1	
2	DR. LEI HUANG (Orcid ID : 0000-0002-7846-9760)
3	DR. PETER FANTKE (Orcid ID : 0000-0001-7148-6982)
4	
5	
6	Article type : Original Article
7	
8	
9	\mathbf{O}
10	A Quantitative Property-Property Relationship for the Internal Diffusion
11	Coefficients of Organic Compounds in Solid Materials
12	Lei Huang ¹ *, Peter Fantke ² , Alexi Ernstoff ² and Olivier Jolliet ¹
13	¹ Department of Environmental Health Sciences, School of Public Health, University of Michigan,
14	Ann Abor, MI, USA
15	² Division for Quantitative Sustainability Assessment, Department of Management Engineering,
16	Technical University of Denmark, 2200 Kgs. Lyngby, Denmark
17	*Corresponding author, <u>huanglei@umich.edu</u>
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
	This is the author manuscript accepted for publication and has undergone full peer review but has

not been through the copyediting, typesetting, pagination and nas undergone full peer review but has lead to differences between this version and the <u>Version of Record</u>. Please cite this article as <u>doi:</u> <u>10.1111/ina.12395</u>

This article is protected by copyright. All rights reserved

31 Abstract

32 Indoor releases of organic chemicals encapsulated in solid materials are major contributors to 33 human exposures and are directly related to the internal diffusion coefficient in solid materials. 34 Existing correlations to estimate the diffusion coefficient are only valid for a limited number of chemical-material combinations. This paper develops and evaluates a quantitative property-35 36 property relationship (OPPR) to predict diffusion coefficients for a wide range of organic 37 chemicals and materials. We first compiled a training dataset of 1103 measured diffusion 38 coefficients for 158 chemicals in 32 consolidated material types. Following a detailed analysis of 39 the temperature influence, we developed a multiple linear regression model to predict diffusion 40 coefficients as a function of chemical molecular weight (MW), temperature, and material type 41 (adjusted R^2 of 0.93). The internal validations showed the model to be robust, stable and not a 42 result of chance correlation. The external validation against two separate prediction datasets demonstrated the model has good predicting ability within its applicability domain ($R^2_{ext} > 0.8$). 43 44 namely MW between 30 and 1178 g/mol and temperature between 4 and 180 °C. By covering a 45 much wider range of organic chemicals and materials, this QPPR facilitates high-throughput 46 estimates of human exposures for chemicals encapsulated in solid materials. 47 Keywords 48 Diffusion, Solid materials, Consumer products, Indoor release, Organic chemicals, Correlation Practical implications 49 50 The quantitative property-property relationship developed by the present study provides a more

57 1. Introduction

51

52

53

54

55

56

58 Chemicals encapsulated in solid materials have been identified as a major source of passive 59 emissions to indoor air $^{1-3}$ and of transfers into food 4 and onto skin 5 . Typical examples include

comprehensive correlation method to estimate the diffusion coefficients, as it covers a wide

range of organic chemicals and solid materials, and also considers the effect of temperature. This

model provides the basis for facilitating high-throughput estimates of indoor human exposures

for chemicals encapsulated in solid materials relevant for several science-policy fields, such as

chemical alternatives assessment (CAA), risk assessment (RA) and life cycle assessment (LCA).

This article is protected by copyright. All rights reserved

60 chemicals used as flame retardants in furniture and plasticizers in food contact materials. To 61 estimate the release of these chemicals from solid materials, and eventually consumer exposures, the diffusion coefficient, D (m²/s), for chemicals encapsulated in solid materials, is essential 62 information. D describes the transport of a molecule through a material, which is specific for a 63 64 chemical-material combination and is also influenced by ambient temperature. Experimental techniques such as chamber tests for building materials ^{6,7}, and sorption/desorption experiments 65 for polymer materials ⁸⁻¹⁰ have enabled measurement of a limited number of chemical diffusion 66 coefficients for building materials such as vinyl flooring, gypsum board, particle board, plywood, 67 carpet and cement ¹¹⁻¹⁴, as well as polymer materials including polyethylene (PE), polystyrene 68 (PS), polypropylene (PP), and polyvinyl chloride (PVC)^{4, 15, 16}. However, given the limited 69 70 number of chemical-material combinations with measured Ds, and the costly and time-71 consuming nature of experiments, quantitative relationships are needed to complement existing 72 measurements by predicting the diffusion coefficients from known physiochemical properties for 73 chemicals without experimental data. This is especially important for high-throughput 74 approaches where a large number of chemical-material combinations need to be evaluated and 75 for which it is unrealistic to perform experiments on all relevant combinations. 76 Several correlation methods have been developed to estimate the diffusion coefficients from physicochemical properties of chemicals^{8, 12, 17-19}. For example, Berens and Hopfenberg 77 78 correlated the D to the mean molecular diameter of the diffusing molecule, using data on more 79 than 20 chemicals in 3 glassy materials including PVC, PS and polymethyl methacrylate $(PMMA)^{8}$. Zhao et al. found a correlation between D and vapor pressure for water and 8 80 aromatic hydrocarbons in polyurethane foam (PUF)¹⁹. Furthermore, both Bodalal et al. and Cox 81 et al. estimated the D as a function of molecular weight $^{12, 18}$. The former study considered 82 measured D data on 5 aromatics and 5 aldehydes in several building materials ¹², while the latter 83 study considered data on 4 alkanes in vinyl flooring ¹⁸. For each of these aforementioned 84 approaches, the main limitation is that the correlations are specific to certain chemical classes 85 and materials; for example aldehydes in plywood, which limits their application for other 86 87 materials and chemical classes. Addressing this research gap to facilitate wider applicability, 88 Guo developed a method which estimates the diffusion coefficient as a function of the chemical's molar volume for mixed chemical classes ¹⁷. However, this approach is limited to 6 89

building materials and are developed based on a small dataset of limited chemical classes (≤ 3

91 chemical classes for 5 of the 6 building materials).

92 The aforementioned correlation methods consider experiments for building materials at room

93 temperature, and therefore temperature is not relevant and thus not considered in the correlation

94 model. For other exposure scenarios, such as transfer of chemicals from food contact materials

95 (FCMs) into food, ambient temperature is highly relevant because FCMs can be heated,

96 refrigerated, or frozen. Accordingly, Begley et al. presented a correlation method to estimate the

97 diffusion coefficient in 9 polymer materials as a function of molecular weight and temperature ⁴,

98 which is not applicable beyond the considered polymers.

99 In all, the currently available correlation methods to estimate *D* do not provide sufficient

100 coverage of chemicals encapsulated in consumer products in different use scenarios (i.e. ambient

101 temperatures). Developing low-tier, high-throughput methods to estimate exposure to chemical

102 in consumer products across a variety of chemical-material combinations is a recent focus in

103 various science-policy fields such as computational exposure science and life cycle assessment

104 (LCA) $^{20-25}$. Addressing the lack of methods to estimate *D* for a variety of chemical-product

scenarios, the present study aims to develop a more comprehensive correlation method to

106 estimate *D* for wide range of organic compounds in multiple solid materials. More specifically,107 we aim to:

108 1) Carry out a comprehensive and extensive literature review to collect experimental diffusion

109 coefficient data on a wide range of materials and chemicals.

110 2) Use multiple linear regression techniques to establish the relationship between the diffusion

111 coefficient and various predictor variables including physiochemical properties, material

112 properties and environmental characteristics.

3) Perform internal and external validations to characterize the validity and predictive power ofthe developed correlation.

115 Since the material type is a categorical property variable and is not related to the chemical's

116 molecular structure, we call this correlation a quantitative property-property relationship (QPPR)

117 instead of a quantitative structure-activity relationship (QSAR). This QPPR provides a more

advanced correlation method to estimate the diffusion coefficients of organic compounds

119 compared to previous studies, as it covers a wide range of solid materials and physiochemical

120 properties, and also considers the effect of temperature. By providing reliable estimates of this

121 key diffusion parameter for a large number of chemicals, this method will facilitate high-

122 throughput assessments of chemical emissions and human exposures for chemicals encapsulated

123 in solid materials relevant for chemical alternatives assessment (CAA), risk assessment and LCA.

