
Supporting Information for “Meta-Analysis of Gene-Environment Interaction
Exploiting Gene-Environment Independence Across Multiple Case-Control

Studies”

Supporting Information: Modeling P (Gki|Eki,Ski) under HWE

Under HWE, we have P (Gki = 0|Eki,Ski) = (1− qki)2, P (Gki = 1|Eki,Ski) = 2qki(1− qki) and

P (Gki = 2|Eki,Ski) = q2ki where qki is the minor allele frequency for a given (Eki,Ski). Thus,

log
{P (Gki = 1|Eki,Ski)

P (Gki = 0|Eki,Ski)

}
= log(2) + log

{ qki
1− qki

}
and

log
{P (Gki = 2|Eki,Ski)

P (Gki = 0|Eki,Ski)

}
= 2 log

{ qki
1− qki

}
.

One can then use the logistic model qki = H{η0k + ηkS
T
ki + θkEki} which reduces to qki =

H{η00k + η0kS
T
ki} under G-E independence conditional on Ski.

Supporting Information: Approximation of (θθT)(θθT)+

Lemma 1. Let x = (x1, . . . , xK)T be a real K × 1 column vector such that x 6= 0. Then

y = xxT(xTx)−2 is the Moore-Penrose inverse of xxT.

Proof. We establish the result by showing that the following holds

(i) (xxT)y(xxT) = xxT

(ii) y(xxT)y = y
(iii) {(xxT)y}T = (xxT)y
(iv) {y(xxT)}T = y(xxT)

To show (i), we note that (xxT)y(xxT) = (xxT)xxT(xxT)(xTx)−2. Using the property of

associativity, it follows that (xxT)xxT(xxT)(xTx)−2 = x(xTx)(xTx)xT(xTx)−2 = xxT.

Similar calculations will establish (ii), (iii), and (iv).
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Lemma 2. Let X ∼ N(0, τ 2). Then E[X(X2 + c)−1] = 0 where c 6= 0.

Proof. The result follows since x(x2 + c)−1 defines a bounded continuous odd function of x

over the entire real line e.g. |x(x2 + c)−1| ≤ 1
2
c−1/2 for all x ∈ R.

Theorem 1. Let θ = (θ1, . . . , θK)T ∼ N(0, τ 2IK) and Θ = (θθT)(θθT)+ where M+ denotes

the Moore-Penrose inverse of the matrix M . Then E[Θ] = K−1IK and V ar[Θ] = (K−1 −

K−2)IK where IK is the identity matrix of dimension K ×K.

Proof. From Lemma 1, Θ = (θθT)2(θTθ)−2. But (θθT)2(θTθ)−2 = θ(θTθ)θT(θTθ)−2 =

θθT(θTθ)−1. Thus, Θ = (Θij) where Θij = θiθj{θTθ}−1 for i, j ∈ {1, . . . , K}. Since tr(Θ) =∑K
i=1 Θii =

∑K
i=1 θ

2
i {θTθ}−1 = 1, then E{tr(Θ)} =

∑k
i=1E[Θii] = 1. But θi are independent

and identically distributed, and so E[Θ11] = . . . = E[ΘKK ]. Thus, E[Θii] = K−1 for all i.

Finally, from Lemma 2, E[Θij] = E
{
θiθj(θ

Tθ)−1
}

= E(θjE[θi{θ2i + θ>(−i)θ(−i)}−1 | θ(−i)]) =

E[θj · 0] = 0 for i 6= j where θ(−i) denotes the random vector θ with the ith component

removed. Therefore, E[Θ] = K−1IK. Since Θ2 = Θ, then V ar[Θ] = K−1IK − (K−1IK)2 =

(K−1 −K−2)IK.

Corollary 1. Let θ = (θ1, . . . , θk)T ∼ N(0,Σ) and Θ = (θθT)(θθT)+ where Σ is a diagonal

matrix with non-zero diagonal {τ 21 , . . . , τ 2k} and M+ denotes the moore-penrose inverse of the

matrix M . Then E[Θ] = ξ where ξ = diag{ξ1, . . . , ξK}, ξ1+. . .+ξK = 1 and V ar[Θ] = ξ−ξ2.

Proof. The results follow immediately from the details in the proof of Theorem 1.

Supporting Information: Variance estimates of MSEB estimators

Our EB estimators are of the form Wβ̂ + (IK −W )β̂
0

where W is a K ×K weight matrix.

Thus, a crude estimate of the variance of the EB estimators are given by WV ar(β̂)W T +

2WCov(β̂, β̂
0
)(IK−W )T + (IK−W )V ar(β̂

0
)(IK−W )T where W is treated as a constant

matrix. However, since W are random matrices, the crude estimates are typically not appro-

priate. Thus, we derive an approximation that adjusts for this variation using the notation
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of Section 2.2.1 where only the full variance covariance matrix Cov(β̂, β̂
0
, θ̂) is fixed at its

estimate. Our MSEB estimators are of the form

∆̂TÂ∆̂{V̂ β̂ + ∆̂TÂ∆̂}−1β̂ + V̂ β̂{V̂ β̂ + ∆̂TÂ∆̂}−1β̂
0

(1)

where ∆̂TÂ∆̂ = (Kτ̂)2(θ̂
T
θ̂)−1(β̂− β̂

0
)(β̂− β̂

0
)T. Using the identity ∆̂TÂ∆̂{V̂ β̂ + ∆̂TÂ∆̂}−1

= IK − V̂ β̂{V̂ β̂ + ∆TA∆}−1, our estimator in (1) can be written as

β̂ − V̂ β̂{V̂ β̂ + (Kτ̂)2(θ̂
T
θ̂)−1(β̂ − β̂

0
)(β̂ − β̂

0
)T}−1(β̂ − β̂

0
). (2)

By the Sherman-Morrison formula, {V̂ β̂ + (Kτ̂)2(θ̂
T
θ̂)−1(β̂− β̂

0
)(β̂− β̂

0
)T}−1 = V̂

−1
β̂ −{1 +

(Kτ̂)2(θ̂
T
θ̂)−1(β̂− β̂

0
)TV̂

−1
β̂ (β̂− β̂

0
)}−1V̂

−1
β̂ (Kτ̂)2(θ̂

T
θ̂)−1(β̂− β̂

0
)(β̂− β̂

0
)TV̂

−1
β̂ which allows

(2) to be written as

β̂ −
{

1 + (Kτ̂)2(θ̂
T
θ̂)−1(β̂ − β̂

0
)TV̂

−1
β̂ (β̂ − β̂

0
)
}−1

(β̂ − β̂
0
). (3)

Our first estimate K−1(θ̂
T
θ̂)IK of A = τ 2IK reduces our MSEB estimator in (3) to β̂EB1 =

β̂ −
{

1 + K(β̂ − β̂
0
)TV̂

−1
β̂ (β̂ − β̂

0
)
}−1

(β̂ − β̂
0
). Consider the function f1 : R2p → Rp

defined by f1(β̂, β̂
0
) = β̂ −

{
1 + K(β̂ − β̂

0
)TV̂

−1
β̂ (β̂ − β̂

0
)
}−1

(β̂ − β̂
0
) where p is the

length of the column vectors β̂ and β̂
0
. Then, by a first-order multivariate Taylor’s ex-

pansion of f1(β̂, β̂
0
) about (β,β0), an estimate of the variance-covariance matrix of β̂EB1

is given by {∇f1(β̂, β̂
0
)}TVar(β̂, β̂

0
)∇f1(β̂, β̂

0
) where ∇f1(β̂, β̂

0
) = (Ip − C1|C1)

T is the

2p × p augmented gradient matrix of f1 with respect to (β̂, β̂
0
), C1 = w1Ip − 2(w1)

2K(β̂ −

β̂
0
)(β̂ − β̂

0
)TV̂

−1
β̂ , w1 = {1 + K(β̂ − β̂

0
)TV̂

−1
β̂ (β̂ − β̂

0
)}−1, Var(β̂, β̂

0
) is the block matrix

[V 11,V 12;V 21,V 22], V 11 = Var(β̂), V 12 = V T
21 = Cov(β̂, β̂

0
) and V 12 = V ar(β̂

0
)] are

replaced with their estimates.

