
Received: 16 November 2016 Revised: 10 May 2017 Accepted: 11 June 2017

DOI: 10.1002/sim.7398

R E S E A R C H A R T I C L E

Meta-analysis of gene-environment interaction exploiting
gene-environment independence across multiple case-control
studies

Jason P. Estes1 John D. Rice1 Shi Li2 Heather M. Stringham1 Michael Boehnke1

Bhramar Mukherjee1,3

1Department of Biostatistics, University of

Michigan, Ann Arbor, MI48109, U.S.A.

2Genentech, 1 DNA Way South San

Francisco, CA94080, U.S.A.

3Department of Epidemiology, University of

Michigan, Ann Arbor, MI48109, U.S.A.

Correspondence
Bhramar Mukherjee, Department of

Biostatistics, University of Michigan, Ann

Arbor, MI 48109, U.S.A.

Email: bhramar@umich.edu

Funding information
National Science Foundation, Grant/Award

Number: 1406712 ; National Institute of

Health, Grant/Award Number: 20811 ;

DK062370

Multiple papers have studied the use of gene-environment (G-E) independence to

enhance power for testing gene-environment interaction in case-control studies.

However, studies that evaluate the role of G-E independence in a meta-analysis

framework are limited. In this paper, we extend the single-study empirical Bayes

type shrinkage estimators proposed by Mukherjee and Chatterjee (2008) to a

meta-analysis setting that adjusts for uncertainty regarding the assumption of G-E
independence across studies. We use the retrospective likelihood framework to

derive an adaptive combination of estimators obtained under the constrained model

(assuming G-E independence) and unconstrained model (without assumptions of

G-E independence) with weights determined by measures of G-E association derived

from multiple studies. Our simulation studies indicate that this newly proposed esti-

mator has improved average performance across different simulation scenarios than

the standard alternative of using inverse variance (covariance) weighted estimators

that combines study-specific constrained, unconstrained, or empirical Bayes esti-

mators. The results are illustrated by meta-analyzing 6 different studies of type 2

diabetes investigating interactions between genetic markers on the obesity related

FTO gene and environmental factors body mass index and age.
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1 INTRODUCTION

Studies suggest that the risks of many complex diseases depend on the combined effects of genetic susceptibility factors G
and environmental exposures E. Studies of G-E interactions (GEI), particularly for rare exposures, require large sample sizes

and efficient designs. Exploiting independence between the genetic and environmental factors in case-control studies to gain

efficiency has been noted by several authors.1-3 In particular, Chatterjee and Carroll3 studied the semiparametric maximum

likelihood estimates of logistic regression parameters that exploit the G-E independence assumption in a general regression

setting that may involve continuous exposures, nonrare diseases, and other stratification variables. While Chatterjee and Carroll3

alleviates many of the limitations of prior work, retrospective methods that assume G-E independence have the potential to yield

severely biased estimates and inflated type 1 errors when the assumption is violated. Several studies have addressed this issue

and proposed more robust strategies for testing GEI.4-7 For example, using the retrospective likelihood framework in Chatterjee

and Carroll3, Mukherjee and Chatterjee4 proposed an adaptive estimator that does not impose the independence assumption
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exactly and allows for uncertainty in the assumption of gene-environment independence. The G-E log-odds ratio parameter

is estimated in an empirical Bayes (EB) fashion to arrive at a final shrinkage estimator that “shrinks” the semiparametric

retrospective maximum likelihood estimates under G-E dependence to those under G-E independence to trade off between bias

and efficiency.

Detecting gene-environment interactions with small effect sizes will often require a meta-analytic approach. There are several

methods of meta-analyzing a single scalar gene-environment interaction effect across studies. For example, one can use an

inverse-variance weighted fixed-effect approach for the GEI parameter8-10 when individual patient data (IPD) are not available.

To meta-analyze a parameter vector, one can use an inverse variance-covariance weighted estimator.11,12 Alternatively, when

individual patient–level data from all studies are available, the data can be analyzed simultaneously, commonly called joint

analysis or mega-analysis. Furthermore, Lin and Zeng10,11 showed that meta-analysis based on summary statistics has the same

asymptotic efficiency as the maximum likelihood estimates (MLE) resulting from the full data if the former analysis is performed

jointly on all common parameters across studies. One can easily incorporate the work of Mukherjee and Chatterjee4 into the

meta-analysis framework by using the aforementioned inverse-variance or inverse variance-covariance approach with study

specific EB estimators; however, such an approach does not directly borrow information across studies with respect to the

uncertainty around the G-E independence assumption.

To date, there are no papers that study the role of G-E independence in a meta-analysis framework where uncertainty in the

assumption can vary across studies. In this work, we consider several multiple-study EB (MSEB) type shrinkage estimators

that extend the EB type shrinkage estimators proposed in Mukherjee and Chatterjee4 to a multiple-study setting that can bor-

row information across studies. Furthermore, our MSEB estimators can be readily constructed using existing software such

as CGEN13, making our proposed estimators easily implementable. We propose MSEB estimators in cases where (1) IPD are

available and (2) only study level summary statistics are available.