124 2. Materials and methods

125 2.1 Dataset

Experimental diffusion coefficient data were compiled from 68 references from the peer-126 127 reviewed scientific literature. The initial dataset contained a total of 1124 records covering 161 128 unique chemicals and 88 distinct solid materials (provided in Supporting Info). Experimental data expressed in cm^2/s were converted to m^2/s . There are different types of diffusion 129 coefficients reported in the literature, so harmonization of these data was performed to develop a 130 131 consistent dataset. For diffusion coefficients measured in liquid sorption experiments, the 'intrinsic' diffusion coefficients, corrected for the swelling of materials were collected ¹⁰. 132 133 Sorption of the liquid molecules inside the solid material may cause swelling of the material, which would lead to decreased observed diffusion coefficients and thus need to be corrected ¹⁰. 134 For porous materials consisting of pore space and solid material, two types of models can be 135 136 used to describe the chemical transport through these materials. The one-phase model considers 137 the porous material as an assumed homogeneously mixed material, so an 'apparent' diffusion coefficient is used to describe the chemical diffusion through such imaginary material ⁷. In 138 139 contrast, the multi-phase model considers the material as a mixture of pores and solid parts, and the chemical diffuses mainly through the pores if the pores are interconnected, or through the 140 141 pores and solid parts alternately if the pores are isolated from each other. The gas-phase diffusion through the pores, which can be described by an 'effective' diffusion coefficient, is assumed to 142 be much faster than the diffusion through the solid parts ⁷. Haghighat et al., ⁷ has demonstrated 143 144 that the 'apparent' diffusion coefficient is equivalent to the 'effective' diffusion coefficient (D_e) divided by the material phase-gas phase partition coefficient (K_{ma}). Thus, for porous materials 145 the 'apparent' diffusion coefficients reported in studies were collected ²⁶. For studies where only 146 the D_e and K_{ma} were reported ²⁷⁻²⁹, they were converted to 'apparent' diffusion coefficients using 147 the aforementioned method. Data were excluded for studies where only the 'effective' diffusion 148 149 coefficients were reported.

From the initial dataset, 21 records were excluded from further analyses because they involve chemicals that are inorganic, chemicals for which no CAS number could be identified, or 152 chemicals that are polymer chains with varying molecular weights. The final considered dataset

- thus includes 1103 records for 158 unique chemicals and 87 materials.
- 154 2.2 Modeling methods

155 2.2.1 Multiple linear regression

A multiple linear regression (MLR) analysis was performed to identify and quantify the effect of
different parameters on the diffusion coefficient. The MLR model takes the following general
form:

159

$$\log_{10} D = \alpha + \beta_1 \cdot X_1 + \dots + \beta_n \cdot X_n + b_1 \cdot M_1 + \dots + b_m \cdot M_m$$
(1)

where $\log_{10}D$ is the logarithm of the diffusion coefficient (m²/s), α is the intercept; X_1 to X_n are 160 161 independent variables related to physiochemical properties, such as molecular weight, molar 162 volume, and vapor pressure, and/or environmental characteristics like temperature; β_1 to β_n are regression coefficients for the respective independent variables X_1 to X_n ; and M_1 to M_m are 163 164 dummy variables for the solid materials, with one dummy variable per type of material. A 165 dummy variable equals 1 for the material type it represents, and equals 0 for all other materials; for example, $M_1 = 1$ for material type = 1, $M_1 = 0$ for material types 2 to m. b_1 to b_m are 166 regression coefficients for the respective dummy variables M_1 to M_m . The number of m is equal 167 168 to the number of material types considered minus 1, since the material type with the highest 169 number of measured D data is used as the reference material type and does not require a dummy 170 available in the MLR. Note that the MLR model gives one coefficient for each material type, 171 while a material type can represent a single pure substance such as calcium silicate, a composite 172 material such as vinyl flooring and gypsum board, or a group of similar materials such as 173 wooden boards. Details of the material types will be discussed later. This regression equation 174 also implies that the material coefficients $(b_1 \text{ to } b_m)$ and the physiochemical property coefficients 175 $(\beta_1 \text{ to } \beta_n)$ are independent of each other, which if corroborated by internal and external 176 validations (Section 2.3), allow for the maximum prediction coverage in terms of chemical-177 material combinations. All regression coefficients were estimated by the least squares (LS) 178 method. All regression analyses were performed using IBM SPSS Statistics version 23 (IBM 179 corporation, Armonk, New York).

180 2.2.2 Grouping of materials and initial regressions

181 To reduce the number of dummy variables, to avoid over-fitting of the MLR model, and to have

a minimum of 10 records and 3 different chemicals per material type to ensure enough variability,

183 the 87 original materials were grouped into 32 consolidated material types, based on the

- 184 similarity of the regression coefficients and the material types (see Supporting Information (SI),
- 185 Section S1). Thus m = 31 in Eq. 1, with PET as the 32^{nd} and reference material, since it is the
- 186 material with most reported diffusion coefficients.
- 187 In previous studies, either the chemical's molecular weight (MW), molar volume (MV) or vapor
- 188 pressure (*VP*) has been used as predictor of the diffusion coefficient in a given material $^{12, 17-19}$.
- 189 Begley et al.⁴ also suggested that the logarithm of the diffusion coefficient varies linearly with
- 190 the inverse of the absolute temperature (1/T). Thus, the initial regression was performed to
- 191 identify which of the above variables (MW, MV, VP and 1/T) are best predictors of the diffusion
- 192 coefficients of compounds encapsulated in the 32 material types, i.e., to identify X_1 to X_n in Eq.
- 193 (1). Details of the initial regression process are presented in SI, Section S2. Results of the initial
- 194 regression model suggest that the log-molecular weight and the inverse of the absolute
- 195 temperature are the most important predictors, and therefore the employed MLR model takes the 196 following form:
- 197

$$\log_{10} D = \alpha + \beta_{\log_{10} MW} \cdot \log_{10} MW + \beta_{1/T} \cdot \frac{1}{T} + b_1 \cdot M_1 + \dots + b_m \cdot M_m$$
(2)

where *MW* is the chemical's molecular weight (g/mol) and *T* is the absolute temperature (K).
The model performance of using log-molecular weight and molecular weight as predictors were
very close when using the training dataset (1103 records, m=31), but the model using logmolecular weight as predictor was finally selected since it performs better for high-molecularweight chemicals (Section 3.3.3).

203 2.2.3 Temperature dependence

204 Studies have shown that the activation energy of diffusion is a contributor to the temperature 205 dependence of the diffusion coefficient and varies as function of both the material and the chemical properties ^{4, 30, 31}. Thus, ideally a specific temperature correction coefficient should be 206 207 used for each chemical-material combination. Since data availability is not sufficient to 208 determine chemical-specific temperature coefficients for each of the 32 materials, and since chemical properties seem to have limited influence on the activation energy ^{4, 30}, we followed the 209 210 strategy of Begley et al.⁴, differentiating temperature coefficients for a limited number of 211 material groups, applying one generic temperature coefficient for all chemicals within each material group. Begley et al. ⁴ have introduced a variable τ to adjust the temperature coefficient 212 213 for two groups of materials, where τ equals 0 or 1577 for 9 different polymers, which

214 corresponds to activation energy of 86.9 kJ/mol for e.g. LDPE or 100 kJ/mol for e.g. HDPE. To 215 analyze the temperature dependency of the diffusion coefficients in our dataset, we first plotted 216 $log_{10}D$ against 1/T for each of the 32 material types (SI Section S3). The plots generally show as expected ⁴ an inverse relationship in which $log_{10}D$ is decreasing with increasing 1/T, different 217 218 materials exhibiting different slopes. Since variability in diffusion coefficient is higher between 219 than within given studies, we first determined a temperature coefficient for each chemical-220 material-study combination, and then calculated an average temperature coefficient for each 221 material type by averaging all temperature coefficients belonging to the same material type. The 222 analysis of the material-specific temperature coefficients showed that the materials can be 223 grouped into three categories: (1) high-, (2) medium- and (3) low-coefficient categories, with 224 three corresponding values for the temperature coefficient adjustment factor τ , which are given in 225 Section 3.1. Details are presented in SI Section S3.3. The adjusted MLR model takes the following form accordingly: 226

