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 30 

Abstract 31 

Indoor releases of organic chemicals encapsulated in solid materials are major contributors to 32 

human exposures and are directly related to the internal diffusion coefficient in solid materials. 33 

Existing correlations to estimate the diffusion coefficient are only valid for a limited number of 34 

chemical-material combinations. This paper develops and evaluates a quantitative property-35 

property relationship (QPPR) to predict diffusion coefficients for a wide range of organic 36 

chemicals and materials. We first compiled a training dataset of 1103 measured diffusion 37 

coefficients for 158 chemicals in 32 consolidated material types. Following a detailed analysis of 38 

the temperature influence, we developed a multiple linear regression model to predict diffusion 39 

coefficients as a function of chemical molecular weight (MW), temperature, and material type 40 

(adjusted R2 of 0.93). The internal validations showed the model to be robust, stable and not a 41 

result of chance correlation. The external validation against two separate prediction datasets 42 

demonstrated the model has good predicting ability within its applicability domain (R2
ext

Keywords 47 

 > 0.8), 43 

namely MW between 30 and 1178 g/mol and temperature between 4 and 180 °C. By covering a 44 

much wider range of organic chemicals and materials, this QPPR facilitates high-throughput 45 

estimates of human exposures for chemicals encapsulated in solid materials. 46 

Diffusion, Solid materials, Consumer products, Indoor release, Organic chemicals, Correlation 48 

Practical implications 49 

The quantitative property-property relationship developed by the present study provides a more 50 

comprehensive correlation method to estimate the diffusion coefficients, as it covers a wide 51 

range of organic chemicals and solid materials, and also considers the effect of temperature. This 52 

model provides the basis for facilitating high-throughput estimates of indoor human exposures 53 

for chemicals encapsulated in solid materials relevant for several science-policy fields, such as 54 

chemical alternatives assessment (CAA), risk assessment (RA) and life cycle assessment (LCA). 55 

 56 

1. Introduction 57 

Chemicals encapsulated in solid materials have been identified as a major source of passive 58 

emissions to indoor air 1-3 and of transfers into food 4 and onto skin 5. Typical examples include 59 
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chemicals used as flame retardants in furniture and plasticizers in food contact materials. To 60 

estimate the release of these chemicals from solid materials, and eventually consumer exposures, 61 

the diffusion coefficient, D (m2/s), for chemicals encapsulated in solid materials, is essential 62 

information. D describes the transport of a molecule through a material, which is specific for a 63 

chemical-material combination and is also influenced by ambient temperature. Experimental 64 

techniques such as chamber tests for building materials 6, 7, and sorption/desorption experiments 65 

for polymer materials 8-10 have enabled measurement of a limited number of chemical diffusion 66 

coefficients  for building materials such as vinyl flooring, gypsum board, particle board, plywood, 67 

carpet and cement 11-14, as well as polymer materials including polyethylene (PE), polystyrene 68 

(PS), polypropylene (PP), and polyvinyl chloride (PVC) 4, 15, 16. However, given the limited 69 

number of chemical-material combinations with measured Ds, and the costly and time-70 

consuming nature of experiments, quantitative relationships are needed to complement existing 71 

measurements by predicting the diffusion coefficients from known physiochemical properties for 72 

chemicals without experimental data. This is especially important for high-throughput 73 

approaches where a large number of chemical-material combinations need to be evaluated and 74 

for which it is unrealistic to perform experiments on all relevant combinations. 75 

Several correlation methods have been developed to estimate the diffusion coefficients from 76 

physicochemical properties of chemicals 8, 12, 17-19. For example, Berens and Hopfenberg 77 

correlated the D to the mean molecular diameter of the diffusing molecule, using data on more 78 

than 20 chemicals in 3 glassy materials including PVC, PS and polymethyl methacrylate 79 

(PMMA) 8. Zhao et al. found a correlation between D and vapor pressure for water and 8 80 

aromatic hydrocarbons in polyurethane foam (PUF) 19. Furthermore, both Bodalal et al. and Cox 81 

et al. estimated the D as a function of molecular weight 12, 18. The former study considered 82 

measured D data on 5 aromatics and 5 aldehydes in several building materials 12, while the latter 83 

study considered data on 4 alkanes in vinyl flooring 18. For each of these aforementioned 84 

approaches, the main limitation is that the correlations are specific to certain chemical classes  85 

and materials; for example aldehydes in plywood, which limits their application for other 86 

materials and chemical classes. Addressing this research gap to facilitate wider applicability, 87 

Guo developed a method which estimates the diffusion coefficient as a function of the 88 

chemical’s molar volume for mixed chemical classes 17. However, this approach is limited to 6 89 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

building materials and are developed based on a small dataset of limited chemical classes (≤ 3 90 

chemical classes for 5 of the 6 building materials).  91 

The aforementioned correlation methods consider experiments for building materials at room 92 

temperature, and therefore temperature is not relevant and thus not considered in the correlation 93 

model. For other exposure scenarios, such as transfer of chemicals from food contact materials 94 

(FCMs) into food, ambient temperature is highly relevant because FCMs can be heated, 95 

refrigerated, or frozen. Accordingly, Begley et al. presented a correlation method to estimate the 96 

diffusion coefficient in 9 polymer materials as a function of molecular weight and temperature 4, 97 

which is not applicable beyond the considered polymers.  98 

In all, the currently available correlation methods to estimate D do not provide sufficient 99 

coverage of chemicals encapsulated in consumer products in different use scenarios (i.e. ambient 100 

temperatures). Developing low-tier, high-throughput methods to estimate exposure to chemical 101 

in consumer products across a variety of chemical-material combinations is a recent focus in 102 

various science-policy fields such as computational exposure science and life cycle assessment 103 