Our paper is organized as follows. We introduce the proposed MSEB estimators in Section 2.2, and simulation studies are

performed in Section 3. In Section 4, we illustrate our methods by meta-analysis of G-E interactions of single nucleotide poly-

morphisms SNPs on FTO gene with body mass index (BMI) and age using data from 6 different studies of type 2 diabetes.

Concluding remarks are presented in Section 5.

2 PROPOSED MSEB TYPE SHRINKAGE ESTIMATORS

2.1 Model specification
Let D = 1(D = 0) denote the presence (absence) of a disease, G denote a genetic factor, E denote an environmental exposure,

and S denote a vector of covariates. The subscript k = 1, … ,K is used to index K independent studies, and the subscript

i = 1, … , nk is used to index individuals within the kth study of size nk. Consider the following factorization of the retrospective

likelihood akin to Chatterjee and Carroll3,

LR =
K∏

k=1

nk∏
i=1

pr (Gki,Eki, Ski|Dki)

=
K∏

k=1

nk∏
i=1

pr (Dki|Gki,Eki, Ski) pr (Gki|Eki, Ski) pr (Eki, Ski)∑
G,E,S pr (Dki|G,E, S) pr (G|E, S) pr (E, S)

.

(1)

For continuous exposure E, the sum with respect to E in the denominator of 1 is replaced by an integral. The components of

the retrospective likelihood are modeled as follows. Assume a logistic disease incidence model

pr (Dki|Gki,Eki, Ski) = H{𝛾0k + m(Gki,Eki,Ski; 𝜸)} (2)

where H(u) = {1 + exp(−u)}−1,m(·) is a known but arbitrary function, 𝛾0k are intercept parameters, and 𝜸 is a vector of

parameters of interest. In this model specification, the intercept is allowed to vary with respect to the K studies, whereas the

parameter vector, 𝜸, of log odds ratios associated with G,E and S is shared among the studies. For a dominant susceptibility

model of G, we consider a logistic model

pr (Gki = 1|Eki,Ski) = H{𝜂0k + 𝜼kSki + 𝜃kEki}, (3)
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where 𝜃k are study level nuisance parameters that measure dependence between G and E within the kth study, 𝜂0k are intercept

parameters, and 𝜼k are study-specific row vectors of parameters corresponding to individual covariates. Under the assumption

of G-E independence (conditional on S) within each study k, the parameters 𝜃k are all set to 0, and model 3 reduces to

pr (Gki = 1|Eki,Ski) = H
{
𝜂0

0k + 𝜼0
kSki

}
. (4)

For an additive susceptibility model of G, one might consider a proportional odds model for pr(G|E, S). For a codominant

susceptibility model of G, one might consider polychotomous logistic regression. In 3, one can alternatively model these proba-

bilities under Hardy-Weinberg equilibrium14 (see the Supporting Information). Finally, the joint distribution function for (E,S)
is allowed to remain completely nonparametric.3

The aforementioned model formulation is quite flexible in allowing parameters to depend on k. For example, one may assume

a common G − S association across studies in model 3, ie, 𝜼k = 𝜂 for k = 1, … ,K and some constant 𝜂. Similarly, one may

require 𝜃k = 𝜃 for k = 1, … ,K. We proceed with the most general formulation (𝜼k, 𝜃k) in model 3 but assume a shared common

effect 𝜸 among the K studies in model 2. Different choices are investigated in our data application.

2.2 MSEB shrinkage estimators
In this section, we extend the EB shrinkage estimator proposed in Mukherjee and Chatterjee4 to an appropriate MSEB estimator.

In Section 2.2.1, we detail our proposed estimators under the assumption that IPD are available for each study, and in Section

2.2.2, we detail our proposed estimators using summary (aggregate) data from each of the K studies.

When one is not certain about the G-E independence across the k studies, one may conceptually posit a stochastic framework

for the underlying true parameters 𝜽 = (𝜃1, … , 𝜃K) ∼ MVN(0,A) where 0 is a K × 1 vector of zeros and A is a K × K diagonal

matrix whose nonzero elements are all equal to some nonnegative constant 𝜏2, which reflects a measure of uncertainty about

the independence assumption. This is the stochastic framework governing the methods we present subsequently.

2.2.1 IPD analysis
Let 𝜷 = (𝜸0, 𝜸, 𝜼0, 𝜼)T denote the focus parameters of the unconstrained model 3 where 𝜸0 = (𝛾01, … , 𝛾0K)T, 𝜼0 =
(𝜂01, … , 𝜂0K)T, 𝜼 = (𝜼1, … , 𝜼K)T and 𝜸 represents a parameter vector shared among the K studies. A superscript of 0 will be

used to denote the corresponding parameters under the constrained model 4, eg, 𝜷0 = (𝜸0
0
, 𝜸0, 𝜼0

0
, 𝜼0)T. The MLEs (𝜷, 𝜽̂) and

𝜷
0

for (𝜷,𝜽) and 𝜷0 are obtained, along with their estimated asymptotic variances V̂(𝜷̂,𝜽̂) and V̂
𝜷̂

