Supporting Information for "Meta-Analysis of Gene-Environment Interaction Exploiting Gene-Environment Independence Across Multiple Case-Control Studies"

Supporting Information: Modeling $P(G_{ki}|E_{ki}, S_{ki})$ under HWE

Under HWE, we have $P(G_{ki} = 0 | E_{ki}, \mathbf{S}_{ki}) = (1 - q_{ki})^2$, $P(G_{ki} = 1 | E_{ki}, \mathbf{S}_{ki}) = 2q_{ki}(1 - q_{ki})$ and $P(G_{ki} = 2 | E_{ki}, \mathbf{S}_{ki}) = q_{ki}^2$ where q_{ki} is the minor allele frequency for a given $(E_{ki}, \mathbf{S}_{ki})$. Thus,

$$\log\left\{\frac{P(G_{ki}=1|E_{ki}, \boldsymbol{S}_{ki})}{P(G_{ki}=0|E_{ki}, \boldsymbol{S}_{ki})}\right\} = \log(2) + \log\left\{\frac{q_{ki}}{1-q_{ki}}\right\} \text{ and }$$

$$\log \left\{ \frac{P(G_{ki} = 2 | E_{ki}, \mathbf{S}_{ki})}{P(G_{ki} = 0 | E_{ki}, \mathbf{S}_{ki})} \right\} = 2 \log \left\{ \frac{q_{ki}}{1 - q_{ki}} \right\}.$$

One can then use the logistic model $q_{ki} = H\{\eta_{0k} + \eta_k \mathbf{S}_{ki}^{\mathrm{T}} + \theta_k E_{ki}\}$ which reduces to $q_{ki} = H\{\eta_{0k}^0 + \eta_k^0 \mathbf{S}_{ki}^{\mathrm{T}}\}$ under *G-E* independence conditional on \mathbf{S}_{ki} .

Supporting Information: Approximation of $(\boldsymbol{\theta}\boldsymbol{\theta}^{\mathrm{T}})(\boldsymbol{\theta}\boldsymbol{\theta}^{\mathrm{T}})^+$

LEMMA 1. Let $\boldsymbol{x} = (x_1, \dots, x_K)^T$ be a real $K \times 1$ column vector such that $\boldsymbol{x} \neq \boldsymbol{0}$. Then $\boldsymbol{y} = \boldsymbol{x} \boldsymbol{x}^T (\boldsymbol{x}^T \boldsymbol{x})^{-2}$ is the Moore-Penrose inverse of $\boldsymbol{x} \boldsymbol{x}^T$.

Proof. We establish the result by showing that the following holds

$$\begin{array}{ll} (i) & (\boldsymbol{x}\boldsymbol{x}^{T})\boldsymbol{y}(\boldsymbol{x}\boldsymbol{x}^{T}) = \boldsymbol{x}\boldsymbol{x}^{T} \\ (ii) & \boldsymbol{y}(\boldsymbol{x}\boldsymbol{x}^{T})\boldsymbol{y} = \boldsymbol{y} \\ (iii) & \{(\boldsymbol{x}\boldsymbol{x}^{T})\boldsymbol{y}\}^{T} = (\boldsymbol{x}\boldsymbol{x}^{T})\boldsymbol{y} \\ (iv) & \{\boldsymbol{y}(\boldsymbol{x}\boldsymbol{x}^{T})\}^{T} = \boldsymbol{y}(\boldsymbol{x}\boldsymbol{x}^{T}) \end{array}$$

To show (i), we note that $(\mathbf{x}\mathbf{x}^T)\mathbf{y}(\mathbf{x}\mathbf{x}^T) = (\mathbf{x}\mathbf{x}^T)\mathbf{x}\mathbf{x}^T(\mathbf{x}\mathbf{x}^T)(\mathbf{x}^T\mathbf{x})^{-2}$. Using the property of associativity, it follows that $(\mathbf{x}\mathbf{x}^T)\mathbf{x}\mathbf{x}^T(\mathbf{x}\mathbf{x}^T)(\mathbf{x}^T\mathbf{x})^{-2} = \mathbf{x}(\mathbf{x}^T\mathbf{x})(\mathbf{x}^T\mathbf{x})\mathbf{x}^T(\mathbf{x}^T\mathbf{x})^{-2} = \mathbf{x}\mathbf{x}^T$. Similar calculations will establish (ii), (iii), and (iv). LEMMA 2. Let $X \sim N(0, \tau^2)$. Then $E[X(X^2 + c)^{-1}] = 0$ where $c \neq 0$.

Proof. The result follows since $x(x^2+c)^{-1}$ defines a bounded continuous odd function of xover the entire real line e.g. $|x(x^2+c)^{-1}| \leq \frac{1}{2}c^{-1/2}$ for all $x \in \mathbb{R}$.

THEOREM 1. Let $\boldsymbol{\theta} = (\theta_1, \dots, \theta_K)^T \sim N(\boldsymbol{\theta}, \tau^2 \boldsymbol{I}_K)$ and $\boldsymbol{\Theta} = (\boldsymbol{\theta} \boldsymbol{\theta}^T)(\boldsymbol{\theta} \boldsymbol{\theta}^T)^+$ where \boldsymbol{M}^+ denotes the Moore-Penrose inverse of the matrix \boldsymbol{M} . Then $E[\boldsymbol{\Theta}] = K^{-1}\boldsymbol{I}_K$ and $Var[\boldsymbol{\Theta}] = (K^{-1} - K^{-2})\boldsymbol{I}_K$ where \boldsymbol{I}_K is the identity matrix of dimension $K \times K$.

Proof. From Lemma 1, $\Theta = (\theta \theta^T)^2 (\theta^T \theta)^{-2}$. But $(\theta \theta^T)^2 (\theta^T \theta)^{-2} = \theta (\theta^T \theta) \theta^T (\theta^T \theta)^{-2} = \theta (\theta^T \theta)^T (\theta^T \theta)^{-2} = \theta (\theta^T \theta)^{-1}$. Thus, $\Theta = (\Theta_{ij})$ where $\Theta_{ij} = \theta_i \theta_j \{ \theta^T \theta \}^{-1}$ for $i, j \in \{1, ..., K\}$. Since $tr(\Theta) = \sum_{i=1}^{K} \Theta_{ii} = \sum_{i=1}^{K} \theta_i^2 \{ \theta^T \theta \}^{-1} = 1$, then $E\{tr(\Theta)\} = \sum_{i=1}^{k} E[\Theta_{ii}] = 1$. But θ_i are independent and identically distributed, and so $E[\Theta_{11}] = \ldots = E[\Theta_{KK}]$. Thus, $E[\Theta_{ii}] = K^{-1}$ for all i. Finally, from Lemma 2, $E[\Theta_{ij}] = E\{\theta_i \theta_j (\theta^T \theta)^{-1}\} = E(\theta_j E[\theta_i \{\theta_i^2 + \theta_{(-i)}^T \theta_{(-i)}\}^{-1} \mid \theta_{(-i)}]) = E[\theta_j \cdot 0] = 0$ for $i \neq j$ where $\theta_{(-i)}$ denotes the random vector θ with the ith component removed. Therefore, $E[\Theta] = K^{-1} I_K$. Since $\Theta^2 = \Theta$, then $Var[\Theta] = K^{-1} I_K - (K^{-1} I_K)^2 = (K^{-1} - K^{-2}) I_K$.

COROLLARY 1. Let $\boldsymbol{\theta} = (\theta_1, \dots, \theta_k)^T \sim N(\boldsymbol{0}, \boldsymbol{\Sigma})$ and $\boldsymbol{\Theta} = (\boldsymbol{\theta}\boldsymbol{\theta}^T)(\boldsymbol{\theta}\boldsymbol{\theta}^T)^+$ where $\boldsymbol{\Sigma}$ is a diagonal matrix with non-zero diagonal $\{\tau_1^2, \dots, \tau_k^2\}$ and \boldsymbol{M}^+ denotes the moore-penrose inverse of the matrix \boldsymbol{M} . Then $E[\boldsymbol{\Theta}] = \boldsymbol{\xi}$ where $\boldsymbol{\xi} = diag\{\xi_1, \dots, \xi_K\}, \xi_1 + \dots + \xi_K = 1$ and $Var[\boldsymbol{\Theta}] = \boldsymbol{\xi} - \boldsymbol{\xi}^2$. Proof. The results follow immediately from the details in the proof of Theorem 1.

Supporting Information: Variance estimates of MSEB estimators

Our EB estimators are of the form $W\widehat{\beta} + (I_K - W)\widehat{\beta}^0$ where W is a $K \times K$ weight matrix. Thus, a crude estimate of the variance of the EB estimators are given by $WVar(\widehat{\beta})W^T + 2WCov(\widehat{\beta},\widehat{\beta}^0)(I_K - W)^T + (I_K - W)Var(\widehat{\beta}^0)(I_K - W)^T$ where W is treated as a constant matrix. However, since W are random matrices, the crude estimates are typically not appropriate. Thus, we derive an approximation that adjusts for this variation using the notation of Section 2.2.1 where only the full variance covariance matrix $Cov(\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\beta}}^0, \hat{\boldsymbol{\theta}})$ is fixed at its estimate. Our MSEB estimators are of the form

$$\widehat{\Delta}^{\mathrm{T}}\widehat{A}\widehat{\Delta}\{\widehat{V}_{\widehat{\beta}}+\widehat{\Delta}^{\mathrm{T}}\widehat{A}\widehat{\Delta}\}^{-1}\widehat{\beta}+\widehat{V}_{\widehat{\beta}}\{\widehat{V}_{\widehat{\beta}}+\widehat{\Delta}^{\mathrm{T}}\widehat{A}\widehat{\Delta}\}^{-1}\widehat{\beta}^{0}$$
(1)

where $\widehat{\Delta}^{\mathrm{T}}\widehat{A}\widehat{\Delta} = (K\widehat{\tau})^{2}(\widehat{\theta}^{\mathrm{T}}\widehat{\theta})^{-1}(\widehat{\beta}-\widehat{\beta}^{0})(\widehat{\beta}-\widehat{\beta}^{0})^{\mathrm{T}}$. Using the identity $\widehat{\Delta}^{\mathrm{T}}\widehat{A}\widehat{\Delta}\{\widehat{V}_{\widehat{\beta}}+\widehat{\Delta}^{\mathrm{T}}\widehat{A}\widehat{\Delta}\}^{-1}$ = $I_{K} - \widehat{V}_{\widehat{\beta}}\{\widehat{V}_{\widehat{\beta}}+\Delta^{\mathrm{T}}A\Delta\}^{-1}$, our estimator in (1) can be written as

$$\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{V}}_{\widehat{\boldsymbol{\beta}}} \{ \widehat{\boldsymbol{V}}_{\widehat{\boldsymbol{\beta}}} + (K\widehat{\tau})^2 (\widehat{\boldsymbol{\theta}}^{\mathrm{T}} \widehat{\boldsymbol{\theta}})^{-1} (\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}^0) (\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}^0)^{\mathrm{T}} \}^{-1} (\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}^0).$$
(2)

By the Sherman-Morrison formula, $\{\widehat{\boldsymbol{V}}_{\widehat{\boldsymbol{\beta}}} + (K\widehat{\tau})^2 (\widehat{\boldsymbol{\theta}}^{\mathrm{T}}\widehat{\boldsymbol{\theta}})^{-1} (\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}^0)^{\mathrm{T}} \}^{-1} = \widehat{\boldsymbol{V}}_{\widehat{\boldsymbol{\beta}}}^{-1} - \{1 + (K\widehat{\tau})^2 (\widehat{\boldsymbol{\theta}}^{\mathrm{T}}\widehat{\boldsymbol{\theta}})^{-1} (\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}^0)^{\mathrm{T}} \widehat{\boldsymbol{V}}_{\widehat{\boldsymbol{\beta}}}^{-1} (\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}^0) \}^{-1} \widehat{\boldsymbol{V}}_{\widehat{\boldsymbol{\beta}}}^{-1} (K\widehat{\tau})^2 (\widehat{\boldsymbol{\theta}}^{\mathrm{T}}\widehat{\boldsymbol{\theta}})^{-1} (\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}^0)^{\mathrm{T}} \widehat{\boldsymbol{V}}_{\widehat{\boldsymbol{\beta}}}^{-1} \text{ which allows}$ (2) to be written as

$$\widehat{\boldsymbol{\beta}} - \left\{ 1 + (K\widehat{\tau})^2 (\widehat{\boldsymbol{\theta}}^{\mathrm{T}} \widehat{\boldsymbol{\theta}})^{-1} (\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}^0)^{\mathrm{T}} \widehat{\boldsymbol{V}}_{\widehat{\boldsymbol{\beta}}}^{-1} (\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}^0) \right\}^{-1} (\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}^0).$$
(3)

Our first estimate $K^{-1}(\widehat{\boldsymbol{\theta}}^{\mathrm{T}}\widehat{\boldsymbol{\theta}})\mathbf{I}_{K}$ of $\mathbf{A} = \tau^{2}\mathbf{I}_{K}$ reduces our MSEB estimator in (3) to $\widehat{\boldsymbol{\beta}}_{\mathrm{EB1}} = \widehat{\boldsymbol{\beta}} - \left\{1 + K(\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}^{0})^{\mathrm{T}}\widehat{\boldsymbol{V}}_{\widehat{\boldsymbol{\beta}}}^{-1}(\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}^{0})\right\}^{-1}(\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}^{0})$. Consider the function $f_{1} : \mathbb{R}^{2p} \to \mathbb{R}^{p}$ defined by $f_{1}(\widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\beta}}^{0}) = \widehat{\boldsymbol{\beta}} - \left\{1 + K(\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}^{0})^{\mathrm{T}}\widehat{\boldsymbol{V}}_{\widehat{\boldsymbol{\beta}}}^{-1}(\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}^{0})\right\}^{-1}(\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}^{0})$ where p is the length of the column vectors $\widehat{\boldsymbol{\beta}}$ and $\widehat{\boldsymbol{\beta}}^{0}$. Then, by a first-order multivariate Taylor's expansion of $f_{1}(\widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\beta}}^{0})$ about $(\boldsymbol{\beta}, \boldsymbol{\beta}^{0})$, an estimate of the variance-covariance matrix of $\widehat{\boldsymbol{\beta}}_{\mathrm{EB1}}$ is given by $\{\nabla f_{1}(\widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\beta}}^{0})\}^{\mathrm{T}} \mathrm{Var}(\widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\beta}}^{0}) \nabla f_{1}(\widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\beta}}^{0})$ where $\nabla f_{1}(\widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\beta}}^{0}) = (\mathbf{I}_{p} - \mathbf{C}_{1} | \mathbf{C}_{1})^{\mathrm{T}}$ is the $2p \times p$ augmented gradient matrix of f_{1} with respect to $(\widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\beta}}^{0}), \mathbf{C}_{1} = w_{1}\mathbf{I}_{p} - 2(w_{1})^{2}K(\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}^{0})(\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}^{0})^{\mathrm{T}}\widehat{\boldsymbol{V}}_{\widehat{\boldsymbol{\beta}}}^{-1}, w_{1} = \{1 + K(\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}^{0})^{\mathrm{T}}\widehat{\boldsymbol{V}}_{\widehat{\boldsymbol{\beta}}}^{-1}(\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}^{0})\}^{-1}, \operatorname{Var}(\widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\beta}}^{0})$ is the block matrix $[\boldsymbol{V}_{11}, \boldsymbol{V}_{12}; \boldsymbol{V}_{21}, \boldsymbol{V}_{22}], \boldsymbol{V}_{11} = \operatorname{Var}(\widehat{\boldsymbol{\beta}}), \boldsymbol{V}_{12} = \boldsymbol{V}_{21}^{\mathrm{T}} = Cov(\widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\beta}}^{0})$ and $\boldsymbol{V}_{12} = Var(\widehat{\boldsymbol{\beta}}^{0})]$ are replaced with their estimates.

