© 00 N O 0o b~ W N P

[
o

N N N DN N D N DN DNMNDN P P P PP PP
© 00 N O 0o A WO N P O © 0N O g B~ WwDN Pk

DR. LEI HUANG (Orcid ID : 00060002-7846-9760)
DR. PETER FANTKE (Orcid ID : 0060001-7148-6982)

Article type, < Original Article

A Quantitative Property-Property Relationship for the Internal Diffusion

Coefficients of Organic Compoundsin Solid Materials
Lei Huangd*, Peter Fantke Alexi Ernstoff and Olivier Jolliet
!Departmentof*Environmental Health Sciences, School of Public Health, UtjvafrMichigan,
Ann AborMIT"USA
“Division for Quantitative Sustainability Assessment, Department of MamageEngineering,
Technical University of Denmark, 2200 Kgs. Lyngby, Denmark

*Corresponding authohuanglei@umich.edu

This is the author manuscript accepted for publication and has undergone full peer review but has
not been through the copyediting, typesetting, pagination and proofreading process, which may
lead to differences between this version and the Version of Record. Please cite this article as doi:
10.1111/ina.12395

This article is protected by copyright. All rights reserved


https://doi.org/10.1111/ina.12395�
https://doi.org/10.1111/ina.12395�
https://doi.org/10.1111/ina.12395�
mailto:huanglei@umich.edu�

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

57

58
59

Abstract

Indoor releasesf organic chemicals encapsulated in solid materials are major contributors to
human exposures amde directly related to the internal diffusion coefficient in solid materials.
Existingcorrelationdo estimate the diffusion coefficient awaly valid for a limited number of
chemicatmaterial.combinations his paper develops and evaluaaguantitative property
property relationship (QPPR) to predict diffusion coefficseior a wide range of organic
chemicals and materglWe first comgdied a training dataset of 1103 measured diffusion
coefficients for 158 chemicals in 32 consolidated material typawing a detailed analysis of
the temperature influence, we developedultiple linear regressianodel to predict diffusion
coefficients as a function of chemiagablecular weigh(MW), temperature, andaterial type
(adjusted Rof 0:93). The internal validations showed the model to be robust, stable and not a
result of chanee correlation. The external validation agbatsseparate predicticataset
demonstrated.the modehsgood predicting ability within its applicability domain4R > 0.8),
namelyMW between 30 and 1178 g/mol and temperature between 4 and 1B ¢&eringa
much wider range afrganic chemicals and materigalsis QPPRacilitates high-throughput
estimates ofshuman exposures for chemicals encapsulated in solid materials.

Keywards

Diffusion, Solid materials, Consumer products, Indoor release, Organic cler@icaelation
Practcal implications

The quantitative property-property relationship developed by the present study provides a more
comprehensive,correlation method to estimate the diffusion coefficients, as it covers a wide
range of.organic chemicals and solid materials,asal considers the effect of temperature. This
model provides the basis for facilitating high-throughput estimates of indoor human egposure
for chemicals encapsulated in solid materials relevant for several spelimefields, such as
chemical alternatives assessment (CAA), risk assessment (RA) and life cycle assessment (LCA).

1. Introduction

Chemicals encapsulated in solid materials have been identified as a major source of passive

emissions to indoor aff® and of transfers into fodtand onto skiri. Typical examples include
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chemicals used as flame retardants in furniture and plasticizers in food contact materials. To
estimate theelease of these chemicals from solid materials, and eventually consumer exposures,
the diffusion coefficientD (m?/s), for chemicals encapsulated in solid materials, is essential
information.D describes the transport of a molecule through a matehathws specific for a
chemicalmaterial combination and is also influenced by ambient temperature. Egp&im
techniques.such as chamber tests for building matérialnd sorption/desorpticxperiments

for polymermaterial§’® have enabled measurement of a limited number of chemical diffusion
coefficients“forbuilding materials such as vinyl flooring, gypsum board, partiakel bolywood,
carpet and cement™, as well as polymer materials includinglyethylene (PE), polystyrene
(PS), polypropylene (PP), and polyvinyl chloride (PVE5 *°. However, gven the limited

number of‘ehemicaiaterial combinations with measured, and the costly and time-
consuming nature of experiments, quantitative relationships are needed to cent@risting
measurements by predicting the diffusion coefficients fromwknphysiochemical properties for
chemicals‘without experimental data. This is especially important fosthighghput
approacheswhere a large number of cheam@krial combinations need to be evaluated and
for which itis'unrealistic to perform expermts on all relevant combinations.

Several correlation methods have been developed to estimate the diffusion coefficients from
physicocherical properties of chemicalé **°. For exampleBerens and Hopfenberg
correlated th® to the mean molecular diameter of the diffusing molecule, using data on more
than 20 chenaials in 3glassy materials including PVC, PS and polymethyl methacrylate
(PMMA) 8 Zhao et al. found a correlation betwézand vaor pressure for water and 8
aromatic hydrocarbons in polyurethane foam (PY3Hjurthermore, bth Bodalal et al. and Cox

et al. estimatetheD as a function of molecular weight'®. The former studgonsidered
measure® data on 5 aromatics and 5 aldehydes in several building matériatsle the latter
studyconsiderediata on 4 alkanes in vinyl floorinf. Foreach of these aforementioned
apprachesthemain limitationis that the correlati@are specific to certaichemical classes
andmateriag;for examplaldehydes in plywood, whiclimits their application for other

materials and,chemical class@sldressing this research gapfacilitate wider applicability