0 , using the profile-likelihood

techniques of Chatterjee and Carroll3, respectively. Intuitively, given 𝜽 and in the absence of any prior information on 𝜷, a nat-

ural way to estimate 𝜷 is to use 𝜷(𝜽), the profile MLE of 𝜷 for a fixed 𝜽. Define 𝜷(𝜽) to be the limiting value of 𝜷(𝜽), which is

a population parameter when 𝜽 is fixed at the true value. The estimate 𝜷(0) denotes the profile MLE of 𝜷 under the constrained

model when 𝜽 = 0. The goal is to obtain an estimator of 𝜸(𝜽), the common set of parameters in the disease incidence model

shared among the K studies, which takes into account the uncertainty about the G-E independence assumption on 𝜽, which may

vary across studies. Thus, we developed weighted estimators of 𝜸(𝜽) whose weights shrink the estimates of 𝜸(𝜽) towards 𝜸̂(0)
when there is less uncertainty regarding G-E independence.

To achieve the goal of developing our MSEB estimators of 𝜸(𝜽), we first approximate the distributions of 𝜷(𝜽) and 𝜷(𝜽̂) using

the prior distribution 𝜽 ∼ MVN(0,A). A first-order Taylor's expansion of 𝜷(𝜽) about 𝜽 = 0 gives

𝜷(𝜽) ≈ 𝜷(0) + ΔT𝜽 (5)

where ΔT
≡ 𝜕𝜷T(𝜽)∕𝜕𝜽|𝜽=0 is the gradient matrix evaluated at 𝜽=0. Thus, we can approximate the distribution of 𝜷(𝜽) via

MVN(𝜷(0),ΔTAΔ). Finally, we approximate the distribution of 𝜷(𝜽̂) via its asymptotic distribution MVN{𝜷(𝜽),V
𝜷(𝜽̂)} leading

to the Bayes estimate of 𝜷(𝜽) as the posterior mean

ΔTAΔ{V
𝜷(𝜽̂) + ΔTAΔ}−1𝜷(𝜽̂) + V

𝜷(𝜽̂){V
𝜷(𝜽̂) + ΔTAΔ}−1𝜷(0) (6)

of 𝜷(𝜽)|𝜷(𝜽̂) under our Gaussian-Gaussian model. Our Bayes estimate of 𝜸 is taken to be the corresponding subvector of our

Bayes estimate of 𝜷(𝜽). The components of the weights in 6 are estimated as follows. Replace 𝜷(𝜽̂) and 𝜷(0) with 𝜷(𝜽̂) and

𝜷(0), respectively, and replace V
𝜷(𝜽̂) with the corresponding submatrix of V̂(𝜷̂,𝜽̂). From the Taylor's approximation in 5, we

approximate {𝜷(𝜽) − 𝜷(0)}𝜽T via ΔT𝜽𝜽T. The matrix 𝜽𝜽T is not invertible when K > 1, so we use its Moore-Penrose inverse

(𝜽𝜽T)+ leading to the use ofΔT(𝜽𝜽T)(𝜽𝜽T)+ as an approximation to {𝜷(𝜽)−𝜷(0)}𝜽T(𝜽𝜽T)+. In general, (𝜽𝜽T)(𝜽𝜽T)+ is not equal
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to the identity matrix IK of dimension K×K, so we replace it with its expectation. The matrix (𝜽𝜽T)(𝜽𝜽T)+ has expectation K−1IK
and variance (K−1 −K−2)IK, yielding our final approximation K{𝜷(𝜽)−𝜷(0)}𝜽T(𝜽𝜽T)+ of ΔT (see Theorem 1 in the Supporting

Information). Because 𝜷(𝜽), 𝜷(0), and 𝜽 are unknown, we replace them with their estimates. We consider 4 different estimates

of A = 𝜏2IK . If estimators (ii) to (iv) result in a negative value, we take 𝜏 2 to be 0 (the well-known positive part estimator).15

The estimator presented in (i) below will be serve as the primary estimator of A throughout the paper, whereas estimators (ii)

to (iv) are presented as alternative natural approaches that other practitioners may think of.

• Our first estimate K−1(𝜽̂
T
𝜽̂) of 𝜏2 is conservative and motivated by the asymptotic distribution of 𝜽̂|𝜽 marginalized over 𝜽,

to wit, N(0,A + V
𝜽̂
).

• Our second estimate K−1{𝜽̂
T
𝜽̂ − tr(V̂

𝜽̂
)} of 𝜏2 adjusts for the conservative nature of our first estimate.

• Our third estimate of 𝜏2 is motivated by maximizing the log marginal likelihood obtained from the multivariate density

N(0,A + V
𝜽̂
) with respect to 𝜏2 given V

𝜽̂
= V̂

𝜽̂
. Let {v̂1, … , v̂K} denote the diagonal elements of V̂

𝜽̂
. We maximize the

marginal likelihood

(𝜏2|𝜽̂,V
𝜽̂
= V̂

𝜽̂
) =

K∏
k=1

{
2𝜋(𝜏2 + v̂k)

}− 1

2 exp
{
−

𝜃̂ 2
k

2(𝜏2 + v̂k)

}
(7)

with respect to 𝜏2 by setting the derivative

d
d𝜏2

[
log

{
(𝜏2|𝜽̂,V

𝜽̂
= V̂

𝜽̂
)
}]

= −1

2

K∑
k=1

{
1

𝜏2 + v̂k
−

𝜃̂ 2
k

(𝜏2 + v̂k)2

}
equal to 0. We implement the uniroot function in R to numerically approximate 𝜏 2.