227

$$\log_{10} D = \alpha + \beta_{\log MW} \cdot \log_{10} MW + \frac{\beta_{1/T} + \tau}{T} + b_1 \cdot M_1 + \dots + b_m \cdot M_m, \quad (3)$$

228

229 2.2.4 Final regression

To avoid multicollinearity problems in the MLR model and to avoid the influence of the material
type "Limited-data material group" on the temperature coefficients, we fixed the temperature
coefficients determined using Eq. 3 and thus the final regression takes the following form:

233

$$\log_{10} D - \frac{\beta_{1/T} + \tau}{T} = \alpha + \beta_{\log MW} \cdot \log_{10} MW + b_1 \cdot M_1 + \dots + b_m \cdot M_m, \tag{4}$$

234 where the dependent variable is $\log_{10}D - (\beta_{1/T} + \tau)/T$ instead of $\log_{10}D$, with the values of $\beta_{1/T}$ 235 and τ obtained from Eq. 3 and presented later in Section 3.1. In this final regression, all 1103 236 records of measured D data were utilized including the material type "Limited-data material group", leading to m=31 material types, plus one reference material type, PET, with $b_{PET} = 0$. 237 2.3 Model validation 238 239 Validation of the final MLR model (Eq. 4) was performed using the QSARINS software, version 2.2.1 (www.qsar.it) which is developed by Gramatica et al. $^{32, 33}$. 240 241 2.3.1 Internal validation

242 The MLR model's capacity to predict portions of the training dataset was evaluated in an internal

243 validation process, using two techniques for internal validation in QSARINS. The first one is the

leave more out (LMO) cross-validation technique, which iteratively and randomly exclude a

245 certain percentage of the measured diffusion coefficient data, and then computes the regression

246 coefficients with the remaining data and uses those coefficients to make predictions for the

excluded ones ³³. We used 1000 iterations and the percentage of the excluded elements was set

as 20%.

249 The second technique for internal validation is the Y-scrambling procedure, which demonstrates

that the model is not the result of chance correlation. In this procedure, the experimental

responses (in our study, the temperature-adjusted diffusion coefficients) are shuffled at random

and used with the original predictors to establish an MLR model. If the original MLR model is

internally valid, the performances of the scrambled models should be much worse than the

254 original model³³. We used 1000 iterations for the Y-scrambling.

255 2.3.2 External validation

We also evaluated the model ability to provide reliable predictions on new datasets in a so-called external validation process, using the following two approaches.

258 The first approach was to split the existing dataset (1103 records) into one training dataset and

259 one prediction datasets. The training dataset was used to generate regression coefficients of the

260 MLR model, and then the MLR model was applied to the prediction set to examine the

261 prediction performances of the model. Three kinds of splitting were performed using existing

262 options in the QSARINS software (see SI, Section S5.1 for details) by random percentage (20%

263 of the entire dataset randomly selected as the prediction set, 80% rest to the training set), by

response and by structure (data first ordered by responses of the temperature-adjusted diffusion

265 coefficient, or by the first axis of principal component analysis (PCA) of the descriptors,

266 respectively). We introduced a fourth kind of splitting by studies, since variability across studies

267 for a given material is in general larger than variability within a given study, yielding similar

sample sizes of approximately 880 data for the training set and 220 data for the prediction set (SI,

269 Table S3).

270 The second approach of external validation was to use the entire collected dataset (1103 records)

as the training set and to use an entirely separate dataset as the prediction set. For the prediction

set, two datasets were used. The first one is a database of diffusion coefficients from the United

273 States Food and Drug Administration (FDA), which is a "database available upon request" for

274 guidance for industry (http://www.fda.gov/Food/ucm081818.htm), and includes non-peer

This article is protected by copyright. All rights reserved

275 reviewed diffusion coefficient data reported by industry. This dataset includes 191 records of

experimental diffusion coefficients of 46 chemicals in 22 materials which are mainly polymers

used for food contact materials (see SI, Section S5.1 for details). The quality and reliability of

these data are not characterized by FDA. The second prediction dataset is constructed from

279 several studies conducted before 1982 ³⁴⁻³⁶, referenced in³⁷. This dataset, designated as "Data by

280 1982", includes 281 records of measured diffusion coefficients of 92 chemicals in 8 polymer

281 materials, also including self-diffusion (see SI, Section S5.1 for details). Data for both prediction

- 282 sets are provided in Supporting Info.
- 283 2.3.3 Applicability domain (AD)

284 The analysis and definition of the applicability domain (AD) of models is a fundamental issue 285 that must be addressed in QSAR and QPPR studies. The study of AD can provide information on 286 the reliability of the model predictions, i.e., if the chemicals are inside the AD, the predictions 287 are interpolated and are more reliable; if the chemicals are outside the AD, the predictions are 288 extrapolated and less reliable, because effects can occur outside the AD that do not exist within the AD ³⁸. Three complementary methods were applied to define the AD of the diffusion 289 290 coefficient OPPR: the range of model predictors, the leverage approach, and the PCA of the model predictors ³⁹. More explanation of these methods is provided in SI, Section S4. In our 291 292 analysis, chemicals are considered inside the AD if they are viewed inside AD by all three 293 methods, whereas chemicals are considered outside AD if they are viewed outside AD by all 294 three methods, and finally chemicals that fall inside the AD for only one or two methods are 295 considered as 'borderline.'

296

297 3. Results and discussion

298 3.1 Temperature dependence of the diffusion coefficient

The compiled dataset of 1103 records including 158 chemicals and 32 material types shows that the diffusion coefficient in solid materials decreases with decreasing temperature, as

301 demonstrated by the highly significant negative regression coefficient for the variable l/T, with

302 $\beta_{1/T} = -4440$ (*K*) with a standard error (SE) of 164 (K) and *p* < 0.001 in Eq. 2 (SI, Section

303 S3.1). This is in agreement with previous studies ^{4, 30, 31}. This general tendency of decreasing

- 304 diffusion with increasing 1/T is well illustrated by the example of PET, the material with the
- 305 most data available (Figure 1A see SI, Figure S1 for other materials). To further refine the

306 coefficient for the temperature variable into specific materials groups, Figure 1B illustrates well 307 for methyl methacrylate (MMA) homopolymer the importance of first determining a temperature 308 coefficient for each separate study and material-chemical combination (Section 2.2.3) and then 309 averaging the temperature coefficients across studies. The molecular weight-normalized 310 diffusion coefficients show a negative linear relationship with 1/T within each of the three experimental studies of Figure 1B⁴⁰⁻⁴², with similar regression coefficients of -4530 (K), -5704 311 312 (K), -3415 (K), averaging -4550 (K) with an SE of 305 (K). However, since the absolute $\log_{10}MW$ -normalized diffusion coefficients reported by Hennebert et al. ⁴² are much higher than 313 314 those reported by the other two studies, doing one regression with all data from the three studies 315 would result in a non-significant temperature coefficient (p-value of 0.19), thus demonstrating 316 the importance to first perform temperature regressions using data from the same study and for 317 the same chemical. Table 1 presents the average temperature coefficients and their standard errors for each of the 32 318 319 consolidated material types. Based on the values of the temperature coefficients (unit in K), the 320 32 material types can be grouped into three categories: (1) high-coefficient category with 321 relatively high (absolute value) temperature coefficients (< -5000), i.e., materials in which 322 diffusion coefficients are highly sensitive to the change in temperature, (2) medium-coefficient category with temperature coefficients in between (-5000 < ($\beta_{1/T} + \tau$) < -3000), and (3) low-323 324 coefficient category with relatively low (absolute value) temperature coefficients (> -3000), i.e., 325 materials in which diffusion coefficients are least sensitive to the change in temperature. Details 326 for the grouping of temperature coefficients can be found in SI, Section S3.3. 327 The temperature coefficients $\beta_{1/T}$ and τ used in Eq. 4 for each of the three temperature-328 dependency material categories are obtained from the regression using the MLR model of Eq. S3-2 (SI, Section S3.3), yielding values of $\beta_{1/T} = -3486 \pm 299$ (K) and $\tau_{high} = -2391 \pm$ 329 356 (*K*), $\tau_{\text{medium}} = 0$ (*K*) and $\tau_{\text{low}} = +1676 \pm 510$ (*K*). Thus, for the High-, Medium- and 330 331 Low-coefficient categories, the final temperature coefficients ($\beta_{1/T} + \tau$) are -5877 (K), -3486 (K), 332 and -1810 (K), corresponding to activation energy of 113, 66.7 and 34.7 (kJ/mol), respectively. Begley et al.⁴ also aggregated 9 types of polymer materials into two temperature categories, with 333 334 activation energy of 100 and 86.9 (kJ/mol), which have similar values with the high- and 335 medium-coefficient categories in the present paper, to which these 9 polymer materials are 336 assigned. These results indicate that the categorization of the temperature coefficient in the