Guo developed a method which estimates the diffusion coefficient as a function of the

chemical’s molar volume for mixed chemicisses’. However this approach is limited t6
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90 building materials and aeveloped based on a small dataset of limited chemical clas3es
91 chemical classes for 5 of the 6 building materials).
92 The aforementioned correlation meth@dsisider experiments for building materials at room
93 temperature, and therefore temperature is not relevant and thus not consitiezembinelation
94 model. For.ether exposure scenarios, such as transfer of chemicals from food contact materials
95 (FCMs) intofood, ambient temperature is highly relevant because FCMs can be heated,
96 refrigerated, orfrozen. Aordingly, Begley et apresented a correlation method to estimate the
97 diffusion coefficient in 9 polymer materials as a function of molecular weighteanperaturé,
98 which is not applicable beyond the considered polymers.
99 In all, the currently available correlation methodestimateD do not provide sufficient
100 coverage of chemicals encapsutkite consumer products in different use scenarios (i.e. ambient
101 temperatures). Developing lotier, highthroughput methods to estimate exposure to chemical
102 in consumer products across a variety of chenmicatierial combinations is a recent focus in
103 varioussciencepolicy fields such as computational exposure scienceifeng)/tle assessment
104 (LCA) **#sAddressing the lack ahethods to estimaf® for a variety of chemicaproduct
105 scenariosthe present study aims to develop a more comprehensive correlation method to
106 estimateD+for wide range of organic compounds in multiple solid make More specifically,
107 we aim to:
108 1) Carry out a comprehensiaed extensivéiterature review to collect experimental diffusion
109 coefficientdata on a wide range of materials and chemicals
110 2) Use nultipleslinear regressiotechniqueso establish the relationship between the diffusion
111 coefficient'and’various predictor variablecluding physiochemical properties, material
112 properties and environmentaracteristics
113 3) Performinternal and external validationsdbaracterizeéhe validity andpredictive powepf
114 the developedorrelation
115 Since the material type is a categorjpadpertyvariable and is not related to the chemical’s
116 molecular structure, we call this correlation a quantitative projpedyerty relationship (QPPR)
117 instead of aquantitative structusetivity relationship (QSAR)This QPPR provides a more
118 advanced correlation method to estimate the diffusion coefficients of organic compounds
119 compared to previous studies, as it coevade range of solid materiadsd physiochemical
120 propertiesand also considers the effect of temperatByeproviding reliable estimates of this
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key diffusion parameter for a large number of chemichis,mhethodwill facilitate high-
throughput assessmermtischemical emissions and human exposures for chemicals encapsulated

in solid materialgelevantfor chemical alternativeassessmerfCAA), risk assessmeand LCA

2. Materials and methods

2.1 Dataet

Experimentaldiffusion coefficient data were comgifeom 68 references frorthe peer
reviewedscientific literature The initial cataset contained a total of 11&tordscovering 161
unique chemieals and 88stinctsolid materialgprovided in Supporting InfoExperimental

data expréssed in éfa wereconverted to fis. There are different types of diffusion
coefficients reported in the literature, so harmonizatiothese data was performeddevelop a
consistent datasdtor diffusion coefficients measured in liquid sorption experiments, the
‘intrinsic diffusion coefficientscorrected for the swelling of materiatere collected®.

Sorption of'thdiquid molecules inside theolid material may cause swelling of the material,
which would-lead to decreased observed diffusion coefficients and thusortsedorrected’.

For porous materials consisting of pgpaceand solidmaterial two types of models can be
used to describe the chemical transport through these materials. Tpleaseemodel considers
the porous material as an assumed homogenemirstyl materiglso an‘apparent’ diffusion
coefficiehtissused talescribe the chemical diffusion througichimaginarymaterial’. In

contrast, the mukphase model considers the material as a mixture of pores and solid parts, and
the chemicatliffuses mainly through the pores if the pores are interconnected, or through the
pores and solid parts alternately if the pores are isolated from each other. -phasggsliffusion
through the poresvhich can be described by an ‘effective’ diffusion coefficienssumed to

be much faster thahe dffusion through the solid parfsHaghighat et al’, has demonstrated
that the ‘apparent’ diffusion coefficient is equivalent to the ‘effective’ diffusion coeffigiBr}
divided by the material phagms phase partition coefficiefi€,5). Thus, for porous materials

the ‘apparent™diffusion coefficients reported in studies wellected?®. For studies where only
the De andK 1, were reported”?, they were converted to ‘apparent’ diffusion coefficients using
the aforementioned method. Data were excluded for studies where only the ‘gftifftigeon
coefficients were reported.

From the initial dataset, 21 records were excluded from further analysesédoay involve
chemicals that are inorganic, chemidalswhich no CAS numbetould be identifiedor
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chemicals that are polymehairs with varying molecular weights. Thieal considerediataset
thus includes 1108 cordsfor 158 unique chemicals and Biaterials.

2.2Modeling methods

2.2.1Multiple linear regression
A multipledinear regressio(MLR) analysis waperformed to identify and quantify the effect of
different paiameters onhe diffusion coefficientThe MLR model takes the following general
form:

logioD=a+pfy Xy ++ L Xn+by M+ -+ by My (1)
where loggR.issthe logarithm of the diffusion coefficiefth?/s), ais the interceptX; to X, are
independent/variables related to physiochemical properties, such as molegldr molar
volume, and vapor pressusmnd/or environmental characteristics like temperaigyeo 5, are
regression coefficients for the respective independent varigblesX,; andM; to M, are
dummy variables for the solidaterials, with one dummy varialgpertype of materialA
dummy variable equals 1 for the material type it represents, and equals O for all other materials;
for example M = 1 for material type = 1M; = 0 for material types 2 to nb; to b, are
regression coefficients for the respective dummy variddle® M. The number ofm s equal
to the numberef material types considered minus 1, since the material typgbeniighest
numberiof.measured data is used as the reference material type and does not require a dummy
available in the MLRNote that the MLR model gives one coefficient for each material type,
while a material type can represent a single pure substance such as calcium silicate, a composite
material such as vinyl flooring and gypsum board, or a group of similar materials such as
wooden boards. Details of the material types will be discussedTaismegression equation
also implies that the material coefficienls {o b,,) and the physiochemical property coefficients
(P1 to pn)-are-independent of each other, which if corroborated by internal and external
validations (Section 2.3), allofor the maximum prediction coverage in terms of chemical-
material combination®ll regression coefficients were estimated by the least squares (LS)
method«All regression analyses were performed using IBM SPSS Statistics version 23 (IBM
corporation, Armonk, New York).