(LCA) 20-25. Addressing the lack of methods to estimate D for a variety of chemical-product 104 

scenarios, the present study aims to develop a more comprehensive correlation method to 105 

estimate D for wide range of organic compounds in multiple solid materials. More specifically, 106 

we aim to: 107 

1) Carry out a comprehensive and extensive literature review to collect experimental diffusion 108 

coefficient data on a wide range of materials and chemicals. 109 

2) Use multiple linear regression techniques to establish the relationship between the diffusion 110 

coefficient and various predictor variables including physiochemical properties, material 111 

properties and environmental characteristics.  112 

3) Perform internal and external validations to characterize the validity and predictive power of 113 

the developed correlation.  114 

Since the material type is a categorical property variable and is not related to the chemical’s 115 

molecular structure, we call this correlation a quantitative property-property relationship (QPPR) 116 

instead of a quantitative structure-activity relationship (QSAR). This QPPR provides a more 117 

advanced correlation method to estimate the diffusion coefficients of organic compounds 118 

compared to previous studies, as it covers a wide range of solid materials and physiochemical 119 

properties, and also considers the effect of temperature. By providing reliable estimates of this 120 
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key diffusion parameter for a large number of chemicals, this method will facilitate high-121 

throughput assessments of chemical emissions and human exposures for chemicals encapsulated 122 

in solid materials relevant for chemical alternatives assessment (CAA), risk assessment and LCA. 123 

2. Materials and methods 124 

2.1 Dataset 125 

Experimental diffusion coefficient data were compiled from 68 references from the peer-126 

reviewed scientific literature. The initial dataset contained a total of 1124 records covering 161 127 

unique chemicals and 88 distinct solid materials (provided in Supporting Info). Experimental 128 

data expressed in cm2/s were converted to m2/s. There are different types of diffusion 129 

coefficients reported in the literature, so harmonization of these data was performed to develop a 130 

consistent dataset. For diffusion coefficients measured in liquid sorption experiments,  the 131 

‘ intrinsic’diffusion coefficients, corrected for the swelling of materials were collected 10. 132 

Sorption of the liquid molecules inside the solid material may cause swelling of the material, 133 

which would lead to decreased observed diffusion coefficients and thus need to be corrected 10. 134 

For porous materials consisting of pore space and solid material, two types of models can be 135 

used to describe the chemical transport through these materials. The one-phase model considers 136 

the porous material as an assumed homogeneously mixed material, so an ‘apparent’ diffusion 137 

coefficient is used to describe the chemical diffusion through such imaginary material 7. In 138 

contrast, the multi-phase model considers the material as a mixture of pores and solid parts, and 139 

the chemical diffuses mainly through the pores if the pores are interconnected, or through the 140 

pores and solid parts alternately if the pores are isolated from each other. The gas-phase diffusion 141 

through the pores, which can be described by an ‘effective’ diffusion coefficient, is assumed to 142 

be much faster than the diffusion through the solid parts 7. Haghighat et al., 7 has demonstrated 143 

that the ‘apparent’ diffusion coefficient is equivalent to the ‘effective’ diffusion coefficient (De) 144 

divided by the material phase-gas phase partition coefficient (Kma

26

). Thus, for porous materials 145 

the ‘apparent’ diffusion coefficients reported in studies were collected . For studies where only 146 

the De and Kma
27-29 were reported , they were converted to ‘apparent’ diffusion coefficients using 147 

the aforementioned method. Data were excluded for studies where only the ‘effective’ diffusion 148 

coefficients were reported. 149 

From the initial dataset, 21 records were excluded from further analyses because they involve 150 

chemicals that are inorganic, chemicals for which no CAS number could be identified, or 151 
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chemicals that are polymer chains with varying molecular weights. The final considered dataset 152 

thus includes 1103 records for 158 unique chemicals and 87 materials.   153 

2.2 Modeling methods 154 

2.2.1 Multiple linear regression 155 

A multiple linear regression (MLR) analysis was performed to identify and quantify the effect of 156 

different parameters on the diffusion coefficient. The MLR model takes the following general 157 

form:  158 

log10� = � + �1 ∙ �1 + ⋯+ �� ∙ �� + �1 ∙ �1 + ⋯+ �� ∙ ��                           (1) 159 

where log10D is the logarithm of the diffusion coefficient (m2/s), α is the intercept; X1 to Xn are 160 

independent variables related to physiochemical properties, such as molecular weight, molar 161 

volume, and vapor pressure, and/or environmental characteristics like temperature; β1 to βn are 162 

regression coefficients for the respective independent variables X1 to Xn; and M1 to Mm are 163 

dummy variables for the solid materials, with one dummy variable per type of material. A 164 

dummy variable equals 1 for the material type it represents, and equals 0 for all other materials; 165 

for example, M1 = 1 for material type = 1, M1 = 0 for material types 2 to m. b1 to bm are 166 

regression coefficients for the respective dummy variables M1 to Mm. The number of m is equal 167 

to the number of material types considered minus 1, since the material type with the highest 168 

number of measured D data is used as the reference material type and does not require a dummy 169 

available in the MLR. Note that the MLR model gives one coefficient for each material type, 170 

while a material type can represent a single pure substance such as calcium silicate, a composite 171 

material such as vinyl flooring and gypsum board, or a group of similar materials such as 172 

wooden boards. Details of the material types will be discussed later. This regression equation 173 

also implies that the material coefficients (b1 to bm) and the physiochemical property coefficients 174 

(β1 to βn

2.2.2 Grouping of materials and initial regressions 180 

) are independent of each other, which if corroborated by internal and external 175 

validations (Section 2.3), allow for the maximum prediction coverage in terms of chemical-176 

material combinations. All  regression coefficients were estimated by the least squares (LS) 177 

method. All regression analyses were performed using IBM SPSS Statistics version 23 (IBM 178 

corporation, Armonk, New York).  179 

To reduce the number of dummy variables, to avoid over-fitting of the MLR model, and to have 181 

a minimum of 10 records and 3 different chemicals per material type to ensure enough variability, 182 
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the 87 original materials were grouped into 32 consolidated material types, based on the 183 

similarity of the regression coefficients and the material types (see Supporting Information (SI), 184 

Section S1). Thus m = 31 in Eq. 1, with PET as the 32nd and reference material, since it is the 185 

material with most reported diffusion coefficients. 186 

In previous studies, either the chemical’s molecular weight (MW), molar volume (MV) or vapor 187 

pressure (VP) has been used as predictor of the diffusion coefficient in a given material 12, 17-19. 188 