• Our fourth estimate of 𝜏2 results from an iterative process proposed in Morris16,17, extending our second estimate by con-

sidering weights (other than K−1) that depend on variances as follows. The update of 𝜏2
(n) at iteration n + 1 is given by

𝜏2
(n+1) =

{ K∑
k=1

wk,(n)

}−1 K∑
k=1

wk,(n)
{
𝜃̂ 2

k − v̂k
}
, (8)

where wk,(n) =
{

v̂k + 𝜏2
(n)

}−1

and the initial guess 𝜏2
(0) is the estimate resulting from the maximization of the marginal

likelihood in 7. Our estimate of 𝜏2 is taken to be 𝜏2
(m) where m ∈ N is some iteration step (greater than 0) such that|𝜏2

(m+1) − 𝜏2
(m)| < 𝜀 where 𝜀 is some positive tolerance value, which we take to be 10−8.

We denote our EB estimates of 𝜸 resulting from the 4 proposed estimators (i), (ii), (iii), and (iv) of A by 𝜸̂EB1, 𝜸̂EB2, 𝜸̂EB3,

and 𝜸̂EB4, respectively. We note in the case that 𝜏2 is estimated to be 0; Equation 6 reduces to 𝜷(0), which is estimated via con-

strained maximum likelihood (CML). This property affects estimators 𝜸̂EB2 − 𝜸̂EB4 but does not affect 𝜸̂EB1 (with probability 1)

because of the conservative nature of (i). We refer the reader to variance approximations of these estimators in the Supporting

Information. The operating characteristics of our estimators are evaluated via simulation study in Section 3.

2.2.2 Meta-analysis using summary measures
In the absence of individual level data, we consider a meta-analytic approach using effect and variance estimates. Within each

study, we denote the MLEs of 𝜷k = (𝛾0k, 𝜸k, 𝜂0k, 𝜼k)T and 𝜃k under the unconstrained model by 𝜷k = (𝛾̃0k, 𝜸̃k, 𝜂̃0k, 𝜼̃k)T and 𝜃k,

respectively, and the MLEs of 𝜷0
k =

(
𝛾0

0k, 𝜸
0
k , 𝜂

0
0k, 𝜼

0
k

)T
under the constrained model by 𝜷

0

k =
(
𝛾̃ 0

0k , 𝜸̃
0

k , 𝜂̃ 0
0
, 𝜼̃

0
k

)T

. We use V𝜶̃ to

denote the covariance matrix of a generic parameter estimate 𝜶̃, and Ṽ𝛼̃ will be used to denote its covariance estimate. Intuitively,

given 𝜃k and in the absence of any prior information on 𝜷k, a natural way to estimate 𝜷k is to use 𝜷k(𝜃k), the profile MLE of 𝜷k
for a fixed 𝜃k. To combine the information of the K studies, we consider the inverse variance-covariance meta-analysis estimates

of the common focus parameters 𝜸 and 𝜸0 given by

𝜸̃ =
{∑

kṼ
−1

𝜸̃k

}−1∑
kṼ

−1

𝜸̃k 𝜸̃k and 𝜸̃
0 =

{∑
kṼ

−1

𝜸̃ 0
k

}−1∑
kṼ

−1

𝜸̃
0

k
𝜸̃

0
k

with variance estimates
{∑

kṼ
−1

𝜸̃k

}−1

and
{∑

kṼ
−1

𝜸̃
0

k

}−1

, respectively. These meta-analysis estimators can be viewed as functions

of 𝜽 because 𝜸k are estimated using the profile MLEs 𝜷k(𝜃k) for a fixed 𝜃k. Thus, 𝜸̃ ≡ 𝜸̃(𝜽̃) and 𝜸̃
0
≡ 𝜸̃

0(0) can be viewed as

estimates of 𝜸(𝜽̃) and 𝜸(0), respectively.
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Similar to Section 2.2.1, we use the prior distribution 𝜽 ∼ MVN(0,A) and a first-order Taylor's expansion 𝜸(𝜽) ≈ 𝜸(0)+ΔT𝜽,

where ΔT
≡ 𝜕𝜸T(𝜽)∕𝜕𝜽|𝜽=0, to approximate the distributions of 𝜸(𝜽) and 𝜸(𝜽̃) via MVN{𝜸(0),ΔTAΔ} and MVN{𝜸(𝜽),V

𝜸(𝜽̃)},

respectively. Our EB estimate of 𝜸(𝜽) is taken to be the posterior mean

ΔTAΔ{V
𝜸(𝜽̃) + ΔTAΔ}−1𝜸(𝜽̃) + V

𝜸(𝜽̃){V
𝜸(𝜽̃) + ΔTAΔ}−1𝜸(0) (9)

of 𝜸(𝜽)|𝜸(𝜽̃) under our Gaussian-Gaussian model. The components of the weights in 9 are estimated as follows. Replace