Our second estimate K−1{θ̂
T
θ̂− tr(V̂ θ̂)}IK of A = τ 2IK reduces our MSEB estimator in

(3) to β̂EB2 = β̂− [1+K{1− tr(V̂ θ̂)(θ̂
T
θ̂)−1}(β̂− β̂

0
)TV̂

−1
β̂ (β̂− β̂

0
)]−1(β̂− β̂

0
). Consider the

function f2 : R2p+K → Rp defined by f2(β̂, β̂
0
, θ̂) = β̂ − [1 + K{1 − tr(V̂ θ̂)(θ̂

T
θ̂)−1}(β̂ −
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β̂
0
)TV̂

−1
β̂ (β̂ − β̂

0
)]−1(β̂ − β̂

0
). Then, by a first-order multivariate Taylor’s expansion of

f2(β̂, β̂
0
, θ̂) about (β,β0,0), an estimate of the variance-covariance matrix of β̂EB2 is given

by {∇f2(β̂, β̂
0
, θ̂)}TVar(β̂, β̂

0
, θ̂)∇f2(β̂, β̂

0
, θ̂) where ∇f2(β̂, β̂

0
, θ̂) = (Ip−C2|C2|D)T is the

(2p + K) × p augmented gradient matrix of f2 with respect to (β̂, β̂
0
, θ̂), C2 = w2Ip −

2(w2)
2K{1 − tr(V̂ θ̂)(θ̂

T
θ̂)−1}(β̂ − β̂

0
)(β̂ − β̂

0
)TV̂

−1
β̂ , D = {2K(w2)

2tr(V̂ θ̂)(θ̂
T
θ̂)−2(β̂ −

β̂
0
)TV̂

−1
β̂ (β̂ − β̂

0
)}(β̂ − β̂

0
)θ̂

T
, w2 = [1 +K{1− tr(V̂ θ̂)(θ̂

T
θ̂)−1}(β̂ − β̂

0
)TV̂

−1
β̂ (β̂ − β̂

0
)]−1,

Var(β̂, β̂
0
, θ̂) is the block matrix [V 11, V 12, V 13; V 21, V 22, V 23; V 31, V 32, V 33], V 11 =

Var(β̂), V 22 = Var(β̂
0
), V 33 = Var(θ̂), V 12 = V T

21 = Cov(β̂, β̂
0
), V 13 = V T

31 = Cov(β̂, θ̂),

and V 23 = V T
32 = Cov(β̂

0
, θ̂) are replaced with their estimates.

Let τ̂ 2IK denote our third estimate of A = τ 2IK . Then from (3), we can write β̂EB3 = β̂−{
1+(Kτ̂)2(θ̂

T
θ̂)−1(β̂−β̂

0
)TV̂

−1
β̂ (β̂−β̂

0
)
}−1

(β̂−β̂
0
). Consider the function f3 : R2p+K → Rp

defined by f3(β̂, β̂
0
, θ̂) = β̂ −

{
1 + (Kτ̂)2(θ̂

T
θ̂)−1(β̂ − β̂

0
)TV̂

−1
β̂ (β̂ − β̂

0
)
}−1

(β̂ − β̂
0
). Then,

by a first-order multivariate Taylor’s expansion of f3(β̂, β̂
0
, θ̂) about (β,β0,0), an estimate of

the variance-covariance matrix of β̂EB3 is given by {∇f3(β̂, β̂
0
, θ̂)}TVar(β̂, β̂

0
, θ̂)∇f3(β̂, β̂

0
, θ̂)

where ∇f3(β̂, β̂
0
, θ̂) = (Ip − C3|C3|E)T is the (2p + K) × p augmented gradient matrix

of f3 with respect to (β̂, β̂
0
, θ̂), C3 = w3Ip − 2(w3)

2(Kτ̂)2(θ̂
T
θ̂)−1(β̂ − β̂

0
)(β̂ − β̂

0
)TV̂

−1
β̂ ,

E = {−2(w3)
2(Kτ̂)2(θ̂

T
θ̂)−2(β̂− β̂

0
)TV̂

−1
β̂ (β̂− β̂

0
)}(β̂− β̂

0
)θ̂

T
, w3 = [1+(Kτ̂)2(θ̂

T
θ̂)−1(β̂−

β̂
0
)TV̂

−1
β̂ (β̂ − β̂

0
)]−1, Var(β̂, β̂

0
, θ̂) is the block matrix [V 11, V 12, V 13; V 21, V 22, V 23; V 31,

V 32, V 33], V 11 = Var(β̂), V 22 = Var(β̂
0
), V 33 = Var(θ̂), V 12 = V T

21 = Cov(β̂, β̂
0
), V 13 =

V T
31 = Cov(β̂, θ̂), and V 23 = V T

32 = Cov(β̂
0
, θ̂) are replaced with their estimates.

An estimate of the variance-covariance matrix of β̂EB4 is identically derived as the es-

timate of the variance-covariance matrix β̂EB3 above. For variance-covariance estimates of

β̃EB1, β̃EB2, β̃EB3 and β̃EB4 we use the formulas derived for β̂EB1, β̂EB2, β̂EB3 and β̂EB4 except

that Cov(β̃, β̃
0
) = (

∑
k Ṽ

−1
β̃k

)−1[
∑

k Ṽ
−1
β̃k
Cov(β̃k, β̃

0

k )(Ṽ
−1
β̃

0
k
)T]{(

∑
k Ṽ

−1
β̃

0
k
)−1}T, Cov(β̃, θ̃) =

(
∑

k Ṽ
−1
β̃k

)−1[
∑

k Ṽ
−1
β̃k
Cov(β̃k, θ̃)] and Cov(β̃

0
, θ̃) = (

∑
k Ṽ

−1
β̃

0
k
)−1[

∑
k Ṽ

−1
β̃

0
k
Cov(β̃

0

k , θ̃)].
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It is important to note that the statistical package used to perform the likelihood estimation

may not report all estimated covariances between the UML and CML parameter estimates

which can impact the variance approximation formulas. In this case, one might consider

replacing all unknown covariances with 0 or resort to a bootstrap estimate of the standard

errors, which we found to be easy to implement.
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Table S1: Bias (BIAS), standard errors (SE1), empirical standard errors (SE2) and 100×MSE
(MSE) of γ̂E, γ̂G and γ̂GE resulting from standard logistic regression (LOG), unconstrained
maximum likelihood (UML), constrained maximum likelihood (CML), empirical Bayes (EB)
and our proposed multi-study empirical Bayes estimators EB1 - EB4 in both IPD and summary
statistic meta-analysis (META) simulation settings with K = 2 individual studies and small
individual study sample sizes randomly generated from [100, 300] under G-E independence over
1,000 Monte Carlo runs. In the meta-analysis setting, we use the inverse variance-covariance
weighted approach to obtain the standard logistic, unconstrained, constrained and empirical
Bayes results.

Main Effect of E Main Effect of G GxE Interaction
IPD BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .016 .1467 .1543 2.405 .021 .1592 .1570 2.506 .015 .1682 .1770 3.152
UML .021 .1425 .1472 2.209 .015 .1565 .1528 2.354 .006 .1579 .1609 2.589
CML .023 .1265 .1280 1.687 .011 .1557 .1523 2.331 -.006 .0987 .1012 1.027
EB .021 .1319 .1345 1.850 .012 .1559 .1528 2.348 .006 .1345 .1369 1.877
EB1 .021 .1374 .1391 1.979 .014 .1563 .1526 2.345 .003 .1394 .1373 1.885
EB2 .022 .1363 .1344 1.853 .013 .1563 .1526 2.344 .000 .1302 .1255 1.574
EB3 .022 .1296 .1354 1.881 .013 .1560 .1526 2.345 .000 .1107 .1273 1.619
EB4 .022 .1296 .1350 1.869 .013 .1560 .1526 2.344 .000 .1106 .1266 1.601
META BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .014 .1490 .1507 2.288 .015 .1607 .1544 2.403 .009 .1710 .1725 2.981
UML .017 .1438 .1449 2.128 .010 .1574 .1510 2.289 .003 .1591 .1592 2.534
CML .020 .1274 .1259 1.622 .011 .1562 .1512 2.295 -.004 .0992 .1004 1.009
EB .021 .1327 .1304 1.740 .009 .1566 .1514 2.297 -.002 .1330 .1254 1.571
EB1 .019 .1378 .1368 1.907 .012 .1569 .1511 2.294 .001 .1377 .1351 1.822
EB2 .018 .1329 .1304 1.733 .012 .1567 .1512 2.297 .001 .1191 .1186 1.406
EB3 .020 .1313 .1331 1.809 .012 .1566 .1512 2.298 -.001 .1139 .1230 1.512
EB4 .020 .1315 .1322 1.784 .012 .1566 .1512 2.298 .000 .1148 .1214 1.472
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Table S2: Bias (BIAS), estimated standard errors (SE1), empirical standard errors (SE2)
and 100×MSE (MSE) of γ̂E, γ̂G and γ̂GE resulting from standard logistic regression, un-
constrained maximum likelihood, constrained maximum likelihood, empirical Bayes and our
proposed multi-study empirical Bayes estimators in both IPD and summary statistic meta-
analysis (META) simulation settings with K = 2 individual studies and small individual study
sample sizes randomly generated from [100, 300] when G-E independence is violated. In the
meta-analysis setting, we use the inverse variance-covariance weighted approach to obtain the
standard logistic, unconstrained, constrained and empirical Bayes results.