Begley et al. 4 also suggested that the logarithm of the diffusion coefficient varies linearly with 189 

the inverse of the absolute temperature (1/T). Thus, the initial regression was performed to 190 

identify which of the above variables (MW, MV, VP and 1/T) are best predictors of the diffusion 191 

coefficients of compounds encapsulated in the 32 material types, i.e., to identify X1 to Xn

log10� = � + �log10�� ∙ log10�� + �1/� ∙ 1� + �1 ∙ �1 + ⋯+ �� ∙ ��                 (2) 197 

 in Eq. 192 

(1). Details of the initial regression process are presented in SI, Section S2. Results of the initial 193 

regression model suggest that the log-molecular weight and the inverse of the absolute 194 

temperature are the most important predictors, and therefore the employed MLR model takes the 195 

following form: 196 

where MW is the chemical’s molecular weight (g/mol) and T is the absolute temperature (K). 198 

The model performance of using log-molecular weight and molecular weight as predictors were 199 

very close when using the training dataset (1103 records, m=31), but the model using log-200 

molecular weight as predictor was finally selected since it performs better for high-molecular-201 

weight chemicals (Section 3.3.3).   202 

2.2.3 Temperature dependence 203 

Studies have shown that the activation energy of diffusion is a contributor to the temperature 204 

dependence of the diffusion coefficient and varies as function of both the material and the 205 

chemical properties 4, 30, 31. Thus, ideally a specific temperature correction coefficient should be 206 

used for each chemical-material combination. Since data availability is not sufficient to 207 

determine chemical-specific temperature coefficients for each of the 32 materials, and since 208 

chemical properties seem to have limited influence on the activation energy 4, 30, we followed the 209 

strategy of Begley et al. 4, differentiating temperature coefficients for a limited number of 210 

material groups, applying one generic temperature coefficient for all chemicals within each 211 

material group. Begley et al. 4 have introduced a variable τ to adjust the temperature coefficient 212 

for two groups of materials, where τ equals 0 or 1577 for 9 different polymers, which 213 
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corresponds to activation energy of 86.9 kJ/mol for e.g. LDPE or 100 kJ/mol for e.g. HDPE. To 214 

analyze the temperature dependency of the diffusion coefficients in our dataset, we first plotted 215 

log10

4

D against 1/T for each of the 32 material types (SI Section S3). The plots generally show as 216 

expected  an inverse relationship in which log10

log10� = � + �log�� ∙ log10�� +
�1/�+�� + �1 ∙ �1 + ⋯+ �� ∙ ��,      (3) 227 

D is decreasing with increasing 1/T, different 217 

materials exhibiting different slopes. Since variability in diffusion coefficient is higher between 218 

than within given studies, we first determined a temperature coefficient for each chemical-219 

material-study combination, and then calculated an average temperature coefficient for each 220 

material type by averaging all temperature coefficients belonging to the same material type. The 221 

analysis of the material-specific temperature coefficients showed that the materials can be 222 

grouped into three categories: (1) high-, (2) medium- and (3) low-coefficient categories, with 223 

three corresponding values for the temperature coefficient adjustment factor τ, which are given in 224 

Section 3.1. Details are presented in SI Section S3.3. The adjusted MLR model takes the 225 

following form accordingly: 226 

 228 

2.2.4 Final regression 229 

To avoid multicollinearity problems in the MLR model and to avoid the influence of the material 230 

type “Limited-data material group” on the temperature coefficients, we fixed the temperature 231 

coefficients determined using Eq. 3 and thus the final regression takes the following form: 232 

log10� − �1/�+�� = � + �log�� ∙ log10�� + �1 ∙ �1 + ⋯+ �� ∙ ��,                 (4) 233 

where the dependent variable is log10D – (β1/T+τ)/T instead of log10D, with the values of β1/T

2.3 Model validation 238 

 234 

and τ obtained from Eq. 3 and presented later in Section 3.1. In this final regression, all 1103 235 

records of measured D data were utilized including the material type “Limited-data material 236 

group”, leading to m=31 material types, plus one reference material type, PET, with ���� = 0. 237 

Validation of the final MLR model (Eq. 4) was performed using the QSARINS software, version 239 

2.2.1 (www.qsar.it) which is developed by Gramatica et al. 32, 33.  240 

2.3.1 Internal validation 241 

The MLR model’s capacity to predict portions of the training dataset was evaluated in an internal 242 

validation process, using two techniques for internal validation in QSARINS. The first one is the 243 
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leave more out (LMO) cross-validation technique, which iteratively and randomly exclude a 244 

certain percentage of the measured diffusion coefficient data, and then computes the regression 245 

coefficients with the remaining data and uses those coefficients to make predictions for the 246 

excluded ones 33. We used 1000 iterations and the percentage of the excluded elements was set 247 

as 20%.  248 

The second technique for internal validation is the Y-scrambling procedure, which demonstrates 249 

that the model is not the result of chance correlation. In this procedure, the experimental 250 

responses (in our study, the temperature-adjusted diffusion coefficients) are shuffled at random 251 

and used with the original predictors to establish an MLR model. If the original MLR model is 252 

internally valid, the performances of the scrambled models should be much worse than the 253 

original model33. We used 1000 iterations for the Y-scrambling.  254 

2.3.2 External validation 255 

We also evaluated the model ability to provide reliable predictions on new datasets in a so-called 256 

external validation process, using the following two approaches. 257 

The first approach was to split the existing dataset (1103 records) into one training dataset and 258 

one prediction datasets. The training dataset was used to generate regression coefficients of the 259 

MLR model, and then the MLR model was applied to the prediction set to examine the 260 

prediction performances of the model. Three kinds of splitting were performed using existing 261 

options in the QSARINS software (see SI, Section S5.1 for details) by random percentage (20% 262 

of the entire dataset randomly selected as the prediction set, 80% rest to the training set), by 263 

response and by structure (data first ordered by responses of the temperature-adjusted diffusion 264 

coefficient, or by the first axis of principal component analysis (PCA) of the descriptors, 265 

respectively). We introduced a fourth kind of splitting by studies, since variability across studies 266 

for a given material is in general larger than variability within a given study, yielding similar 267 

sample sizes of approximately 880 data for the training set and 220 data for the prediction set (SI, 268 

Table S3).  269 

The second approach of external validation was to use the entire collected dataset (1103 records) 270 

as the training set and to use an entirely separate dataset as the prediction set. For the prediction 271 

set, two datasets were used. The first one is a database of diffusion coefficients from the United 272 