This article is protected by copyright. All rights reserved

present paper is consistent with previous studies, while extending the QPPR to a wider range ofmaterials.

339 3.2 Final QPPR and model fitting

340 Using the full dataset (1103 records) and Eq. 4, the final MLR model for predicting the diffusion

341 coefficient in solid materials is as follows:

342
343
343
344

$$\log_{10}D - \frac{\tau - 3486}{T} = 6.39 - 2.49 \cdot \log_{10}MW + b$$
 (5)
N = 1103, R² = 0.932, R²_{adj} = 0.930, SE = 1.17, RMSE = 1.15
ANOVA: F = 457, df = 32, p < 0.0001

345 where *D* is the diffusion coefficient (m^2/s), *MW* is molecular weight (g/mol), *T* is absolute

temperature (K), b and τ (K) are the material-specific coefficients presented in Table 2. This

347 model is provided as an excel model in Supporting Info to facilitate application. The standard

errors for the intercept (6.39) and the coefficient of $\log_{10}MW$ (-2.49) are 0.29 and 0.13,

respectively. An SE of 1.17 of the final model (Eq. 5) indicates that the 95% confidence interval

350 (CI) of the predicted response, $\log_{10}D - (\tau - 3486)/T$, is the predicted value ± 2.30 . The 95% CI of

351 the $\log_{10}D$ cannot be directly calculated, but the average absolute difference between predicted

and measured $\log_{10} D$ is 0.83 across the whole dataset (1103 records), and 95% of this absolute

difference is below 2.54.

354 This MLR model shows excellent fitting of the experimental data, with an adjusted R-square of 355 0.932 and a root mean square error (RMSE) of 1.15. The model fit is highly significant with an 356 ANOVA p-value smaller than 0.0001. Figure 2 shows the scatter plot of experimental versus 357 predicted responses, which aligns well with the 1:1 line. In this MLR model, the response 358 (dependent variable) is the temperature-adjusted log diffusion coefficient, i.e., $\log_{10}D - (\tau - 3486)/T$, 359 instead of $\log_{10}D$, in order to fix the temperature coefficients and to avoid multicollinearity 360 problems, as mentioned in Section 2.2.4. The residual plot (Figure 3) shows that the residuals are 361 distributed evenly throughout the dataset, again indicating the good fit of the linear model for the

362 data.

363 The key predictors other than temperature in the MLR model are the material type and the

364 molecular weight of the diffusing chemical. The regression coefficient when considering log-

365 molecular weight is equal to -2.49, indicating that the diffusion coefficient decreases with

366 increasing molecular weight. This implies that larger molecules diffuse more slowly compared to

367 smaller molecules in solid materials, which is intuitive and consistent with findings from

368 previous studies ^{4, 12, 17, 18}. However, although the molecular weight is a highly significant

369 predictor (p < 0.0001), it explains less than 10% of the total variance of the diffusion coefficient

370 (SI, Section S4).

371 The 31 dummy variables for the material types reflect the material dependency and account for 372 most of the total variance of the diffusion coefficient, indicating that the diffusion coefficient in 373 solid materials is strongly dependent on the material type. Since "Polyethylene terephthalate 374 (PET)" was used as the reference material in the regression, the value of its coefficient b is zero (Table 2). For each of the other material types, the coefficient *b*, combined with the temperature 375 coefficient τ , i.e. $b + (\tau + 2391)/T$, determines the difference in log-diffusion coefficient between 376 377 that material type and PET, since PET has a temperature coefficient τ of -2391 (K) (Table 2, last 378 column). Chemicals in material types with high values of $b + (\tau + 2391)/T$ diffuse quicker than in 379 material types with low values. Therefore, under room temperature (T = 298.15 K), the values of 380 $b + (\tau + 2391)/T$ and the corresponding diffusion coefficients tend to be lower in dense, rigid 381 materials such as glass, stainless steel, methyl methacrylate (MMA) polymers, polyethylene 382 naphthalate (PEN), and rigid polymers including polyether ether ketone (PEEK), rigid PVC, 383 polytetrafluoroethylene (PTFE), and polycarbonate (Table 2). In contrast, the values of $b + (\tau + 2391)/T$ and the corresponding diffusion coefficients can be up to 13 orders of magnitude 384 385 higher in flexible or porous materials, such as gypsum, wood, rubber, and polyurethane foam-386 based materials (Table 2). It should be noted that the composition and properties of a given 387 material type may vary considerably depending on the intended use, as well as over time as 388 material substitutions are made and production procedures differ. Thus, the material type 389 coefficients in Table 2 actually represent an average composition and diffusion behavior for the 390 specific material types.

The significance of the material type coefficient only indicates that the coefficients *b*s of these material types are significantly different from the reference material type, PET, but if another material type was selected as the reference material, the regression coefficients and statistical significance of all materials would change. Thus, the insignificance of the regression coefficients for material type variables does not indicate that those material types do not have a relevant influence on the diffusion coefficient. As a result, we keep all 31 material type dummy variables in the final regression to retain as much information as possible.

- 398 The MLR model given in Eq. 5 contains material-specific variables, so it is only valid for the 32
- 399 material types presented in Table 2. For materials that do not belong to those 32 types, we built
- 400 another generic QPPR to predict the diffusion coefficients, which is presented in SI, Section S4,
- 401 which should be used with caution because of higher uncertainties.
- 402 3.3 Model validation results
- 403 3.3.1 Internal validation
- 404 For the 20% leave-more-out (LMO) cross validation, the correlation coefficient, Q^2_{LMO} for the
- 405 1000 iterations ranges from 0.89 to 0.95, with an average of 0.93, and a root mean square error
- 406 for cross validation (RMSE_{cv}) average of 1.19. Both the Q^2_{LMO} and RMSE_{cv} are similar to the R^2
- 407 and RMSE computed using the full dataset, which is 0.93 and 1.15, respectively. These results
- 408 indicate that when fitted to a random 80% of the dataset the model is still able to predict the
- 409 remaining 20% of the dataset, meaning that the model is internally stable.
- 410 For the Y-scrambling, the average R^2_{Yscr} and Q^2_{Yscr} for the 1000 iterations are 0.029 and -0.033,
- 411 respectively, which are much smaller than the R^2 and Q^2_{LMO} of the original model. The RMSE
- 412 for Y-scrambling, RMSE_{Yscr}, is 4.36 which is much higher than the RMSE and RMSE_{cv} of the
- 413 original model. These results demonstrate that no correlation exists between the scrambled
- 414 responses and the predictors. Thus, chance correlation for the original model can be ruled out.
- 415 Overall, the internal validation demonstrates that the MLR model represented by Eq. 5 is robust
- 416 and stable, and is not a result of chance correlation.
- 417 3.3.2 External validation
- 418 As described in Section 2.3.2, the first method of external validation was to split the full dataset
- 419 (1103 records) into training set and prediction set, and four types of splitting were performed,
- 420 including splitting by a random 20%, by ordered response, by ordered structure, and by studies.
- 421 Six criteria for external validation were computed and are presented in Table 3. The R^2_{ext} is the
- 422 determination coefficient of the prediction set data using the model calculated using the training
- 423 set data. The other five criteria, $Q_{F1}^{2} {}^{43}$, $Q_{F2}^{2} {}^{44}$, $Q_{F3}^{2} {}^{45}$, $r_{m}^{2} {}^{46}$, and CCC 47 , are external
- 424 validation criteria proposed by different studies, which evaluate various aspects of the model's
- 425 external prediction ability. These criteria are usually in accordance with each other but can
- 426 sometimes give contradictory results ⁴⁷, so they need to be evaluated together. Chirico and
- 427 Gramatica have proposed threshold values for these different criteria ⁴⁸, which are presented in
- 428 Table 3. For the first three types of splitting (by random 20%, by ordered response, and by