Our second estimate $K^{-1}\{\widehat{\boldsymbol{\theta}}^{\mathrm{T}}\widehat{\boldsymbol{\theta}} - tr(\widehat{\boldsymbol{V}}_{\widehat{\boldsymbol{\theta}}})\}\boldsymbol{I}_{K}$ of $\boldsymbol{A} = \tau^{2}\boldsymbol{I}_{K}$ reduces our MSEB estimator in (3) to $\widehat{\boldsymbol{\beta}}_{\mathrm{EB2}} = \widehat{\boldsymbol{\beta}} - [1 + K\{1 - tr(\widehat{\boldsymbol{V}}_{\widehat{\boldsymbol{\theta}}})(\widehat{\boldsymbol{\theta}}^{\mathrm{T}}\widehat{\boldsymbol{\theta}})^{-1}\}(\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}^{0})^{\mathrm{T}}\widehat{\boldsymbol{V}}_{\widehat{\boldsymbol{\beta}}}^{-1}(\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}^{0})]^{-1}(\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}^{0}).$ Consider the function $f_{2} : \mathbb{R}^{2p+K} \to \mathbb{R}^{p}$ defined by $f_{2}(\widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\beta}}^{0}, \widehat{\boldsymbol{\theta}}) = \widehat{\boldsymbol{\beta}} - [1 + K\{1 - tr(\widehat{\boldsymbol{V}}_{\widehat{\boldsymbol{\theta}}})(\widehat{\boldsymbol{\theta}}^{\mathrm{T}}\widehat{\boldsymbol{\theta}})^{-1}\}(\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}})$ $\widehat{\boldsymbol{\beta}}^{0} {}^{\mathrm{T}} \widehat{\boldsymbol{V}}_{\widehat{\boldsymbol{\beta}}}^{-1} (\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}^{0})]^{-1} (\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}^{0}).$ Then, by a first-order multivariate Taylor's expansion of $f_{2}(\widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\beta}}^{0}, \widehat{\boldsymbol{\theta}})$ about $(\boldsymbol{\beta}, \boldsymbol{\beta}^{0}, \mathbf{0})$, an estimate of the variance-covariance matrix of $\widehat{\boldsymbol{\beta}}_{\text{EB2}}$ is given by $\{\nabla f_{2}(\widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\beta}}^{0}, \widehat{\boldsymbol{\theta}})\}^{\mathrm{T}} \operatorname{Var}(\widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\beta}}^{0}, \widehat{\boldsymbol{\theta}}) \nabla f_{2}(\widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\beta}}^{0}, \widehat{\boldsymbol{\theta}})$ where $\nabla f_{2}(\widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\beta}}^{0}, \widehat{\boldsymbol{\theta}}) = (\boldsymbol{I}_{p} - \boldsymbol{C}_{2} | \boldsymbol{C}_{2} | \boldsymbol{D})^{\mathrm{T}}$ is the $(2p + K) \times p$ augmented gradient matrix of f_{2} with respect to $(\widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\beta}}^{0}, \widehat{\boldsymbol{\theta}}), \ \boldsymbol{C}_{2} = w_{2}\boldsymbol{I}_{p} - 2(w_{2})^{2}K\{1 - tr(\widehat{\boldsymbol{V}}_{\widehat{\boldsymbol{\theta}}})(\widehat{\boldsymbol{\theta}}^{\mathrm{T}}\widehat{\boldsymbol{\theta}})^{-1}\}(\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}^{0})(\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}^{0})^{\mathrm{T}}\widehat{\boldsymbol{V}}_{\widehat{\boldsymbol{\beta}}}^{-1}, \ \boldsymbol{D} = \{2K(w_{2})^{2}tr(\widehat{\boldsymbol{V}}_{\widehat{\boldsymbol{\theta}}})(\widehat{\boldsymbol{\theta}}^{\mathrm{T}}\widehat{\boldsymbol{\theta}})^{-2}(\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}^{0})^{\mathrm{T}}\widehat{\boldsymbol{V}}_{\widehat{\boldsymbol{\beta}}}^{-1}(\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}^{0})^{\mathrm{T}}\widehat{\boldsymbol{V}}_{\widehat{\boldsymbol{\beta}}}^{-1}, \ \boldsymbol{D} = \{2K(w_{2})^{2}tr(\widehat{\boldsymbol{V}}_{\widehat{\boldsymbol{\theta}}})(\widehat{\boldsymbol{\theta}}^{\mathrm{T}}\widehat{\boldsymbol{\theta}})^{-2}(\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}^{0})^{\mathrm{T}}\widehat{\boldsymbol{V}}_{\widehat{\boldsymbol{\beta}}}^{-1}(\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}^{0})^{\mathrm{T}}\widehat{\boldsymbol{V}}_{\widehat{\boldsymbol{\beta}}}^{-1}, \ \boldsymbol{D} = \{2K(w_{2})^{2}tr(\widehat{\boldsymbol{V}}_{\widehat{\boldsymbol{\theta}}})(\widehat{\boldsymbol{\theta}}^{\mathrm{T}}\widehat{\boldsymbol{\theta}})^{-2}(\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}^{0})^{\mathrm{T}}\widehat{\boldsymbol{V}}_{\widehat{\boldsymbol{\beta}}}^{-1}(\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}^{0})^{\mathrm{T}}\widehat{\boldsymbol{V}}_{\widehat{\boldsymbol{\beta}}}^{-1}, \ \boldsymbol{W}_{2} = [1 + K\{1 - tr(\widehat{\boldsymbol{V}}_{\widehat{\boldsymbol{\theta}}})(\widehat{\boldsymbol{\theta}}^{\mathrm{T}}\widehat{\boldsymbol{\theta}})^{-1}\}(\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}^{0})^{\mathrm{T}}\widehat{\boldsymbol{V}}_{\widehat{\boldsymbol{\beta}}}^{-1}(\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}^{0})]^{-1},$ $\operatorname{Var}(\widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\beta}}^{0}, \widehat{\boldsymbol{\theta}}) \text{ is the block matrix } [\boldsymbol{V}_{11}, \ \boldsymbol{V}_{12}, \ \boldsymbol{V}_{13}; \ \boldsymbol{V}_{21}, \ \boldsymbol{V}_{22}, \ \boldsymbol{V}_{23}; \ \boldsymbol{V}_{31}, \ \boldsymbol{V}_{32}, \ \boldsymbol{V}_{33}], \ \boldsymbol{V}_{11} =$ $\operatorname{Var}(\widehat{\boldsymbol{\beta}}), \ \boldsymbol{V}_{22} = \operatorname{Var}(\widehat{\boldsymbol{\beta}}^{0}), \ \boldsymbol{V}_{33} = \operatorname{Var}(\widehat{\boldsymbol{\theta}}), \ \boldsymbol{V}_{12} = \boldsymbol{V}_{21}^{\mathrm{T}} = Cov(\widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\beta}}^{0}), \$ and $\mathbf{V}_{23} = \boldsymbol{V}_{32}^{\mathrm{T}} = Cov(\widehat{\boldsymbol{\beta}}^{0}, \widehat{\boldsymbol{\theta}})$ are replaced with their estimates.

Let $\hat{\tau}^{2} \mathbf{I}_{K}$ denote our third estimate of $\mathbf{A} = \tau^{2} \mathbf{I}_{K}$. Then from (3), we can write $\hat{\boldsymbol{\beta}}_{\text{EB3}} = \hat{\boldsymbol{\beta}} - \left\{1 + (K\hat{\tau})^{2}(\hat{\boldsymbol{\theta}}^{\mathrm{T}}\hat{\boldsymbol{\theta}})^{-1}(\hat{\boldsymbol{\beta}}-\hat{\boldsymbol{\beta}}^{0})^{\mathrm{T}} \hat{\boldsymbol{V}}_{\hat{\boldsymbol{\beta}}}^{-1}(\hat{\boldsymbol{\beta}}-\hat{\boldsymbol{\beta}}^{0})\right\}^{-1}(\hat{\boldsymbol{\beta}}-\hat{\boldsymbol{\beta}}^{0})$. Consider the function $f_{3} : \mathbb{R}^{2p+K} \to \mathbb{R}^{p}$ defined by $f_{3}(\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\beta}}^{0}, \hat{\boldsymbol{\theta}}) = \hat{\boldsymbol{\beta}} - \left\{1 + (K\hat{\tau})^{2}(\hat{\boldsymbol{\theta}}^{\mathrm{T}}\hat{\boldsymbol{\theta}})^{-1}(\hat{\boldsymbol{\beta}}-\hat{\boldsymbol{\beta}}^{0})^{\mathrm{T}} \hat{\boldsymbol{V}}_{\hat{\boldsymbol{\beta}}}^{-1}(\hat{\boldsymbol{\beta}}-\hat{\boldsymbol{\beta}}^{0})\right\}^{-1}(\hat{\boldsymbol{\beta}}-\hat{\boldsymbol{\beta}}^{0})^{\mathrm{T}} \hat{\boldsymbol{V}}_{\hat{\boldsymbol{\beta}}}^{-1}(\hat{\boldsymbol{\beta}}-\hat{\boldsymbol{\beta}}^{0})\right\}^{-1}(\hat{\boldsymbol{\beta}}-\hat{\boldsymbol{\beta}}^{0})^{\mathrm{T}} \hat{\boldsymbol{V}}_{\hat{\boldsymbol{\beta}}}^{-1}(\hat{\boldsymbol{\beta}}-\hat{\boldsymbol{\beta}}^{0})\right\}^{-1}(\hat{\boldsymbol{\beta}}-\hat{\boldsymbol{\beta}}^{0})^{\mathrm{T}} \hat{\boldsymbol{V}}_{\hat{\boldsymbol{\beta}}}^{-1}(\hat{\boldsymbol{\beta}}-\hat{\boldsymbol{\beta}}^{0})^{\mathrm{T}} \hat{\boldsymbol{\lambda}}_{\hat{\boldsymbol{\beta}}}^{-1}(\hat{\boldsymbol{\beta}}-\hat{\boldsymbol{\beta}}^{0})^{\mathrm{T}} \hat{\boldsymbol{\lambda}}_{\hat{\boldsymbol{\beta}}}^{-1}(\hat{\boldsymbol{\beta}}-\hat{\boldsymbol{\beta}}^{0})^{\mathrm{T}} \hat{\boldsymbol{\lambda}}_{\hat{\boldsymbol{\beta}}}^{-1}(\hat{\boldsymbol{\beta}}-\hat{\boldsymbol{\beta}}^{0})^{\mathrm{T}} \hat{\boldsymbol{\lambda}}_{\hat{\boldsymbol{\beta}}}^{-1}(\hat{\boldsymbol{\beta}}-\hat{\boldsymbol{\beta}}^{0})^{\mathrm{T}} \hat{\boldsymbol{\lambda}}_{\hat{\boldsymbol{\beta}}}^{-1}(\hat{\boldsymbol{\beta}}-\hat{\boldsymbol{\beta}}^{0})^{\mathrm{T}} \hat{\boldsymbol{\lambda}}_{\hat{\boldsymbol{\beta}}}^{-1}(\hat{\boldsymbol{\beta}}-\hat{\boldsymbol{\beta}}^{0})^{\mathrm{T}} \hat{\boldsymbol{\lambda}}_{\hat{\boldsymbol{\beta}}}^{-1}(\hat{\boldsymbol{\beta}}-\hat{\boldsymbol{\beta}}^{0})^{\mathrm{T}} \hat{\boldsymbol{\lambda}}_{\hat{\boldsymbol{\beta}}}^{-1}(\hat{\boldsymbol{\beta}}-\hat{\boldsymbol{\beta}}^{0})^{\mathrm{T}} \hat{\boldsymbol{\lambda}}_{\hat{\boldsymbol{\beta}}}^{-1}(\hat{\boldsymbol{\beta}}-\hat{\boldsymbol{\beta}}^{0})^{\mathrm{T}} \hat{\boldsymbol{\lambda}}_{\hat{\boldsymbol{\beta}}}^{-1}(\hat{\boldsymbol{\beta}})^{\mathrm{T}} \hat{\boldsymbol{\lambda$

