and there may be a saturation of diffusion coefficients 
for small molecular weights, that is, for a given material and a given 
temperature, the diffusion coefficient does not continue to increase 
for chemicals with molecular weight lower than a certain value, which 
is likely determined by the material type. To further examine the effect 
of molecular weight on model applicability, we analyzed the model re-
siduals vs the log of molecular weight for the training dataset and the 
two prediction sets (Figure 4). For the three datasets, the residuals are 
distributed evenly on both sides of zero in the MW range of the train-
ing dataset of 30 to 1178 g/mol (log10 MW of 1.48-3.07). For methane 
(MW=16 g/mol), most of the predictions overestimate diffusivity, sug-
gesting that diffusivity may indeed not further decrease below MW of 
30 g/mol. As methane was the only chemical with data available for 
MW lower than 30 g/mol, data for additional chemicals and materials 
are therefore needed to further test this hypothesis of saturation at 
low MW. Similarly, additional data are needed to provide more accu-
rate estimates for chemicals with very high molecular weights.

Overall, the performance of the final model (Equation 5) in this 
external validation indicates that it has the ability to provide reliable 
predictions, as long as the considered chemicals are within the model’s 
AD. With the log-molecular weight as a predictor, our model is able to 
make reliable extrapolations on chemicals with molecular weights up 
to about 2500 g/mol, but caution still needs to be taken when applying 
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the model on extremely high-molecular-weight chemicals. Ideally, the 
model should be applied to predict diffusion coefficients for chemi-
cals with molecular weights lower than 1178 g/mol which is the maxi-
mum within the training dataset. Caution also needs to be taken when 
applying the model on very-low-molecular-weight chemicals due to 
the possible saturation effect. Both the FDA dataset and the data by 
1982 were used for the external validation but not combined with 
the original training dataset to calculate a more comprehensive MLR 
model, because these data are somewhat outdated; the FDA data are 
not published in literature, so there is a lack of experimental details, 
making these undocumented data less reliable than the data collected 
from peer-reviewed literature.

3.4 | Limitations and future work

While the extension to 32 different consolidated material types is a 
major progress, the present model is still not fully comprehensive. 
First, the model may not be valid for very high or very low molecular 
weight (MW) chemicals. It may not be valid for ionizing organic chemi-
cals either, as ionizing chemicals such as acids, alcohols/phenols, and 
amines are not well represented in the training dataset, as they only 
account for <10% of the data points, and the model does not consider 
chemical ionization or interaction within a material, which may make 
the chemical’s diffusivity lower than that predicted by the model. 
Second, the present model is not applicable for materials types other 
than the 32 types in the training set, for example, for material such 
as resin and textiles, due to the lack of experimental data. Although 
a more general MLR model (Appendix S1, Section S4) was developed 
which does not require material type as the predictor, it gives much 
less accurate predictions of the diffusion coefficient. Third, the present 
model does not consider any interaction between MW and material 
type, that is, it assumes the effect of MW is the same across differ-
ent materials. Although model validations show that this assumption 
may be reasonable for the existing data, ideally it needs to be further 
verified using data spanning the whole MW range (30-1178 g/mol) 
for each material. Therefore, more experimental diffusion coefficient 
data need to be obtained, or more advanced experimental methods 

to measure diffusion coefficients need to be developed, for other ma-
terial types and chemical sizes and classes to make the model more 
comprehensive.

There are also large variations in the experimental diffusion coef-
ficients between some of different studies for three material types, 
namely “MMA homopolymer,” “Natural rubber,” and “Rigid polymers,” 
even after correcting for molecular weight and temperature, as shown 
in Figure 1 and Appendix S1, Figure S1. This means that the regres-
sion coefficients b and τ for these material types should be taken with 
care. The variations could be due to three causes. First, experimen-
tal variation, for example, Franz et al.40 used desorption experiments 
to measure the diffusion coefficients in MMA homopolymer, while 
Hennebert et al.42 used sorption experiments. Second, the swelling of 
polymers during liquid sorption experiments, which generally occurs 
for cross-linked polymers in low-molecular weight solvents,49 may not 
always be accounted for, and can lower the diffusion coefficients by 
orders of magnitude.10 Third, the properties of the same material can 
vary between studies depending on how it was made and which ad-
ditives were used. This may also be the case for some other materials 
such as vinyl flooring, carpet, and synthetic rubber for which the ma-
terial type coefficients in Equation (5) can only represent some sort 
of average composition and diffusion behavior for the specific mate-
rials. Ideally, quantitative, continuous properties of the solid materi-
als, such as density, porosity, and crystalline state of the material as 
well as other descriptors of the material’s composition and molecular 
structure, instead of qualitative material types could be measured and 
entered into the model as predictors, so that the model can be more 
accurate and can be extrapolated to various material types outside the 
training dataset.

4  | CONCLUSIONS

A MLR model has been developed to predict the internal diffusion 
coefficients of organic compounds in various solid materials (excel 
model provided in Appendix S3). Experimental diffusion coefficient 
data collected from 68 studies of the peer-reviewed literature were 
used as the training set for the regression. The model uses two contin-
uous variables, molecular weight and inversed absolute temperature, 
and one categorical variable, material type, as predictors. The model 
has been internally validated to be robust, stable and not a result 
of chance correlation. External validation using two prediction sets 
demonstrates that the model predictions are most reliable within the 
model’s AD, namely molecular weight between 30 and 1178 g/mol, 
temperature between 4 and 180°C, and material type belonging to 
the 32 consolidated types.

The main advantage of the present model is that it is applicable 
for chemicals with a wide range of molecular weights (but only up to 
about 16-2500 g/mol, with special treatment for molecular weight 
lower than 30 g/mol) in various materials. This is advantageous com-
pared to the correlation methods developed in previous studies often 
specific for certain chemical classes or materials. The present model is 
able to provide reliable estimates of diffusion coefficients for a large 

F IGURE  4 Residual between the present QPPR and observed 
data as a function of log10MW for the training dataset, the FDA 
dataset, and the data by 1982 set. The unit of MW is g/mol
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number of chemical-material combinations, making it suitable for 
high-throughput assessments of the releases and human exposures to 
chemicals encapsulated in solid materials, particularly building materi-
als and FCMs. To make the model comprehensive, more experimental 
diffusion coefficient data need to be obtained for other material types, 
or quantitative and continuous parametrization of various solid mate-
rials needs to be further developed.
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