ordered structure), the R^2_{ext} are higher than 0.9, and all of the other five criteria pass the 429 430 threshold values and are also higher than 0.9, indicating good prediction ability of the model 431 calculated using only the training set data. In these three types of splitting, the data were assigned 432 to the training and prediction data sets either randomly or alternately (by ordered response or 433 structure), so it is likely that a portion of the data from each study was assigned to the training set 434 while the remaining portion of the data was assigned to the prediction set. As the result, the 435 prediction set is well within the applicability domain (AD) defined by the training set (SI, Figures S2-S7), so it is expected that the model calculated using the training set can well predict 436 the prediction set. 437

438 For the fourth type of splitting, splitting by studies, data from 30 studies were selected as the 439 prediction set, while data from the remaining 48 studies constituted the training set. Thus, all 440 data from one study and for one particular material will be either in the training or in the 441 prediction set, so the validation using this splitting is close to a truly "external" validation. Most 442 of the prediction set is inside the AD defined by the training set except for two data points (SI, Figures S8-S9). As a result, the R^{2}_{ext} dropped to 0.85, and the values of the other five validation 443 444 criteria are apparently lower than those for the above three types of splitting, reflecting that 445 variability is higher between than within studies. The five validation criteria nevertheless all pass 446 the threshold values (Table 3), indicating that the model calculated using the training set has 447 good prediction ability.

448 As a second method of external validation, the 1103 data points from the 68 studies were used as 449 the training set, and additional data from an FDA database and from studies before 1982 were 450 used as two separate prediction sets. As presented in Table 3, when using FDA dataset as the prediction set, the R^2_{ext} is reduced to 0.80 which is lower than the R^2_{ext} for the above four types 451 of splitting. Four of the five validation criteria pass the threshold values, while Q_{F3}^2 does not 452 pass the threshold. In contrast, when using data by 1982 as the prediction set, the R^2_{ext} is 0.93, 453 which is very close to the R^2 of the training dataset (Section 3.2). The absolute difference 454 between predicted and measured \log_{10} D averages 2.20 (95th percentile of 5.53) for the FDA 455 dataset, and averages 1.08 (95th percentile of 2.68) for the data by 1982. Figure 3 presents the 456 457 comparison between model predicted and experimental responses for these two prediction sets. 458 Data from both prediction sets are generally distributed close to the 1:1 line, but the FDA data 459 are more dispersed compared to the training set data while the data by 1982 are almost as

460 compact as the training set data. The FDA data lack documentation of experimental details, so

- their quality may not be as good as the data reported in peer-reviewed literature. Also, when the
- 462 FDA polymer types were linked to our consolidated material types, mismatches may have
- 463 occurred due to lack of description of the polymers in the FDA dataset, which may lead to

464 inaccuracies in model predictions. Overall, however, our QPPR performs reasonably well on

- these two fully external datasets, demonstrating its good predictive ability.
- 466 3.3.3 Applicability domain (AD)
- 467 We performed the analysis of the model's applicability domain (AD) using the three approaches
- 468 explained in Section 2.3.3. The model being evaluated is the final MLR model presented in Eq. 5,
- 469 which was calculated using the training set of 1103 data points collected from 68 studies

470 obtained from the peer-reviewed literature. For the analysis of AD, we focus on the two external

471 prediction datasets: the FDA dataset (189 data points) and the data by 1982 (239 data points).

472 Detailed results of the AD analysis are presented in SI, Section S6.1.

- 473 Combining the three methods, none of the data points in both prediction sets fell out of the AD.
- 474 For the FDA dataset, the majority of the data points were inside the AD, while 15 data points
- 475 were on borderline of AD. Similarly, only 35 data points from the data by 1982 were on
- 476 borderline of AD. Thus, it is valid to use the present QPPR to make reliable estimates of
- 477 diffusion coefficients for all data points in the two prediction sets. The physiochemical property
- 478 space covered by the QPPR is mainly determined by the chemical's molecular weight, which
- 479 ranges from 30 to 1178 g/mol. The vapor pressure at 25 °C may also be a relevant property,
- 480 which ranges from $9.8 \cdot 10^{-29}$ to $5.2 \cdot 10^5$ Pa. The range of $\log_{10}D$ covered by the QPPR ranges
- 481 from -22.1 to -5.2 where D is measured in m^2/s .
- 482 As mentioned in Section 2.2.2, the model performances of using log-molecular weight and
- 483 molecular weight as predictors were very close to each other when using the training dataset.
- 484 However, residual analysis and external validation showed that $\log_{10}MW$ is a more stable
- 485 predictor than *MW* when handling high-molecular-weight chemicals, which becomes prominent
- 486 for the FDA dataset which includes certain chemicals with molecular weight higher than 1500
- 487 g/mol. While none of the data points in the FDA dataset fell out of the AD using the $\log_{10}MW$
- 488 model, 11 data points would be outside AD using the MW model. Details are presented in SI,
- 489 Section S6.2. Thus, $\log_{10}MW$ instead of MW was selected as a predictor in the final QPPR (Eq.
- 490 5).

Schwope et al. ³⁷ suggested that the linear relationship between $\log_{10}D$ and $\log_{10}MW$ may only 491 492 be valid for a certain range of molecular weight, and there may be a saturation of diffusion 493 coefficients for small molecular weights, i.e., for a given material and a given temperature, the 494 diffusion coefficient does not continue to increase for chemicals with molecular weight lower 495 than a certain value, which is likely determined by the material type. To further examine the 496 effect of molecular weight on model applicability, we analyzed the model residuals versus the 497 log of molecular weight for the training dataset and the two prediction sets (Figure 4). For the 498 three datasets, the residuals are distributed evenly on both sides of zero in the MW range of the 499 training dataset of 30 and 1178 g/mol ($\log_{10}MW$ of 1.48 to 3.07). For methane (MW=16 g/mol), 500 most of the predictions overestimate diffusivity, suggesting that diffusivity may indeed not 501 further decrease below MW 30 g/mol. Since methane was the only chemical with data available 502 for MW lower than 30 g/mol, data for additional chemicals and materials are therefore needed to 503 further test this hypothesis of saturation at low MW. Similarly, additional data are needed to 504 provide more accurate estimates for chemicals with very high molecular weights. 505 Overall, the performance of the final model (Eq. 5) in this external validation indicates that it has 506 the ability to provide reliable predictions, as long as the considered chemicals are within the 507 model's applicability domain. With the log-molecular weight as a predictor, our model is able to 508 make reliable extrapolations on chemicals with molecular weights up to about 2500 g/mol, but 509 caution still needs to be taken when applying the model on extremely-high-molecular-weight 510 chemicals. Ideally, the model should be applied to predict diffusion coefficients for chemicals 511 with molecular weights lower than 1178 g/mol which is the maximum within the training dataset. 512 Caution also needs to be taken when applying the model on very-low-molecular-weight 513 chemicals due to the possible saturation effect. Both the FDA dataset and the data by 1982 were 514 used for the external validation but not combined with the original training dataset to calculate a 515 more comprehensive MLR model, because these data are somewhat outdated; the FDA data are 516 not published in literature, so there is a lack of experimental details, making these undocumented 517 data less reliable than the data collected from peer-reviewed literature.