θk = .1 for all k Main Effect of E Main Effect of G GxE Interaction
IPD BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .011 .1526 .1568 2.470 .016 .1552 .1588 2.546 .024 .1619 .1677 2.865
UML .017 .1474 .1485 2.233 .010 .1525 .1544 2.391 .014 .1516 .1506 2.286
CML -.019 .1289 .1320 1.775 .012 .1519 .1535 2.369 .067 .0950 .0933 1.315
EB -.007 .1368 .1387 1.927 .013 .1520 .1538 2.379 .043 .1304 .1297 1.863
EB1 .007 .1426 .1423 2.029 .010 .1523 .1540 2.381 .029 .1352 .1296 1.760
EB2 .000 .1422 .1403 1.967 .011 .1523 .1539 2.377 .039 .1294 .1215 1.630
EB3 .000 .1344 .1403 1.967 .011 .1520 .1539 2.377 .039 .1100 .1221 1.644
EB4 .000 .1344 .1403 1.966 .011 .1520 .1539 2.377 .039 .1099 .1219 1.637
META BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .009 .1547 .1529 2.344 .009 .1565 .1560 2.441 .016 .1648 .1637 2.703
UML .013 .1485 .1465 2.161 .005 .1533 .1527 2.334 .009 .1526 .1498 2.249
CML -.021 .1296 .1305 1.748 .011 .1524 .1524 2.333 .067 .0956 .0926 1.309
EB -.014 .1367 .1348 1.834 .009 .1527 .1525 2.331 .043 .1272 .1206 1.638
EB1 .004 .1429 .1405 1.973 .008 .1529 .1525 2.330 .026 .1354 .1287 1.723
EB2 -.005 .1387 .1380 1.905 .009 .1527 .1523 2.325 .041 .1201 .1189 1.584
EB3 -.003 .1355 .1382 1.910 .009 .1526 .1523 2.326 .039 .1126 .1200 1.588
EB4 -.004 .1355 .1382 1.908 .009 .1526 .1523 2.325 .040 .1124 .1196 1.584
θk = −.5 for all k Main Effect of E Main Effect of G GxE Interaction
LOG .008 .1231 .1290 1.670 .017 .1970 .1950 3.830 .014 .2279 .2216 4.927
UML .010 .1224 .1284 1.657 .011 .1941 .1907 3.643 .006 .2174 .2065 4.262
CML .102 .1164 .1240 2.584 -.051 .1877 .1860 3.716 -.342 .1382 .1407 13.699
EB .062 .1203 .1272 1.997 -.036 .1907 .1885 3.682 -.080 .2329 .2207 5.507
EB1 .024 .1235 .1296 1.736 .003 .1937 .1903 3.618 -.046 .2250 .2109 4.656
EB2 .032 .1265 .1320 1.845 -.001 .1943 .1905 3.625 -.074 .2400 .2246 5.590
EB3 .032 .1213 .1318 1.838 -.001 .1927 .1905 3.624 -.073 .2039 .2237 5.532
EB4 .032 .1213 .1318 1.838 -.001 .1927 .1905 3.624 -.073 .2039 .2235 5.526
META BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .005 .1249 .1257 1.581 .008 .1992 .1903 3.625 .007 .2314 .2134 4.554
UML .006 .1239 .1255 1.578 .003 .1958 .1868 3.489 .001 .2187 .2028 4.109
CML .099 .1176 .1210 2.449 -.047 .1886 .1838 3.599 -.333 .1378 .1394 13.048
EB .073 .1199 .1230 2.051 -.051 .1915 .1842 3.650 -.146 .2149 .2022 6.204
EB1 .023 .1252 .1270 1.663 -.003 .1950 .1865 3.474 -.055 .2253 .2076 4.609
EB2 .035 .1255 .1301 1.812 -.008 .1952 .1865 3.479 -.095 .2262 .2221 5.834
EB3 .034 .1219 .1300 1.806 -.008 .1939 .1865 3.482 -.094 .1972 .2222 5.808
EB4 .034 .1220 .1299 1.801 -.008 .1940 .1865 3.481 -.092 .1979 .2210 5.729
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Table S3: Bias (BIAS), standard errors (SE1), empirical standard errors (SE2) and 100×MSE
(MSE) of γ̂E, γ̂G and γ̂GE resulting from standard logistic regression (LOG), unconstrained
maximum likelihood (UML), constrained maximum likelihood (CML), empirical Bayes (EB)
and our proposed multi-study empirical Bayes estimators EB1 - EB4 in both IPD and summary
statistic meta-analysis (META) simulation settings with K = 5 individual studies and small
individual study sample sizes randomly generated from [100, 300] under G-E independence over
1,000 Monte Carlo runs. In the meta-analysis setting, we use the inverse variance-covariance
weighted approach to obtain the standard logistic, unconstrained, constrained and empirical
Bayes results.

Main Effect of E Main Effect of G GxE Interaction
IPD BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .014 .0927 .0907 .841 .006 .1026 .1065 1.136 .008 .1068 .1083 1.178
UML .017 .0909 .0886 .815 .001 .1012 .1031 1.062 .002 .1017 .1026 1.052
CML .018 .0808 .0794 .664 -.001 .1009 .1026 1.052 -.004 .0638 .0647 .420
EB .017 .0835 .0810 .684 .000 .1009 .1030 1.060 .003 .0844 .0830 .690
EB1 .017 .0895 .0861 .771 .001 .1012 .1030 1.060 .001 .0963 .0940 .883
EB2 .017 .0898 .0831 .719 .000 .1014 .1029 1.058 .000 .0900 .0829 .687
EB3 .018 .0836 .0832 .724 .000 .1010 .1029 1.058 -.001 .0744 .0832 .691
EB4 .017 .0836 .0832 .721 .000 .1010 .1029 1.058 .000 .0743 .0832 .691
META BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .010 .0952 .0867 .761 -.005 .1041 .1033 1.069 -.003 .1099 .1026 1.053
UML .012 .0924 .0863 .757 -.007 .1021 .1010 1.025 -.006 .1029 .1003 1.008
CML .014 .0819 .0775 .619 -.002 .1015 .1011 1.021 -.002 .0645 .0635 .404
EB .015 .0844 .0784 .635 -.006 .1017 .1011 1.024 -.007 .0821 .0748 .564
EB1 .014 .0901 .0836 .717 -.005 .1020 .1010 1.022 -.005 .0950 .0905 .820
EB2 .013 .0857 .0807 .667 -.003 .1017 .1010 1.020 .000 .0786 .0762 .581
EB3 .015 .0852 .0804 .668 -.003 .1017 .1011 1.022 -.004 .0769 .0757 .575
EB4 .014 .0852 .0806 .668 -.003 .1017 .1010 1.020 -.002 .0769 .0762 .580
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Table S4: Bias (BIAS), estimated standard errors (SE1), empirical standard errors (SE2)
and 100×MSE (MSE) of γ̂E, γ̂G and γ̂GE resulting from standard logistic regression, un-
constrained maximum likelihood, constrained maximum likelihood, empirical Bayes and our
proposed multi-study empirical Bayes estimators in both IPD and summary statistic meta-
analysis (META) simulation settings with K = 5 individual studies and small individual study
sample sizes randomly generated from [100, 300] when G-E independence is violated. In the
meta-analysis setting, we use the inverse variance-covariance weighted approach to obtain the
standard logistic, unconstrained, constrained and empirical Bayes results.