2.2.2 Grouping of materiabnd initial regressions
To reduce the number of dummy variables, to avoid over-fitting of the MLR model, and to have
a minimum of 10 records and 3 different chemicals per matggalto ensure enough variability
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the 87 original materials were grouped into 32 consolidaterialtypes, based on the
similarity of the regression coefficients and the mateyes(seeSupporting Informatior(Sl),
Section S1). Thusm = 31 in Eq. 1with PETasthe 329 and reference materjaince it is the
material with mosteported diffusion coefficids.
In previous.studiesither the chemical’s molecular weigMW), molar volumegMV) or vapor
pressurdVP) has been used as predictor of the diffusion coefficient in a given material.
Begley et'al®also suggested that the logarithm of the diffusion coefficient varies linearly with
the inverse of the absolute temperat{lvd). Thus,theinitial regression was perforrdeo
identify which of the above variablell(V, MV, VP and1/T) arebestpredictors of thaliffusion
coefficienssofscompounds encapsulated in #2emateriatypes i.e., to identifyX; to X, in Eq.
(1). Detailsvof the initial regression process presented in SISection S2Resultsof the initial
regression modeluggest that thieg-molecular weight and the inverse of the absolute
temperature are the most important predictansl thereforéhe employedVILR model takes the
following form:

108100 = a + Biog,omw *10810MW + By 7 - % +by My + -+ by My 2)
whereMW s the chemical’s molecular weight (g/mol) ahd the absolute temperature (K).
The model performance of using lagplecular weight and molecular weight as predictors were
very close.when using the training dataset (1103 records, m=31), but the model using log-
molecular weight as predictor was finally selected since it performs better fembigloular-

weight chemicalg¢Section 3.3.3).

2.2.3Temperature dependence

Studies have shown that the activation energy of diffusi@ancontributor to the temperature
dependence of the diffusion coefficient and varies as function of both the matettiaé and
chemicakpropefties > 3. Thus,ideally aspecific temperatureorrection coefficient should be
used for each chemicataterial combination. Since data availability is not sufficient to
determinechemicaispecifictemperature coefficieafor each of the32 materialsandsince
chemical’properties seem to have limited influence on the activation énrgye followed the
strategyof Begléy et al?, differentiatingtemperature coefficiesfor a limited number of
materialgroups applying one generic temperature coefficient for all chesigahin each
material groupBegley et al? have introduced a variable 1 to adjust the temperature coefficient

for two groupsof materialswhere t equals 0 or 1577 for 9 different polymers, which
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214  corresponds to activation energy of 86.9 kJ/mol for e.g. LDPE or 100 kJ/mol for e.g. A®PE.
215 analyze the temperature dependeoicthe diffusion coefficients in our dataset ¥irst dotted
216 logioD againstl/T for each of the 32 materibipes (S| Section 8). The plots generally shoas
217 expected an inverse relationship in whidbgoD is decreasing with increasingT, different
218 materials exhibihg different slopesSince variability in diffusion coefficient is highbetween
219 than within,given studies, we first deterndreetemperature coefficient for each chemical
220 materia¥study‘combination, and thealculatel anaveraggemperature coefficient faach

221 materialtypebyaveraging all temperature coefficients belongmthe same materiype.The
222 analysis of the materigdpecific temperature coefficients showed that the materials can be
223 grouped into three categories: (1) higf2) mediun: and (3) loweoefficient categorieswvith

224  three corresponding valués the tenperature coefficient adjustment factowhich are given in
225 Section 3.1Details are presented $1 Section S3.3.TheadjustedMILR model takes the

226 following form accordingly:

227 logloD =a+ .BlogMW ) logloMW + @ + bl ' M1 + -+ bm ) Mm, (3)

228
229 2.2.4Finalregression

230 To avoid multicollinearity problems in the MLR model and to avoid the influehtee material
231 type “Limited=data material grotipon the temperature coefficientgefixedthe temperature

232 coefficientsdetermined using Eq. 3 and ththefinal regression takes the following form:

Byttt

233 log,,D — = a + Bioguw " 10810MW + by - My + -+ + by * My, 4)
234 wherethe dependent variable is 1e® — (517+7)/T instead of logyD, with the values o/t
235 and 1 obtained from Eq. 3 and presenteldter in Section 3.1In this finalregressionall 1103
236 records omeasured datawere utilized including thenaterial type Limited-data material

237 group”, leading ton=31 materiatypes, plus one reference matetigbe, PET,with bpgr = 0.

238 2.3Model\alidation

239 Validation.efthefinal MLR model(Eq. 4) was performed using the QSARINS software, version
240 2.2.1 (www.gsar.ij which is developed by Gramatica etal®.

241 2.3.linternal validation
242 The MLR modek capacity to predict portions of the training datases$ evaluated ianinternal
243 validation process, using two techniques for internal validation in QSARINS. rBherdie is the
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leavemore ait (LMO) crossvalidation technique, which iteratively and randomly exclade
certain percentage of the measuddtlsion coefficient data, and then compuites regression
coefficientswith theremaining data and ust®se coefficientso make predictions for the
excluded one¥’. We used 1000 iterations and the percentageeoéxcluded elementsas set

as 20%.

The second technique for internal validation is the Y-scrambling procedure, which dentesnstr
that the"model‘is not the result of chance correlation. In this procedure, thenexpelr
responses (inur study the temperaturadjusted diffusion coefficients) are shuffled at random
and used witlthe original predictors to establish an MLR model. If the original MLR model is
internally validsthe performances of the scrambiaddels should be much worse than the

original modef2 We used 1000 iterations for the Y-scrambling.

2.3.2External validation

We alsoevaluated the model ability to provide reliable predictions on new datasesscalled
external validation processsing the following two approaches.

The firstapproactwas to split the existing datag&tL03 records) intonetrainingdataseand

one prediction"datets. The training dataset was used to generate regression coefficients of the
MLR modelyand then the MLR model was applied to the prediction setitaine the
prediction®performances of the model. Three kinds of splitting were performed ustigge
options in the QSARINS software (see Sl, Sectiorl&&r details)by random percentage (20%
of the entire dataset randomly selected as the predictipB08étrest to the training seby
response and by structyaata first ordered by responses of thegerature-adjusted diffusion
coefficient,"orbythe first axis ofprincipal component analys(PCA) of thedescriptors
respectively)We introduced a fourth kind of splitting by studiss\ce variability across studies
for a given material is in general larger than variability within a given studlgingsimilar
sample sizes.a@pproximately 880 data for the training set and 220 data for the predicti®i,set
TableS3).