An estimate of the variance-covariance matrix of $\widehat{\beta}_{EB4}$ is identically derived as the estimate of the variance-covariance matrix $\widehat{\beta}_{EB3}$ above. For variance-covariance estimates of $\widetilde{\beta}_{EB1}, \widetilde{\beta}_{EB2}, \widetilde{\beta}_{EB3}$ and $\widetilde{\beta}_{EB4}$ we use the formulas derived for $\widehat{\beta}_{EB1}, \widehat{\beta}_{EB2}, \widehat{\beta}_{EB3}$ and $\widehat{\beta}_{EB4}$ except that $Cov(\widetilde{\boldsymbol{\beta}}, \widetilde{\boldsymbol{\beta}}^{0}) = (\sum_{k} \widetilde{\boldsymbol{V}}_{\widetilde{\boldsymbol{\beta}}_{k}}^{-1})^{-1} [\sum_{k} \widetilde{\boldsymbol{V}}_{\widetilde{\boldsymbol{\beta}}_{k}}^{-1} Cov(\widetilde{\boldsymbol{\beta}}_{k}, \widetilde{\boldsymbol{\beta}}_{k}^{0})(\widetilde{\boldsymbol{V}}_{\widetilde{\boldsymbol{\beta}}_{k}}^{-1})^{-1}] \{(\sum_{k} \widetilde{\boldsymbol{V}}_{\widetilde{\boldsymbol{\beta}}_{k}}^{-0})^{-1}\}^{\mathrm{T}}, Cov(\widetilde{\boldsymbol{\beta}}, \widetilde{\boldsymbol{\theta}}) = (\sum_{k} \widetilde{\boldsymbol{V}}_{\widetilde{\boldsymbol{\beta}}_{k}}^{-1})^{-1} [\sum_{k} \widetilde{\boldsymbol{V}}_{\widetilde{\boldsymbol{\beta}}_{k}}^{-1} Cov(\widetilde{\boldsymbol{\beta}}, \widetilde{\boldsymbol{\theta}})] = (\sum_{k} \widetilde{\boldsymbol{V}}_{\widetilde{\boldsymbol{\beta}}_{k}}^{-1})^{-1} [\sum_{k} \widetilde{\boldsymbol{V}}_{\widetilde{\boldsymbol{\beta}}_{k}}^{-1} Cov(\widetilde{\boldsymbol{\beta}}, \widetilde{\boldsymbol{\theta}})] = (\sum_{k} \widetilde{\boldsymbol{V}}_{\widetilde{\boldsymbol{\beta}}_{k}}^{-1})^{-1} [\sum_{k} \widetilde{\boldsymbol{V}}_{\widetilde{\boldsymbol{\beta}}_{k}}^{-1} Cov(\widetilde{\boldsymbol{\beta}}, \widetilde{\boldsymbol{\theta}})] = (\sum_{k} \widetilde{\boldsymbol{V}}_{\widetilde{\boldsymbol{\beta}}_{k}}^{-1})^{-1} [\sum_{k} \widetilde{\boldsymbol{V}}_{\widetilde{\boldsymbol{\beta}}_{k}}^{-1} Cov(\widetilde{\boldsymbol{\beta}}, \widetilde{\boldsymbol{\theta}})]$

It is important to note that the statistical package used to perform the likelihood estimation may not report all estimated covariances between the UML and CML parameter estimates which can impact the variance approximation formulas. In this case, one might consider replacing all unknown covariances with 0 or resort to a bootstrap estimate of the standard errors, which we found to be easy to implement. Table S1: Bias (BIAS), standard errors (SE1), empirical standard errors (SE2) and $100 \times MSE$ (MSE) of $\hat{\gamma}_E$, $\hat{\gamma}_G$ and $\hat{\gamma}_{GE}$ resulting from standard logistic regression (LOG), unconstrained maximum likelihood (UML), constrained maximum likelihood (CML), empirical Bayes (EB) and our proposed multi-study empirical Bayes estimators EB1 - EB4 in both IPD and summary statistic meta-analysis (META) simulation settings with K = 2 individual studies and small individual study sample sizes randomly generated from [100, 300] under *G-E* independence over 1,000 Monte Carlo runs. In the meta-analysis setting, we use the inverse variance-covariance weighted approach to obtain the standard logistic, unconstrained, constrained and empirical Bayes results.

	I	Main Ef	fect of E]	Main Ef	fect of G	ŕ		$G \mathbf{x} E$ Int	eraction	L
IPD	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE
LOG	.016	.1467	.1543	2.405	.021	.1592	.1570	2.506	.015	.1682	.1770	3.152
UML	.021	.1425	.1472	2.209	.015	.1565	.1528	2.354	.006	.1579	.1609	2.589
CML	.023	.1265	.1280	1.687	.011	.1557	.1523	2.331	006	.0987	.1012	1.027
\mathbf{EB}	.021	.1319	.1345	1.850	.012	.1559	.1528	2.348	.006	.1345	.1369	1.877
EB1	.021	.1374	.1391	1.979	.014	.1563	.1526	2.345	.003	.1394	.1373	1.885
EB2	.022	.1363	.1344	1.853	.013	.1563	.1526	2.344	.000	.1302	.1255	1.574
EB3	.022	.1296	.1354	1.881	.013	.1560	.1526	2.345	.000	.1107	.1273	1.619
EB4	.022	.1296	.1350	1.869	.013	.1560	.1526	2.344	.000	.1106	.1266	1.601
META	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE
LOG	.014	.1490	.1507	2.288	.015	.1607	.1544	2.403	.009	.1710	.1725	2.981
UML	.017	.1438	.1449	2.128	.010	.1574	.1510	2.289	.003	.1591	.1592	2.534
CML	.020	.1274	.1259	1.622	.011	.1562	.1512	2.295	004	.0992	.1004	1.009
\mathbf{EB}	.021	.1327	.1304	1.740	.009	.1566	.1514	2.297	002	.1330	.1254	1.571
EB1	.019	.1378	.1368	1.907	.012	.1569	.1511	2.294	.001	.1377	.1351	1.822
EB2	.018	.1329	.1304	1.733	.012	.1567	.1512	2.297	.001	.1191	.1186	1.406
EB3	.020	.1313	.1331	1.809	.012	.1566	.1512	2.298	001	.1139	.1230	1.512
EB4	.020	.1315	.1322	1.784	.012	.1566	.1512	2.298	.000	.1148	.1214	1.472

Table S2: Bias (BIAS), estimated standard errors (SE1), empirical standard errors (SE2) and $100 \times \text{MSE}$ (MSE) of $\hat{\gamma}_E$, $\hat{\gamma}_G$ and $\hat{\gamma}_{GE}$ resulting from standard logistic regression, unconstrained maximum likelihood, constrained maximum likelihood, empirical Bayes and our proposed multi-study empirical Bayes estimators in both IPD and summary statistic meta-analysis (META) simulation settings with K = 2 individual studies and small individual study sample sizes randomly generated from [100, 300] when G-E independence is violated. In the meta-analysis setting, we use the inverse variance-covariance weighted approach to obtain the standard logistic, unconstrained, constrained and empirical Bayes results.

$\theta_k = .1 \text{ for}$	or all k	Maii	n Effect	of E]	Main Ef	fect of C	r r		$G \mathbf{x} E$ In	teraction	n
IPD	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE
LOG	.011	.1526	.1568	2.470	.016	.1552	.1588	2.546	.024	.1619	.1677	2.865
UML	.017	.1474	.1485	2.233	.010	.1525	.1544	2.391	.014	.1516	.1506	2.286
CML	019	.1289	.1320	1.775	.012	.1519	.1535	2.369	.067	.0950	.0933	1.315
\mathbf{EB}	007	.1368	.1387	1.927	.013	.1520	.1538	2.379	.043	.1304	.1297	1.863
EB1	.007	.1426	.1423	2.029	.010	.1523	.1540	2.381	.029	.1352	.1296	1.760
EB2	.000	.1422	.1403	1.967	.011	.1523	.1539	2.377	.039	.1294	.1215	1.630
EB3	.000	.1344	.1403	1.967	.011	.1520	.1539	2.377	.039	.1100	.1221	1.644
EB4	.000	.1344	.1403	1.966	.011	.1520	.1539	2.377	.039	.1099	.1219	1.637
META	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE
LOG	.009	.1547	.1529	2.344	.009	.1565	.1560	2.441	.016	.1648	.1637	2.703
UML	.013	.1485	.1465	2.161	.005	.1533	.1527	2.334	.009	.1526	.1498	2.249
CML	021	.1296	.1305	1.748	.011	.1524	.1524	2.333	.067	.0956	.0926	1.309
\mathbf{EB}	014	.1367	.1348	1.834	.009	.1527	.1525	2.331	.043	.1272	.1206	1.638
EB1	.004	.1429	.1405	1.973	.008	.1529	.1525	2.330	.026	.1354	.1287	1.723
EB2	005	.1387	.1380	1.905	.009	.1527	.1523	2.325	.041	.1201	.1189	1.584
EB3	003	.1355	.1382	1.910	.009	.1526	.1523	2.326	.039	.1126	.1200	1.588
EB4	004	.1355	.1382	1.908	.009	.1526	.1523	2.325	.040	.1124	.1196	1.584
$\theta_k =5$	for all k	Maii	n Effect	of E]	Main Ef	fect of C	ч т		$G \mathbf{x} E$ In	teraction	n
LOG	.008	.1231	.1290	1.670	.017	.1970	.1950	3.830	.014	.2279	.2216	4.927
UML	.010	.1224	.1284	1.657	.011	.1941	.1907	3.643	.006	.2174	.2065	4.262
CML	.102	.1164	.1240	2.584	051	.1877	.1860	3.716	342	.1382	.1407	13.699
\mathbf{EB}	.062	.1203	.1272	1.997	036	.1907	.1885	3.682	080	.2329	.2207	5.507
EB1	.024	.1235	.1296	1.736	.003	.1937	.1903	3.618	046	.2250	.2109	4.656
EB2	.032	.1265	.1320	1.845	001	.1943	.1905	3.625	074	.2400	.2246	5.590
EB3	.032	.1213	.1318	1.838	001	.1927	.1905	3.624	073	.2039	.2237	5.532
EB4	.032	.1213	.1318	1.838	001	.1927	.1905	3.624	073	.2039	.2235	5.526
META	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE
LOG	.005	.1249	.1257	1.581	.008	.1992	.1903	3.625	.007	.2314	.2134	4.554
UML	.006	.1239	.1255	1.578	.003	.1958	.1868	3.489	.001	.2187	.2028	4.109
CML	.099	.1176	.1210	2.449	047	.1886	.1838	3.599	333	.1378	.1394	13.048
\mathbf{EB}	.073	.1199	.1230	2.051	051	.1915	.1842	3.650	146	.2149	.2022	6.204
EB1	.023	.1252	.1270	1.663	003	.1950	.1865	3.474	055	.2253	.2076	4.609
EB2	.035	.1255	.1301	1.812	008	.1952	.1865	3.479	095	.2262	.2221	5.834
EB3	.034	.1219	.1300	1.806	008	.1939	.1865	3.482	094	.1972	.2222	5.808
EB4	.034	.1220	.1299	1.801	008	.1940	.1865	3.481	092	.1979	.2210	5.729

Table S3: Bias (BIAS), standard errors (SE1), empirical standard errors (SE2) and $100 \times MSE$ (MSE) of $\hat{\gamma}_E$, $\hat{\gamma}_G$ and $\hat{\gamma}_{GE}$ resulting from standard logistic regression (LOG), unconstrained maximum likelihood (UML), constrained maximum likelihood (CML), empirical Bayes (EB) and our proposed multi-study empirical Bayes estimators EB1 - EB4 in both IPD and summary statistic meta-analysis (META) simulation settings with K = 5 individual studies and small individual study sample sizes randomly generated from [100, 300] under *G-E* independence over 1,000 Monte Carlo runs. In the meta-analysis setting, we use the inverse variance-covariance weighted approach to obtain the standard logistic, unconstrained, constrained and empirical Bayes results.

	l	Main Eff	Eect of E	2	I	Main Ef	fect of G	r r		$G \mathbf{x} E$ Int	eraction	
IPD	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE
LOG	.014	.0927	.0907	.841	.006	.1026	.1065	1.136	.008	.1068	.1083	1.178
UML	.017	.0909	.0886	.815	.001	.1012	.1031	1.062	.002	.1017	.1026	1.052
CML	.018	.0808	.0794	.664	001	.1009	.1026	1.052	004	.0638	.0647	.420
\mathbf{EB}	.017	.0835	.0810	.684	.000	.1009	.1030	1.060	.003	.0844	.0830	.690
EB1	.017	.0895	.0861	.771	.001	.1012	.1030	1.060	.001	.0963	.0940	.883
EB2	.017	.0898	.0831	.719	.000	.1014	.1029	1.058	.000	.0900	.0829	.687
EB3	.018	.0836	.0832	.724	.000	.1010	.1029	1.058	001	.0744	.0832	.691
EB4	.017	.0836	.0832	.721	.000	.1010	.1029	1.058	.000	.0743	.0832	.691
META	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE
LOG	.010	.0952	.0867	.761	005	.1041	.1033	1.069	003	.1099	.1026	1.053
UML	.012	.0924	.0863	.757	007	.1021	.1010	1.025	006	.1029	.1003	1.008
CML	.014	.0819	.0775	.619	002	.1015	.1011	1.021	002	.0645	.0635	.404
\mathbf{EB}	.015	.0844	.0784	.635	006	.1017	.1011	1.024	007	.0821	.0748	.564
EB1	.014	.0901	.0836	.717	005	.1020	.1010	1.022	005	.0950	.0905	.820
EB2	.013	.0857	.0807	.667	003	.1017	.1010	1.020	.000	.0786	.0762	.581
EB3	.015	.0852	.0804	.668	003	.1017	.1011	1.022	004	.0769	.0757	.575
EB4	.014	.0852	.0806	.668	003	.1017	.1010	1.020	002	.0769	.0762	.580

Table S4: Bias (BIAS), estimated standard errors (SE1), empirical standard errors (SE2) and $100 \times \text{MSE}$ (MSE) of $\hat{\gamma}_E$, $\hat{\gamma}_G$ and $\hat{\gamma}_{GE}$ resulting from standard logistic regression, unconstrained maximum likelihood, constrained maximum likelihood, empirical Bayes and our proposed multi-study empirical Bayes estimators in both IPD and summary statistic meta-analysis (META) simulation settings with K = 5 individual studies and small individual study sample sizes randomly generated from [100, 300] when G-E independence is violated. In the meta-analysis setting, we use the inverse variance-covariance weighted approach to obtain the standard logistic, unconstrained, constrained and empirical Bayes results.