θk = .1 for all k Main Effect of E Main Effect of G GxE Interaction
IPD BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .012 .1147 .1203 1.461 .010 .1157 .1184 1.411 .015 .1199 .1275 1.646
UML .018 .1114 .1141 1.333 .003 .1138 .1154 1.330 .005 .1128 .1160 1.346
CML -.021 .0972 .0989 1.023 .008 .1135 .1153 1.335 .066 .0713 .0725 .961
EB -.007 .1038 .1064 1.136 .008 .1136 .1155 1.340 .034 .0980 .1023 1.160
EB1 .013 .1102 .1120 1.270 .004 .1138 .1154 1.332 .013 .1090 .1097 1.218
EB2 .002 .1108 .1103 1.216 .005 .1139 .1155 1.336 .030 .1036 .1031 1.149
EB3 .003 .1032 .1104 1.219 .005 .1136 .1155 1.336 .028 .0871 .1046 1.174
EB4 .003 .1031 .1103 1.217 .005 .1136 .1155 1.336 .028 .0867 .1038 1.158
META BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .007 .1184 .1124 1.266 -.004 .1180 .1144 1.308 .000 .1241 .1183 1.399
UML .010 .1134 .1094 1.205 -.006 .1151 .1129 1.278 -.003 .1146 .1126 1.267
CML -.027 .0986 .0954 .981 .005 .1144 .1134 1.288 .067 .0724 .0712 .957
EB -.020 .1036 .0981 1.002 .000 .1147 .1133 1.282 .042 .0934 .0868 .927
EB1 .007 .1111 .1069 1.145 -.003 .1150 .1130 1.276 .007 .1093 .1062 1.132
EB2 -.009 .1051 .1052 1.114 .002 .1147 .1137 1.291 .037 .0902 .0986 1.106
EB3 -.005 .1050 .1049 1.102 .001 .1147 .1135 1.288 .030 .0900 .1004 1.099
EB4 -.006 .1049 .1049 1.103 .001 .1147 .1136 1.289 .032 .0897 .0996 1.095
θk = −.5 for all k Main Effect of E Main Effect of G GxE Interaction
LOG .007 .0683 .0698 .491 .005 .1098 .1070 1.145 .002 .1259 .1317 1.734
UML .007 .0680 .0695 .488 .001 .1087 .1055 1.111 -.002 .1220 .1255 1.573
CML .098 .0648 .0674 1.413 -.054 .1056 .1015 1.320 -.338 .0780 .0799 12.084
EB .039 .0686 .0705 .647 -.037 .1077 .1042 1.220 -.039 .1327 .1372 2.037
EB1 .010 .0683 .0697 .495 -.001 .1087 .1054 1.111 -.010 .1237 .1269 1.619
EB2 .011 .0685 .0702 .504 -.001 .1087 .1054 1.111 -.014 .1253 .1301 1.709
EB3 .011 .0682 .0702 .504 -.001 .1086 .1055 1.111 -.014 .1234 .1304 1.717
EB4 .011 .0682 .0702 .504 -.001 .1086 .1055 1.111 -.014 .1234 .1301 1.710
META BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .002 .0695 .0673 .453 -.007 .1114 .1036 1.078 -.007 .1287 .1242 1.545
UML .003 .0692 .0674 .454 -.009 .1100 .1027 1.061 -.008 .1231 .1216 1.482
CML .094 .0657 .0654 1.305 -.049 .1063 .1005 1.252 -.326 .0776 .0798 11.236
EB .070 .0669 .0669 .942 -.061 .1077 .1003 1.380 -.160 .1198 .1271 4.161
EB1 .006 .0695 .0677 .461 -.010 .1099 .1027 1.062 -.017 .1253 .1235 1.554
EB2 .008 .0696 .0691 .484 -.010 .1099 .1027 1.065 -.026 .1259 .1313 1.790
EB3 .009 .0691 .0699 .496 -.011 .1098 .1028 1.066 -.030 .1215 .1352 1.912
EB4 .009 .0691 .0692 .486 -.010 .1098 .1027 1.065 -.027 .1218 .1318 1.807
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Table S5: Bias (BIAS), standard errors (SE1), empirical standard errors (SE2) and 100×MSE
(MSE) of γ̂E, γ̂G and γ̂GE resulting from standard logistic regression (LOG), unconstrained
maximum likelihood (UML), constrained maximum likelihood (CML), empirical Bayes (EB)
and our proposed multi-study empirical Bayes estimators EB1 - EB4 in both IPD and summary
statistic meta-analysis (META) simulation settings (K = 10 individual studies with sample
sizes nk = 1000 + 100(k − 1), k = 1, . . . , K) with MAF = 5% under G-E independence over
1,000 Monte Carlo runs. In the meta-analysis setting, we use the inverse variance-covariance
weighted approach to obtain the standard logistic, unconstrained, constrained and empirical
Bayes results.

Main Effect of E Main Effect of G GxE Interaction
IPD BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .008 .0181 .0181 .039 .005 .0508 .0508 .260 .005 .0517 .0547 .302
UML .008 .0181 .0181 .040 .004 .0507 .0507 .259 .002 .0503 .0525 .276
CML .009 .0176 .0177 .039 .003 .0506 .0506 .256 -.003 .0298 .0307 .095
EB .009 .0176 .0177 .039 .003 .0506 .0506 .256 .002 .0413 .0422 .179
EB1 .008 .0180 .0180 .039 .004 .0507 .0507 .259 .001 .0487 .0501 .251
EB2 .008 .0182 .0179 .039 .004 .0507 .0507 .258 .001 .0447 .0441 .194
EB3 .008 .0178 .0179 .039 .004 .0506 .0507 .258 -.001 .0369 .0440 .193
EB4 .008 .0178 .0179 .039 .004 .0506 .0507 .258 .000 .0368 .0441 .194
META BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .007 .0182 .0180 .037 .000 .0511 .0502 .252 -.003 .0523 .0531 .283
UML .007 .0181 .0180 .038 -.001 .0510 .0502 .251 -.004 .0505 .0518 .270
CML .008 .0177 .0176 .037 .005 .0507 .0502 .254 .003 .0297 .0306 .094
EB .008 .0177 .0177 .037 .002 .0508 .0502 .252 -.001 .0379 .0365 .133
EB1 .008 .0181 .0179 .038 .001 .0510 .0502 .252 -.003 .0480 .0489 .240
EB2 .008 .0179 .0178 .037 .004 .0509 .0503 .254 .002 .0380 .0401 .161
EB3 .008 .0178 .0178 .038 .003 .0509 .0504 .255 -.002 .0376 .0400 .161
EB4 .008 .0178 .0178 .038 .004 .0509 .0503 .254 .000 .0377 .0403 .163
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Table S6: Bias (BIAS), estimated standard errors (SE1), empirical standard errors (SE2)
and 100×MSE (MSE) of γ̂E, γ̂G and γ̂GE resulting from standard logistic regression, un-
constrained maximum likelihood, constrained maximum likelihood, empirical Bayes and our
proposed multi-study empirical Bayes estimators in both IPD and summary statistic meta-
analysis (META) simulation settings (K = 10 individual studies with sample sizes nk =
1000 + 100(k − 1), k = 1, . . . , K) with MAF = 5% when G-E independence is violated. In
the meta-analysis setting, we use the inverse variance-covariance weighted approach to obtain
the standard logistic, unconstrained, constrained and empirical Bayes results.

θk = .1 for all k Main Effect of E Main Effect of G GxE Interaction
IPD BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .009 .0184 .0189 .044 .008 .0482 .0483 .240 .005 .0468 .0479 .232
UML .010 .0184 .0189 .045 .007 .0481 .0481 .237 .002 .0455 .0464 .215
CML .002 .0178 .0182 .034 .010 .0480 .0480 .240 .063 .0267 .0271 .471
EB .004 .0180 .0184 .035 .010 .0480 .0480 .240 .022 .0443 .0449 .248
EB1 .009 .0184 .0189 .044 .008 .0481 .0481 .237 .005 .0458 .0462 .216
EB2 .008 .0190 .0191 .043 .008 .0481 .0481 .237 .015 .0501 .0512 .285
EB3 .008 .0182 .0190 .043 .008 .0481 .0481 .237 .013 .0404 .0504 .271
EB4 .008 .0182 .0191 .043 .008 .0481 .0481 .237 .014 .0402 .0508 .277
META BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .008 .0185 .0188 .042 .004 .0484 .0479 .231 -.003 .0472 .0469 .220
UML .009 .0184 .0187 .043 .003 .0483 .0478 .229 -.003 .0458 .0459 .211
CML .001 .0178 .0181 .033 .010 .0482 .0478 .238 .067 .0267 .0270 .525
EB .001 .0179 .0181 .033 .008 .0482 .0476 .233 .042 .0352 .0350 .295
EB1 .008 .0184 .0187 .042 .004 .0483 .0478 .230 .000 .0461 .0462 .213
EB2 .006 .0182 .0189 .039 .007 .0482 .0481 .235 .025 .0380 .0546 .360
EB3 .007 .0183 .0188 .040 .006 .0482 .0480 .234 .014 .0404 .0534 .306
EB4 .007 .0182 .0188 .040 .006 .0482 .0481 .235 .018 .0391 .0543 .328
θk = −.5 for all k Main Effect of E Main Effect of G GxE Interaction
LOG .008 .0174 .0174 .037 .007 .0691 .0689 .480 .011 .0829 .0826 .693
UML .009 .0174 .0175 .038 .006 .0689 .0685 .472 .006 .0808 .0797 .638
CML .024 .0172 .0173 .088 -.059 .0661 .0648 .763 -.333 .0498 .0505 11.371
EB .017 .0174 .0174 .059 -.026 .0690 .0685 .534 -.008 .0856 .0845 .721
EB1 .009 .0174 .0175 .038 .005 .0689 .0685 .471 .004 .0811 .0799 .639
EB2 .009 .0174 .0175 .038 .005 .0689 .0685 .471 .004 .0811 .0800 .642
EB3 .009 .0174 .0175 .038 .005 .0689 .0685 .471 .004 .0811 .0801 .642
EB4 .009 .0174 .0175 .038 .005 .0689 .0685 .471 .004 .0811 .0801 .642
META BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .008 .0175 .0173 .036 -.003 .0700 .0672 .453 -.003 .0846 .0790 .625
UML .008 .0175 .0173 .036 -.002 .0699 .0671 .450 -.002 .0816 .0788 .621
CML .023 .0173 .0172 .084 -.050 .0666 .0646 .664 -.321 .0495 .0508 10.577
EB .022 .0173 .0173 .080 -.064 .0677 .0643 .822 -.148 .0799 .0811 2.855
EB1 .008 .0175 .0173 .036 -.002 .0699 .0671 .450 -.004 .0820 .0791 .628
EB2 .008 .0175 .0173 .036 -.002 .0699 .0671 .450 -.005 .0821 .0795 .635
EB3 .008 .0175 .0174 .036 -.002 .0698 .0671 .451 -.006 .0815 .0805 .651
EB4 .008 .0175 .0173 .036 -.002 .0698 .0671 .451 -.006 .0815 .0797 .638

11



Table S7: Bias (BIAS), standard errors (SE1), empirical standard errors (SE2) and 100×MSE
(MSE) of γ̂E, γ̂G and γ̂GE resulting from standard logistic regression (LOG), unconstrained
maximum likelihood (UML), constrained maximum likelihood (CML), empirical Bayes (EB)
and our proposed multi-study empirical Bayes estimators EB1 - EB4 in both IPD and summary
statistic meta-analysis (META) simulation settings (K = 10 individual studies with sample
sizes nk = 1000 + 100(k − 1), k = 1, . . . , K) with MAF = 10% under G-E independence over
1,000 Monte Carlo runs. In the meta-analysis setting, we use the inverse variance-covariance
weighted approach to obtain the standard logistic, unconstrained, constrained and empirical
Bayes results.