518

519 3.4 Limitations and future work

520 While the extension to 32 different consolidated material types is a major progress, the present

521 model is still not fully comprehensive. First, the model may not be valid for very high or very 522 low molecular weight (MW) chemicals. It may not be valid for ionizing organic chemicals either, 523 since ionizing chemicals such as acids, alcohols/phenols and amines are not well represented in 524 the training dataset, as they only account for less than 10% of the data points, and the model does 525 not consider chemical ionization or interaction within a material, which may make the 526 chemical's diffusivity lower than that predicted by the model. Second, the present model is not applicable for materials types other than the 32 types in the training set, e.g. for material such as 527 528 resin and textiles, due to the lack of experimental data. Although a more general MLR model (SI, 529 Section S4) was developed which does not require material type as the predictor, it gives much less accurate predictions of the diffusion coefficient. Third, the present model does not consider 530 531 any interaction between MW and material type, i.e., it assumes the effect of MW is the same 532 across different materials. Although model validations show that this assumption may be 533 reasonable for the existing data, ideally it needs to be further verified using data spanning the 534 whole MW range (30 to 1178 g/mol) for each material. Therefore, more experimental diffusion 535 coefficient data need to be obtained, or more advanced experimental methods to measure 536 diffusion coefficients need to be developed, for other material types and chemical sizes and 537 classes to make the model more comprehensive.

538 There are also large variations in the experimental diffusion coefficients between some of 539 different studies for three material types, namely "MMA homopolymer", "Natural rubber" and 540 "Rigid polymers", even after correcting for molecular weight and temperature, as shown in 541 Figure 1 and SI, Figure S1. This means that the regression coefficients b and τ for these material 542 types should be taken with care. The variations could be due to three causes. First, experimental variation; for example, Franz et al. ⁴⁰ used desorption experiments to measure the diffusion 543 coefficients in MMA homopolymer, while Hennebert et al.⁴² used sorption experiments. Second, 544 545 the swelling of polymers during liquid sorption experiments, which generally occurs for crosslinked polymers in low-molecular weight solvents ⁴⁹, may not always be accounted for, and 546 can lower the diffusion coefficients by orders of magnitude ¹⁰. Third, the properties of the same 547 material can vary between studies depending on how it was made and which additives were used. 548 549 This may also be the case for some other materials such as vinyl flooring, carpet, synthetic 550 rubber, etc., for which the material type coefficients in Eq. 5 can only represent some sort of 551 average composition and diffusion behavior for the specific materials. Ideally, quantitative, 552 continuous properties of the solid materials, such as density, porosity and crystalline state of the

553 material as well as other descriptors of the material's composition and molecular structure,

instead of qualitative material types could be measured and entered into the model as predictors,

so that the model can be more accurate and can be extrapolated to various material types outsidethe training dataset.

557

558 4. Conclusions

559 A multiple linear regression model has been developed to predict the internal diffusion 560 coefficients of organic compounds in various solid materials (excel model provided in SI). 561 Experimental diffusion coefficient data collected from 68 studies of the peer-reviewed literature 562 were used as the training set for the regression. The model uses two continuous variables, 563 molecular weight and inversed absolute temperature, and one categorical variable, material type, 564 as predictors. The model has been internally validated to be robust, stable and not a result of 565 chance correlation. External validation using two prediction sets demonstrates that the model 566 predictions are most reliable within the model's applicability domain, namely molecular weight 567 between 30 and 1178 g/mol temperature between 4 and 180 °C, and material type belonging to the 32 consolidated types. 568

569 The main advantage of the present model is that it is applicable for chemicals with a wide range 570 of molecular weights (but only up to about 16 to 2500 g/mol, with special treatment for 571 molecular weight lower than 30 g/mol) in various materials. This is advantageous compared to 572 the correlation methods developed in previous studies often specific for certain chemical classes 573 or materials. The present model is able to provide reliable estimates of diffusion coefficients for 574 a large number of chemical-material combinations, making it suitable for high-throughput 575 assessments of the releases and human exposures to chemicals encapsulated in solid materials, 576 particularly building materials and food contact materials. To make the model comprehensive, 577 more experimental diffusion coefficient data need to be obtained for other material types, or 578 quantitative and continuous parametrization of various solid materials needs to be further 579 developed.

580

581 Acknowledgements

582 The authors thank Prof. Ester Papa, Dr Allessandro Sangion, and Prof. Paola Gramatica from the

583 University of Insubria, Italy for advice on MLR modeling and validation, as well as support for

- the QSARINS software. Funding for this research was provided by US EPA contract EP-16-C-
- 585 000070 and by the Long Range Research Initiative of the American Chemistry Council. P.
- 586 Fantke was supported by the Marie Curie project Quan-Tox (GA No. 631910) funded by the
- 587 European Commission under the Seventh Framework Programme.

588 Tables and Figures

- 591 inverse of temperature for (A) PET, and (B) methyl methacrylate (MMA) homopolymer. The
- 592 units of *D* and *MW* are m^2/s and g/mol, respectively.

values, and (B) residuals. The dotted line in (A) indicates the 1:1 line. The units of *D* and *T* are m^2/s and K, respectively.

Autho

Figure 3. Values of $\log_{10}D$ -(τ -3486)/T predicted by the final QPPR (Eq. 5) vs. experimental values when using (A) FDA dataset and (B) Data by 1982 as the prediction sets. The black dotted line indicates the 1:1 line. The units of D and T are m²/s and K, respectively.

597

603

Figure 4. Residual between the present QPPR and observed data as a function of $log_{10}MW$ for the training dataset, the FDA dataset, and the data by 1982 set. The unit of MW is g/mol.

- 607
 0

 608
 0

 609
 0

- 618 Table 1. Temperature dependence of diffusion coefficient in the 32 consolidated material types619 (all numbers are in the unit of K)

				Coeffici	ent value for	r Eq. 5	
Category	Material	Mean coefficient of 1/T	SD between studies	β _{1/T}	τ	β _{1/T} +τ	
High-coefficient category	PP homopolymer	-6665	2354				
	Polyethylene terephthalate (PET)	-6567	2399				
	General polystyrene (PS)	-5713	3560	-3/86	-2301	-5877	
	Polyethylene naphthalate (PEN)	-5449	1940	-0-00	-2001	-3077	
	PP copolymer	-5384	1194				
0	High-density polyethylene (HDPE)	-5294	1124				
Medium-coefficient category	MMA homopolymer	-4549	1145				
	ABS, EVOH	-4222	n/a				
	High-impact polystyrene (HIPS)	-4215	n/a				
	Polyamide (PA)	-4179	1854		0	-3486	
	MMA copolymer-medium or low density	-4056	1272				
	Polyethylene (PE, LDPE, LLDPE)	-3713	536	0400			
	Limited-data material group	n/a	n/a	-3480			
	Calcium silicate	n/a	n/a				
	Carpet	n/a	n/a				
	Glass, Stainless steel	n/a	n/a				
	Vinyl acetate-based polymers	n/a	n/a				
	Cement	n/a	n/a				
Low-coefficient category	Gypsum board	n/a	n/a				
	Plywood	n/a	n/a				
	Flexible PVC	-2917	2618				
	Other wooden boards	-2411	888				
	Polychloroprene (CR)	-2127	286				
	Vinyl flooring	-1951	n/a				
	Polystyrene foam (XPS, EPS)	-1806	n/a	0.400	1676	-1810	
	Polyurethane foam-based materials*	-1705	699	-3486			
	Synthetic rubber	-1326	205				
	Ethylene-propylene rubbers	-1145	300				
	Natural rubber (NR)	-939	337				
	Rigid polymers	-510	1552				
	Paper	-312	n/a				
	Gypsum and cellulose ceiling tile	331	294				