𝜸(𝜽̃), 𝜸(0), V
𝜸(𝜽̃), and ΔT with 𝜸̃, 𝜸̃

0
,
{∑

kṼ
−1

𝜸̃k

}−1

and K{𝜸̃(𝜽) − 𝜸̃(0)}𝜽T(𝜽𝜽T)+ (see Section 2.2.1), respectively. Finally, we

consider 4 different estimates of A as defined in Section 2.2.1 except that the estimates in the expressions are not the result

of IPD but the result of meta-analysis of the K independent studies (hats are replaced with tildes). We denote these estimators

by 𝜸̃EB1, 𝜸̃EB2, 𝜸̃EB3, and 𝜸̃EB4, respectively. For convenience, we may refer to these estimators via EB1, EB2, EB3, and EB4,

respectively, (IPD joint analysis vs summary statistic meta-analysis will be clear from context). Alternatively, one can use the

inverse variance-covariance meta-analysis estimates of the focus parameters resulting from single-study EB estimation, eg,

𝛾̃EB =

{∑
k

Ṽ
−1

𝜸̃
EB
k

}−1∑
k

Ṽ
−1

𝜸̃
EB
k
𝜸̃

EB
k

where 𝜸̃
EB
k and Ṽ𝜸̃

EB
k

are defined as in Mukherjee and Chatterjee.4 For convenience, we may refer to this estimator as EB (IPD

joint analysis vs summary statistic meta-analysis will be clear from context). The operating characteristics of our estimators are

evaluated and compared with other sensible estimators via simulation study in Section 3.

3 SIMULATION STUDY

We carry out simulation studies to study the performance of our proposed MSEB estimators (EB1-EB4) in the IPD and

meta-analysis settings relative to the standard inverse variance-covariance weighted logistic regression (LOG), unconstrained

maximum likelihood (UML), CML, and EB using the statistical R package CGEN. The operating characteristics of interest

are bias, average estimated standard error, empirical standard error, and mean squared error (MSE) with estimates defined by

R−1
∑R

r=1(𝜉r − 𝜉), R−1
∑R

r=1 V̂𝜉r
, {(R − 1)−1

∑R
r=1 (𝜉r − 𝜉r)2}1∕2, and R−1

∑R
r=1 (𝜉r − 𝜉)2 where 𝜉 is the parameter of interest, 𝜉r

is its estimate, 𝜉r = R−1
∑R

r=1 𝜉r, and V̂𝜉r
is the variance estimate of 𝜉r in the r = 1, … ,R study replications. In our simulation

studies, we set R equal to 1000.

The components of the model defined in 2 and 3 are as follows. The subscript i = 1, … , nk is used to index subjects, and k =
1, … ,K is used to index K = 10 subcohorts with sample sizes nk = 1000+ 100(k− 1) yielding a total of n =

∑10
k=1 nk = 14500

subjects. We considered the stratification vector Ski = (S1ki, S2ki) where S1ki is a Bernoulli random variable with parameter

.5 and S2ki is a normal random variable with mean 0 and standard deviation .5. Environmental exposures were generated via

Eki = min{5, exp(Xki)} where Xki|S1ki = 0 ∼ N(0, .52) and Xki|S1ki = 1 ∼ N(.1, .52). Conditional on (Eki,Ski), a genetic factor

(under Hardy-Weinberg equilibrium) was generated via a multinomial random variable with parameters (1− qki)2, 2qki(1− qki),
and q2

ki defined by qki = H{𝜂0k+𝜼kSki+𝜃kEki}, where 𝜂0k
iid∼ Uniform(−1.2,−1.0), 𝜼k = (𝜂1k, 𝜂2k), 𝜂1k

iid∼ Uniform(0.1, 0.2), 𝜂2k
iid∼

Uniform(0, 0.1)and 𝜃k is generated as follows: (1) 𝜃k = 0 for all k, (2) 𝜃k = .1 for all k, (3) 𝜃k = −.5 for all k, (4) 𝜃k
iid∼ N(.2, .12),

and (5) 𝜃k
iid∼ Unif(−.2, .2). Binary disease outcome Dki for subject i belonging to the kth study was generated from a Bernoulli

random variable with rate parameter defined by H{𝛾0k + 𝛾GGki + 𝛾EEki + 𝛾GEGkiEki + 𝜸SSki}. We constructed our case-control

sample by randomly selecting nk∕2 cases and nk∕2 controls within the kth subpopulation from the generated population data

{(Dki,Gki,Eki,Ski) ∶ i = 1, … ,Nk; k = 1, … ,K} with Nk = 200nk. In our simulation setup, the prevalence of disease was

approximately 4% and the minor allele frequency was approximately 26% within our K subpopulations. In this section, IPD will

refer to combining the generated data for a joint analysis, which uses the retrospective likelihood defined in 1.