States Food and Drug Administration (FDA), which is a “database available upon request" for 273 

guidance for industry (http://www.fda.gov/Food/ucm081818.htm), and includes non-peer 274 
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reviewed diffusion coefficient data reported by industry. This dataset includes 191 records of 275 

experimental diffusion coefficients of 46 chemicals in 22 materials which are mainly polymers 276 

used for food contact materials (see SI, Section S5.1 for details). The quality and reliability of 277 

these data are not characterized by FDA. The second prediction dataset is constructed  from 278 

several studies conducted before 1982 34-36, referenced in37. This dataset, designated as “Data by 279 

1982”, includes 281 records of measured diffusion coefficients of 92 chemicals in 8 polymer 280 

materials, also including self-diffusion (see SI, Section S5.1 for details). Data for both prediction 281 

sets are provided in Supporting Info. 282 

2.3.3 Applicability domain (AD) 283 

The analysis and definition of the applicability domain (AD) of models is a fundamental issue 284 

that must be addressed in QSAR and QPPR studies. The study of AD can provide information on 285 

the reliability of the model predictions, i.e., if the chemicals are inside the AD, the predictions 286 

are interpolated and are more reliable; if the chemicals are outside the AD, the predictions are 287 

extrapolated and less reliable, because effects can occur outside the AD that do not exist within 288 

the AD 38. Three complementary methods were applied to define the AD of the diffusion 289 

coefficient QPPR: the range of model predictors, the leverage approach, and the PCA of the 290 

model predictors 39. More explanation of these methods is provided in SI, Section S4. In our 291 

analysis, chemicals are considered inside the AD if they are viewed inside AD by all three 292 

methods, whereas chemicals are considered outside AD if they are viewed outside AD by all 293 

three methods, and finally chemicals that fall inside the AD for only one or two methods are 294 

considered as ‘borderline.’  295 

 296 

3. Results and discussion 297 

3.1 Temperature dependence of the diffusion coefficient 298 

The compiled dataset of 1103 records including 158 chemicals and 32 material types shows that 299 

the diffusion coefficient in solid materials decreases with decreasing temperature, as 300 

demonstrated by the highly significant negative regression coefficient for the variable 1/T, with  301 �1/� = −4440 (�) with a standard error (SE) of 164 (K) and p < 0.001 in Eq. 2 (SI, Section 302 

S3.1). This is in agreement with previous studies 4, 30, 31. This general tendency of decreasing 303 

diffusion with increasing 1/T is well illustrated by the example of PET, the material with the 304 

most data available (Figure 1A – see SI, Figure S1 for other materials). To further refine the 305 
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coefficient for the temperature variable into specific materials groups, Figure 1B illustrates well 306 

for methyl methacrylate (MMA) homopolymer the importance of first determining a temperature 307 

coefficient for each separate study and material-chemical combination (Section 2.2.3) and then 308 

averaging the temperature coefficients across studies.  The molecular weight-normalized 309 

diffusion coefficients show a negative linear relationship with 1/T within each of the three 310 

experimental studies of Figure 1B40-42, with similar regression coefficients of -4530 (K), -5704 311 

(K), -3415 (K), averaging  -4550 (K) with an SE of 305 (K) . However, since the absolute 312 

log10
42MW-normalized diffusion coefficients reported by Hennebert et al.  are much higher than 313 

those reported by the other two studies, doing one  regression with all data from the three studies 314 

would result in a non-significant temperature coefficient (p-value of 0.19), thus demonstrating 315 

the importance to first perform temperature regressions using data from the same study and for 316 

the same chemical.  317 

Table 1 presents the average temperature coefficients and their standard errors for each of the 32 318 

consolidated material types. Based on the values of the temperature coefficients (unit in K), the 319 

32 material types can be grouped into three categories: (1) high-coefficient category with 320 

relatively high (absolute value) temperature coefficients (< -5000), i.e., materials in which 321 

diffusion coefficients are highly sensitive to the change in temperature, (2) medium-coefficient 322 

category with temperature coefficients in between (-5000 < (�1/� + �) < -3000), and (3) low-323 

coefficient category with relatively low (absolute value) temperature coefficients (> -3000), i.e., 324 

materials in which diffusion coefficients are least sensitive to the change in temperature. Details 325 

for the grouping of temperature coefficients can be found in SI, Section S3.3.   326 

The temperature coefficients β1/T and τ used in Eq. 4 for each of the three temperature-327 

dependency material categories are obtained from the regression using the MLR model of Eq. 328 

S3-2 (SI, Section S3.3), yielding values of �1/� = −3486 ± 299 (�) and �high = −2391 ±329 

356 (�), �medium = 0 (�) and �low = +1676 ± 510(�). Thus, for the High-, Medium- and 330 

Low-coefficient categories, the final temperature coefficients (β1/T

4

 + τ) are -5877 (K), -3486 (K), 331 

and -1810 (K), corresponding to activation energy of 113, 66.7 and 34.7 (kJ/mol), respectively. 332 

Begley et al.  also aggregated 9 types of polymer materials into two temperature categories, with 333 

activation energy of 100 and 86.9 (kJ/mol), which have similar values with the high- and 334 

medium-coefficient categories in the present paper, to which these 9 polymer materials are 335 

assigned. These results indicate that the categorization of the temperature coefficient in the 336 
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present paper is consistent with previous studies, while extending the QPPR to a wider range of 337 

materials. 338 

3.2 Final QPPR and model fitting 339 

Using the full  dataset (1103 records) and Eq. 4, the final MLR model for predicting the diffusion 340 

coefficient in solid materials is as follows: 341 

log10� − �−3486� = 6.39 − 2.49 ∙ log10�� + �                                      (5) 342 

N = 1103, R2 = 0.932, R2adj

ANOVA: F = 457, df = 32, p < 0.0001 344 

 = 0.930, SE = 1.17, RMSE = 1.15 343 

where D is the diffusion coefficient (m2/s), MW is molecular weight (g/mol), T is absolute 345 

temperature (K), b and τ (K) are the material-specific coefficients presented in Table 2. This 346 

model is provided as an excel model in Supporting Info to facilitate application. The standard 347 

errors for the intercept (6.39) and the coefficient of log10MW (-2.49) are 0.29 and 0.13, 348 

respectively. An SE of 1.17 of the final model (Eq. 5) indicates that the 95% confidence interval 349 