625 Table 2. Material-specific coefficients for Eq. 5

	Coefficient b				b+(τ+2391.15)/T
Material	Coefficient	SE ^f	p-value	τ(К)	at 25 °C
Calcium silicate	1.17	0.29	< 0.0001	0	9.19
Carpet	-1.23	0.28	< 0.0001	0	6.79
Cement	0.330	0.226	0.15	0	8.35
Ethylene-propylene rubbers	-6.32	0.29	< 0.0001	1676	7.32
Flexible PVC	-8.51	0.31	< 0.0001	1676	5.13
General polystyrene (PS)	2.04	0.30	< 0.0001	-2391	2.04
Glass, Stainless steel	-8.57	0.38	< 0.0001	0	-0.550
Gypsum and cellulose ceiling tile	-1.24	0.31	< 0.0001	1676	12.4
Gypsum board	-5.77	0.30	< 0.0001	1676	7.87
High density polyethylene (HDPE)	5.11	0.20	< 0.0001	-2391	5.11
High-impact polystyrene (HIPS)	-7.11	0.27	< 0.0001	0	0.907
Methyl methacrylate (MMA) copolymer-medium or low density	-7.73	0.21	< 0.0001	0	0.294
Methyl methacrylate (MMA) homopolymer ^h	-7.84	0.31	< 0.0001	0	0.175
Natural rubber (NR) ^h	-3.60	0.27	< 0.0001	1676	10.0
Other wooden boards ^a	-6.72	0.21	< 0.0001	1676	6.92
Paper	-8.53	0.34	< 0.0001	1676	5.11
Plywood	-5.61	0.34	< 0.0001	1676	8.03
Polyamide (PA)	-5.40	0.16	< 0.0001	0	2.62
Poly acrylnitrile butadiene styrene (ABS), Ethylene vinyl alcohol (EVOH)	-4.97	0.23	< 0.0001	0	3.05
Polychloroprene (CR)	-6.31	0.35	< 0.0001	1676	7.33
Polyethylene (PE, LDPE, LLDPE)	-1.65	0.16	< 0.0001	0	6.37
Polyethylene naphthalate (PEN)	-1.16	0.28	< 0.0001	-2391	-1.16
Polyethylene terephthalate (PET) ^g	0.00	0.15	n/a	-2391	0.00
Polystyrene foam (XPS, EPS)	-8.32	0.29	< 0.0001	1676	5.32
Polyurethane foam-based materials ^b	-7.35	0.25	< 0.0001	1676	6.30
PP copolymer	4.79	0.28	< 0.0001	-2391	4.79
PP homopolymer	4.53	0.15	< 0.0001	-2391	4.53
Rigid polymers ^{c, h}	-11.9	0.25	< 0.0001	1676	1.70
Synthetic rubber	-5.93	0.32	< 0.0001	1676	7.71
Vinyl acetate-based polymers ^d	-0.459	0.326	0.16	0	7.56
Vinyl flooring	-6.77	0.21	< 0.0001	1676	6.87
Limited-data material group ^e			see footn	otes	

^a Includes Partic leboard, Oriented strand board (OSB), Medium-density fiberboard (MDF), High-density board, and Wood chamber wall.

^b This material type refers to low-density polyurethane foams with a density of 0.005 to 0.03 g/cm³.

^c Includes Polyether ether ketone (PEEK), Rigid PVC, Polytetrafluoroethylene (PTFE), and Polycarbonate.

^d Includes Ethyl vinyl acetate (EVA), Polyvinyl acetate (PVA), and Polyvinyl acetate polyacrylic acid copolymer.

^eThe coefficient *b* for this group is -2.26 with an SE of 0.18, and the coefficient τ is 0. "Limited-data material group" includes data from 20 different materials, so the accuracy of the coefficients is low and they are not recommended for use in predicting diffusion coefficients. This group includes Alginate film, Balance, Decorative and Overlay layers of wooden flooring, Cellulose, Epichlorhydrin-dimethylamine polymer (EDP), Epoxy/acrylic copolymer, latex, MMA/Butyl methacrylic (BMA) copolymer -very low density, Nanocomposite polyamide, Paint, Pectin film, Pectin/Alginate composite film, Polydimethylsiloxane (PDMS) membrane, Polyisoprene (PI) membrane, Polyoctenamer (PO) membrane, Polyoxymethylene, Polytrimethylene terephthalate (PTT), Polyvinylidene chloride (PVDC), and Silicone.

^fStandard error.

^g Reference material.

626 ^hCoefficients should be taken with care due to large variations between studies.

627 Table 3. External validation results

External validation criteria	R ² _{ext}	Q ² _{F1}	Q^2_{F2}	Q ² _{F3}	$\overline{r_m^2}$	CCC
Threshold		> 0.70	> 0.70	> 0.70	> 0.65	> 0.85
Splitting by random percentage	0.92	0.92	0.92	0.92	0.90	0.96
Splitting by ordered response	0.94	0.94	0.94	0.95	0.93	0.97
Splitting by ordered structure	0.94	0.94	0.94	0.94	0.91	0.97
Splitting by studies	0.85	0.85	0.84	0.85	0.78	0.92
FDA dataset as prediction set	0.80	0.77	0.77	0.60	0.71	0.89
Data by 1982 as prediction set	0.93	0.93	0.92	0.90	0.85	0.95

R²_{ext}: determination coefficient of the prediction set external data.

 Q^{2}_{F1} : correlation coefficient proposed by Shi et al.

Q²_{F2}: correlation coefficient proposed by Schuurmann et al.

 Q^{2}_{F3} : correlation coefficient proposed by Consonni et al.

 $\overline{r_m^2}$: determination coefficient proposed by Ojha et al.

- 628 CCC: concordance correlation coefficient proposed by Chirico and Gramatica.
- 629

630 References

- Little JC, Weschler CJ, Nazaroff WW, et al. Rapid methods to estimate potential exposure to
 semivolatile organic compounds in the indoor environment. *Environ Sci Technol.* 2012; 46(20): p.
 11171-11178.
- 6342.Xu Y, Cohen Hubal EA, Clausen PA, et al. Predicting residential exposure to phthalate plasticizer635emitted from vinyl flooring: a mechanistic analysis. *Environ Sci Technol.* 2009; 43(7): p. 2374-
- 636 2380.
- 637 3. Guo Z. Review of indoor emission source models. Part 1. Overview. *Environ Pollut.* 2002; 120(3):
 638 p. 533-549.
- 639 4. Begley T, Castle L, Feigenbaum A, et al. Evaluation of migration models that might be used in
 640 support of regulations for food-contact plastics. *Food Addit Contam.* 2005; 22(1): p. 73-90.
- 5. Xie M, Wu Y, Little JC, et al. Phthalates and alternative plasticizers and potential for contact
- 642 exposure from children's backpacks and toys. *J Expo Sci Env Epid.* 2016; (26): p. 119-124.
- 643 6. Liu Z, Ye W, Little JC. Predicting emissions of volatile and semivolatile organic compounds from
 644 building materials: a review. *Build Environ.* 2013; 64: p. 7-25.
- Haghighat F, Huang H, Lee C-S. Modeling approaches for indoor air VOC emissions from dry
 building materials-a review. *ASHRAE Trans.* 2005; 111(1): p. 635-645.