$\theta_k = .1 \text{ for}$	or all k	Maii	n Effect	of E]	Main Ef	fect of G	r r		$G \mathbf{x} E$ In	teraction	1
IPD	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE
LOG	.012	.1147	.1203	1.461	.010	.1157	.1184	1.411	.015	.1199	.1275	1.646
UML	.018	.1114	.1141	1.333	.003	.1138	.1154	1.330	.005	.1128	.1160	1.346
CML	021	.0972	.0989	1.023	.008	.1135	.1153	1.335	.066	.0713	.0725	.961
\mathbf{EB}	007	.1038	.1064	1.136	.008	.1136	.1155	1.340	.034	.0980	.1023	1.160
EB1	.013	.1102	.1120	1.270	.004	.1138	.1154	1.332	.013	.1090	.1097	1.218
EB2	.002	.1108	.1103	1.216	.005	.1139	.1155	1.336	.030	.1036	.1031	1.149
EB3	.003	.1032	.1104	1.219	.005	.1136	.1155	1.336	.028	.0871	.1046	1.174
EB4	.003	.1031	.1103	1.217	.005	.1136	.1155	1.336	.028	.0867	.1038	1.158
META	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE
LOG	.007	.1184	.1124	1.266	004	.1180	.1144	1.308	.000	.1241	.1183	1.399
UML	.010	.1134	.1094	1.205	006	.1151	.1129	1.278	003	.1146	.1126	1.267
CML	027	.0986	.0954	.981	.005	.1144	.1134	1.288	.067	.0724	.0712	.957
\mathbf{EB}	020	.1036	.0981	1.002	.000	.1147	.1133	1.282	.042	.0934	.0868	.927
EB1	.007	.1111	.1069	1.145	003	.1150	.1130	1.276	.007	.1093	.1062	1.132
EB2	009	.1051	.1052	1.114	.002	.1147	.1137	1.291	.037	.0902	.0986	1.106
EB3	005	.1050	.1049	1.102	.001	.1147	.1135	1.288	.030	.0900	.1004	1.099
EB4	006	.1049	.1049	1.103	.001	.1147	.1136	1.289	.032	.0897	.0996	1.095
$\theta_k =5$	for all k	Maii	n Effect	of E]	Main Ef	fect of G	ř		$G \mathbf{x} E$ In	teraction	1
LOG	.007	.0683	.0698	.491	.005	.1098	.1070	1.145	.002	.1259	.1317	1.734
UML	.007	.0680	.0695	.488	.001	.1087	.1055	1.111	002	.1220	.1255	1.573
CML	.098	.0648	.0674	1.413	054	.1056	.1015	1.320	338	.0780	.0799	12.084
\mathbf{EB}	.039	.0686	.0705	.647	037	.1077	.1042	1.220	039	.1327	.1372	2.037
EB1	.010	.0683	.0697	.495	001	.1087	.1054	1.111	010	.1237	.1269	1.619
EB2	.011	.0685	.0702	.504	001	.1087	.1054	1.111	014	.1253	.1301	1.709
EB3	.011	.0682	.0702	.504	001	.1086	.1055	1.111	014	.1234	.1304	1.717
EB4	.011	.0682	.0702	.504	001	.1086	.1055	1.111	014	.1234	.1301	1.710
META	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE
LOG	.002	.0695	.0673	.453	007	.1114	.1036	1.078	007	.1287	.1242	1.545
UML	.003	.0692	.0674	.454	009	.1100	.1027	1.061	008	.1231	.1216	1.482
CML	.094	.0657	.0654	1.305	049	.1063	.1005	1.252	326	.0776	.0798	11.236
\mathbf{EB}	.070	.0669	.0669	.942	061	.1077	.1003	1.380	160	.1198	.1271	4.161
EB1	.006	.0695	.0677	.461	010	.1099	.1027	1.062	017	.1253	.1235	1.554
EB2	.008	.0696	.0691	.484	010	.1099	.1027	1.065	026	.1259	.1313	1.790
EB3	.009	.0691	.0699	.496	011	.1098	.1028	1.066	030	.1215	.1352	1.912
EB4	.009	.0691	.0692	.486	010	.1098	.1027	1.065	027	.1218	.1318	1.807

Table S5: Bias (BIAS), standard errors (SE1), empirical standard errors (SE2) and $100 \times MSE$ (MSE) of $\hat{\gamma}_E$, $\hat{\gamma}_G$ and $\hat{\gamma}_{GE}$ resulting from standard logistic regression (LOG), unconstrained maximum likelihood (UML), constrained maximum likelihood (CML), empirical Bayes (EB) and our proposed multi-study empirical Bayes estimators EB1 - EB4 in both IPD and summary statistic meta-analysis (META) simulation settings (K = 10 individual studies with sample sizes $n_k = 1000 + 100(k - 1), k = 1, \ldots, K$) with MAF = 5% under *G-E* independence over 1,000 Monte Carlo runs. In the meta-analysis setting, we use the inverse variance-covariance weighted approach to obtain the standard logistic, unconstrained, constrained and empirical Bayes results.

	l	Main Eff	ect of E	,	1	Main Eff	ect of G	!	(GxE Int	eraction	
IPD	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE
LOG	.008	.0181	.0181	.039	.005	.0508	.0508	.260	.005	.0517	.0547	.302
UML	.008	.0181	.0181	.040	.004	.0507	.0507	.259	.002	.0503	.0525	.276
CML	.009	.0176	.0177	.039	.003	.0506	.0506	.256	003	.0298	.0307	.095
\mathbf{EB}	.009	.0176	.0177	.039	.003	.0506	.0506	.256	.002	.0413	.0422	.179
EB1	.008	.0180	.0180	.039	.004	.0507	.0507	.259	.001	.0487	.0501	.251
EB2	.008	.0182	.0179	.039	.004	.0507	.0507	.258	.001	.0447	.0441	.194
EB3	.008	.0178	.0179	.039	.004	.0506	.0507	.258	001	.0369	.0440	.193
EB4	.008	.0178	.0179	.039	.004	.0506	.0507	.258	.000	.0368	.0441	.194
META	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE
LOG	.007	.0182	.0180	.037	.000	.0511	.0502	.252	003	.0523	.0531	.283
UML	.007	.0181	.0180	.038	001	.0510	.0502	.251	004	.0505	.0518	.270
CML	.008	.0177	.0176	.037	.005	.0507	.0502	.254	.003	.0297	.0306	.094
\mathbf{EB}	.008	.0177	.0177	.037	.002	.0508	.0502	.252	001	.0379	.0365	.133
EB1	.008	.0181	.0179	.038	.001	.0510	.0502	.252	003	.0480	.0489	.240
EB2	.008	.0179	.0178	.037	.004	.0509	.0503	.254	.002	.0380	.0401	.161
EB3	.008	.0178	.0178	.038	.003	.0509	.0504	.255	002	.0376	.0400	.161
EB4	.008	.0178	.0178	.038	.004	.0509	.0503	.254	.000	.0377	.0403	.163

Table S6: Bias (BIAS), estimated standard errors (SE1), empirical standard errors (SE2) and $100 \times \text{MSE}$ (MSE) of $\hat{\gamma}_E$, $\hat{\gamma}_G$ and $\hat{\gamma}_{GE}$ resulting from standard logistic regression, unconstrained maximum likelihood, constrained maximum likelihood, empirical Bayes and our proposed multi-study empirical Bayes estimators in both IPD and summary statistic meta-analysis (META) simulation settings (K = 10 individual studies with sample sizes $n_k = 1000 + 100(k - 1), k = 1, \ldots, K$) with MAF = 5% when G-E independence is violated. In the meta-analysis setting, we use the inverse variance-covariance weighted approach to obtain the standard logistic, unconstrained, constrained and empirical Bayes results.

$\theta_{h} = 1 \text{ fc}$	or all k	Mair	n Effect	of E	ו	Main Eff	fect of G	γ r		$G \mathbf{x} E$ In	teractio	<u> </u>
$\frac{v_{\kappa}1}{\text{IPD}}$	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE
LOG	000	0184	0189	044	008	0482	0483	240	005	0468	0479	232
UML	.005	0184	0189	.044 045	.000	0481	.040 0 0481	237	.000	0455	0464	.202
CML	.010	0178	0182	034	010	0480	0480	240	063	0.0100 0.0267	0.0101	471
EB	004	0180	0184	035	010	0480	0480	240	.000	0443	0449	248
EB1	.009	.0184	.0189	.044	.008	.0481	.0481	.237	.005	.0458	.0462	.216
EB2	.008	.0190	.0191	.043	.008	.0481	.0481	.237	.015	.0501	.0512	.285
EB3	.008	.0182	.0190	.043	.008	.0481	.0481	.237	.013	.0404	.0504	.271
EB4	.008	.0182	.0191	.043	.008	.0481	.0481	.237	.014	.0402	.0508	.277
META	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE
LOG	.008	.0185	.0188	.042	.004	.0484	.0479	.231	003	.0472	.0469	.220
UML	.009	.0184	.0187	.043	.003	.0483	.0478	.229	003	.0458	.0459	.211
CML	.001	.0178	.0181	.033	.010	.0482	.0478	.238	.067	.0267	.0270	.525
\mathbf{EB}	.001	.0179	.0181	.033	.008	.0482	.0476	.233	.042	.0352	.0350	.295
EB1	.008	.0184	.0187	.042	.004	.0483	.0478	.230	.000	.0461	.0462	.213
EB2	.006	.0182	.0189	.039	.007	.0482	.0481	.235	.025	.0380	.0546	.360
EB3	.007	.0183	.0188	.040	.006	.0482	.0480	.234	.014	.0404	.0534	.306
EB4	.007	.0182	.0188	.040	.006	.0482	.0481	.235	.018	.0391	.0543	.328
$\theta_k =5$	for all k	Mair	n Effect	of E	1	Main Ef	fect of G	ř		$G \mathbf{x} E$ In	teraction	1
LOG	.008	.0174	.0174	.037	.007	.0691	.0689	.480	.011	.0829	.0826	.693
UML	.009	.0174	.0175	.038	.006	.0689	.0685	.472	.006	.0808	.0797	.638
CML	.024	.0172	.0173	.088	059	.0661	.0648	.763	333	.0498	.0505	11.371
EB	.017	.0174	.0174	.059	026	.0690	.0685	.534	008	.0856	.0845	.721
EB1	.009	.0174	.0175	.038	.005	.0689	.0685	.471	.004	.0811	.0799	.639
EB2	.009	.0174	.0175	.038	.005	.0689	.0685	.471	.004	.0811	.0800	.642
EB3	.009	.0174	.0175	.038	.005	.0689	.0685	.471	.004	.0811	.0801	.642
EB4	.009	.0174	.0175	.038	.005	.0689	.0685	.471	.004	.0811	.0801	.642
META	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE
LOG	.008	.0175	.0173	.036	003	.0700	.0672	.453	003	.0846	.0790	.625
UML	.008	.0175	.0173	.036	002	.0699	.0671	.450	002	.0816	.0788	.621
CML	.023	.0173	.0172	.084	050	.0666	.0646	.664	321	.0495	.0508	10.577
\mathbf{EB}	.022	.0173	.0173	.080	064	.0677	.0643	.822	148	.0799	.0811	2.855
EB1	.008	.0175	.0173	.036	002	.0699	.0671	.450	004	.0820	.0791	.628
EB2	.008	.0175	.0173	.036	002	.0699	.0671	.450	005	.0821	.0795	.635
EB3	.008	.0175	.0174	.036	002	.0698	.0671	.451	006	.0815	.0805	.651
EB4	.008	.0175	.0173	.036	002	.0698	.0671	.451	006	.0815	.0797	.638

Table S7: Bias (BIAS), standard errors (SE1), empirical standard errors (SE2) and $100 \times MSE$ (MSE) of $\hat{\gamma}_E$, $\hat{\gamma}_G$ and $\hat{\gamma}_{GE}$ resulting from standard logistic regression (LOG), unconstrained maximum likelihood (UML), constrained maximum likelihood (CML), empirical Bayes (EB) and our proposed multi-study empirical Bayes estimators EB1 - EB4 in both IPD and summary statistic meta-analysis (META) simulation settings (K = 10 individual studies with sample sizes $n_k = 1000 + 100(k - 1), k = 1, \ldots, K$) with MAF = 10% under *G-E* independence over 1,000 Monte Carlo runs. In the meta-analysis setting, we use the inverse variance-covariance weighted approach to obtain the standard logistic, unconstrained, constrained and empirical Bayes results.

	l	Main Eff	ect of E		l	Main Eff	ect of G	Y r	($G \mathbf{x} E$ Int	eraction	
IPD	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE
LOG	.009	.0193	.0188	.044	.007	.0371	.0375	.145	.001	.0379	.0375	.141
UML	.010	.0192	.0188	.044	.006	.0370	.0373	.142	001	.0369	.0367	.135
CML	.010	.0183	.0183	.044	.005	.0369	.0372	.141	005	.0221	.0219	.051
\mathbf{EB}	.010	.0184	.0182	.043	.005	.0369	.0372	.141	002	.0302	.0282	.080
EB1	.010	.0192	.0187	.044	.006	.0370	.0373	.142	002	.0360	.0348	.122
EB2	.010	.0195	.0184	.043	.006	.0370	.0373	.142	003	.0339	.0297	.089
EB3	.010	.0186	.0184	.044	.006	.0369	.0373	.142	004	.0269	.0295	.089
EB4	.010	.0186	.0184	.044	.006	.0369	.0373	.142	003	.0268	.0296	.089
META	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE
LOG	.008	.0194	.0187	.042	.003	.0372	.0373	.140	004	.0381	.0367	.136
UML	.009	.0193	.0187	.042	.003	.0371	.0371	.138	004	.0370	.0363	.134
CML	.009	.0183	.0182	.042	.006	.0370	.0371	.140	003	.0221	.0219	.049
\mathbf{EB}	.009	.0184	.0182	.042	.004	.0370	.0371	.139	005	.0280	.0256	.067
EB1	.009	.0192	.0185	.042	.004	.0371	.0371	.139	004	.0354	.0341	.118
EB2	.009	.0188	.0182	.041	.005	.0370	.0371	.140	002	.0285	.0275	.076
EB3	.009	.0187	.0183	.042	.005	.0370	.0371	.140	004	.0282	.0278	.079
EB4	.009	.0187	.0182	.042	.005	.0370	.0371	.140	003	.0282	.0277	.078

Table S8: Bias (BIAS), estimated standard errors (SE1), empirical standard errors (SE2) and 100×MSE (MSE) of $\hat{\gamma}_E$, $\hat{\gamma}_G$ and $\hat{\gamma}_{GE}$ resulting from standard logistic regression, unconstrained maximum likelihood, constrained maximum likelihood, empirical Bayes and our proposed multi-study empirical Bayes estimators in both IPD and summary statistic meta-analysis (META) simulation settings (K = 10 individual studies with sample sizes $n_k = 1000 + 100(k-1), k = 1, \ldots, K$) with MAF = 10% when G-E independence is violated. In the meta-analysis setting, we use the inverse variance-covariance weighted approach to obtain the standard logistic, unconstrained, constrained and empirical Bayes results.