Main Effect of E Main Effect of G GxE Interaction
IPD BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .009 .0193 .0188 .044 .007 .0371 .0375 .145 .001 .0379 .0375 .141
UML .010 .0192 .0188 .044 .006 .0370 .0373 .142 -.001 .0369 .0367 .135
CML .010 .0183 .0183 .044 .005 .0369 .0372 .141 -.005 .0221 .0219 .051
EB .010 .0184 .0182 .043 .005 .0369 .0372 .141 -.002 .0302 .0282 .080
EB1 .010 .0192 .0187 .044 .006 .0370 .0373 .142 -.002 .0360 .0348 .122
EB2 .010 .0195 .0184 .043 .006 .0370 .0373 .142 -.003 .0339 .0297 .089
EB3 .010 .0186 .0184 .044 .006 .0369 .0373 .142 -.004 .0269 .0295 .089
EB4 .010 .0186 .0184 .044 .006 .0369 .0373 .142 -.003 .0268 .0296 .089
META BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .008 .0194 .0187 .042 .003 .0372 .0373 .140 -.004 .0381 .0367 .136
UML .009 .0193 .0187 .042 .003 .0371 .0371 .138 -.004 .0370 .0363 .134
CML .009 .0183 .0182 .042 .006 .0370 .0371 .140 -.003 .0221 .0219 .049
EB .009 .0184 .0182 .042 .004 .0370 .0371 .139 -.005 .0280 .0256 .067
EB1 .009 .0192 .0185 .042 .004 .0371 .0371 .139 -.004 .0354 .0341 .118
EB2 .009 .0188 .0182 .041 .005 .0370 .0371 .140 -.002 .0285 .0275 .076
EB3 .009 .0187 .0183 .042 .005 .0370 .0371 .140 -.004 .0282 .0278 .079
EB4 .009 .0187 .0182 .042 .005 .0370 .0371 .140 -.003 .0282 .0277 .078
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Table S8: Bias (BIAS), estimated standard errors (SE1), empirical standard errors (SE2)
and 100×MSE (MSE) of γ̂E, γ̂G and γ̂GE resulting from standard logistic regression, un-
constrained maximum likelihood, constrained maximum likelihood, empirical Bayes and our
proposed multi-study empirical Bayes estimators in both IPD and summary statistic meta-
analysis (META) simulation settings (K = 10 individual studies with sample sizes nk =
1000 + 100(k − 1), k = 1, . . . , K) with MAF = 10% when G-E independence is violated. In
the meta-analysis setting, we use the inverse variance-covariance weighted approach to obtain
the standard logistic, unconstrained, constrained and empirical Bayes results.

θk = .1 for all k Main Effect of E Main Effect of G GxE Interaction
IPD BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .010 .0199 .0200 .050 .006 .0355 .0353 .128 .006 .0350 .0355 .130
UML .011 .0198 .0200 .052 .005 .0353 .0350 .125 .003 .0339 .0343 .119
CML -.004 .0186 .0188 .037 .008 .0353 .0350 .130 .064 .0202 .0203 .457
EB .002 .0194 .0194 .038 .008 .0353 .0350 .130 .019 .0351 .0356 .164
EB1 .011 .0199 .0200 .051 .005 .0353 .0350 .125 .005 .0342 .0346 .122
EB2 .009 .0210 .0205 .051 .006 .0354 .0350 .126 .010 .0397 .0392 .164
EB3 .009 .0197 .0204 .051 .006 .0353 .0350 .126 .010 .0325 .0385 .157
EB4 .009 .0197 .0204 .051 .006 .0353 .0350 .126 .010 .0325 .0387 .159
META BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .010 .0200 .0199 .049 .003 .0356 .0351 .124 .001 .0352 .0352 .124
UML .010 .0199 .0199 .050 .003 .0354 .0349 .122 .000 .0340 .0342 .117
CML -.005 .0187 .0187 .037 .009 .0354 .0350 .129 .066 .0203 .0202 .481
EB -.004 .0188 .0188 .037 .007 .0354 .0349 .127 .043 .0268 .0271 .255
EB1 .010 .0199 .0199 .049 .003 .0354 .0349 .123 .002 .0345 .0347 .120
EB2 .006 .0196 .0206 .047 .005 .0354 .0350 .125 .017 .0306 .0443 .226
EB3 .008 .0196 .0206 .048 .004 .0354 .0349 .124 .012 .0314 .0421 .192
EB4 .007 .0196 .0206 .047 .004 .0354 .0350 .124 .014 .0309 .0432 .207
θk = −.5 for all k Main Effect of E Main Effect of G GxE Interaction
LOG .007 .0178 .0179 .037 .008 .0490 .0493 .250 .005 .0580 .0569 .325
UML .007 .0178 .0179 .038 .007 .0488 .0494 .249 .002 .0569 .0557 .310
CML .040 .0175 .0175 .187 -.054 .0470 .0481 .520 -.335 .0352 .0350 11.340
EB .015 .0179 .0181 .054 -.015 .0493 .0494 .268 -.005 .0591 .0576 .334
EB1 .007 .0178 .0179 .038 .007 .0488 .0494 .249 .001 .0570 .0557 .311
EB2 .008 .0178 .0179 .038 .007 .0488 .0494 .249 .001 .0570 .0558 .311
EB3 .008 .0178 .0179 .038 .007 .0488 .0494 .249 .001 .0570 .0558 .311
EB4 .008 .0178 .0179 .038 .007 .0488 .0494 .249 .001 .0570 .0558 .311
META BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .006 .0179 .0178 .036 .002 .0493 .0485 .236 -.002 .0587 .0556 .309
UML .006 .0179 .0178 .036 .002 .0491 .0487 .237 -.002 .0571 .0550 .303
CML .039 .0176 .0174 .180 -.050 .0471 .0478 .482 -.328 .0351 .0350 10.876
EB .031 .0177 .0177 .128 -.052 .0479 .0473 .498 -.093 .0601 .0649 1.278
EB1 .007 .0179 .0179 .036 .002 .0491 .0487 .237 -.003 .0572 .0551 .305
EB2 .007 .0179 .0179 .036 .002 .0491 .0487 .237 -.003 .0573 .0552 .306
EB3 .007 .0179 .0179 .036 .002 .0491 .0487 .237 -.003 .0571 .0552 .306
EB4 .007 .0179 .0179 .036 .002 .0491 .0487 .237 -.003 .0571 .0552 .306
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Table S9: Bias (BIAS), standard errors (SE1), empirical standard errors (SE2) and 100×MSE
(MSE) of γ̂E, γ̂G and γ̂GE resulting from standard logistic regression (LOG), unconstrained
maximum likelihood (UML), constrained maximum likelihood (CML), empirical Bayes (EB)
and our proposed multi-study empirical Bayes estimators EB1 - EB4 in both IPD and summary
statistic meta-analysis (META) simulation settings (K = 10 individual studies with sample
sizes nk = 1000 + 100(k − 1), k = 1, . . . , K) with marginal disease prevalence 10% under
G-E independence over 1,000 Monte Carlo runs. In the meta-analysis setting, we use the
inverse variance-covariance weighted approach to obtain the standard logistic, unconstrained,
constrained and empirical Bayes results.