- 8. Berens A and Hopfenberg H. Diffusion of organic vapors at low concentrations in glassy PVC,
 polystyrene, and PMMA. *J Membrane Sci.* 1982; 10(2-3): p. 283-303.
- 649 9. Hickey AS and Peppas NA. Solute diffusion in poly (vinyl alcohol)/poly (acrylic acid) composite 650 membranes prepared by freezing/thawing techniques. *Polymer.* 1997; 38(24): p. 5931-5936.
- In John J, Kunchandy S, Kumar A, et al. Transport of methyl methacrylate monomer through
 natural rubber. *J Mater Sci.* 2010; 45(2): p. 409-417.
- Luo R and Niu J. Determining diffusion and partition coefficients of VOCs in cement using one
 FLEC. *Build Environ.* 2006; 41(9): p. 1148-1160.
- Bodalal A, Zhang J, Plett E, et al. Correlations between the internal diffusion and equilibrium
 partition coefficients of volatile organic compounds (VOCs) in building materials and the VOC
 properties. ASHRAE Trans. 2001; 107: p. 789.
- Bodalal A, Zhang J, Plett E. A method for measuring internal diffusion and equilibrium partition
 coefficients of volatile organic compounds for building materials. *Build Environ*. 2000; 35(2): p.
 101-110.
- Little JC, Hodgson AT, Gadgil AJ. Modeling emissions of volatile organic compounds from new
 carpets. *Atmos Environ.* 1994; 28(2): p. 227-234.
- bole P, Feigenbaum AE, Cruz CDL, et al. Typical diffusion behaviour in packaging polymers–
 application to functional barriers. *Food Addit Contam.* 2006; 23(2): p. 202-211.
- Reynier A, Dole P, Humbel S, et al. Diffusion coefficients of additives in polymers. I. Correlation
 with geometric parameters. *J Appl Polym Sci.* 2001; 82(10): p. 2422-2433.
- 667 17. Guo Z. Review of indoor emission source models. Part 2. Parameter estimation. *Environ Pollut*.
 668 2002; 120(3): p. 551-564.
- 669 18. Cox SS, Zhao D, Little JC. Measuring partition and diffusion coefficients for volatile organic
 670 compounds in vinyl flooring. *Atmos Environ.* 2001; 35(22): p. 3823-3830.
- 671 19. Zhao D, Cox S, Little J. Source/sink characterization of diffusion controlled building materials. in
- 672 Proceedings of the 8th International Conference on Indoor Air Quality and Climate-Indoor Air.
 673 1999.
- Jolliet O, Ernstoff AS, Csiszar SA, et al. Defining Product Intake Fraction to Quantify and Compare
 Exposure to Consumer Products. *Environ Sci Technol.* 2015; 49: p. 8924-8931.
- 676 21. Shin H-M, Ernstoff A, Arnot JA, et al. Risk-based high-throughput chemical screening and
- 677 prioritization using exposure models and in vitro bioactivity assays. *Environ Sci Technol.* 2015;
 678 49(11): p. 6760-6771.

679 22. Shin H-M, McKone TE, Bennett DH. Intake fraction for the indoor environment: a tool for

- 680 prioritizing indoor chemical sources. *Environ Sci Technol.* 2012; 46(18): p. 10063-10072.
- Ernstoff AS, Fantke P, Csiszar SA, et al. Multi-pathway exposure modelling of chemicals in
 cosmetics with application to shampoo. *Environ Int.* 2016; 92-93: p. 87-96.
- Csiszar SA, Ernstoff AS, Fantke P, et al. Stochastic modeling of near-field exposure to parabens in
 personal care products. *J Expo Sci Env Epid.* 2017; (27): p. 152-159.
- Egeghy PP, Sheldon LS, Isaacs KK, et al. Computational exposure science: An emerging discipline
 to support 21st-century risk assessment. *Environ Health Persp.* 2016; 124(6): p. 697.
- 687 26. Deng Q, Yang X, Zhang J. Study on a new correlation between diffusion coefficient and
 688 temperature in porous building materials. *Atmos Environ.* 2009; 43(12): p. 2080-2083.
- Ku J and Zhang JS. An experimental study of relative humidity effect on VOCs' effective diffusion
 coefficient and partition coefficient in a porous medium. *Build Environ.* 2011; 46(9): p. 17851796.
- Ku J, Zhang JS, Liu X, et al. Determination of partition and diffusion coefficients of formaldehyde
 in selected building materials and impact of relative humidity. *J Air Waste Ma.* 2012; 62(6): p.
 671-679.

Park J-S, Little JC, Kim S-D, et al. The Determination of Diffusion and Partition Coefficients of PUF. *J Korean Soc Atmos Environ.* 2010; 26(1): p. 77-84.

697 30. Welle F and Franz R. Diffusion coefficients and activation energies of diffusion of low molecular

- 698 weight migrants in Poly(ethylene terephthalate) bottles. *Polym Test.* 2012; 31(1): p. 93-101.
- Ewender J and Welle F. Determination of the activation energies of diffusion of organic
 molecules in poly (ethylene terephthalate). *J Appl Polym Sci.* 2013; 128(6): p. 3885-3892.
- 70132.Gramatica P, Cassani S, Chirico N. QSARINS chem: Insubria datasets and new QSAR/QSPR
- 702 models for environmental pollutants in QSARINS. *J Comp Chem.* 2014; 35(13): p. 1036-1044.
- Gramatica P, Chirico N, Papa E, et al. QSARINS: A new software for the development, analysis,
 and validation of QSAR MLR models. *J Comp Chem.* 2013; 34(24): p. 2121-2132.
- 705 34. Flynn JH. A collection of kinetic data for the diffusion of organic compounds in polyolefins.
 706 *Polymer.* 1982; 23(9): p. 1325-1344.
- 707 35. Park G. The diffusion of some organic substances in polystyrene. *Transactions of the Faraday*708 *Society.* 1951; 47: p. 1007-1013.
- 709 36. Park G. The diffusion of some halo-methanes in polystyrene. *Transactions of the Faraday Society*.
 710 1950; 46: p. 684-697.

- 37. Schwope A, Goydan R, Reid R, Methods for assessing exposure to chemical substances Volume
 11: Methodology for Estimating the Migration of Additives and Impurities from Polymeric
 713 Materials 1990, U.S.EPA: Washington, D.C.
- 713 *Materials* 1990, U.S.EPA: Washington, D.C.
 714 38. Gramatica P. Principles of QSAR models validation: internal and external. *QSAR & combinatorial*
- 715 science. 2007; 26(5): p. 694-701.
- 716 39. Cassani S and Gramatica P. Identification of potential PBT behavior of personal care products by
 717 structural approaches. *Sustain Chem Pharm.* 2015; 1: p. 19-27.
- 718 40. Franz R and Brandsch R. Migration of acrylic monomers from methacrylate polymers-
- establishing parameters for migration modelling. *Packag Technol Sci.* 2013; 26(8): p. 435-451.
- 720 41. Veniaminov A and Sedunov YN. Diffusion of phenanthrenequinone in poly (methyl
- 721 methacrylate): holographic measurements. *Polym Sci Ser A*. 1996; 38: p. 59-63.
- Hennebert P. Solubility and diffusion coefficients of gaseous formaldehyde in polymers. *Biomaterials.* 1988; 9(2): p. 162-167.
- Shi LM, Fang H, Tong W, et al. QSAR models using a large diverse set of estrogens. *J Chem Inf Comp Sci.* 2001; 41(1): p. 186-195.
- 726 44. Schüürmann G, Ebert R-U, Chen J, et al. External validation and prediction employing the
- predictive squared correlation coefficient Test set activity mean vs training set activity mean. J
 Chem Inf Model. 2008; 48(11): p. 2140-2145.
- Consonni V, Ballabio D, Todeschini R. Comments on the definition of the Q² parameter for QSAR
 validation. *J Chem Inf Model.* 2009; 49(7): p. 1669-1678.
- 73146.Ojha PK, Mitra I, Das RN, et al. Further exploring r_m^2 metrics for validation of QSPR models.732*Chemometr Intell Lab.* 2011; 107(1): p. 194-205.
- 733 47. Chirico N and Gramatica P. Real external predictivity of QSAR models: how to evaluate it?
- Comparison of different validation criteria and proposal of using the concordance correlation
 coefficient, J Chem Inf Model. 2011; 51(9): p. 2320-2335.
- 736 48. Chirico N and Gramatica P. Real external predictivity of QSAR models. Part 2. New
- 737 intercomparable thresholds for different validation criteria and the need for scatter plot
- 738 inspection. J Chem Inf Model. 2012; 52(8): p. 2044-2058.
- Nandi S and Winter HH. Swelling behavior of partially cross-linked polymers: a ternary system. *Macromolecules.* 2005; 38(10): p. 4447-4455.
- 741
- 742