The secondapproach of external validation was to useritiee collectediataset (1103 records)
as the trainingsset and to use an entirely sepdedteset as the prediction devr the prediction
set, two datasets were used. The first orgedatabase of diffusn coefficients from the United
Stated~ood and Drug Administration (FDA), which is a “database available upon request” f

guidance for industry (http://www.fda.gov/Food/ucm081818)hand includes nopeer
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275 reviewed diffusion coefficient data reported by industry. Taisetncludes 191 records of

276 experimental diffusion coefficients of 46 chemicals im2&erialswhich are mainly polymers

277 used for food contact materials (see Sl, Section S5details) The quality and reliability of

278 these data are not characterized by FD#e second predictiothatasets constructedfrom

279 several studies conducted before 1889, referenced i#f. This dataset, designated as “Dhga

280 19827 includes 281 records of measured diffusion coefficients of 92 chemicals in 8 polymer
281 materials alsoincludingself-diffusion (see Sl, Section S5.1 for details). Data for both prediction

282 sets are provided in Supporting Info.

283 2.3.3 Applicability domain (AD)

284 The analysis@and definition of the applicability domain (AD) of models is a fundahssue

285 that must be addressed in QSAR and QPPR studies. The study of AD can provideimrficomat
286 the reliability of the model predictions, i.e., if tbeemicals are inside the AD, the predictions
287 are interpolated and are more reliable; if the chemicals are outside the AD, the predictions are
288 extrapolated.and less reliaplecause effects can occur outside the AD that do not exist within
289 the AD*, Three complementary methods were applied to define the AD of the diffusion

290 coefficient QPPR: the range of model predictors, the leverage approach, and tbetREA

291 model predictors®. More explanation of these methagiprovided in SI, Section S4. In our

292 analysisgchencals are considered insittee AD if they are viewed insid&D by all three

293 methodswhereas chemicabre considered outside AD if thaye viewed outsid&D by all

294 three methods, arfthally chemicals that fall inside the AD fanly one or two methodsea

295 considereda®erderline’

296

297 3. Resultsand discussion

298 3.1 Temperature dependence of the diffusion coefficient

299 Thecompileddatasebf 1103 records including 158hemicals an®2 materialtypes shows that
300 the diffusion coefficient in solid materials decreases with decreteimgerature, as

301 demonstrated by the highly significarggative regression coefficieiatrr the variablel/T, with
302 By = —4440 (K) with a standard error (SBf 164 (K) ando < 0.001 in Eq. 23, Section
303 S3.1). This is in agreement with previous studi&s®.. This general tendency of decreasing
304 diffusion with increasind./T is well illustrated by the example of PET, the material il

305 most data available (FiguréX seeSl, Figure S1 for other materialslo further refine the
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coefficient for the temperature varialeo specific materials groupBigure 1B illustrates well

for methylmethacrylate (MMA) homopolymer the importarafdirst determiiing a temperature
coefficient for each separate study and matehaimical combination (Section 2.2.3) and then
averagng the temperature coefficients across studiBsemolecular weighthormalized

diffusion coefficientsshowa negativdinear relationshipvith 1/T within eachof the three
experimental studies of Figure ¥8? with similar regression coefficientsf -4530(K), -5704

(K), -3415(K);"averagng -4550(K) with an SEof 305(K) . However sincetheabsolute
log1oMW-noermalizeddiffusion coefficients reported by Hennebert efal. are much higher than
those reparted by the other two studies, doing regression witfall data from the three studies
would result imsa nosignificanttemperature coefficierfp-value of 0.19), thus demonstrating
the importanceo first performtemperatureegressions using data from the same study and for
the same chemical.

Tablel presentshe average temperature coefficieatsl their standard errors for each of the 32
consolidated material types. Based on the values of the temperature coeffinémsK), the

32 materiakypes can be grouped into three categorieshidh-coefficient category with

relatively high=(absolute value) temperature coefficientb000), i.e.materialsn which
diffusioneeefficientsarehighly sensitive to the change in temperat@gmediumeoefficient
category.with temperature coefficients in betwe&0Q0 <(8,,r + ) <-3000) and (3)low-
coefficient category with relatively low (absolute value) temperature coefficierB@9), i.e.,
materialsnwwhich diffusion coefficientare least sensitive to the change in temperaDetails

for the grouping of temperature coefficients can be found in SlI, Section S3.3.

The temperature coefficienfsr andz used in Eq. 4or each of the three temperature
dependency materiahtegories are obtained from the regression using the MLR robEgl

S32 (SI, Section S3.3), yielding values @f/r = —3486 + 299 (K) andtp;g, = —2391

356 (K), tieainm = 0 (K) and 1y, = +1676 + 510(K). Thus, for the High-, Medium- and
Low-coefficient categories, the final temperature coefficiéhis + 7) are-5877(K), -3486(K),
and -181gK), corresponding to activation energy of 113, 66.7 and 34.7 (kJ/raspectively.
Begley et al*also aggregate® types of polymer materials into two temperature categories, with
activation energwf 100 and 86.9kJ/mol), which have similar values with the high- and
mediumcoefficient categoriem the present paper, to which these 9 polymer materials are

assigned. These results indicate that the categorization of the temperature coefficient in the
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present paper is consistent with previous stydwbede extendinghe QPPR to a wider range of
materials

3.2 Final QPPRand model fitting

Using thefull datase{1103 records) and Eg. 4, the final MLR model for predicting the diffusion

coefficientdn'selid materials is as follows:

7—3486

N = 1103, R=0.932, R,q = 0.930 SE = 117, RMSE = 1.15
ANOVA: F = 467, df = 32, p < 0.0001

whereD is the-diffusion coefficient (fts), MW is molecular weight (g/mol) is absolute
temperature/(K)b andz (K) arethemateriatspecific coefficients presented in TaBleThis
model is previded as an excel model in Supporting Info to facilitate application. Tidarsta
errors for the.intercept (6.8and the coefficient of logMW (-2.49) are 0.29 and 0.13,
respectivelyAn SE of 1.17 of the final model (Eq. 5) indicates that the 95% confidence interval
(CI) of the predicted response, @B-(z-3486/T, is the predicted value + 2.30. The 95% CI of
the logoDicannot be directly calculated, but @neerage absolute difference between predicted
and measured.lagD is 0.83 across the whole dataset (1103 records), and 95% of this absolute
difference is below 2.54.
This MLR"model shows excellent fitting of the experimental data, with an adjBssgjuae of
0.932 and a root mean square error (RM&BR).15. The moddit is highly significant with an
ANOVA p-value smaller than 0.0001. Figure 2 shalesscatter plot aéxperimental grsus
predicted responses, whialignswell with the 1:1 line. In thi¢LR model, the response
(dependent.variable) is the temperatadgusted log diffusion coefficient, i.e., lafp-(=-3486/T,
instead,of logeD, in order to fix the temperature coefficients and to avoid multicollinearity
problems; as'mentioned in Section 2.2.4. The residual plot (Figsh®®} that the residuals are
distributed evenlyhrougloutthe datasetagain indicating the good fit of the linear model for the
data.
The key predictors other thé@mperature in the MLR model are timaterial type and the
molecular weight of the diffusing chemic@he regression coefficiemthen considering log-
molecular weighis equal to -2.49, indicating that the diffusion coefficidatreases with
increasing molecular weight. This implies thagkr molecules diffuse more slowly compared to

smaller molecules in solid materials, whishntuitiveand consistent with findings from
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previous studie$ %" 8 However, although the molecular weight is a highly significant
predictor (p <0.0001), it explaingess than 10% of the total variance of the diffusion coefficient
(SI, Section S&

The 31dummy variables for the material typeslect the material dependency auatount for

most of the tetal varianagf the diffusion coefficientindicating that the diffusion coefficient in
solid materials.s strongly dependent onitiegerial typeSince “Polyethylene terephthalate
(PET)” was'used as the reference material in the regression, the value of its coéffsciEaTd
(Table 3. For'each of the other materigtpes, the coefficienb, combined with the temperature
coefficient't, i.e.b+(z+2391)/T, determines the difference in log-diffusiometficient between
thatmaterialtype and PETsince PET has a temperatuoefficient T of -2391(K) (Table 2, last
column).Chemicals in materialypes with high values di+(z+2391)/T diffuse quicker than in
materialtypes with low values. Therefore, under room temperature (T = 298.15 K), the values of
b+(z+2391/T and the corresponding diffusion coefficients tend to be lower in dense, rigid
materials such as glass, stainless steehyhsatethacrylate (MMA) polymers, polyethylene
naphthalatey(PEN), and rigid polymers including polyether ether ketone (PEEK), rigid PV
polytetrafluoreethylene (PTFE), and polycarbondigb{e 3. In contrast, the values of

b+ +2391LI and the corresponding diffusion coefficiengsbe up to 13 orders of magnitude
higher inflexible or porous materials, such as gypsum, wood, rubber, and polyur&ibhame
based materials (Tablg.2t should be noted that the composition and properties of a given
material type may vary considerably depending on the intended use, as well as over time as
materialsubstitutions are made and production procedures differ. Thus, the material type
coefficientsiinsTable 2 actually represamtaverage composition and diffusion behavior for the
specific material types.

The significance of the material type coefficient only indicates that the coef§ibsoft these
materialtypes.aresignificanty different from the reference matertgpe, PET, but if another
materialtypewas selected as the reference material, the regression coefficients and statistical
significancesof all materials would change. Thus, the insignificance of the regression coefficients
for materialtype variables does not indicate that those matged do not haveralevant
influence on the diffusion coefficiers a result, we keep alll3naterial typedummyvariables

in the final regression to retain as much information as possible.
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The MLR model given in Eq. &ontains materiaspecific variables, so it is only valid for the 32
material types presented in Tabld=?r materials that do not belong to those 32 types, we built
another generic QPPR to predict the diffusion coefficients, which is presergédedion S4,

which should be usedith caution because of higher uncertainties.
3.3 Modelvalidation results

3.3.1 Internalwvalidation

For the 20%éavemore-out (LMO) cross validation, the correlatiowefficiert, Q° vio for the
1000 iterations ranges from 0.89 to 0.95, with an average of 0.93 raatiraean square error
for cross validation (RMSE) average of 1.19. Both thé@o and RMSE, are similar to the R
and RMSE computed using the full dataset, which is 0.93 andreédectively. These results
indicate thawvhenfitted to a random 80% of the dataskeé models still able topredict the
remaining 20% of the dataset, meaning that the model is internally stable.

For the Y-serambling, theverageR?yse: and Gvscr for the 1000 iterations are 0.029 and -0.033,
respectivelypwhich are much smaller than thefd G vo of the original model. The RMSE
for Y-scrambling, RMSks, is 4.36 which is much higher than the RMSE and RM$®Ethe
original model.These resultdemonstrate that no correlation exists between the scrambled
responses and.the predictors. Thalgnce correlatiofor the original model can be ruled out.
Overallgthe.internal validation demonstrates that the MLR model repeeskby Eq. 5 is robust
and stable, and is not a result of chance correlation.

3.3.2 Externalvalidation

As described in Section 2.3.2, the first method of external validation was to splill th&téset
(1103 records) into training set and prediction set, and four typgsitting were performed
including Splitting by a random 20%, by ordered response, by ordered structure, and by studies.
Six criterié-forexternal validation were computed and are presented in3[dhle Ry is the
determination coefficient of the prediction set data using the model caltuising the training
set data. The Gther five criteria?@**, P *, QPr3®, 112 *° and CCC", are external
validation criteria proposed by differestudies which evaluate various aspects of the model’s
external prediction abilityThese criteria are usually in accordandth each othebut can
sometimes give contradictory restfifsso they need to be euaked together. Chirico and
Gramatica have proposed threshold values for these different cffieniich are presented in

Table3. For the first thregypes of splitting (by random 20%, by ordered response, and by
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429 ordered structudethe Rey are higher than 0.9, and all of the other five criteria pass the

430 threshold values and are also higher than 0.9, indicating good prediction ability of the model
431 calculated using only the training set ddtathese three types of splitting, ttiata were assigned
432 to the training and predictiahatasets either randomly or alternately (by ordered response or
433 structure), se.it is likely that a portion of the data freeehstudywasassigned to the training set
434  while the remaining portion of the datesassigned to the prediction set. As the resi,

435 prediction‘set'is well within the applicability domain (AD) defined by the training set (Sl

436 Figures S257);'so it isexpected that the model calculated using the training set can well predict
437 the prediction set.