Main Effect of E Main Effect of G GxE Interaction
IPD BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .007 .0233 .0231 .059 .005 .0264 .0270 .075 .005 .0273 .0260 .070
UML .009 .0230 .0229 .061 .003 .0262 .0267 .072 .001 .0264 .0250 .063
CML .017 .0205 .0209 .073 .002 .0262 .0266 .071 -.015 .0165 .0157 .046
EB .013 .0215 .0213 .064 .002 .0262 .0266 .071 -.003 .0236 .0219 .049
EB1 .010 .0229 .0227 .061 .003 .0262 .0267 .072 .000 .0261 .0242 .059
EB2 .012 .0234 .0223 .065 .003 .0263 .0267 .072 -.005 .0253 .0233 .057
EB3 .012 .0216 .0223 .065 .003 .0262 .0267 .072 -.005 .0208 .0233 .057
EB4 .012 .0216 .0223 .065 .003 .0262 .0267 .072 -.005 .0208 .0233 .057
META BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .007 .0234 .0228 .057 .003 .0265 .0269 .073 .002 .0274 .0257 .066
UML .008 .0231 .0227 .059 .002 .0263 .0267 .071 .000 .0265 .0248 .062
CML .017 .0206 .0207 .070 .002 .0262 .0266 .071 -.014 .0165 .0157 .044
EB .015 .0210 .0209 .067 .001 .0262 .0266 .071 -.010 .0206 .0181 .042
EB1 .009 .0230 .0225 .059 .002 .0263 .0266 .071 -.001 .0258 .0239 .057
EB2 .013 .0219 .0222 .065 .002 .0262 .0266 .071 -.007 .0215 .0219 .053
EB3 .013 .0217 .0219 .065 .002 .0262 .0266 .071 -.008 .0210 .0214 .052
EB4 .013 .0218 .0220 .065 .002 .0262 .0266 .071 -.007 .0212 .0218 .052
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Table S10: Bias (BIAS), estimated standard errors (SE1), empirical standard errors (SE2)
and 100×MSE (MSE) of γ̂E, γ̂G and γ̂GE resulting from standard logistic regression, un-
constrained maximum likelihood, constrained maximum likelihood, empirical Bayes and our
proposed multi-study empirical Bayes estimators in both IPD and summary statistic meta-
analysis (META) simulation settings (K = 10 individual studies with sample sizes nk =
1000 + 100(k − 1), k = 1, . . . , K) with marginal disease prevalence 10% when G-E indepen-
dence is violated. In the meta-analysis setting, we use the inverse variance-covariance weighted
approach to obtain the standard logistic, unconstrained, constrained and empirical Bayes re-
sults.

θk = .1 for all k Main Effect of E Main Effect of G GxE Interaction
IPD BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .011 .0247 .0254 .076 .005 .0258 .0251 .066 .003 .0264 .0270 .074
UML .013 .0244 .0252 .081 .004 .0256 .0249 .063 .000 .0254 .0259 .067
CML -.017 .0213 .0216 .076 .008 .0256 .0249 .069 .052 .0159 .0161 .294
EB .000 .0245 .0250 .062 .008 .0256 .0249 .068 .014 .0270 .0277 .095
EB1 .012 .0245 .0253 .079 .004 .0256 .0249 .063 .001 .0258 .0262 .069
EB2 .011 .0257 .0265 .081 .004 .0257 .0249 .064 .004 .0280 .0293 .088
EB3 .011 .0243 .0264 .081 .004 .0256 .0249 .064 .004 .0250 .0291 .086
EB4 .011 .0243 .0264 .081 .004 .0256 .0249 .064 .004 .0250 .0292 .087
META BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .011 .0248 .0252 .075 .003 .0259 .0250 .064 .001 .0265 .0268 .072
UML .012 .0244 .0250 .078 .002 .0256 .0248 .062 -.002 .0255 .0258 .067
CML -.018 .0213 .0215 .077 .008 .0256 .0249 .068 .052 .0159 .0161 .296
EB -.013 .0222 .0221 .065 .007 .0256 .0248 .067 .033 .0208 .0208 .151
EB1 .012 .0245 .0251 .077 .003 .0257 .0248 .062 .000 .0259 .0261 .068
EB2 .007 .0240 .0274 .080 .004 .0256 .0250 .063 .008 .0241 .0328 .114
EB3 .008 .0240 .0270 .079 .003 .0256 .0249 .063 .006 .0241 .0318 .105
EB4 .008 .0239 .0272 .080 .003 .0256 .0249 .063 .007 .0239 .0323 .109
θk = −.5 for all k Main Effect of E Main Effect of G GxE Interaction
LOG .006 .0194 .0192 .040 .005 .0316 .0318 .104 .003 .0361 .0357 .129
UML .006 .0194 .0191 .041 .004 .0315 .0315 .100 .001 .0355 .0347 .121
CML .096 .0185 .0184 .955 -.049 .0306 .0306 .336 -.337 .0225 .0219 11.377
EB .010 .0195 .0193 .047 -.008 .0319 .0320 .110 .000 .0364 .0359 .129
EB1 .007 .0194 .0191 .041 .004 .0315 .0315 .100 .001 .0355 .0347 .121
EB2 .007 .0194 .0191 .041 .004 .0315 .0315 .100 .001 .0355 .0347 .121
EB3 .007 .0194 .0191 .041 .004 .0315 .0315 .100 .001 .0355 .0347 .121
EB4 .007 .0194 .0191 .041 .004 .0315 .0315 .100 .001 .0355 .0347 .121
META BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .005 .0195 .0190 .039 .003 .0317 .0316 .100 .001 .0363 .0353 .124
UML .006 .0194 .0190 .039 .002 .0315 .0313 .098 .000 .0355 .0345 .119
CML .095 .0185 .0182 .938 -.048 .0306 .0305 .327 -.334 .0225 .0218 11.210
EB .034 .0196 .0195 .153 -.039 .0312 .0309 .248 -.033 .0381 .0374 .249
EB1 .006 .0194 .0190 .039 .002 .0315 .0313 .098 -.001 .0356 .0345 .119
EB2 .006 .0194 .0190 .039 .002 .0315 .0313 .098 -.001 .0356 .0345 .119
EB3 .006 .0194 .0190 .039 .002 .0315 .0313 .098 -.001 .0355 .0345 .119
EB4 .006 .0194 .0190 .039 .002 .0315 .0313 .098 -.001 .0355 .0345 .119
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Table S11: Bias (BIAS), standard errors (SE1), empirical standard errors (SE2) and 100×MSE
(MSE) of γ̂E, γ̂G and γ̂GE resulting from standard logistic regression (LOG), unconstrained
maximum likelihood (UML), constrained maximum likelihood (CML), empirical Bayes (EB)
and our proposed multi-study empirical Bayes estimators EB1 - EB4 in both IPD and summary
statistic meta-analysis (META) simulation settings (K = 10 individual studies with sample
sizes nk = 1000 + 100(k − 1), k = 1, . . . , K) with marginal disease prevalence 20% under
G-E independence over 1,000 Monte Carlo runs. In the meta-analysis setting, we use the
inverse variance-covariance weighted approach to obtain the standard logistic, unconstrained,
constrained and empirical Bayes results.

Main Effect of E Main Effect of G GxE Interaction
IPD BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .006 .0229 .0235 .059 .004 .0266 .0256 .067 .003 .0276 .0279 .079
UML .008 .0227 .0233 .061 .002 .0264 .0254 .065 -.001 .0267 .0269 .073
CML .021 .0203 .0208 .088 .000 .0263 .0253 .064 -.028 .0167 .0165 .107
EB .014 .0218 .0219 .068 .000 .0264 .0253 .064 -.007 .0260 .0259 .072
EB1 .009 .0227 .0232 .062 .002 .0264 .0254 .065 -.003 .0268 .0267 .072
EB2 .012 .0235 .0233 .068 .001 .0265 .0254 .064 -.009 .0276 .0280 .086
EB3 .012 .0217 .0233 .069 .001 .0264 .0254 .064 -.009 .0227 .0281 .087
EB4 .012 .0217 .0233 .068 .001 .0264 .0254 .064 -.009 .0227 .0281 .087
META BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .005 .0230 .0233 .057 .002 .0267 .0254 .065 .001 .0277 .0277 .077
UML .007 .0228 .0232 .059 .001 .0265 .0253 .064 -.002 .0268 .0269 .073
CML .021 .0204 .0207 .085 -.001 .0264 .0252 .064 -.028 .0167 .0165 .103
EB .019 .0208 .0208 .078 -.001 .0264 .0252 .064 -.019 .0212 .0198 .077
EB1 .008 .0229 .0232 .061 .001 .0265 .0253 .064 -.004 .0267 .0266 .072
EB2 .013 .0218 .0229 .069 .000 .0264 .0253 .064 -.013 .0226 .0263 .086
EB3 .014 .0216 .0229 .071 .000 .0264 .0253 .064 -.014 .0220 .0263 .088
EB4 .013 .0217 .0229 .070 .000 .0264 .0253 .064 -.013 .0222 .0264 .087
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Table S12: Bias (BIAS), estimated standard errors (SE1), empirical standard errors (SE2)
and 100×MSE (MSE) of γ̂E, γ̂G and γ̂GE resulting from standard logistic regression, un-
constrained maximum likelihood, constrained maximum likelihood, empirical Bayes and our
proposed multi-study empirical Bayes estimators in both IPD and summary statistic meta-
analysis (META) simulation settings (K = 10 individual studies with sample sizes nk =
1000 + 100(k − 1), k = 1, . . . , K) with marginal disease prevalence 20% when G-E indepen-
dence is violated. In the meta-analysis setting, we use the inverse variance-covariance weighted
approach to obtain the standard logistic, unconstrained, constrained and empirical Bayes re-
sults.