(CI) of the predicted response, log10D-(τ-3486)/T, is the predicted value ± 2.30. The 95% CI of 350 

the log10D cannot be directly calculated, but the average absolute difference between predicted 351 

and measured log10

This MLR model shows excellent fitting of the experimental data, with an adjusted R-square of 354 

0.932 and a root mean square error (RMSE) of 1.15. The model fit is highly significant with an 355 

ANOVA p-value smaller than 0.0001. Figure 2 shows the scatter plot of experimental versus 356 

predicted responses, which aligns well with the 1:1 line. In this MLR model, the response 357 

(dependent variable) is the temperature-adjusted log diffusion coefficient, i.e., log

D is 0.83 across the whole dataset (1103 records), and 95% of this absolute 352 

difference is below 2.54.  353 

10D-(τ-3486)/T, 358 

instead of log10

The key predictors other than temperature in the MLR model are the material type and the 363 

molecular weight of the diffusing chemical. The regression coefficient when considering log-364 

molecular weight is equal to -2.49, indicating that the diffusion coefficient decreases with 365 

increasing molecular weight. This implies that larger molecules diffuse more slowly compared to 366 

smaller molecules in solid materials, which is intuitive and consistent with findings from 367 

D, in order to fix the temperature coefficients and to avoid multicollinearity 359 

problems, as mentioned in Section 2.2.4. The residual plot (Figure 3) shows that the residuals are 360 

distributed evenly throughout the dataset, again indicating the good fit of the linear model for the 361 

data.  362 
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previous studies 4, 12, 17, 18. However, although the molecular weight is a highly significant 368 

predictor (p < 0.0001), it explains less than 10% of the total variance of the diffusion coefficient 369 

(SI, Section S4).  370 

The 31 dummy variables for the material types reflect the material dependency and account for 371 

most of the total variance of the diffusion coefficient, indicating that the diffusion coefficient in 372 

solid materials is strongly dependent on the material type. Since “Polyethylene terephthalate 373 

(PET)” was used as the reference material in the regression, the value of its coefficient b is zero 374 

(Table 2). For each of the other material types, the coefficient b, combined with the temperature 375 

coefficient τ, i.e. b+(τ+2391)/T, determines the difference in log-diffusion coefficient between 376 

that material type and PET, since PET has a temperature coefficient τ of -2391 (K) (Table 2, last 377 

column). Chemicals in material types with high values of b+(τ+2391)/T diffuse quicker than in 378 

material types with low values. Therefore, under room temperature (T = 298.15 K), the values of 379 

b+(τ+2391)/T and the corresponding diffusion coefficients tend to be lower in dense, rigid 380 

materials such as glass, stainless steel, methyl methacrylate (MMA) polymers, polyethylene 381 

naphthalate (PEN), and rigid polymers including polyether ether ketone (PEEK), rigid PVC, 382 

polytetrafluoroethylene (PTFE), and polycarbonate (Table 2). In contrast, the values of 383 

b+(τ+2391)/T and the corresponding diffusion coefficients can be up to 13 orders of magnitude 384 

higher in flexible or porous materials, such as gypsum, wood, rubber, and polyurethane foam-385 

based materials (Table 2). It should be noted that the composition and properties of a given 386 

material type may vary considerably depending on the intended use, as well as over time as 387 

material substitutions are made and production procedures differ. Thus, the material type 388 

coefficients in Table 2 actually represent an average composition and diffusion behavior for the 389 

specific material types.  390 

The significance of the material type coefficient only indicates that the coefficients bs of these 391 

material types are significantly different from the reference material type, PET, but if another 392 

material type was selected as the reference material, the regression coefficients and statistical 393 

significance of all materials would change. Thus, the insignificance of the regression coefficients 394 

for material type variables does not indicate that those material types do not have a relevant 395 

influence on the diffusion coefficient. As a result, we keep all 31 material type dummy variables 396 

in the final regression to retain as much information as possible.  397 
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The MLR model given in Eq. 5 contains material-specific variables, so it is only valid for the 32 398 

material types presented in Table 2. For materials that do not belong to those 32 types, we built 399 

another generic QPPR to predict the diffusion coefficients, which is presented in SI, Section S4, 400 

which should be used with caution because of higher uncertainties.  401 

3.3 Model validation results 402 

3.3.1 Internal validation 403 

For the 20% leave-more-out (LMO) cross validation, the correlation coefficient, Q2
LMO  for the 404 

1000 iterations ranges from 0.89 to 0.95, with an average of 0.93, and a root mean square error 405 

for cross validation (RMSEcv) average of 1.19. Both the Q2
LMO  and RMSEcv

For the Y-scrambling, the average R2

 are similar to the R2 406 

and RMSE computed using the full dataset, which is 0.93 and 1.15, respectively. These results 407 

indicate that when fitted to a random 80% of the dataset the model is still able to predict the 408 

remaining 20% of the dataset, meaning that the model is internally stable. 409 

Yscr and Q2
Yscr for the 1000 iterations are 0.029 and -0.033, 410 

respectively, which are much smaller than the R2 and Q2
LMO  of the original model. The RMSE 411 

for Y-scrambling, RMSEYscr, is 4.36 which is much higher than the RMSE and RMSEcv

Overall, the internal validation demonstrates that the MLR model represented by Eq. 5 is robust 415 

and stable, and is not a result of chance correlation. 416 

 of the 412 

original model. These results demonstrate that no correlation exists between the scrambled 413 

responses and the predictors. Thus, chance correlation for the original model can be ruled out.  414 

3.3.2 External validation 417 

As described in Section 2.3.2, the first method of external validation was to split the full dataset 418 

(1103 records) into training set and prediction set, and four types of splitting were performed, 419 

including splitting by a random 20%, by ordered response, by ordered structure, and by studies. 420 

Six criteria for external validation were computed and are presented in Table 3. The R2
ext is the 421 

determination coefficient of the prediction set data using the model calculated using the training 422 

set data. The other five criteria, Q2
F1

43 , Q2
F2

44 , Q2
F3 

45, ��2  46, and CCC 47, are external 423 

validation criteria proposed by different studies, which evaluate various aspects of the model’s 424 

external prediction ability. These criteria are usually in accordance with each other but can 425 

sometimes give contradictory results 47, so they need to be evaluated together. Chirico and 426 

Gramatica have proposed threshold values for these different criteria 48, which are presented in 427 