3.1 Simulation results
The simulation results are summarized in terms of bias, standard error, empirical standard error, and MSE under G-E indepen-

dence (Table 1) and G-E dependence (Tables 2 and 3). For convenience, we multiplied all estimated MSE values by 100 and

will refer to these scaled values as MSE. In addition, we restrict our attention only to the G×E interaction effect estimate. Under

G-E independence, each of the estimators has an estimated bias close to 0 (within .000-.004) in both the IPD and meta-analysis
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TABLE 1 Bias (BIAS), standard errors (SE1), empirical standard errors (SE2) and 100 × MSE (MSE) of 𝛾̂E,

𝛾̂G, and 𝛾̂GE resulting from standard logistic regression (LOG), unconstrained maximum likelihood (UML),

constrained maximum likelihood (CML), empirical Bayes (EB), and our proposed multistudy empirical Bayes

estimators EB1 to EB4 in both individual patient data (IPD) and summary statistic meta-analysis (META)

simulation settings under G-E independence over 1000 Monte Carlo runs

Main effect of E Main effect of G G×E Interaction
IPD BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE

LOG .011 .0235 .0236 .067 .007 .0263 .0269 .077 .004 .0271 .0279 .080

UML .012 .0233 .0233 .068 .006 .0261 .0268 .075 .002 .0263 .0268 .072

CML .015 .0207 .0207 .064 .006 .0260 .0267 .074 −.004 .0163 .0169 .030

EB .013 .0214 .0213 .063 .006 .0260 .0267 .074 .001 .0218 .0221 .049

EB1 .012 .0231 .0229 .067 .006 .0261 .0268 .075 .002 .0256 .0257 .066

EB2 .013 .0231 .0222 .066 .006 .0261 .0267 .075 .000 .0237 .0227 .051

EB3 .013 .0216 .0223 .067 .006 .0261 .0267 .075 .000 .0200 .0228 .052

EB4 .013 .0216 .0222 .066 .006 .0261 .0267 .075 .000 .0200 .0227 .052

META BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .010 .0236 .0235 .065 .005 .0263 .0268 .074 .002 .0272 .0276 .076

UML .011 .0233 .0232 .066 .005 .0261 .0267 .074 .001 .0263 .0267 .071

CML .014 .0207 .0206 .062 .005 .0261 .0266 .074 −.003 .0164 .0168 .029

EB .014 .0211 .0208 .062 .005 .0261 .0266 .073 −.002 .0203 .0197 .039

EB1 .012 .0231 .0228 .065 .005 .0261 .0267 .074 .000 .0254 .0253 .064

EB2 .013 .0219 .0217 .063 .006 .0261 .0267 .074 −.001 .0206 .0211 .045

EB3 .013 .0218 .0218 .064 .005 .0261 .0266 .074 −.001 .0203 .0212 .045

EB4 .013 .0218 .0217 .063 .005 .0261 .0267 .074 −.001 .0203 .0212 .045

Note. In the meta-analysis setting, we use the inverse variance-covariance weighted approach to obtain the standard logistic,

unconstrained, constrained, and EB results

settings. Additionally, the CML estimator has the smallest MSE (.030 and .029) in comparison with the other estimators

(.039-.080) in both the IPD and meta-analysis settings, respectively. Under G-E independence, the proposed estimators EB2,

EB3, and EB4 perform similarly to the EB estimator with respect to MSE (IPD: .049 vs .051 or .052) under the IPD setting,

whereas the proposed estimator EB1 does not. This is explained by the fact that 𝜏2 is overestimated in EB1 and the other esti-

mators EB2, EB3, and EB4 reduce to the CML estimator when 𝜏2 is estimated to be 0, which happened in approximately 8% of

the Monte Carlo runs. Similar findings are observed (Table 1) in the meta-analysis setting. A contributing factor to these find-

ings, similar to IPD, is that EB2, EB3, and EB4 yielded exactly the same estimates as CML in various individual study analysis.

Thus, in both IPD and meta-analysis, EB1 tends to have higher MSE than EB2 to EB4 under G-E independence because EB2

to EB4 have the ability to reduce to CML, the most efficient estimator of all estimators considered under G-E independence.

In Table 2, we consider modest and strong departure from G-E independence by fixing 𝜃k at .1 and −.5 for all k. In both cases,

the CML estimator is severely biased (IPD: .065 and −.331; meta: .065 and −.329) and has the largest MSE (IPD: .449 and

11.034; meta: .450 and 10.858). In both scenarios, our estimators EB1 to EB4 outperform CML and EB with respect to bias

(IPD: .002-.007 vs −.331 to .003; meta: .000-.009 vs −.329 to .065) and MSE (IPD: .065-.115 vs .101-11.034; meta: .063-.114

vs .216-10.858). Simulation studies fixing 𝜃k at a constant c for all k (not reported) suggest that even minor departures from 0,

eg, c = .05, can produce inflated type I error and severe bias.