θk = .1 for all k Main Effect of E Main Effect of G GxE Interaction
IPD BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .007 .0243 .0248 .067 .004 .0260 .0257 .068 .002 .0266 .0266 .071
UML .010 .0240 .0246 .071 .002 .0258 .0254 .065 -.002 .0256 .0254 .065
CML -.011 .0211 .0220 .061 .005 .0257 .0254 .067 .036 .0160 .0161 .157
EB -.002 .0232 .0237 .057 .005 .0257 .0254 .067 .013 .0256 .0254 .081
EB1 .009 .0241 .0246 .070 .002 .0258 .0254 .065 -.001 .0259 .0256 .066
EB2 .006 .0262 .0257 .070 .003 .0259 .0254 .065 .005 .0296 .0287 .085
EB3 .007 .0235 .0256 .070 .003 .0258 .0254 .065 .004 .0240 .0285 .083
EB4 .007 .0235 .0257 .070 .003 .0258 .0254 .065 .004 .0239 .0286 .084
META BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .007 .0244 .0247 .066 .002 .0261 .0256 .066 .000 .0267 .0264 .070
UML .009 .0240 .0245 .069 .001 .0258 .0253 .064 -.003 .0257 .0253 .065
CML -.012 .0211 .0220 .063 .005 .0258 .0253 .067 .036 .0161 .0161 .159
EB -.009 .0217 .0221 .057 .005 .0258 .0253 .066 .024 .0204 .0199 .096
EB1 .009 .0241 .0245 .067 .001 .0258 .0253 .064 -.002 .0261 .0257 .067
EB2 .002 .0232 .0260 .068 .002 .0258 .0254 .065 .010 .0228 .0305 .102
EB3 .004 .0232 .0258 .068 .002 .0258 .0255 .065 .008 .0230 .0300 .095
EB4 .003 .0232 .0259 .068 .002 .0258 .0255 .065 .008 .0228 .0303 .099
θk = −.5 for all k Main Effect of E Main Effect of G GxE Interaction
LOG .005 .0193 .0194 .040 .004 .0320 .0318 .102 .001 .0366 .0357 .127
UML .006 .0193 .0194 .041 .002 .0318 .0316 .100 -.001 .0359 .0348 .121
CML .094 .0184 .0186 .925 -.053 .0309 .0305 .371 -.345 .0228 .0232 11.983
EB .009 .0194 .0195 .047 -.010 .0323 .0320 .112 -.003 .0369 .0359 .129
EB1 .006 .0193 .0194 .041 .002 .0318 .0316 .100 -.002 .0360 .0348 .121
EB2 .006 .0193 .0194 .041 .002 .0318 .0316 .100 -.002 .0360 .0348 .121
EB3 .006 .0193 .0194 .041 .002 .0318 .0316 .100 -.002 .0360 .0348 .121
EB4 .006 .0193 .0194 .041 .002 .0318 .0316 .100 -.002 .0360 .0348 .121
META BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .004 .0194 .0194 .039 .001 .0321 .0316 .100 -.001 .0368 .0352 .124
UML .005 .0194 .0193 .040 .000 .0319 .0315 .099 -.003 .0360 .0345 .120
CML .094 .0185 .0186 .909 -.052 .0309 .0303 .360 -.343 .0228 .0232 11.801
EB .033 .0195 .0198 .147 -.042 .0315 .0309 .269 -.036 .0386 .0372 .265
EB1 .005 .0194 .0194 .040 .000 .0319 .0315 .099 -.003 .0360 .0345 .120
EB2 .005 .0194 .0194 .040 .000 .0319 .0315 .099 -.003 .0360 .0345 .120
EB3 .005 .0194 .0194 .040 .000 .0319 .0315 .099 -.003 .0360 .0345 .120
EB4 .005 .0194 .0194 .040 .000 .0319 .0315 .099 -.003 .0360 .0345 .120
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Table S13: Bias (BIAS), standard errors (SE1), empirical standard errors (SE2) and 100×MSE
(MSE) of γ̂E, γ̂G and γ̂GE resulting from standard logistic regression (LOG), unconstrained
maximum likelihood (UML), constrained maximum likelihood (CML), empirical Bayes (EB)
and our proposed multi-study empirical Bayes estimators EB1 - EB4 in both IPD and summary
statistic meta-analysis (META) simulation settings (K = 10 individual studies with sample
sizes nk = 1000 + 100(k− 1), k = 1, . . . , K) with individual study case-control ratios 1:2 under
G-E independence over 1,000 Monte Carlo runs. In the meta-analysis setting, we use the
inverse variance-covariance weighted approach to obtain the standard logistic, unconstrained,
constrained and empirical Bayes results.

Main Effect of E Main Effect of G GxE Interaction
IPD BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .008 .0240 .0235 .062 .003 .0275 .0270 .074 .002 .0269 .0261 .068
UML .009 .0237 .0233 .062 .002 .0273 .0267 .072 .001 .0259 .0252 .064
CML .012 .0220 .0220 .062 .002 .0273 .0268 .072 -.005 .0194 .0189 .038
EB .011 .0224 .0221 .060 .002 .0273 .0268 .072 -.001 .0226 .0214 .046
EB1 .009 .0236 .0231 .062 .002 .0273 .0268 .072 .000 .0255 .0242 .059
EB2 .010 .0238 .0225 .061 .002 .0273 .0268 .072 -.002 .0248 .0218 .048
EB3 .010 .0226 .0225 .061 .002 .0273 .0267 .072 -.002 .0216 .0219 .048
EB4 .010 .0226 .0225 .061 .002 .0273 .0268 .072 -.002 .0216 .0219 .048
META BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .009 .0242 .0234 .062 .002 .0275 .0269 .072 .000 .0271 .0257 .066
UML .009 .0238 .0232 .062 .002 .0273 .0267 .071 .000 .0260 .0251 .063
CML .012 .0220 .0220 .062 .002 .0273 .0267 .072 -.004 .0194 .0189 .037
EB .011 .0223 .0220 .062 .002 .0273 .0268 .072 -.003 .0220 .0204 .042
EB1 .010 .0236 .0229 .062 .002 .0273 .0267 .071 -.001 .0251 .0239 .057
EB2 .011 .0228 .0224 .062 .002 .0273 .0267 .072 -.002 .0222 .0211 .045
EB3 .011 .0227 .0224 .062 .002 .0273 .0267 .072 -.002 .0219 .0212 .046
EB4 .011 .0227 .0224 .062 .002 .0273 .0267 .072 -.002 .0219 .0212 .045
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Table S14: Bias (BIAS), estimated standard errors (SE1), empirical standard errors (SE2)
and 100×MSE (MSE) of γ̂E, γ̂G and γ̂GE resulting from standard logistic regression, un-
constrained maximum likelihood, constrained maximum likelihood, empirical Bayes and our
proposed multi-study empirical Bayes estimators in both IPD and summary statistic meta-
analysis (META) simulation settings (K = 10 individual studies with sample sizes nk =
1000 + 100(k − 1), k = 1, . . . , K) with individual study case-control ratios 1:2 when G-E in-
dependence is violated. In the meta-analysis setting, we use the inverse variance-covariance
weighted approach to obtain the standard logistic, unconstrained, constrained and empirical
Bayes results.