438 For the fourthrtype of splitting, splitting by studies, data from 30 studies were selsdtes

439 prediction'set,\while data from the remaining 48 studies itotest the training sefhus, all

440 data from one studgnd for one particular materiaill be either in the training dn the

441 prediction set, so the validation using this splitisglose to a truly “external” validatioMost
442  of the prediction set imside the AD defined by the training scept fortwo data points (S|
443  Figures S889wAs a result, the R, dropped to @5, and the values of the other five validation
444  criteria are"apparently lower than those the above three types of splittjimgflecting that

445  variabilityss higherbetweenthan within studiesThe five validation criteriamevertheless all pass
446 the threshold values (Table 8)dicating that the model calculated using the training set has
447 good prediction ability.

448 As a second mbod of external validation, the 1103 data points from thsté@es were used as
449 the training'set; and additionddta from an FDA databaaed from studies before 198&re

450 used aswo'separat@rediction setsAs presented in Tablg when using FDA dasatas the

451 prediction'setthe Rex is reduced to 0.80 which is lower than th&,Rfor the above four types
452  of splitting. Fourof the five validation criteria pass the threshold values, wHilg @es not

453 pass the thresholth contrast, when using data by 1982 as the prediction set’4hésF.93,

454  which is very.close tthe R of the training dataset (Section 8.Zhe absolute difference

455 between predicted and measured jBgaverages 2.20 (§5ercentile of 5.53) for the FDA

456 dataset, and averages 1.08"(@&rcentile of 2.68) for the data by 1982. Figure 3 presents the
457 comparison between model predicted and experimental resgfonsesse two prediction sets.
458 Data from botlprediction setare generally distributed close to the 1:1 line, thet FDA data
459 are more dispersed compared to the training set data while the data by 1982 drasalmos
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compact as the training set dafthe FDA data lack documentation of experimental details, so
their quality may not be as good as the data reported inr@dewed literature. Also, aen the
FDA polymer types were linked to our consolidateakerial typesmismatchesnayhave
occureddue to lack of description of the polymers in the FDA dataset, which may lead to
inaccuracies.in model predictior@verall, however, our QPPR performs reasonably well on
these twdully external datasstdemonstrating itgood predictive ability.

3.3.3 Applicability domair{AD)

We performed the analysis of the model’'s applicability domain (AD) using theappzeaches
explainediin Section 2.3.3. The model being evaluated is the final MLR model pteseBkiq.5,
which wasrcalculated using the training set of 1103 data points collected freton&ss
obtained fromth@eerreviewedliterature. For the analysis of AD, we focus on the two external
prediction datasets: the FDA datasE8q data points) and the data by 1982 (239 data points).
Detailed results, of the AD analyssepresented in SSection $.1.

Combining,the three methods, none of the data poirdstinprediction setell out of the AD.
For the FDA dataset, thmajority of the data pointsere insidehe AD, whilel5 data points
were on borderline of AD. Similarly, only 35 data points from the data by 1982 were on
borderline*ef., AD.Thus, it is valid to use thpresenQPPR to make reliable estimates of
diffusion.eoefficients for all data points the twoprediction set. The physiochemical property
spacecovered by the QPPR is mainly determined by the chemical’s molecular weight, which
ranges fram. 30.to 1178 g/mol. The vapor pressure at 25 °C may aseleganproperty

which rangésfrom 9:80%° to 5.210° Pa.The range of logD covered by the QPPR ranges
from -22.1 to=5.2vhereD is measured im?s.

As mentioned in Section 2.2.2, the model performances of using log-molecular weight and
molecularyweight as predictongere very close to each other when using the trainingsgfita
However, residual analysis and external validation showed thaM¥@gis a more stable
predictor thasMW when handling higtmolecularweight chemicalswhich becomes prominent
for the EDA"dataset which includes certain chemicals with molecular waiger than 1500
g/mol. While:none of the data points in the FDA dataset fell out of the AD using tiMbg
model, 11 data points would be outside AD usingMivé model. Details are presented in Sl,
Section S6.2. Thus, legMW instead oMW was selecteds a predictor in the final QPPR (Eq.
5).
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491  Schwopeet al.®” suggested that the linear relationship betweepbgnd logoMW may only

492 Dbe valid for a certain range of molecular weight, and there may be a saturatiinsadn

493 coefficients for small molecular weights, i.e., for a given material and a given temperature, the
494  diffusion coefficient does not continue to increase for chemicdalsmolecular weight lower

495 than a certainwalue, which is likely determined by the material type. To furthamexthe

496 effect of molecular weight on model applicability, egalyzedthe model residuals versus the

497 log of molecular weighfor the training dataset and ttveo prediction set¢Figure 4) For the

498 three datasetshe residualaredistributed evenly on both sides of zero in the MW range of the
499 training datasedf 30 and 1178 g/mol (lagMW of 1.48 to 3.07). For methane (MW=16 glino

500 most of the predictions overestimate diffusivity, suggesting that diffusivity ntlsed not

501 further decrease below MW 30 g/mol. Since methane was the only chemical with data available
502 for MW lower than 30 g/mol, data for additional chemicals and nadgeare therefore needéml

503 further testhis hypothesis of saturatia low MW. Similarly, additional data are needed to

504 provide more accurate estimates chemicals with &ry high molecular weights

505 Overall, thesperformance of the final model (Epirbthis external validatiomdicatesthat it has

506 theability to provide reliable predictions, as long as the considgrethicals are within the

507 model'sapplicability domain. With the legnolecular weight as a predictor, our model is able to
508 make reliable extrapolations on chemicaith molecular weights up to about 2500 g/mol, but
509 caution still needs to be taken when applying the model on extrédngtiymolecularweight

510 chemicals..ldeallythe model should be applied to predict diffusion coefficiemtsemicals

511 with molecularweightsowerthan 1178 g/mol which is the maximum within the training dataset.
512 Caution alsesneeds to be taken when applying the model on very-low-moleeiddt-

513 chemicals due to the possible saturation eff8cith the FDA datasetand the data by 1982 were
514 used for the external validation budt combined with the original training dataset to calculate a
515 more comprehensive MLR model, becaussdidata are somewhat outdatéite FDA dataare

516 not published.in literatureso there is a lack of experimental details, making thadecumented
517 data less reliable than the data collected from-pmgewed literature.