In Table 3, we consider modest and mild departure from G-E independence by specifying the distributions of 𝜃k to be inde-

pendently normal with mean and standard deviation .2 and .1, respectively, or independently uniform with parameters −.2 and

.2 for all k. In the case of mild and approximately symmetric departure from G×E independence (about 0), our MSEB estimators

perform similarly to the EB estimator, which has the smallest MSE (.063-.064 vs .059), in the IPD setting. In the meta-analysis

setting, our MSEB estimators have the smallest MSE (.061-.062) among all estimators considered. In the case of modest depar-

ture under a normal distribution on 𝜽with nonzero mean, our MSEB estimators perform almost identically to the UML estimator

with respect to MSE (IPD: .060 vs .059; meta: .059 vs .059), which has the smallest MSE in both the IPD and meta-analysis

settings. Most notably, our MSEB estimators outperform the EB estimators with respect to MSE in both meta-analysis set-

tings considered (.059-.062 vs .077 and .218). A contributing factor to these results is that the inverse variance-covariance

weighted EB estimator does not necessarily produce an estimator that lies between the inverse variance-covariance weighted
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TABLE 2 Bias (BIAS), estimated standard errors (SE1), empirical standard errors (SE2), and 100 × MSE (MSE) of 𝛾̂E ,

𝛾̂G, and 𝛾̂GE resulting from standard logistic regression (LOG), unconstrained maximum likelihood (UML), constrained

maximum likelihood (CML), empirical Bayes (EB), and our proposed multistudy empirical Bayes estimators in both

individual patient data (IPD) and summary statistic meta-analysis (META) simulation settings when G-E independence is

violated

𝜃k = .1 for all k Main effect of E Main effect of G G×E Interaction
IPD BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .012 .0251 .0249 .077 .007 .0257 .0253 .069 .006 .0262 .0260 .072

UML .014 .0247 .0244 .078 .006 .0255 .0251 .066 .004 .0253 .0246 .062

CML −.023 .0215 .0216 .098 .011 .0255 .0250 .074 .065 .0158 .0155 .449

EB .001 .0253 .0251 .063 .011 .0255 .0250 .074 .016 .0274 .0274 .101

EB1 .013 .0248 .0245 .077 .006 .0255 .0251 .066 .005 .0256 .0249 .065

EB2 .012 .0257 .0252 .078 .006 .0256 .0251 .067 .007 .0272 .0271 .078

EB3 .012 .0247 .0252 .078 .006 .0255 .0252 .067 .007 .0253 .0269 .077

EB4 .012 .0247 .0252 .078 .006 .0255 .0252 .067 .007 .0253 .0269 .077

META BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .012 .0252 .0247 .075 .005 .0258 .0252 .066 .004 .0263 .0258 .068

UML .013 .0247 .0243 .075 .005 .0255 .0251 .065 .003 .0253 .0246 .061

CML −.023 .0215 .0215 .100 .011 .0255 .0249 .074 .065 .0158 .0155 .450

EB −.017 .0226 .0223 .077 .010 .0255 .0249 .072 .041 .0211 .0216 .216

EB1 .012 .0248 .0244 .074 .005 .0255 .0251 .065 .004 .0256 .0249 .063

EB2 .009 .0246 .0263 .077 .005 .0255 .0252 .066 .009 .0249 .0304 .101

EB3 .010 .0245 .0257 .076 .005 .0255 .0252 .066 .008 .0249 .0288 .089

EB4 .010 .0245 .0259 .076 .005 .0255 .0252 .066 .008 .0247 .0294 .093

𝜃k = −.5 for all k Main effect of E Main effect of G G×E Interaction
IPD BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .006 .0195 .0193 .041 .004 .0314 .0323 .106 .004 .0358 .0348 .123

UML .006 .0194 .0193 .041 .003 .0313 .0321 .104 .002 .0352 .0339 .115

CML .096 .0185 .0185 .960 −.049 .0304 .0312 .340 −.331 .0223 .0224 11.034

EB .010 .0195 .0194 .048 −.010 .0317 .0325 .116 .003 .0360 .0350 .123

EB1 .006 .0194 .0193 .041 .003 .0313 .0321 .104 .002 .0352 .0339 .115

EB2 .006 .0194 .0193 .041 .003 .0313 .0321 .104 .002 .0352 .0339 .115

EB3 .006 .0194 .0193 .041 .003 .0313 .0321 .104 .002 .0352 .0339 .115

EB4 .006 .0194 .0193 .041 .003 .0313 .0321 .104 .002 .0352 .0339 .115

META BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .005 .0195 .0193 .040 .001 .0315 .0321 .103 .001 .0360 .0345 .119

UML .005 .0195 .0192 .040 .001 .0313 .0319 .102 .001 .0353 .0338 .114

CML .095 .0186 .0185 .943 −.048 .0305 .0310 .330 −.329 .0223 .0224 10.858

EB .034 .0197 .0197 .153 −.040 .0310 .0315 .258 −.033 .0377 .0366 .241

EB1 .005 .0195 .0192 .040 .001 .0313 .0319 .102 .000 .0353 .0338 .114

EB2 .005 .0195 .0192 .040 .001 .0313 .0319 .102 .000 .0353 .0338 .114

EB3 .005 .0195 .0192 .040 .001 .0313 .0319 .102 .000 .0352 .0338 .114

EB4 .005 .0195 .0192 .040 .001 .0313 .0319 .102 .000 .0352 .0338 .114

Note. In the meta-analysis setting, we use the inverse variance-covariance weighted approach to obtain the standard logistic, unconstrained,

constrained, and EB results.