$\theta_k = .1$ for	or all k	Mair	n Effect	of E	I	Main Ef	fect of \overline{G}	!		$G \mathbf{x} E$ In	teraction	1
IPD	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE
LOG	.010	.0199	.0200	.050	.006	.0355	.0353	.128	.006	.0350	.0355	.130
UML	.011	.0198	.0200	.052	.005	.0353	.0350	.125	.003	.0339	.0343	.119
CML	004	.0186	.0188	.037	.008	.0353	.0350	.130	.064	.0202	.0203	.457
\mathbf{EB}	.002	.0194	.0194	.038	.008	.0353	.0350	.130	.019	.0351	.0356	.164
EB1	.011	.0199	.0200	.051	.005	.0353	.0350	.125	.005	.0342	.0346	.122
EB2	.009	.0210	.0205	.051	.006	.0354	.0350	.126	.010	.0397	.0392	.164
EB3	.009	.0197	.0204	.051	.006	.0353	.0350	.126	.010	.0325	.0385	.157
EB4	.009	.0197	.0204	.051	.006	.0353	.0350	.126	.010	.0325	.0387	.159
META	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE
LOG	.010	.0200	.0199	.049	.003	.0356	.0351	.124	.001	.0352	.0352	.124
UML	.010	.0199	.0199	.050	.003	.0354	.0349	.122	.000	.0340	.0342	.117
CML	005	.0187	.0187	.037	.009	.0354	.0350	.129	.066	.0203	.0202	.481
\mathbf{EB}	004	.0188	.0188	.037	.007	.0354	.0349	.127	.043	.0268	.0271	.255
EB1	.010	.0199	.0199	.049	.003	.0354	.0349	.123	.002	.0345	.0347	.120
EB2	.006	.0196	.0206	.047	.005	.0354	.0350	.125	.017	.0306	.0443	.226
EB3	.008	.0196	.0206	.048	.004	.0354	.0349	.124	.012	.0314	.0421	.192
EB4	.007	.0196	.0206	.047	.004	.0354	.0350	.124	.014	.0309	.0432	.207
$\theta_k =5$	for all k	Mair	n Effect	of E	1	Main Ef	fect of G	!		$G \mathbf{x} E$ In	teraction	1
LOG	.007	.0178	.0179	.037	.008	.0490	.0493	.250	.005	.0580	.0569	.325
UML	.007	.0178	.0179	.038	.007	.0488	.0494	.249	.002	.0569	.0557	.310
CML	.040	.0175	.0175	.187	054	.0470	.0481	.520	335	.0352	.0350	11.340
\mathbf{EB}	.015	.0179	.0181	.054	015	.0493	.0494	.268	005	.0591	.0576	.334
EB1	.007	.0178	.0179	.038	.007	.0488	.0494	.249	.001	.0570	.0557	.311
EB2	.008	.0178	.0179	.038	.007	.0488	.0494	.249	.001	.0570	.0558	.311
EB3	.008	.0178	.0179	.038	.007	.0488	.0494	.249	.001	.0570	.0558	.311
EB4	.008	.0178	.0179	.038	.007	.0488	.0494	.249	.001	.0570	.0558	.311
META	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE
LOG	.006	.0179	.0178	.036	.002	.0493	.0485	.236	002	.0587	.0556	.309
UML	.006	.0179	.0178	.036	.002	.0491	.0487	.237	002	.0571	.0550	.303
CML	.039	.0176	.0174	.180	050	.0471	.0478	.482	328	.0351	.0350	10.876
\mathbf{EB}	.031	.0177	.0177	.128	052	.0479	.0473	.498	093	.0601	.0649	1.278
EB1	.007	.0179	.0179	.036	.002	.0491	.0487	.237	003	.0572	.0551	.305
EB2	.007	.0179	.0179	.036	.002	.0491	.0487	.237	003	.0573	.0552	.306
EB3	.007	.0179	.0179	.036	.002	.0491	.0487	.237	003	.0571	.0552	.306
EB4	.007	.0179	.0179	.036	.002	.0491	.0487	.237	003	.0571	.0552	.306

Table S9: Bias (BIAS), standard errors (SE1), empirical standard errors (SE2) and $100 \times MSE$ (MSE) of $\hat{\gamma}_E$, $\hat{\gamma}_G$ and $\hat{\gamma}_{GE}$ resulting from standard logistic regression (LOG), unconstrained maximum likelihood (UML), constrained maximum likelihood (CML), empirical Bayes (EB) and our proposed multi-study empirical Bayes estimators EB1 - EB4 in both IPD and summary statistic meta-analysis (META) simulation settings (K = 10 individual studies with sample sizes $n_k = 1000 + 100(k - 1), k = 1, \ldots, K$) with marginal disease prevalence 10% under G-E independence over 1,000 Monte Carlo runs. In the meta-analysis setting, we use the inverse variance-covariance weighted approach to obtain the standard logistic, unconstrained, constrained and empirical Bayes results.

	l	Main Eff	ect of E	2	l	Main Eff	fect of G	r r	(GxE Int	eraction	
IPD	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE
LOG	.007	.0233	.0231	.059	.005	.0264	.0270	.075	.005	.0273	.0260	.070
UML	.009	.0230	.0229	.061	.003	.0262	.0267	.072	.001	.0264	.0250	.063
CML	.017	.0205	.0209	.073	.002	.0262	.0266	.071	015	.0165	.0157	.046
\mathbf{EB}	.013	.0215	.0213	.064	.002	.0262	.0266	.071	003	.0236	.0219	.049
EB1	.010	.0229	.0227	.061	.003	.0262	.0267	.072	.000	.0261	.0242	.059
EB2	.012	.0234	.0223	.065	.003	.0263	.0267	.072	005	.0253	.0233	.057
EB3	.012	.0216	.0223	.065	.003	.0262	.0267	.072	005	.0208	.0233	.057
EB4	.012	.0216	.0223	.065	.003	.0262	.0267	.072	005	.0208	.0233	.057
META	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE
LOG	.007	.0234	.0228	.057	.003	.0265	.0269	.073	.002	.0274	.0257	.066
UML	.008	.0231	.0227	.059	.002	.0263	.0267	.071	.000	.0265	.0248	.062
CML	.017	.0206	.0207	.070	.002	.0262	.0266	.071	014	.0165	.0157	.044
\mathbf{EB}	.015	.0210	.0209	.067	.001	.0262	.0266	.071	010	.0206	.0181	.042
EB1	.009	.0230	.0225	.059	.002	.0263	.0266	.071	001	.0258	.0239	.057
EB2	.013	.0219	.0222	.065	.002	.0262	.0266	.071	007	.0215	.0219	.053
EB3	.013	.0217	.0219	.065	.002	.0262	.0266	.071	008	.0210	.0214	.052
EB4	.013	.0218	.0220	.065	.002	.0262	.0266	.071	007	.0212	.0218	.052

Table S10: Bias (BIAS), estimated standard errors (SE1), empirical standard errors (SE2) and $100 \times \text{MSE}$ (MSE) of $\hat{\gamma}_E$, $\hat{\gamma}_G$ and $\hat{\gamma}_{GE}$ resulting from standard logistic regression, unconstrained maximum likelihood, constrained maximum likelihood, empirical Bayes and our proposed multi-study empirical Bayes estimators in both IPD and summary statistic meta-analysis (META) simulation settings (K = 10 individual studies with sample sizes $n_k = 1000 + 100(k - 1), k = 1, \dots, K$) with marginal disease prevalence 10% when G-E independence is violated. In the meta-analysis setting, we use the inverse variance-covariance weighted approach to obtain the standard logistic, unconstrained, constrained and empirical Bayes results.

$\theta_k = .1 \text{ for}$	or all k	Mair	n Effect	of E]	Main Ef	fect of G	r r		$G \mathbf{x} E$ In	teraction	n
IPD	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE
LOG	.011	.0247	.0254	.076	.005	.0258	.0251	.066	.003	.0264	.0270	.074
UML	.013	.0244	.0252	.081	.004	.0256	.0249	.063	.000	.0254	.0259	.067
CML	017	.0213	.0216	.076	.008	.0256	.0249	.069	.052	.0159	.0161	.294
\mathbf{EB}	.000	.0245	.0250	.062	.008	.0256	.0249	.068	.014	.0270	.0277	.095
EB1	.012	.0245	.0253	.079	.004	.0256	.0249	.063	.001	.0258	.0262	.069
EB2	.011	.0257	.0265	.081	.004	.0257	.0249	.064	.004	.0280	.0293	.088
EB3	.011	.0243	.0264	.081	.004	.0256	.0249	.064	.004	.0250	.0291	.086
EB4	.011	.0243	.0264	.081	.004	.0256	.0249	.064	.004	.0250	.0292	.087
META	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE
LOG	.011	.0248	.0252	.075	.003	.0259	.0250	.064	.001	.0265	.0268	.072
UML	.012	.0244	.0250	.078	.002	.0256	.0248	.062	002	.0255	.0258	.067
CML	018	.0213	.0215	.077	.008	.0256	.0249	.068	.052	.0159	.0161	.296
\mathbf{EB}	013	.0222	.0221	.065	.007	.0256	.0248	.067	.033	.0208	.0208	.151
EB1	.012	.0245	.0251	.077	.003	.0257	.0248	.062	.000	.0259	.0261	.068
EB2	.007	.0240	.0274	.080	.004	.0256	.0250	.063	.008	.0241	.0328	.114
EB3	.008	.0240	.0270	.079	.003	.0256	.0249	.063	.006	.0241	.0318	.105
EB4	.008	.0239	.0272	.080	.003	.0256	.0249	.063	.007	.0239	.0323	.109
$\theta_k =5$	for all k	Mair	n Effect	of E]	Main Ef	fect of G	r r		$G \mathbf{x} E$ In	teraction	n
LOG	.006	.0194	.0192	.040	.005	.0316	.0318	.104	.003	.0361	.0357	.129
UML	.006	.0194	.0191	.041	.004	.0315	.0315	.100	.001	.0355	.0347	.121
CML	.096	.0185	.0184	.955	049	.0306	.0306	.336	337	.0225	.0219	11.377
\mathbf{EB}	.010	.0195	.0193	.047	008	.0319	.0320	.110	.000	.0364	.0359	.129
EB1	.007	.0194	.0191	.041	.004	.0315	.0315	.100	.001	.0355	.0347	.121
EB2	.007	.0194	.0191	.041	.004	.0315	.0315	.100	.001	.0355	.0347	.121
EB3	.007	.0194	.0191	.041	.004	.0315	.0315	.100	.001	.0355	.0347	.121
EB4	.007	.0194	.0191	.041	.004	.0315	.0315	.100	.001	.0355	.0347	.121
META	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE
LOG	.005	.0195	.0190	.039	.003	.0317	.0316	.100	.001	.0363	.0353	.124
UML	.006	.0194	.0190	.039	.002	.0315	.0313	.098	.000	.0355	.0345	.119
CML	.095	.0185	.0182	.938	048	.0306	.0305	.327	334	.0225	.0218	11.210
\mathbf{EB}	.034	.0196	.0195	.153	039	.0312	.0309	.248	033	.0381	.0374	.249
EB1	.006	.0194	.0190	.039	.002	.0315	.0313	.098	001	.0356	.0345	.119
EB2	.006	.0194	.0190	.039	.002	.0315	.0313	.098	001	.0356	.0345	.119
EB3	.006	.0194	.0190	.039	.002	.0315	.0313	.098	001	.0355	.0345	.119
EB4	.006	.0194	.0190	.039	.002	.0315	.0313	.098	001	.0355	.0345	.119

Table S11: Bias (BIAS), standard errors (SE1), empirical standard errors (SE2) and $100 \times MSE$ (MSE) of $\hat{\gamma}_E$, $\hat{\gamma}_G$ and $\hat{\gamma}_{GE}$ resulting from standard logistic regression (LOG), unconstrained maximum likelihood (UML), constrained maximum likelihood (CML), empirical Bayes (EB) and our proposed multi-study empirical Bayes estimators EB1 - EB4 in both IPD and summary statistic meta-analysis (META) simulation settings (K = 10 individual studies with sample sizes $n_k = 1000 + 100(k - 1), k = 1, \ldots, K$) with marginal disease prevalence 20% under G-E independence over 1,000 Monte Carlo runs. In the meta-analysis setting, we use the inverse variance-covariance weighted approach to obtain the standard logistic, unconstrained, constrained and empirical Bayes results.

	l	Main Eff	fect of E		l	Main Eff	ect of G	!	($G \mathbf{x} E$ Int	eraction	1
IPD	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE
LOG	.006	.0229	.0235	.059	.004	.0266	.0256	.067	.003	.0276	.0279	.079
UML	.008	.0227	.0233	.061	.002	.0264	.0254	.065	001	.0267	.0269	.073
CML	.021	.0203	.0208	.088	.000	.0263	.0253	.064	028	.0167	.0165	.107
\mathbf{EB}	.014	.0218	.0219	.068	.000	.0264	.0253	.064	007	.0260	.0259	.072
EB1	.009	.0227	.0232	.062	.002	.0264	.0254	.065	003	.0268	.0267	.072
EB2	.012	.0235	.0233	.068	.001	.0265	.0254	.064	009	.0276	.0280	.086
EB3	.012	.0217	.0233	.069	.001	.0264	.0254	.064	009	.0227	.0281	.087
EB4	.012	.0217	.0233	.068	.001	.0264	.0254	.064	009	.0227	.0281	.087
META	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE
LOG	.005	.0230	.0233	.057	.002	.0267	.0254	.065	.001	.0277	.0277	.077
UML	.007	.0228	.0232	.059	.001	.0265	.0253	.064	002	.0268	.0269	.073
CML	.021	.0204	.0207	.085	001	.0264	.0252	.064	028	.0167	.0165	.103
\mathbf{EB}	.019	.0208	.0208	.078	001	.0264	.0252	.064	019	.0212	.0198	.077
EB1	.008	.0229	.0232	.061	.001	.0265	.0253	.064	004	.0267	.0266	.072
EB2	.013	.0218	.0229	.069	.000	.0264	.0253	.064	013	.0226	.0263	.086
EB3	.014	.0216	.0229	.071	.000	.0264	.0253	.064	014	.0220	.0263	.088
EB4	.013	.0217	.0229	.070	.000	.0264	.0253	.064	013	.0222	.0264	.087

Table S12: Bias (BIAS), estimated standard errors (SE1), empirical standard errors (SE2) and $100 \times \text{MSE}$ (MSE) of $\hat{\gamma}_E$, $\hat{\gamma}_G$ and $\hat{\gamma}_{GE}$ resulting from standard logistic regression, unconstrained maximum likelihood, constrained maximum likelihood, empirical Bayes and our proposed multi-study empirical Bayes estimators in both IPD and summary statistic meta-analysis (META) simulation settings (K = 10 individual studies with sample sizes $n_k = 1000 + 100(k - 1), k = 1, \ldots, K$) with marginal disease prevalence 20% when *G-E* independence is violated. In the meta-analysis setting, we use the inverse variance-covariance weighted approach to obtain the standard logistic, unconstrained, constrained and empirical Bayes results.