Table 3. For the first three types of splitting (by random 20%, by ordered response, and by 428 
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ordered structure), the R2
ext

For the fourth type of splitting, splitting by studies, data from 30 studies were selected as the 438 

prediction set, while data from the remaining 48 studies constituted the training set. Thus, all 439 

data from one study and for one particular material will be either in the training or in the 440 

prediction set, so the validation using this splitting is close to a truly “external” validation. Most 441 

of the prediction set is inside the AD defined by the training set except for two data points (SI, 442 

Figures S8-S9). As a result, the R2

 are higher than 0.9, and all of the other five criteria pass the 429 

threshold values and are also higher than 0.9, indicating good prediction ability of the model 430 

calculated using only the training set data. In these three types of splitting, the data were assigned 431 

to the training and prediction data sets either randomly or alternately (by ordered response or 432 

structure), so it is likely that a portion of the data from each study was assigned to the training set 433 

while the remaining portion of the data was assigned to the prediction set. As the result, the 434 

prediction set is well within the applicability domain (AD) defined by the training set (SI, 435 

Figures S2-S7), so it is expected that the model calculated using the training set can well predict 436 

the prediction set. 437 

ext

As a second method of external validation, the 1103 data points from the 68 studies were used as 448 

the training set, and additional data from an FDA database and from studies before 1982 were 449 

used as two separate prediction sets. As presented in Table 3, when using FDA dataset as the 450 

prediction set, the R2

 dropped to 0.85, and the values of the other five validation 443 

criteria are apparently lower than those for the above three types of splitting, reflecting that 444 

variability is higher between than within studies. The five validation criteria nevertheless all pass 445 

the threshold values (Table 3), indicating that the model calculated using the training set has 446 

good prediction ability. 447 

ext is reduced to 0.80 which is lower than the R2
ext for the above four types 451 

of splitting. Four of the five validation criteria pass the threshold values, while Q2
F3 does not 452 

pass the threshold. In contrast, when using data by 1982 as the prediction set, the R2
ext is 0.93, 453 

which is very close to the R2 of the training dataset (Section 3.2). The absolute difference 454 

between predicted and measured log10D averages 2.20 (95th percentile of 5.53) for the FDA 455 

dataset, and averages 1.08 (95th percentile of 2.68) for the data by 1982. Figure 3 presents the 456 

comparison between model predicted and experimental responses for these two prediction sets. 457 

Data from both prediction sets are generally distributed close to the 1:1 line, but the FDA data 458 

are more dispersed compared to the training set data while the data by 1982 are almost as 459 
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compact as the training set data. The FDA data lack documentation of experimental details, so 460 

their quality may not be as good as the data reported in peer-reviewed literature. Also, when the 461 

FDA polymer types were linked to our consolidated material types, mismatches may have 462 

occurred due to lack of description of the polymers in the FDA dataset, which may lead to 463 

inaccuracies in model predictions. Overall, however, our QPPR performs reasonably well on 464 

these two fully external datasets, demonstrating its good predictive ability.  465 

3.3.3 Applicability domain (AD) 466 

We performed the analysis of the model’s applicability domain (AD) using the three approaches 467 

explained in Section 2.3.3. The model being evaluated is the final MLR model presented in Eq. 5, 468 

which was calculated using the training set of 1103 data points collected from 68 studies 469 

obtained from the peer-reviewed literature. For the analysis of AD, we focus on the two external 470 

prediction datasets: the FDA dataset (189 data points) and the data by 1982 (239 data points). 471 

Detailed results of the AD analysis are presented in SI, Section S6.1.  472 

Combining the three methods, none of the data points in both prediction sets fell out of the AD. 473 

For the FDA dataset, the majority of the data points were inside the AD, while 15 data points 474 

were on borderline of AD. Similarly, only 35 data points from the data by 1982 were on 475 

borderline of AD. Thus, it is valid to use the present QPPR to make reliable estimates of 476 

diffusion coefficients for all data points in the two prediction sets. The physiochemical property 477 

space covered by the QPPR is mainly determined by the chemical’s molecular weight, which 478 

ranges from 30 to 1178 g/mol. The vapor pressure at 25 °C may also be a relevant property, 479 

which ranges from 9.8∙10-29 to 5.2∙105 Pa. The range of log10

As mentioned in Section 2.2.2, the model performances of using log-molecular weight and 482 

molecular weight as predictors were very close to each other when using the training dataset. 483 

However, residual analysis and external validation showed that log

D covered by the QPPR ranges 480 

from -22.1 to -5.2 where D is measured in m2/s. 481 

10MW is a more stable 484 

predictor than MW when handling high-molecular-weight chemicals, which becomes prominent 485 

for the FDA dataset which includes certain chemicals with molecular weight higher than 1500 486 

g/mol.  While none of the data points in the FDA dataset fell out of the AD using the log10MW 487 

model, 11 data points would be outside AD using the MW model. Details are presented in SI, 488 

Section S6.2. Thus, log10MW instead of MW was selected as a predictor in the final QPPR (Eq. 489 

5).  490 
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Schwope et al. 37 suggested that the linear relationship between log10D and log10MW may only 491 

be valid for a certain range of molecular weight, and there may be a saturation of diffusion 492 

coefficients for small molecular weights, i.e., for a given material and a given temperature, the 493 

diffusion coefficient does not continue to increase for chemicals with molecular weight lower 494 

than a certain value, which is likely determined by the material type. To further examine the 495 

effect of molecular weight on model applicability, we analyzed the model residuals versus the 496 

log of molecular weight for the training dataset and the two prediction sets (Figure 4). For the 497 

three datasets, the residuals are distributed evenly on both sides of zero in the MW range of the 498 

training dataset of 30 and 1178 g/mol (log10

Overall, the performance of the final model (Eq. 5) in this external validation indicates that it has 505 

the ability to provide reliable predictions, as long as the considered chemicals are within the 506 

model’s applicability domain. With the log-molecular weight as a predictor, our model is able to 507 

make reliable extrapolations on chemicals with molecular weights up to about 2500 g/mol, but 508 

caution still needs to be taken when applying the model on extremely-high-molecular-weight 509 

chemicals. Ideally, the model should be applied to predict diffusion coefficients for chemicals 510 

with molecular weights lower than 1178 g/mol which is the maximum within the training dataset. 511 