θk = .1 for all k Main Effect of E Main Effect of G GxE Interaction
IPD BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .009 .0256 .0255 .072 .003 .0269 .0272 .075 .003 .0259 .0261 .069
UML .010 .0252 .0252 .074 .003 .0267 .0271 .074 .001 .0249 .0250 .062
CML -.025 .0230 .0232 .118 .006 .0267 .0270 .077 .061 .0186 .0192 .405
EB -.003 .0258 .0256 .066 .006 .0267 .0270 .076 .013 .0270 .0271 .091
EB1 .010 .0252 .0252 .073 .003 .0267 .0271 .074 .002 .0251 .0251 .063
EB2 .009 .0255 .0256 .074 .003 .0268 .0271 .074 .003 .0257 .0263 .070
EB3 .009 .0252 .0256 .073 .003 .0267 .0271 .074 .003 .0251 .0262 .070
EB4 .009 .0252 .0256 .074 .003 .0267 .0271 .074 .003 .0250 .0262 .070
META BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .009 .0257 .0252 .072 .002 .0270 .0271 .074 .001 .0261 .0257 .066
UML .010 .0252 .0251 .073 .002 .0268 .0270 .073 .000 .0250 .0249 .062
CML -.025 .0230 .0232 .118 .006 .0268 .0270 .076 .061 .0187 .0192 .410
EB -.018 .0238 .0237 .088 .005 .0268 .0270 .076 .036 .0224 .0230 .183
EB1 .010 .0253 .0251 .072 .002 .0268 .0270 .073 .001 .0252 .0250 .063
EB2 .008 .0252 .0261 .074 .002 .0268 .0270 .074 .004 .0250 .0279 .080
EB3 .008 .0251 .0259 .074 .002 .0268 .0270 .074 .004 .0247 .0272 .075
EB4 .008 .0251 .0259 .073 .002 .0268 .0270 .074 .004 .0247 .0273 .076
θk = −.5 for all k Main Effect of E Main Effect of G GxE Interaction
LOG .004 .0200 .0200 .042 .005 .0324 .0322 .106 .003 .0359 .0364 .133
UML .005 .0199 .0199 .042 .004 .0322 .0319 .103 .002 .0352 .0354 .125
CML .092 .0192 .0193 .875 -.041 .0317 .0310 .261 -.324 .0265 .0267 10.577
EB .009 .0200 .0201 .048 -.011 .0325 .0324 .116 -.001 .0360 .0366 .134
EB1 .005 .0199 .0199 .042 .004 .0322 .0319 .103 .001 .0352 .0354 .125
EB2 .005 .0199 .0199 .042 .004 .0322 .0319 .103 .001 .0352 .0354 .125
EB3 .005 .0199 .0199 .042 .004 .0322 .0319 .103 .001 .0352 .0354 .125
EB4 .005 .0199 .0199 .042 .004 .0322 .0319 .103 .001 .0352 .0354 .125
META BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .005 .0201 .0198 .041 .004 .0325 .0320 .104 .001 .0361 .0359 .129
UML .005 .0200 .0198 .041 .004 .0323 .0318 .102 .001 .0353 .0352 .124
CML .092 .0193 .0192 .874 -.038 .0317 .0309 .242 -.321 .0264 .0266 10.386
EB .035 .0202 .0200 .159 -.033 .0320 .0313 .208 -.034 .0375 .0376 .254
EB1 .005 .0200 .0198 .041 .004 .0323 .0318 .102 .001 .0353 .0352 .124
EB2 .005 .0200 .0198 .041 .004 .0323 .0318 .102 .001 .0353 .0352 .124
EB3 .005 .0200 .0198 .041 .004 .0323 .0318 .102 .001 .0353 .0352 .124
EB4 .005 .0200 .0198 .041 .004 .0323 .0318 .102 .001 .0353 .0352 .124
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Table S15: Bias (BIAS), standard errors (SE1), empirical standard errors (SE2) and 100×MSE
(MSE) of γ̂E, γ̂G and γ̂GE resulting from standard logistic regression (LOG), unconstrained
maximum likelihood (UML), constrained maximum likelihood (CML), empirical Bayes (EB)
and our proposed multi-study empirical Bayes estimators EB1 - EB4 in both IPD and summary
statistic meta-analysis (META) simulation settings (K = 10 individual studies with sample
sizes nk = 1000 + 100(k− 1), k = 1, . . . , K) with individual study case-control ratios 1:4 under
G-E independence over 1,000 Monte Carlo runs. In the meta-analysis setting, we use the
inverse variance-covariance weighted approach to obtain the standard logistic, unconstrained,
constrained and empirical Bayes results.

Main Effect of E Main Effect of G GxE Interaction
IPD BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .003 .0276 .0277 .078 .005 .0323 .0312 .099 .003 .0300 .0311 .097
UML .005 .0273 .0273 .076 .004 .0321 .0310 .097 .000 .0289 .0298 .089
CML .008 .0261 .0257 .073 .004 .0321 .0310 .097 -.006 .0245 .0254 .068
EB .007 .0263 .0260 .072 .004 .0321 .0310 .097 -.002 .0266 .0272 .074
EB1 .005 .0272 .0269 .075 .004 .0321 .0310 .097 -.001 .0287 .0289 .083
EB2 .006 .0272 .0262 .073 .004 .0321 .0310 .097 -.003 .0280 .0269 .074
EB3 .007 .0265 .0262 .073 .004 .0321 .0310 .097 -.004 .0260 .0269 .074
EB4 .006 .0265 .0262 .073 .004 .0321 .0310 .097 -.004 .0260 .0269 .074
META BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .006 .0277 .0273 .078 .005 .0323 .0309 .098 .000 .0303 .0306 .093
UML .006 .0273 .0271 .077 .004 .0321 .0309 .097 .000 .0290 .0297 .088
CML .009 .0261 .0256 .074 .005 .0321 .0309 .098 -.005 .0244 .0254 .067
EB .009 .0262 .0258 .075 .004 .0321 .0308 .097 -.004 .0261 .0262 .071
EB1 .007 .0272 .0268 .076 .005 .0321 .0309 .097 -.001 .0284 .0285 .081
EB2 .008 .0266 .0260 .074 .005 .0321 .0309 .098 -.003 .0264 .0266 .071
EB3 .008 .0266 .0259 .074 .005 .0321 .0309 .098 -.003 .0262 .0264 .071
EB4 .008 .0266 .0260 .074 .005 .0321 .0309 .098 -.003 .0262 .0265 .071
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Table S16: Bias (BIAS), estimated standard errors (SE1), empirical standard errors (SE2)
and 100×MSE (MSE) of γ̂E, γ̂G and γ̂GE resulting from standard logistic regression, un-
constrained maximum likelihood, constrained maximum likelihood, empirical Bayes and our
proposed multi-study empirical Bayes estimators in both IPD and summary statistic meta-
analysis (META) simulation settings (K = 10 individual studies with sample sizes nk =
1000 + 100(k − 1), k = 1, . . . , K) with individual study case-control ratios 1:4 when G-E in-
dependence is violated. In the meta-analysis setting, we use the inverse variance-covariance
weighted approach to obtain the standard logistic, unconstrained, constrained and empirical
Bayes results.

θk = .1 for all k Main Effect of E Main Effect of G GxE Interaction
LOG .004 .0292 .0292 .087 .003 .0317 .0322 .105 .001 .0287 .0282 .080
UML .006 .0288 .0286 .085 .003 .0315 .0319 .102 -.001 .0277 .0271 .073
CML -.029 .0273 .0270 .155 .004 .0315 .0319 .103 .057 .0235 .0228 .377
EB -.009 .0292 .0293 .095 .004 .0315 .0319 .103 .013 .0296 .0292 .102
EB1 .005 .0289 .0286 .084 .003 .0315 .0319 .102 .000 .0278 .0272 .074
EB2 .004 .0296 .0288 .085 .003 .0315 .0319 .102 .002 .0294 .0280 .079
EB3 .005 .0289 .0288 .085 .003 .0315 .0319 .102 .001 .0279 .0279 .078
EB4 .005 .0289 .0288 .085 .003 .0315 .0319 .102 .001 .0279 .0280 .078
META BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .007 .0294 .0289 .088 .003 .0318 .0320 .103 -.001 .0290 .0276 .076
UML .007 .0289 .0285 .086 .003 .0315 .0318 .102 -.001 .0278 .0270 .073
CML -.027 .0273 .0269 .147 .005 .0315 .0318 .103 .058 .0234 .0227 .389
EB -.021 .0278 .0272 .116 .004 .0315 .0317 .102 .035 .0260 .0251 .184
EB1 .006 .0289 .0285 .085 .003 .0315 .0318 .102 .000 .0279 .0271 .074
EB2 .005 .0289 .0289 .086 .003 .0315 .0318 .102 .002 .0280 .0284 .081
EB3 .005 .0288 .0288 .086 .003 .0315 .0318 .102 .002 .0277 .0282 .080
EB4 .005 .0288 .0288 .086 .003 .0315 .0318 .102 .002 .0277 .0282 .080
θk = −.5 for all k Main Effect of E Main Effect of G GxE Interaction
LOG .003 .0230 .0232 .055 .001 .0375 .0385 .148 .001 .0404 .0399 .159
UML .003 .0230 .0232 .055 .000 .0373 .0381 .145 -.001 .0397 .0390 .152
CML .087 .0224 .0224 .807 -.038 .0370 .0375 .283 -.319 .0336 .0333 10.283
EB .009 .0231 .0232 .061 -.018 .0375 .0386 .180 -.004 .0406 .0401 .162
EB1 .003 .0230 .0232 .055 .000 .0373 .0381 .145 -.001 .0397 .0390 .152
EB2 .003 .0230 .0232 .055 .000 .0373 .0381 .145 -.001 .0397 .0390 .152
EB3 .003 .0230 .0232 .055 .000 .0373 .0381 .145 -.001 .0397 .0390 .152
EB4 .003 .0230 .0232 .055 .000 .0373 .0381 .145 -.001 .0397 .0390 .152
META BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .004 .0231 .0231 .055 .003 .0377 .0381 .146 .000 .0408 .0392 .154
UML .004 .0231 .0231 .055 .003 .0374 .0378 .144 .000 .0398 .0389 .152
CML .088 .0224 .0223 .830 -.033 .0371 .0374 .246 -.315 .0334 .0335 10.013
EB .040 .0231 .0229 .213 -.031 .0372 .0376 .239 -.045 .0421 .0407 .368
EB1 .005 .0231 .0231 .055 .003 .0374 .0378 .144 .000 .0398 .0390 .152
EB2 .005 .0231 .0231 .055 .003 .0374 .0378 .144 .000 .0398 .0390 .152
EB3 .005 .0231 .0231 .055 .003 .0374 .0378 .144 .000 .0397 .0390 .152
EB4 .005 .0231 .0231 .055 .003 .0374 .0378 .144 .000 .0397 .0390 .152
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