$\theta_k = .1 \text{ for}$	or all k	Mair	n Effect	of E]	Main Ef	fect of G	r r		$G \mathbf{x} E$ In	teraction	n
IPD	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE
LOG	.007	.0243	.0248	.067	.004	.0260	.0257	.068	.002	.0266	.0266	.071
UML	.010	.0240	.0246	.071	.002	.0258	.0254	.065	002	.0256	.0254	.065
CML	011	.0211	.0220	.061	.005	.0257	.0254	.067	.036	.0160	.0161	.157
\mathbf{EB}	002	.0232	.0237	.057	.005	.0257	.0254	.067	.013	.0256	.0254	.081
EB1	.009	.0241	.0246	.070	.002	.0258	.0254	.065	001	.0259	.0256	.066
EB2	.006	.0262	.0257	.070	.003	.0259	.0254	.065	.005	.0296	.0287	.085
EB3	.007	.0235	.0256	.070	.003	.0258	.0254	.065	.004	.0240	.0285	.083
EB4	.007	.0235	.0257	.070	.003	.0258	.0254	.065	.004	.0239	.0286	.084
META	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE
LOG	.007	.0244	.0247	.066	.002	.0261	.0256	.066	.000	.0267	.0264	.070
UML	.009	.0240	.0245	.069	.001	.0258	.0253	.064	003	.0257	.0253	.065
CML	012	.0211	.0220	.063	.005	.0258	.0253	.067	.036	.0161	.0161	.159
\mathbf{EB}	009	.0217	.0221	.057	.005	.0258	.0253	.066	.024	.0204	.0199	.096
EB1	.009	.0241	.0245	.067	.001	.0258	.0253	.064	002	.0261	.0257	.067
EB2	.002	.0232	.0260	.068	.002	.0258	.0254	.065	.010	.0228	.0305	.102
EB3	.004	.0232	.0258	.068	.002	.0258	.0255	.065	.008	.0230	.0300	.095
EB4	.003	.0232	.0259	.068	.002	.0258	.0255	.065	.008	.0228	.0303	.099
$\theta_k =5$	for all k	Mair	n Effect	of E]	Main Ef	fect of G	ř		$G \mathbf{x} E$ In	teraction	n
LOG	.005	.0193	.0194	.040	.004	.0320	.0318	.102	.001	.0366	.0357	.127
UML	.006	.0193	.0194	.041	.002	.0318	.0316	.100	001	.0359	.0348	.121
CML	.094	.0184	.0186	.925	053	.0309	.0305	.371	345	.0228	.0232	11.983
\mathbf{EB}	.009	.0194	.0195	.047	010	.0323	.0320	.112	003	.0369	.0359	.129
EB1	.006	.0193	.0194	.041	.002	.0318	.0316	.100	002	.0360	.0348	.121
EB2	.006	.0193	.0194	.041	.002	.0318	.0316	.100	002	.0360	.0348	.121
EB3	.006	.0193	.0194	.041	.002	.0318	.0316	.100	002	.0360	.0348	.121
EB4	.006	.0193	.0194	.041	.002	.0318	.0316	.100	002	.0360	.0348	.121
META	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE
LOG	.004	.0194	.0194	.039	.001	.0321	.0316	.100	001	.0368	.0352	.124
UML	.005	.0194	.0193	.040	.000	.0319	.0315	.099	003	.0360	.0345	.120
CML	.094	.0185	.0186	.909	052	.0309	.0303	.360	343	.0228	.0232	11.801
\mathbf{EB}	.033	.0195	.0198	.147	042	.0315	.0309	.269	036	.0386	.0372	.265
EB1	.005	.0194	.0194	.040	.000	.0319	.0315	.099	003	.0360	.0345	.120
EB2	.005	.0194	.0194	.040	.000	.0319	.0315	.099	003	.0360	.0345	.120
EB3	.005	.0194	.0194	.040	.000	.0319	.0315	.099	003	.0360	.0345	.120
EB4	.005	.0194	.0194	.040	.000	.0319	.0315	.099	003	.0360	.0345	.120

Table S13: Bias (BIAS), standard errors (SE1), empirical standard errors (SE2) and $100 \times MSE$ (MSE) of $\hat{\gamma}_E$, $\hat{\gamma}_G$ and $\hat{\gamma}_{GE}$ resulting from standard logistic regression (LOG), unconstrained maximum likelihood (UML), constrained maximum likelihood (CML), empirical Bayes (EB) and our proposed multi-study empirical Bayes estimators EB1 - EB4 in both IPD and summary statistic meta-analysis (META) simulation settings (K = 10 individual studies with sample sizes $n_k = 1000 + 100(k-1), k = 1, \ldots, K$) with individual study case-control ratios 1:2 under G-E independence over 1,000 Monte Carlo runs. In the meta-analysis setting, we use the inverse variance-covariance weighted approach to obtain the standard logistic, unconstrained, constrained and empirical Bayes results.

	l	Main Eff	ect of E		l	Main Eff	ect of G	1	$G \mathbf{x} E$ Interaction			
IPD	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE
LOG	.008	.0240	.0235	.062	.003	.0275	.0270	.074	.002	.0269	.0261	.068
UML	.009	.0237	.0233	.062	.002	.0273	.0267	.072	.001	.0259	.0252	.064
CML	.012	.0220	.0220	.062	.002	.0273	.0268	.072	005	.0194	.0189	.038
\mathbf{EB}	.011	.0224	.0221	.060	.002	.0273	.0268	.072	001	.0226	.0214	.046
EB1	.009	.0236	.0231	.062	.002	.0273	.0268	.072	.000	.0255	.0242	.059
EB2	.010	.0238	.0225	.061	.002	.0273	.0268	.072	002	.0248	.0218	.048
EB3	.010	.0226	.0225	.061	.002	.0273	.0267	.072	002	.0216	.0219	.048
EB4	.010	.0226	.0225	.061	.002	.0273	.0268	.072	002	.0216	.0219	.048
META	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE
LOG	.009	.0242	.0234	.062	.002	.0275	.0269	.072	.000	.0271	.0257	.066
UML	.009	.0238	.0232	.062	.002	.0273	.0267	.071	.000	.0260	.0251	.063
CML	.012	.0220	.0220	.062	.002	.0273	.0267	.072	004	.0194	.0189	.037
\mathbf{EB}	.011	.0223	.0220	.062	.002	.0273	.0268	.072	003	.0220	.0204	.042
EB1	.010	.0236	.0229	.062	.002	.0273	.0267	.071	001	.0251	.0239	.057
EB2	.011	.0228	.0224	.062	.002	.0273	.0267	.072	002	.0222	.0211	.045
EB3	.011	.0227	.0224	.062	.002	.0273	.0267	.072	002	.0219	.0212	.046
EB4	.011	.0227	.0224	.062	.002	.0273	.0267	.072	002	.0219	.0212	.045

Table S14: Bias (BIAS), estimated standard errors (SE1), empirical standard errors (SE2) and 100×MSE (MSE) of $\hat{\gamma}_E$, $\hat{\gamma}_G$ and $\hat{\gamma}_{GE}$ resulting from standard logistic regression, unconstrained maximum likelihood, constrained maximum likelihood, empirical Bayes and our proposed multi-study empirical Bayes estimators in both IPD and summary statistic meta-analysis (META) simulation settings (K = 10 individual studies with sample sizes $n_k = 1000 + 100(k - 1), k = 1, \ldots, K$) with individual study case-control ratios 1:2 when G-E independence is violated. In the meta-analysis setting, we use the inverse variance-covariance weighted approach to obtain the standard logistic, unconstrained, constrained and empirical Bayes results.

$\theta_k = .1 \text{ for}$	or all k	Mair	n Effect	of E	l	Main Effect of G				$G \mathbf{x} E$ Interaction			
IPD	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	
LOG	.009	.0256	.0255	.072	.003	.0269	.0272	.075	.003	.0259	.0261	.069	
UML	.010	.0252	.0252	.074	.003	.0267	.0271	.074	.001	.0249	.0250	.062	
CML	025	.0230	.0232	.118	.006	.0267	.0270	.077	.061	.0186	.0192	.405	
\mathbf{EB}	003	.0258	.0256	.066	.006	.0267	.0270	.076	.013	.0270	.0271	.091	
EB1	.010	.0252	.0252	.073	.003	.0267	.0271	.074	.002	.0251	.0251	.063	
EB2	.009	.0255	.0256	.074	.003	.0268	.0271	.074	.003	.0257	.0263	.070	
EB3	.009	.0252	.0256	.073	.003	.0267	.0271	.074	.003	.0251	.0262	.070	
EB4	.009	.0252	.0256	.074	.003	.0267	.0271	.074	.003	.0250	.0262	.070	
META	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	
LOG	.009	.0257	.0252	.072	.002	.0270	.0271	.074	.001	.0261	.0257	.066	
UML	.010	.0252	.0251	.073	.002	.0268	.0270	.073	.000	.0250	.0249	.062	
CML	025	.0230	.0232	.118	.006	.0268	.0270	.076	.061	.0187	.0192	.410	
\mathbf{EB}	018	.0238	.0237	.088	.005	.0268	.0270	.076	.036	.0224	.0230	.183	
EB1	.010	.0253	.0251	.072	.002	.0268	.0270	.073	.001	.0252	.0250	.063	
EB2	.008	.0252	.0261	.074	.002	.0268	.0270	.074	.004	.0250	.0279	.080	
EB3	.008	.0251	.0259	.074	.002	.0268	.0270	.074	.004	.0247	.0272	.075	
EB4	.008	.0251	.0259	.073	.002	.0268	.0270	.074	.004	.0247	.0273	.076	
$\theta_k =5$	for all k	Mair	n Effect	of E	I	Main Ef	fect of G	ү Г		$G \mathbf{x} E$ In	teraction	n	
LOG	.004	.0200	.0200	.042	.005	.0324	.0322	.106	.003	.0359	.0364	.133	
UML	.005	.0199	.0199	.042	.004	.0322	.0319	.103	.002	.0352	.0354	.125	
CML	.092	.0192	.0193	.875	041	.0317	.0310	.261	324	.0265	.0267	10.577	
\mathbf{EB}	.009	.0200	.0201	.048	011	.0325	.0324	.116	001	.0360	.0366	.134	
EB1	.005	.0199	.0199	.042	.004	.0322	.0319	.103	.001	.0352	.0354	.125	
EB2	.005	.0199	.0199	.042	.004	.0322	.0319	.103	.001	.0352	.0354	.125	
EB3	.005	.0199	.0199	.042	.004	.0322	.0319	.103	.001	.0352	.0354	.125	
EB4	.005	.0199	.0199	.042	.004	.0322	.0319	.103	.001	.0352	.0354	.125	
META	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	
LOG	.005	.0201	.0198	.041	.004	.0325	.0320	.104	.001	.0361	.0359	.129	
UML	.005	.0200	.0198	.041	.004	.0323	.0318	.102	.001	.0353	.0352	.124	
CML	.092	.0193	.0192	.874	038	.0317	.0309	.242	321	.0264	.0266	10.386	
\mathbf{EB}	.035	.0202	.0200	.159	033	.0320	.0313	.208	034	.0375	.0376	.254	
EB1	.005	.0200	.0198	.041	.004	.0323	.0318	.102	.001	.0353	.0352	.124	
EB2	.005	.0200	.0198	.041	.004	.0323	.0318	.102	.001	.0353	.0352	.124	
EB3	.005	.0200	.0198	.041	.004	.0323	.0318	.102	.001	.0353	.0352	.124	
EB4	.005	.0200	.0198	.041	.004	.0323	.0318	.102	.001	.0353	.0352	.124	

Table S15: Bias (BIAS), standard errors (SE1), empirical standard errors (SE2) and $100 \times MSE$ (MSE) of $\hat{\gamma}_E$, $\hat{\gamma}_G$ and $\hat{\gamma}_{GE}$ resulting from standard logistic regression (LOG), unconstrained maximum likelihood (UML), constrained maximum likelihood (CML), empirical Bayes (EB) and our proposed multi-study empirical Bayes estimators EB1 - EB4 in both IPD and summary statistic meta-analysis (META) simulation settings (K = 10 individual studies with sample sizes $n_k = 1000 + 100(k-1), k = 1, \ldots, K$) with individual study case-control ratios 1:4 under G-E independence over 1,000 Monte Carlo runs. In the meta-analysis setting, we use the inverse variance-covariance weighted approach to obtain the standard logistic, unconstrained, constrained and empirical Bayes results.