Caution also needs to be taken when applying the model on very-low-molecular-weight 512 

chemicals due to the possible saturation effect.  Both the FDA dataset and the data by 1982 were 513 

used for the external validation but not combined with the original training dataset to calculate a 514 

more comprehensive MLR model, because these data are somewhat outdated; the FDA data are 515 

not published in literature, so there is a lack of experimental details, making these undocumented 516 

data less reliable than the data collected from peer-reviewed literature. 517 

MW of 1.48 to 3.07). For methane (MW=16 g/mol), 499 

most of the predictions overestimate diffusivity, suggesting that diffusivity may indeed not 500 

further decrease below MW 30 g/mol. Since methane was the only chemical with data available 501 

for MW lower than 30 g/mol, data for additional chemicals and materials are therefore needed to 502 

further test this hypothesis of saturation at low MW. Similarly, additional data are needed to 503 

provide more accurate estimates for chemicals with very high molecular weights.  504 

 518 

3.4 Limitations and future work 519 

While the extension to 32 different consolidated material types is a major progress, the present 520 

model is still not fully comprehensive. First, the model may not be valid for very high or very 521 
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low molecular weight (MW) chemicals. It may not be valid for ionizing organic chemicals either, 522 

since ionizing chemicals such as acids, alcohols/phenols and amines are not well represented in 523 

the training dataset, as they only account for less than 10% of the data points, and the model does 524 

not consider chemical ionization or interaction within a material, which may make the 525 

chemical’s diffusivity lower than that predicted by the model. Second, the present model is not 526 

applicable for materials types other than the 32 types in the training set, e.g. for material such as 527 

resin and textiles, due to the lack of experimental data. Although a more general MLR model (SI, 528 

Section S4) was developed which does not require material type as the predictor, it gives much 529 

less accurate predictions of the diffusion coefficient. Third, the present model does not consider 530 

any interaction between MW and material type, i.e., it assumes the effect of MW is the same 531 

across different materials. Although model validations show that this assumption may be 532 

reasonable for the existing data, ideally it needs to be further verified using data spanning the 533 

whole MW range (30 to 1178 g/mol) for each material. Therefore, more experimental diffusion 534 

coefficient data need to be obtained, or more advanced experimental methods to measure 535 

diffusion coefficients need to be developed, for other material types and chemical sizes and 536 

classes to make the model more comprehensive.  537 

There are also large variations in the experimental diffusion coefficients between some of 538 

different studies for three material types, namely “MMA homopolymer”, “Natural rubber” and 539 

“Rigid polymers”, even after correcting for molecular weight and temperature, as shown in 540 

Figure 1 and SI, Figure S1. This means that the regression coefficients b and τ for these material 541 

types should be taken with care. The variations could be due to three causes. First, experimental 542 

variation; for example, Franz et al. 40 used desorption experiments to measure the diffusion 543 

coefficients in MMA homopolymer, while Hennebert et al. 42 used sorption experiments. Second, 544 

the swelling of polymers during liquid sorption experiments, which generally occurs for 545 

crosslinked polymers in low-molecular weight solvents 49, may not always be accounted for, and 546 

can lower the diffusion coefficients by orders of magnitude 10.  Third, the properties of the same 547 

material can vary between studies depending on how it was made and which additives were used. 548 

This may also be the case for some other materials such as vinyl flooring, carpet, synthetic 549 

rubber, etc., for which the material type coefficients in Eq. 5 can only represent some sort of 550 

average composition and diffusion behavior for the specific materials. Ideally, quantitative, 551 

continuous properties of the solid materials, such as density, porosity and crystalline state of the 552 
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material as well as other descriptors of the material’s composition and molecular structure, 553 

instead of qualitative material types could be measured and entered into the model as predictors, 554 

so that the model can be more accurate and can be extrapolated to various material types outside 555 

the training dataset. 556 

 557 

4. Conclusions 558 

A multiple linear regression model has been developed to predict the internal diffusion 559 

coefficients of organic compounds in various solid materials (excel model provided in SI). 560 

Experimental diffusion coefficient data collected from 68 studies of the peer-reviewed literature 561 

were used as the training set for the regression. The model uses two continuous variables, 562 

molecular weight and inversed absolute temperature, and one categorical variable, material type, 563 

as predictors. The model has been internally validated to be robust, stable and not a result of 564 

chance correlation. External validation using two prediction sets demonstrates that the model 565 

predictions are most reliable within the model’s applicability domain, namely molecular weight 566 

between 30 and 1178 g/mol temperature between 4 and 180 °C, and material type belonging to 567 

the 32 consolidated types. 568 

The main advantage of the present model is that it is applicable for chemicals with a wide range 569 

of molecular weights (but only up to about 16 to 2500 g/mol, with special treatment for 570 

molecular weight lower than 30 g/mol) in various materials. This is advantageous compared to 571 

the correlation methods developed in previous studies often specific for certain chemical classes 572 

or materials. The present model is able to provide reliable estimates of diffusion coefficients for 573 

a large number of chemical-material combinations, making it suitable for high-throughput 574 

assessments of the releases and human exposures to chemicals encapsulated in solid materials, 575 

particularly building materials and food contact materials. To make the model comprehensive, 576 

more experimental diffusion coefficient data need to be obtained for other material types, or 577 

quantitative and continuous parametrization of various solid materials needs to be further 578 

developed.  579 
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Figure 1. Relationship between the diffusion coefficient D (corrected for log10
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MW) and the 590 

inverse of temperature for (A) PET, and (B) methyl methacrylate (MMA) homopolymer. The 591 

units of D and MW are m2/s and g/mol, respectively. 592 
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  593 

Figure 2. Values of log10
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 597 

Figure 3. Values of log10

 601 

D-(τ-3486)/T predicted by the final QPPR (Eq. 5) vs. experimental 598 

values when using (A) FDA dataset and (B) Data by 1982 as the prediction sets. The black 599 

dotted line indicates the 1:1 line. The units of D and T are m2/s and K, respectively. 600 

 602 
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  604 

Figure 4. Residual between the present QPPR and observed data as a function of log10

 607 

MW for 605 

the training dataset, the FDA dataset, and the data by 1982 set. The unit of MW is g/mol. 606 
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Table 1. Temperature dependence of diffusion coefficient in the 32 consolidated material types 618 