518

519 3.4 Limitationsand future work
520 While the extension to 3differentconsolidatednaterialtypes is a major pragss, the present

521 model is still not fully comprehensivEirst, he modelmay not be validor very high or very
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low molecular weigh{MW) chemicas. It may not be valid foionizing organic chemicals either,
since ionizing chemicals such as acids, alcopb&iols and amines are not well represented in
the training dataset, as they only account for less than 10% of the dataguairttssmodel does
not considechemical ionizatioror interaction within a materialyhich may make the
chemical’s_difusivity lower than that predicted by the model. Second, the present imoae!
applicable for materials typ@sherthan the 32 types in the training set, e.g. for material such as
resin and textiles, due to the lack of experimental data. Althoughexgeaeral MLR mod€[SI,
Section S4wasdevelopedvhich does not require material type as the predictor, it gives much
less accurate predictions of the diffusion coefficient. Third, the presetdlmoes not consider
any interactiombetween MW and ma#tiype, i.e., it assumes the effect of MW is the same
across different materials. Althoughodel validations show that this assumption may be
reasonable for the existing data, ideally it needs toieerverified using data spanning the
whole MW range (30 to 1178 g/mol) for each matefiiakrefore, more experimental diffusion
coefficient.data need to be obtained more advanced experimental methods to measure
diffusion coefficients need to be developkxt,other material types arathemical sizes and
classedo make‘the model more comprehensive.

There are«also large variations in the experimental diffusion coefficients between some of
different studiedor three material typesiamely “MMA homopolymer”, “Natural rubber” and
“Rigid polymers”, even after correcting for molecular weight and temperatusboas in

Figure 1 and SI, Figure SThis means that the regression coefficidnésmdz for these material
types should'be taken with cafldne variations coulde due tothreecausesFirst,experimental
variation; forexample, Franz et & used desorption experiments to measure the diffusion
coefficients in MMA homopolymer, while Hennebert et*aused sorption experiments. Second,
the swelling of polymers during liquid sorption experiments, which generally occurs for
crosslinked.polymers in lowolecular weight solvenfS, may not always be accounted for, and
can lowerthe diffusion coefficients by orders of magnitdfeThird, theproperties of the same
material canvary ketween studiedepending on how it was made and which additvereused
This may alse,be the case for some other materials such as vinyl flooring, carpet, synthetic
rubber, etc., for which the material type coefficients in Eq. 5 can only repseseatsort of
average composition and diffusion behavior for the specific materials. Idealiitgtize,
continuous properties of the solid materialghsas densityporosityand crystalline statef the
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material as well as other descriptors of the matertalsposition andnolecular structure
instead of qualitative material typesutd be measured and entered into the model as predictors,
so that thenodel can benore accurate and can éxtrapolated to various material types outside

the training dataset.

4. Conclusions

A multiple linear regression model has been develdpgdedict the internal diffusion
coefficients of organicampounds in variouso#id materials(excel model provided in Sl).
Experimental diffusion coefficient data collected from 68 studies gb¢leereviewed literature
were usedras the training $et the regressianThe model uses two continuous variables,
molecular weight andhversed absolute temperature, and one categorical variable, material type,
as predictors. The model has been intéynadlidatedto be robust, stable and not a result of
chancecorrelation. External validation usirgyo prediction setdemonstrates théte model
predictionssare.most reliable withine models applicability domain, namely molecular weight
betweerB0 and 1178 g/mol temperature between 4 and 180 °C, and material type belonging to
the 32 consolidated types.

The main advantage of the presemdel is that it is applicable for chemicals with a wide range
of moleeular weights (but only up to about 16 to 2500 g/mith special treatment for
molecular weight lower than 30 g/mah various materialsThis is advantageous compared to
the correlion.methods developed in previous studies often specificefdainchemical classes
or materialsThe present model is able to provigdiable estimates dafiffusion coefficientdor

a large number of chemicalaterial combinations, making it suitable for hidjnoughput
assessmentd thereleasesind human exposuresd¢bemicals encapsulated in solid materials
particularly building materials and food contact materibtsmakethe model comprehensive,
more experimental diffusion coefficient data need to be obtained for other mg{ees| or
guantitativesand continuous parametrizatdwarious solid materials needs tofbeher

developed:
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Figure 1. Relationship between the diffusion coeffic@ritorrected for logpMW) and the
inverse ofitemperature for (A) PET, and (B) methyl methacrylate (MMA) homopolyiiner.
units of D andMW are nf/s and g/mol, respectively.
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618 Table 1. Temperature dependence of diffusion coefficient in the 32 consolidate@dimgies

619 (all numbers are in the unit of K)
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Coefficient value for Eq.5

Category Material Mean coefficient of 1/T  SD between studies Bir T BirtT
High-coefficientcategory PP homopolymer -6665 2354 )
Polyethylene terephthalate (PET) -6567 2399
General polystyrene (PS) -5713 3560 3486 2391 5877
Polyethylene naphthalate (PEN) -5449 1940
PP copolymer -5384 1194
High-density polyethylene (HDPE) -5294 1124 _
Medium-coefficient category MMAhomopolymer -4549 1145 n
ABS, EVOH -4222 n/a
High-impact polystyrene (HIPS) -4215 n/a
Polyamide (PA) -4179 1854
MMA copolymer-medium or low density -4056 1272
Polyethylene (PE, LIDPE, LLDPE) -3713 536 3486 0 3486
Limited-data material group nfa nfa
Calcium silicate nfa nfa
Carpet n/a n/a
Glass, Stainless steel nla nla
Vinyl acetate-based polymers nfa nfa
Cement n/a nla _J
Low-coefficient category Gypsum board nfa nfa ]
Plywood n/a nla
Flexible PVC -2917 2618
Other wooden boards -2411 888
Polychloroprene (CR) 2127 286
Vinyl flooring -1951 n/a
Polystyrene foam (XPS, EPS) . -1806 nfa 3486 1676 4840
Polyurethane foam-based materials* -1705 699
Synthetic rubber -1326 205
Ethylene-propylene rubbers -1145 300
Natural rubber (NR) 939 337
Rigid polymers 510 1552
Paper -312 nfa
Gypsum and cellulose ceiling tile 331 294