	l	Main Eff	ect of E	,	l	Main Eff	ect of G	Y r	$G \mathbf{x} E$ Interaction			
IPD	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE
LOG	.003	.0276	.0277	.078	.005	.0323	.0312	.099	.003	.0300	.0311	.097
UML	.005	.0273	.0273	.076	.004	.0321	.0310	.097	.000	.0289	.0298	.089
CML	.008	.0261	.0257	.073	.004	.0321	.0310	.097	006	.0245	.0254	.068
\mathbf{EB}	.007	.0263	.0260	.072	.004	.0321	.0310	.097	002	.0266	.0272	.074
EB1	.005	.0272	.0269	.075	.004	.0321	.0310	.097	001	.0287	.0289	.083
EB2	.006	.0272	.0262	.073	.004	.0321	.0310	.097	003	.0280	.0269	.074
EB3	.007	.0265	.0262	.073	.004	.0321	.0310	.097	004	.0260	.0269	.074
EB4	.006	.0265	.0262	.073	.004	.0321	.0310	.097	004	.0260	.0269	.074
META	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE
LOG	.006	.0277	.0273	.078	.005	.0323	.0309	.098	.000	.0303	.0306	.093
UML	.006	.0273	.0271	.077	.004	.0321	.0309	.097	.000	.0290	.0297	.088
CML	.009	.0261	.0256	.074	.005	.0321	.0309	.098	005	.0244	.0254	.067
\mathbf{EB}	.009	.0262	.0258	.075	.004	.0321	.0308	.097	004	.0261	.0262	.071
EB1	.007	.0272	.0268	.076	.005	.0321	.0309	.097	001	.0284	.0285	.081
EB2	.008	.0266	.0260	.074	.005	.0321	.0309	.098	003	.0264	.0266	.071
EB3	.008	.0266	.0259	.074	.005	.0321	.0309	.098	003	.0262	.0264	.071
EB4	.008	.0266	.0260	.074	.005	.0321	.0309	.098	003	.0262	.0265	.071

Table S16: Bias (BIAS), estimated standard errors (SE1), empirical standard errors (SE2) and $100 \times \text{MSE}$ (MSE) of $\hat{\gamma}_E$, $\hat{\gamma}_G$ and $\hat{\gamma}_{GE}$ resulting from standard logistic regression, unconstrained maximum likelihood, constrained maximum likelihood, empirical Bayes and our proposed multi-study empirical Bayes estimators in both IPD and summary statistic meta-analysis (META) simulation settings (K = 10 individual studies with sample sizes $n_k = 1000 + 100(k - 1), k = 1, \ldots, K$) with individual study case-control ratios 1:4 when G-E independence is violated. In the meta-analysis setting, we use the inverse variance-covariance weighted approach to obtain the standard logistic, unconstrained, constrained and empirical Bayes results.