(all numbers are in the unit of K) 619 
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 620 

 621 

 622 

 623 

 624 

Table 2. Material-specific coefficients for Eq. 5 625 

Category Material Mean coefficient of 1/T SD between studies β1/T τ β1/T + τ

High-coefficient category PP homopolymer -6665 2354

Polyethylene terephthalate (PET) -6567 2399

General polystyrene (PS) -5713 3560

Polyethylene naphthalate (PEN) -5449 1940

PP copolymer -5384 1194

High-density polyethylene (HDPE) -5294 1124

Medium-coefficient category MMA homopolymer -4549 1145

ABS, EVOH -4222 n/a

High-impact polystyrene (HIPS) -4215 n/a

Polyamide (PA) -4179 1854

MMA copolymer-medium or low density -4056 1272

Polyethylene (PE, LDPE, LLDPE) -3713 536

Limited-data material group n/a n/a

Calcium silicate n/a n/a

Carpet n/a n/a

Glass, Stainless steel n/a n/a

Vinyl acetate-based polymers n/a n/a

Cement n/a n/a

Low-coefficient category Gypsum board n/a n/a

Plywood n/a n/a

Flexible PVC -2917 2618

Other wooden boards -2411 888

Polychloroprene (CR) -2127 286

Vinyl flooring -1951 n/a

Polystyrene foam (XPS, EPS) -1806 n/a

Polyurethane foam-based materials* -1705 699

Synthetic rubber -1326 205

Ethylene-propylene rubbers -1145 300

Natural rubber (NR) -939 337

Rigid polymers -510 1552

Paper -312 n/a

Gypsum and cellulose ceiling tile 331 294

*This material type refers to low-density polyurethane foams with a density of 0.005 to 0.03 g/cm3.

Coefficient value for Eq. 5

-5877

-3486

-1810-3486 1676

-3486 -2391

-3486 0
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   626 

Table 3. External validation results 627 

b+ ( τ+ 2391.15)/T

Material Coefficient SEf p-value τ (K) at 25 °C

Calcium silicate 1.17 0.29 < 0.0001 0 9.19

Carpet -1.23 0.28 < 0.0001 0 6.79

Cement 0.330 0.226 0.15 0 8.35

Ethylene-propylene rubbers -6.32 0.29 < 0.0001 1676 7.32

Flexible PVC -8.51 0.31 < 0.0001 1676 5.13

General polystyrene (PS) 2.04 0.30 < 0.0001 -2391 2.04

Glass, Stainless steel -8.57 0.38 < 0.0001 0 -0.550

Gypsum and cellulose ceiling tile -1.24 0.31 < 0.0001 1676 12.4

Gypsum board -5.77 0.30 < 0.0001 1676 7.87

High density polyethylene (HDPE) 5.11 0.20 < 0.0001 -2391 5.11

High-impact polystyrene (HIPS) -7.11 0.27 < 0.0001 0 0.907

Methyl methacrylate (MMA) copolymer-medium or low density -7.73 0.21 < 0.0001 0 0.294

Methyl methacrylate (MMA) homopolymerh -7.84 0.31 < 0.0001 0 0.175

Natural rubber (NR)h -3.60 0.27 < 0.0001 1676 10.0

Other wooden boardsa -6.72 0.21 < 0.0001 1676 6.92

Paper -8.53 0.34 < 0.0001 1676 5.11

Plywood -5.61 0.34 < 0.0001 1676 8.03

Polyamide (PA) -5.40 0.16 < 0.0001 0 2.62

Poly acrylnitrile butadiene styrene (ABS), Ethylene vinyl alcohol (EVOH) -4.97 0.23 < 0.0001 0 3.05

Polychloroprene (CR) -6.31 0.35 < 0.0001 1676 7.33

Polyethylene (PE, LDPE, LLDPE) -1.65 0.16 < 0.0001 0 6.37

Polyethylene naphthalate (PEN) -1.16 0.28 < 0.0001 -2391 -1.16

Polyethylene terephthalate (PET) g 0.00 0.15 n/a -2391 0.00

Polystyrene foam (XPS, EPS) -8.32 0.29 < 0.0001 1676 5.32

Polyurethane foam-based materialsb -7.35 0.25 < 0.0001 1676 6.30

PP copolymer 4.79 0.28 < 0.0001 -2391 4.79

PP homopolymer 4.53 0.15 < 0.0001 -2391 4.53

Rigid polymersc, h -11.9 0.25 < 0.0001 1676 1.70

Synthetic rubber -5.93 0.32 < 0.0001 1676 7.71

Vinyl acetate-based polymersd -0.459 0.326 0.16 0 7.56

Vinyl flooring -6.77 0.21 < 0.0001 1676 6.87

Limited-data material groupe

a Includes Particleboard, Oriented strand board (OSB), Medium-density fiberboard (MDF), High-density board, and Wood chamber wall.

b This material type refers to low-density polyurethane foams with a density of 0.005 to 0.03 g/cm3.

c Includes Polyether ether ketone (PEEK), Rigid PVC, Polytetrafluoroethylene (PTFE), and Polycarbonate.

d Includes Ethyl vinyl acetate (EVA), Polyvinyl acetate (PVA), and Polyvinyl acetate polyacrylic acid copolymer. 

f Standard error.
g Reference material.
hCoefficients should be taken with care due to large variations between studies.

different materials, so the accuracy of the coefficients is low and they are not recommended for use in predicting diffusion coefficients. This group 

includes Alginate film, Balance, Decorative and Overlay layers of wooden flooring, Cellulose, Epichlorhydrin-dimethylamine polymer (EDP), 

Epoxy/acrylic copolymer, latex, MMA/Butyl methacrylic (BMA) copolymer -very low density, Nanocomposite polyamide, Paint, Pectin film, 

Pectin/Alginate composite film, Polydimethylsiloxane (PDMS) membrane, Polyisoprene (PI) membrane, Polyoctenamer (PO) membrane, 

Polyoxymethylene, Polytrimethylene terephthalate (PTT), Polyvinylidene chloride (PVDC), and Silicone. 

Coefficient b

eThe coefficient b  for this group is -2.26 with an SE of 0.18, and the coefficient τ is 0. "Limited-data material group" includes data from 20

see footnotes
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