*This material type refers to low-density polyurethane foams with a density of 0.005 to 0.03 gicm®,

Table 2.Materialspecific oefficients for Eq. 5
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Coefficient b

b+(t+2391.15)T

Material Coefficient SE' p-value T (K) at25°C

Calcium silicate 1.17 0.29 <0.0001 0 9.19
Carpet -1.28 0.28 <0.0001 0 6.79
Cement 0.330 0.226 0.15 0 8.35
Ethylene-propylene rubbers -6.32 0.29 <0.0001 1676 7.32
Flexible PVC -8.51 0.31 <0.0001 1676 513
General polystyrene (PS) 2.04 0.30 <0.0001 -2391 2.04
Glass, Stainless steel -8.57 0.38 <0.0001 0 -0.550
Gypsum and cellulose ceiling tile -1.24 0.31 <0.0001 1676 124
Gypsum board -5.77 0.30 <0.0001 1676 7.87
High density polyethylene (HDPE) 5.11 0.20 <0.0001 -2391 5.11
High-impact polystyrene (HIPS) -7.11 027 <0.0001 0 0.907
Methyl methacrylate (MMA) copolymer-medium or low density -7.73 0.21 <0.0001 0 0.294
Methyl methacrylate,(MMA) homopolymer" -7.84 0.31 <0.0001 0 0.175
Natural rubber (NR)" -3.60 0.27 <0.0001 1676 10.0
Other wooden boards® -6.72 0.21 <0.0001 1676 6.92
Paper -8.53 0.34 <0.0001 1676 5.11
Plywood -5.61 0.34 <0.0001 1676 8.03
Polyamide (PA) -5.40 0.16 <0.0001 0 262
Poly acryinitrile butadiene styrene (ABS), Ethylene vinyl alcohol (EVOH) -4.97 0.23 <0.0001 0 3.05
Polychloroprene (CR) -6.31 0.35 <0.0001 1676 7.33
Polyethylene (PE; LDPEJLLDPE) -1.65 0.16 <0.0001 0 6.37
Polyethylene naphthalate (PEN) -1.16 0.28 <0.0001 -2391 -1.16
Polyethylene terephthalate (PET)° 0.00 0.15 n/a -2391 0.00
Polystyrene foam (XPS;EPS) -8.32 0.29 <0.0001 1676 5.32
Polyurethanie foam-based materials® -7.35 0.25 <0.0001 1676 6.30
PP copolymer 479 0.28 <0.0001 -2391 4.79
PP homopolymer 453 0.15 <0.0001 -2391 453
Rigid polymers™" -11.9 0.25 <0.0001 1676 1.70
Synthetic rubber -5.93 0.32 <0.0001 1676 7.71
Vinyl acetate-based polymers” -0.459 0.326 0.16 0 7.56
Vinyi flooring -6.77 0.21 <0.0001 1676 6.87
Limited-data matérial group® see footnotes

#Includes Particleboard,Oriented strand board (OSB), Medium-density fiberboard (MDF), High-density board, and Wood chamber wall.
®This material type.refers.to low-density polyurethane foams with a density of 0.005 to 0.03 glem®.
“Includes Polyether ether ketone (PEEK), Rigid PVC, Polytetrafluoroethylene (PTFE), and Polycarbonate.

%Includes Ethyl vinyl acetate (EVA), Polywinyl acetate (PVA), and Polyinyl acetate polyacrylic acid copolymer.
®The coefficient b forthis group is -2.26 with an SE of 0.18, and the coefficient t is 0. "Limited-data material group" includes data from 20
different materialsysoithe accuracy of the coefficients is low and they are not recommended for use in predicting diffusion coefficients. This group
includes Alginate film, Balance, Decorative and Overlay layers of wooden flooring, Cellulose, Epichlorhydrin-dimethylamine polymer (EDP),
Epoxy/acrylic copolymer, latex, MMA/Butyl methacrylic (BMA) copolymer -very low density, Nanocomposite polyamide, Paint, Pectin film,
Pectin/Alginate composite film, Polydimethyisiloxane (PDMS) membrane, Polyisoprene (Pl) membrane, Polyoctenamer (PO) membrane,
Polyoxymethylene, Polytrimethylene terephthalate (PTT), Polwinylidene chloride (PVDC), and Silicone.

"Standard error.
9 Reference material.

"Coefficients should be taken with care due to large variations between studies.

Table 3. External validation results
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External validation criteria Rt Q% Q%, Q% r2 cccC

Threshold >0.70 >0.70 >0.70 >0.65 >0.85
Splitting by random percentage 0.92 0.92 0.92 0.92 0.90 0.96
Splitting by ordered response 0.94 0.94 0.94 0.95 0.93 0.97
Splitting by ordered structure 0.94 0.94 0.94 0.94 0.91 0.97
Splitting by studies 0.85 0.85 0.84 0.85 0.78 0.92
FDA dataset as prediction set 0.80 0.77 0.77 0.60 0.71 0.89
Data by 1982-asiprediction set 0.93 0.93 0.92 0.90 0.85 0.95

R?.,¢ determinationicoefficient of the prediction set external data.
Q2 correlationieoefiicient proposed by Shi et al.
Q?k,: correlation coefficient proposed by Schuurmann etal.

Q?k,: correlation coefficient proposed by Consonni et al.
r2 : determination ¢oefficient proposed by Ojha et al.
m
CCC: concordance correlation coefficient proposed by Chirico and Gramatica.
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