$\theta_k = .1 \text{ for}$	or all k	Mair	n Effect	of E	I	Main Eff	ect of G	1		$G \mathbf{x} E$ In	teraction	n
LOG	.004	.0292	.0292	.087	.003	.0317	.0322	.105	.001	.0287	.0282	.080
UML	.006	.0288	.0286	.085	.003	.0315	.0319	.102	001	.0277	.0271	.073
CML	029	.0273	.0270	.155	.004	.0315	.0319	.103	.057	.0235	.0228	.377
\mathbf{EB}	009	.0292	.0293	.095	.004	.0315	.0319	.103	.013	.0296	.0292	.102
EB1	.005	.0289	.0286	.084	.003	.0315	.0319	.102	.000	.0278	.0272	.074
EB2	.004	.0296	.0288	.085	.003	.0315	.0319	.102	.002	.0294	.0280	.079
EB3	.005	.0289	.0288	.085	.003	.0315	.0319	.102	.001	.0279	.0279	.078
EB4	.005	.0289	.0288	.085	.003	.0315	.0319	.102	.001	.0279	.0280	.078
META	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE	BIAS	SE1	SE2	MSE
LOG	.007	.0294	.0289	.088	.003	.0318	.0320	.103	001	.0290	.0276	.076
UML	.007	.0289	.0285	.086	.003	.0315	.0318	.102	001	.0278	.0270	.073
CML	027	.0273	.0269	.147	.005	.0315	.0318	.103	.058	.0234	.0227	.389
\mathbf{EB}	021	.0278	.0272	.116	.004	.0315	.0317	.102	.035	.0260	.0251	.184
EB1	.006	.0289	.0285	.085	.003	.0315	.0318	.102	.000	.0279	.0271	.074
EB2	.005	.0289	.0289	.086	.003	.0315	.0318	.102	.002	.0280	.0284	.081
EB3	.005	.0288	.0288	.086	.003	.0315	.0318	.102	.002	.0277	.0282	.080
EB4	.005	.0288	.0288	.086	.003	.0315	.0318	.102	.002	.0277	.0282	.080
		Main Effect of E						Main Effect of G				
$\theta_k =5$	for all k	Mair	n Effect	of E	I	Main Ef	ect of G	!		$G \mathbf{x} E$ In	teraction	n
$\frac{\theta_k =5}{\text{LOG}}$	for all k .003	Mair .0230	n Effect .0232	of E .055	.001	Main Eff .0375	ect of <i>G</i> .0385	.148	.001	$G \mathbf{x} E$ In .0404	teraction .0399	n .159
$\frac{\theta_k =5}{\text{LOG}}$ UML	for all k .003 .003	Mair .0230 .0230	n Effect .0232 .0232	of <i>E</i> .055 .055	.001 .000	Main Eff .0375 .0373	ect of <i>G</i> .0385 .0381	.148 .145	.001 001	GxE In .0404 .0397	teraction .0399 .0390	n .159 .152
$\frac{\theta_k =5}{\text{LOG}}$ UML CML	for all k .003 .003 .087	Mair .0230 .0230 .0224	n Effect .0232 .0232 .0232 .0224	of E .055 .055 .807	.001 .000 038	Main Eff .0375 .0373 .0370	ect of <i>G</i> .0385 .0381 .0375	.148 .145 .283	.001 001 319	GxE In .0404 .0397 .0336	teraction .0399 .0390 .0333	n .159 .152 10.283
$ \begin{array}{c} \hline \theta_k =5 \\ \hline \text{LOG} \\ \text{UML} \\ \text{CML} \\ \text{EB} \end{array} $	for all k .003 .003 .087 .009	Main .0230 .0230 .0224 .0231	n Effect .0232 .0232 .0232 .0224 .0232	of E .055 .055 .807 .061	.001 .000 038 018	Main Eff .0375 .0373 .0370 .0375	Sect of G .0385 .0381 .0375 .0386	.148 .145 .283 .180	.001 001 319 004	$\begin{array}{c} G{\rm x}E {\rm In} \\ .0404 \\ .0397 \\ .0336 \\ .0406 \end{array}$	teraction .0399 .0390 .0333 .0401	n .159 .152 10.283 .162
$ \begin{array}{r} \hline \theta_k =5 \\ \hline \text{LOG} \\ \text{UML} \\ \text{CML} \\ \text{EB} \\ \text{EB1} \\ \end{array} $	for all k .003 .003 .087 .009 .003	Mair .0230 .0230 .0224 .0231 .0230	n Effect .0232 .0232 .0224 .0224 .0232 .0232	$ \begin{array}{r} \text{of } E \\ .055 \\ .055 \\ .807 \\ .061 \\ .055 \\ \end{array} $.001 .000 038 018 .000	$\begin{array}{r} \text{Main Eff}\\ \hline .0375\\ .0373\\ .0373\\ .0370\\ .0375\\ .0373 \end{array}$	$\begin{array}{c} \overline{\operatorname{cect} \ of} \ G\\ \hline .0385\\ .0381\\ .0375\\ .0386\\ .0381 \end{array}$.148 .145 .283 .180 .145	.001 001 319 004 001	$\begin{array}{c} G{\rm x}E {\rm In} \\ .0404 \\ .0397 \\ .0336 \\ .0406 \\ .0397 \end{array}$	teraction .0399 .0390 .0333 .0401 .0390	n .159 .152 10.283 .162 .152
$ \overline{\begin{array}{c} \theta_k =5 \\ \text{LOG} \\ \text{UML} \\ \text{CML} \\ \text{EB} \\ \text{EB1} \\ \text{EB2} \end{array}} $	for all k .003 .003 .087 .009 .003 .003	Mair .0230 .0230 .0224 .0231 .0230 .0230	n Effect .0232 .0232 .0224 .0232 .0232 .0232 .0232	$\begin{array}{c} {\rm of} \ E \\ .055 \\ .055 \\ .807 \\ .061 \\ .055 \\ .055 \end{array}$.001 .000 038 018 .000 .000	Main Eff .0375 .0373 .0370 .0370 .0375 .0373 .0373	Fect of G .0385 .0381 .0375 .0386 .0381	.148 .145 .283 .180 .145 .145	.001 001 319 004 001 001	$\begin{array}{c} G{\rm x}E {\rm In} \\ .0404 \\ .0397 \\ .0336 \\ .0406 \\ .0397 \\ .0397 \end{array}$	teraction .0399 .0390 .0333 .0401 .0390 .0390	$\begin{array}{r} 1.159\\.152\\10.283\\.162\\.152\\.152\\.152\end{array}$
$ \begin{array}{r} \hline \theta_k =5 \\ \hline \text{LOG} \\ \text{UML} \\ \text{CML} \\ \text{EB} \\ \text{EB1} \\ \text{EB2} \\ \text{EB3} \\ \end{array} $	for all k .003 .003 .087 .009 .003 .003 .003	Mair .0230 .0230 .0224 .0231 .0230 .0230 .0230	1 Effect .0232 .0232 .0224 .0232 .0232 .0232 .0232 .0232	$\begin{array}{c} {\rm of} \ E \\ .055 \\ .055 \\ .807 \\ .061 \\ .055 \\ .055 \\ .055 \end{array}$.001 .000 038 018 .000 .000 .000	Main Eff .0375 .0373 .0370 .0375 .0373 .0373 .0373	Feet of G .0385 .0381 .0375 .0386 .0381 .0381	.148 .145 .283 .180 .145 .145 .145	.001 001 319 004 001 001 001	$\begin{array}{c} G{\rm x}E {\rm In} \\ .0404 \\ .0397 \\ .0336 \\ .0406 \\ .0397 \\ .0397 \\ .0397 \end{array}$	teraction .0399 .0390 .0333 .0401 .0390 .0390 .0390	n .159 .152 10.283 .162 .152 .152 .152 .152
$ \begin{array}{r} \hline \theta_k =5 \\ \hline \text{LOG} \\ \text{UML} \\ \text{CML} \\ \text{EB} \\ \text{EB1} \\ \text{EB2} \\ \text{EB3} \\ \text{EB4} \\ \end{array} $	for all k .003 .003 .087 .009 .003 .003 .003 .003	Mair .0230 .0230 .0224 .0231 .0230 .0230 .0230 .0230	n Effect .0232 .0232 .0224 .0232 .0232 .0232 .0232 .0232 .0232	$\begin{array}{c} {\rm of} \ E \\ .055 \\ .055 \\ .807 \\ .061 \\ .055 \\ .055 \\ .055 \\ .055 \end{array}$.001 .000 038 018 .000 .000 .000 .000	Main Eff .0375 .0373 .0370 .0375 .0373 .0373 .0373 .0373	Feet of G .0385 .0381 .0375 .0386 .0381 .0381 .0381	.148 .145 .283 .180 .145 .145 .145 .145	.001 001 319 004 001 001 001	$\begin{array}{c} GxE \ {\rm In} \\ .0404 \\ .0397 \\ .0336 \\ .0406 \\ .0397 \\ .0397 \\ .0397 \\ .0397 \end{array}$	teraction .0399 .0390 .0333 .0401 .0390 .0390 .0390 .0390	n .159 .152 10.283 .162 .152 .152 .152 .152 .152
$ \begin{array}{r} \hline \theta_k =5 \\ \hline \text{LOG} \\ \text{UML} \\ \text{CML} \\ \text{EB} \\ \text{EB1} \\ \text{EB2} \\ \text{EB3} \\ \text{EB4} \\ \hline \text{META} \\ \end{array} $	for all k .003 .003 .087 .009 .003 .003 .003 .003 .003 .003 .003	Mair .0230 .0230 .0224 .0231 .0230 .0230 .0230 .0230 .0230 .0230	n Effect .0232 .0232 .0224 .0232 .0232 .0232 .0232 .0232 .0232 .0232 SE2	$\begin{array}{c} {\rm of} \ E \\ .055 \\ .055 \\ .807 \\ .061 \\ .055 \\ .055 \\ .055 \\ .055 \\ MSE \end{array}$.001 .000 038 018 .000 .000 .000 .000 BIAS	Main Eff .0375 .0373 .0370 .0375 .0373 .0373 .0373 .0373 .0373 SE1	Feet of G .0385 .0381 .0375 .0386 .0381 .0381 .0381 .0381 .0381	.148 .145 .283 .180 .145 .145 .145 .145 .145 MSE	.001 001 319 004 001 001 001 BIAS	$\begin{array}{c} GxE \text{ In} \\ .0404 \\ .0397 \\ .0336 \\ .0406 \\ .0397 \\ .0397 \\ .0397 \\ .0397 \\ .0397 \\ SE1 \end{array}$	teraction .0399 .0390 .0333 .0401 .0390 .0390 .0390 .0390 SE2	n .159 .152 10.283 .162 .152 .152 .152 .152 .152 .152 .152 .15
$\begin{array}{c} \hline \theta_k =5 \\ \hline \text{LOG} \\ \text{UML} \\ \text{CML} \\ \text{EB} \\ \text{EB1} \\ \text{EB2} \\ \text{EB3} \\ \text{EB4} \\ \hline \hline \text{META} \\ \hline \text{LOG} \end{array}$	for all k .003 .003 .087 .009 .003 .003 .003 .003 .003 BIAS .004	Mair .0230 .0230 .0224 .0231 .0230 .0230 .0230 .0230 .0230 .0231	h Effect .0232 .0232 .0224 .0232 .0232 .0232 .0232 .0232 .0232 .0232 .0231	$\begin{array}{c} {\rm of} \ E \\ .055 \\ .055 \\ .807 \\ .061 \\ .055 \\ .055 \\ .055 \\ .055 \\ {\rm MSE} \\ .055 \end{array}$	I .001 .000 038 018 .000 .000 .000 .000 BIAS .003	Main Eff .0375 .0373 .0370 .0375 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373	Feet of G .0385 .0381 .0375 .0386 .0381 .0381 .0381 .0381 .0381 .0381 .0381	2 .148 .145 .283 .180 .145 .145 .145 .145 .145 .145 .146	.001 001 319 004 001 001 001 BIAS .000	GxE In .0404 .0397 .0336 .0406 .0397 .0397 .0397 .0397 SE1 .0408	teraction .0399 .0390 .0333 .0401 .0390 .0390 .0390 .0390 SE2 .0392	n .159 .152 10.283 .162 .152 .152 .152 .152 .152 .152 .152 .15
$\begin{array}{c} \hline \theta_k =5 \\ \hline \text{LOG} \\ \text{UML} \\ \text{CML} \\ \text{EB} \\ \text{EB1} \\ \text{EB2} \\ \text{EB3} \\ \text{EB4} \\ \hline \end{array}$	for all k .003 .003 .087 .009 .003 .003 .003 .003 BIAS .004 .004	Mair .0230 .0230 .0224 .0231 .0230 .0230 .0230 .0230 SE1 .0231 .0231	n Effect .0232 .0232 .0232 .0232 .0232 .0232 .0232 .0232 .0232 SE2 .0231 .0231	$\begin{array}{c} {\rm of} \ E \\ .055 \\ .055 \\ .055 \\ .061 \\ .055 \\ .055 \\ .055 \\ .055 \\ {\rm MSE} \\ .055 \\ .055 \\ .055 \\ .055 \end{array}$	I .001 .000 038 018 .000 .000 .000 .000 BIAS .003 .003	Main Eff .0375 .0373 .0370 .0375 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373	$\begin{array}{c} \overline{\text{fect of } G} \\ .0385 \\ .0381 \\ .0375 \\ .0386 \\ .0381 \\ .0381 \\ .0381 \\ .0381 \\ \overline{\text{SE2}} \\ .0381 \\ .0381 \\ .0378 \end{array}$	2 .148 .145 .283 .180 .145 .145 .145 .145 .145 .145 .146 .144	.001 001 319 004 001 001 001 BIAS .000 .000	$\begin{array}{c} GxE \ {\rm In} \\ .0404 \\ .0397 \\ .0336 \\ .0406 \\ .0397 \\ .0397 \\ .0397 \\ .0397 \\ .0397 \\ {\rm SE1} \\ .0408 \\ .0398 \end{array}$	teraction .0399 .0390 .0333 .0401 .0390 .0390 .0390 .0390 SE2 .0392 .0389	n .159 .152 10.283 .162 .152 .152 .152 .152 .152 .152 .152 .15
$\begin{array}{c} \hline \theta_k =5 \\ \hline \text{LOG} \\ \text{UML} \\ \text{CML} \\ \text{EB} \\ \text{EB1} \\ \text{EB2} \\ \text{EB3} \\ \text{EB4} \\ \hline \hline \text{META} \\ \hline \\ \hline \text{LOG} \\ \text{UML} \\ \text{CML} \\ \end{array}$	for all k .003 .003 .087 .009 .003 .003 .003 .003 .003 BIAS .004 .004 .088	Mair .0230 .0230 .0224 .0231 .0230 .0230 .0230 .0230 .0230 .0231 .0231 .0224	n Effect .0232 .0232 .0232 .0232 .0232 .0232 .0232 .0232 .0232 .0231 .0231 .0223	$\begin{array}{c} {\rm of} \ E \\ .055 \\ .055 \\ .055 \\ .061 \\ .055 \\ .055 \\ .055 \\ .055 \\ .055 \\ .055 \\ .055 \\ .055 \\ .055 \\ .830 \end{array}$	I .001 .000 038 018 .000 .000 .000 .000 BIAS .003 .003 033	Main Eff .0375 .0373 .0370 .0375 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0374 .0371	$\begin{array}{c} \overline{\operatorname{Cect} \ of} \ G\\ .0385\\ .0381\\ .0375\\ .0386\\ .0381\\ .0381\\ .0381\\ .0381\\ \underline{SE2}\\ .0381\\ .0378\\ .0374\\ \end{array}$	r .148 .145 .283 .180 .145 .145 .145 .145 .145 .146 .144 .246	.001 001 319 004 001 001 001 BIAS .000 .000 315	$\begin{array}{c} GxE \ {\rm In} \\ .0404 \\ .0397 \\ .0336 \\ .0406 \\ .0397 \\ .0397 \\ .0397 \\ .0397 \\ .0397 \\ {\rm SE1} \\ .0408 \\ .0398 \\ .0334 \end{array}$	teraction .0399 .0390 .0333 .0401 .0390 .0390 .0390 .0390 .0390 .0392 .0389 .0335	n .159 .152 10.283 .162 .152 .152 .152 .152 .152 MSE .154 .154 .152 10.013
$\begin{array}{c} \hline \theta_k =5 \\ \hline \text{LOG} \\ \text{UML} \\ \text{CML} \\ \text{EB} \\ \text{EB1} \\ \text{EB2} \\ \text{EB3} \\ \text{EB4} \\ \hline \\ \hline \\ \text{META} \\ \hline \\ \text{LOG} \\ \text{UML} \\ \text{CML} \\ \text{EB} \\ \end{array}$	for all k .003 .003 .007 .009 .003 .003 .003 .003 .003 BIAS .004 .004 .088 .040	Mair .0230 .0230 .0224 .0231 .0230 .0230 .0230 .0230 .0230 .0230 .0231 .0231 .0224 .0231	n Effect .0232 .0232 .0224 .0232 .0232 .0232 .0232 .0232 .0232 .0231 .0231 .0223 .0229	of E .055 .055 .807 .061 .055 .055 .055 .055 .055 .055 .055 .830 .213	I .001 .000 038 018 .000 .000 .000 .000 BIAS .003 .003 033 031	Main Eff .0375 .0373 .0370 .0375 .0373 .0373 .0373 .0373 .0373 SE1 .0377 .0374 .0371 .0372	$\begin{array}{c} \hline \text{ect of } G\\ .0385\\ .0381\\ .0375\\ .0386\\ .0381\\ .0381\\ .0381\\ .0381\\ \hline \text{SE2}\\ .0381\\ .0378\\ .0378\\ .0374\\ .0376\\ \end{array}$	2 .148 .145 .283 .180 .145 .145 .145 .145 .145 .145 .146 .144 .246 .239	.001 001 319 004 001 001 001 BIAS .000 .000 315 045	$\begin{array}{c} GxE \ {\rm In} \\ .0404 \\ .0397 \\ .0336 \\ .0406 \\ .0397 \\ .0397 \\ .0397 \\ .0397 \\ .0397 \\ {\rm SE1} \\ .0408 \\ .0398 \\ .0334 \\ .0421 \end{array}$	teraction .0399 .0390 .0333 .0401 .0390 .0390 .0390 .0390 SE2 .0392 .0389 .0335 .0407	n .159 .152 10.283 .162 .152 .152 .152 .152 MSE .154 .154 .152 10.013 .368
$ \begin{array}{c} \hline \theta_k =5 \\ \hline \text{LOG} \\ \text{UML} \\ \text{CML} \\ \text{EB} \\ \text{EB1} \\ \text{EB2} \\ \text{EB3} \\ \text{EB4} \\ \hline \hline \text{META} \\ \hline \hline \text{LOG} \\ \text{UML} \\ \text{CML} \\ \text{EB} \\ \text{EB1} \\ \end{array} $	for all k .003 .003 .087 .009 .003 .003 .003 .003 .003 .003 BIAS .004 .004 .088 .040 .005	Mair .0230 .0230 .0224 .0231 .0230 .0230 .0230 .0230 .0230 .0230 .0231 .0231 .0231 .0231	n Effect .0232 .0232 .0224 .0232 .0232 .0232 .0232 .0232 .0231 .0231 .0223 .0229 .0231	$\begin{array}{c} {\rm of} \ E \\ .055 \\ .055 \\ .055 \\ .061 \\ .055 \\ .055 \\ .055 \\ .055 \\ .055 \\ .055 \\ .055 \\ .055 \\ .830 \\ .213 \\ .055 \\ \end{array}$	I .001 .000 038 018 .000 .000 .000 .000 BIAS .003 033 031 .003	Main Eff .0375 .0373 .0370 .0375 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0374 .0374 .0374	$\begin{array}{c} \overline{\text{fect of } G} \\ .0385 \\ .0381 \\ .0375 \\ .0386 \\ .0381 \\ .0381 \\ .0381 \\ .0381 \\ \overline{\text{SE2}} \\ .0381 \\ .0378 \\ .0374 \\ .0376 \\ .0378 \end{array}$	2 .148 .145 .283 .180 .145 .145 .145 .145 .145 .145 .146 .144 .246 .239 .144	.001 001 319 004 001 001 001 BIAS .000 .000 315 045 .000	$\begin{array}{c} GxE \ {\rm In} \\ .0404 \\ .0397 \\ .0336 \\ .0406 \\ .0397 \\ .0397 \\ .0397 \\ .0397 \\ .0397 \\ {\rm SE1} \\ .0408 \\ .0398 \\ .0334 \\ .0421 \\ .0398 \end{array}$	teraction .0399 .0390 .0333 .0401 .0390 .0390 .0390 .0390 SE2 .0392 .0392 .0389 .0335 .0407 .0390	n .159 .152 10.283 .162 .152 .152 .152 .152 .152 MSE .154 .152 10.013 .368 .152
$\begin{array}{c} \hline \theta_k =5 \\ \hline \text{LOG} \\ \text{UML} \\ \text{CML} \\ \text{EB} \\ \text{EB1} \\ \text{EB2} \\ \text{EB3} \\ \text{EB4} \\ \hline \hline \text{META} \\ \hline \text{LOG} \\ \text{UML} \\ \text{CML} \\ \text{EB} \\ \text{EB1} \\ \text{EB2} \\ \end{array}$	for all k .003 .003 .087 .009 .003 .003 .003 .003 .003 .003 .003	Mair .0230 .0230 .0224 .0231 .0230 .0230 .0230 .0230 .0230 .0230 .0231 .0231 .0224 .0231 .0231 .0231	n Effect .0232 .0232 .0232 .0232 .0232 .0232 .0232 .0232 .0231 .0231 .0223 .0229 .0231 .0231 .0231	$\begin{array}{c} {\rm of} \ E \\ .055 \\ .055 \\ .055 \\ .061 \\ .055 \\ .055 \\ .055 \\ .055 \\ .055 \\ .055 \\ .055 \\ .830 \\ .213 \\ .055 \\ .055 \\ .055 \\ .055 \end{array}$	I .001 .000 038 018 .000 .000 .000 .000 BIAS .003 033 031 .003 .003	Main Eff .0375 .0373 .0370 .0375 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0374 .0374 .0374 .0374	$\begin{array}{c} \hline ect \ of \ G\\ .0385\\ .0381\\ .0375\\ .0386\\ .0381\\ .0381\\ .0381\\ \hline .0381\\ \hline .0381\\ \hline .0381\\ .0378\\ .0378\\ .0376\\ .0378\\ .0378\\ .0378\\ .0378\end{array}$	2 .148 .145 .283 .180 .145 .145 .145 .145 .145 .145 .145 .146 .144 .246 .239 .144 .144	.001 001 319 004 001 001 001 BIAS .000 .000 315 045 .000 .000	$\begin{array}{c} GxE \ {\rm In} \\ .0404 \\ .0397 \\ .0336 \\ .0406 \\ .0397 \\ .0397 \\ .0397 \\ .0397 \\ .0397 \\ SE1 \\ .0408 \\ .0398 \\ .0334 \\ .0421 \\ .0398 \\ .0398 \\ .0398 \end{array}$	teraction .0399 .0390 .0333 .0401 .0390 .0390 .0390 .0390 SE2 .0392 .0392 .0389 .0335 .0407 .0390 .0390	n .159 .152 10.283 .162 .152 .152 .152 .152 .152 MSE .154 .152 10.013 .368 .152 .152
$ \begin{array}{c} \hline \theta_k =5 \\ \hline \text{LOG} \\ \text{UML} \\ \text{CML} \\ \text{EB} \\ \text{EB1} \\ \text{EB2} \\ \text{EB3} \\ \text{EB4} \\ \hline \end{array} \\ \hline \begin{array}{c} \text{META} \\ \hline \\ \text{LOG} \\ \text{UML} \\ \text{CML} \\ \text{EB} \\ \text{EB1} \\ \text{EB2} \\ \text{EB3} \\ \end{array} $	for all k .003 .003 .087 .009 .003 .003 .003 .003 .003 BIAS .004 .004 .004 .004 .005 .005 .005	Mair .0230 .0230 .0224 .0231 .0230 .0230 .0230 .0230 .0230 .0231 .0231 .0231 .0231 .0231 .0231	Effect .0232 .0232 .0232 .0232 .0232 .0232 .0232 .0232 .0232 .0232 .0232 .0232 .0231 .0223 .0231 .0231 .0231 .0231 .0231 .0231	$\begin{array}{c} {\rm of} \ E \\ .055 \\ .055 \\ .055 \\ .061 \\ .055 \\ .055 \\ .055 \\ .055 \\ .055 \\ .055 \\ .055 \\ .055 \\ .055 \\ .055 \\ .055 \\ .055 \\ .055 \\ .055 \end{array}$	I .001 .000 038 018 .000 .000 .000 .000 BIAS .003 .003 031 .003 .003 .003	Main Eff .0375 .0373 .0370 .0375 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0373 .0374 .0374 .0374 .0374 .0374	$\begin{array}{c} \hline \text{cect of } G\\ .0385\\ .0381\\ .0375\\ .0386\\ .0381\\ .0381\\ .0381\\ .0381\\ \hline \\ .0381\\ \hline \\ .0381\\ \hline \\ .0378\\ .0378\\ .0378\\ .0378\\ .0378\\ .0378\\ .0378\\ .0378\end{array}$	2 .148 .145 .283 .180 .145 .145 .145 .145 .145 .145 .145 .145	.001 001 319 004 001 001 001 BIAS .000 .000 315 045 .000 .000 .000	$\begin{array}{c} GxE \ {\rm In} \\ .0404 \\ .0397 \\ .0336 \\ .0406 \\ .0397 \\ .0397 \\ .0397 \\ .0397 \\ .0397 \\ \hline .0397 \\ SE1 \\ .0408 \\ .0398 \\ .0334 \\ .0421 \\ .0398 \\ .0398 \\ .0398 \\ .0397 \end{array}$	teraction .0399 .0390 .0333 .0401 .0390 .0390 .0390 .0390 .0390 .0389 .0335 .0407 .0390 .0390 .0390 .0390	n .159 .152 10.283 .162 .152 .152 .152 .152 .152 .152 .154 .154 .152 10.013 .368 .152 .152 .152 .152 .152