CML estimator and the inverse variance-covariance weighted UML estimator. For example, in our simulation runs, the EB

estimator fell in between the UML and CML estimators in only 473 of the 1000 Monte Carlo runs under G-E independence.

Further simulation (not reported) considered normal distributions with location parameters further from 0, eg, −.5 and .5. In

these settings, we found the MSEB estimators to perform nearly identical to the UML estimator with respect to MSE in both

the IPD and meta-analysis setting.

These simulation results indicate the data-adaptive feature of MSEB estimators across varying simulation scenarios. Although

they do not outperform other options considered in some of the simulation scenarios, they do offer protection against bias and
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TABLE 3 Bias (BIAS), estimated standard errors (SE1), empirical standard errors (SE2), and 100 × MSE (MSE)

of 𝛾̂E, 𝛾̂G, and 𝛾̂GE resulting from standard logistic regression (LOG), unconstrained maximum likelihood (UML),

constrained maximum likelihood (CML), empirical Bayes (EB), and our proposed multistudy empirical Bayes

estimators in both individual patient data (IPD) and summary statistic meta-analysis (META) simulation settings

when G-E independence is violated

𝜃k
iid∼ N(.2, .12) Main effect of E Main effect of G G×E Interaction

IPD BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .015 .0269 .0268 .094 .009 .0253 .0247 .069 .006 .0254 .0253 .067

UML .017 .0264 .0265 .099 .008 .0251 .0244 .066 .003 .0245 .0241 .059

CML −.074 .0226 .0293 .629 .020 .0250 .0245 .102 .137 .0156 .0272 1.949

EB .007 .0275 .0273 .080 .018 .0251 .0245 .092 .011 .0260 .0260 .079

EB1 .017 .0264 .0265 .098 .008 .0251 .0244 .066 .004 .0246 .0241 .060

EB2 .017 .0264 .0265 .098 .008 .0251 .0244 .066 .004 .0246 .0242 .060

EB3 .017 .0264 .0265 .098 .008 .0251 .0244 .066 .004 .0245 .0242 .060

EB4 .017 .0264 .0265 .098 .008 .0251 .0244 .066 .004 .0245 .0242 .060

META BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .014 .0270 .0266 .091 .007 .0253 .0246 .066 .004 .0255 .0251 .064

UML .016 .0264 .0264 .094 .007 .0251 .0243 .064 .002 .0246 .0241 .059

CML −.072 .0226 .0290 .609 .020 .0250 .0245 .102 .136 .0157 .0269 1.928

EB −.023 .0255 .0270 .124 .019 .0250 .0244 .095 .038 .0236 .0275 .218

EB1 .015 .0264 .0264 .093 .007 .0251 .0243 .064 .003 .0246 .0241 .059

EB2 .015 .0265 .0264 .093 .007 .0251 .0243 .064 .003 .0246 .0242 .059

EB3 .015 .0264 .0264 .093 .007 .0251 .0243 .064 .003 .0245 .0242 .059

EB4 .015 .0264 .0264 .093 .007 .0251 .0243 .064 .003 .0245 .0242 .059

𝜃k
iid∼ Unif(−.2, .2) Main effect of E Main effect of G G×E Interaction

IPD BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .011 .0236 .0234 .066 .007 .0263 .0258 .071 .006 .0269 .0262 .072

UML .012 .0233 .0233 .068 .006 .0261 .0255 .068 .004 .0260 .0255 .066

CML .011 .0207 .0248 .074 .006 .0261 .0255 .069 .003 .0163 .0300 .091

EB .011 .0219 .0227 .063 .006 .0261 .0255 .069 .005 .0235 .0239 .059

EB1 .012 .0232 .0231 .068 .006 .0261 .0254 .068 .003 .0256 .0250 .064

EB2 .012 .0232 .0231 .067 .006 .0261 .0254 .068 .003 .0255 .0250 .063

EB3 .012 .0231 .0231 .067 .006 .0261 .0254 .068 .003 .0254 .0249 .063

EB4 .012 .0231 .0231 .067 .006 .0261 .0254 .068 .003 .0254 .0249 .063

META BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE BIAS SE1 SE2 MSE
LOG .010 .0236 .0232 .063 .005 .0264 .0257 .068 .004 .0270 .0260 .069

UML .011 .0233 .0231 .065 .005 .0262 .0254 .067 .003 .0261 .0254 .065

CML .011 .0208 .0246 .073 .007 .0261 .0255 .070 .005 .0164 .0297 .090

EB .012 .0216 .0237 .071 .005 .0261 .0254 .067 .002 .0222 .0276 .077

EB1 .011 .0232 .0230 .065 .005 .0262 .0254 .067 .003 .0256 .0248 .062

EB2 .011 .0232 .0229 .066 .006 .0262 .0254 .068 .003 .0252 .0247 .062

EB3 .012 .0231 .0229 .066 .005 .0262 .0254 .068 .002 .0250 .0247 .061

EB4 .012 .0231 .0229 .066 .005 .0262 .0254 .068 .002 .0250 .0247 .061

Note. In the meta-analysis setting, we use the inverse variance-covariance weighted approach to obtain the standard logistic,

unconstrained, constrained and EB results.

inflated MSE across all simulation scenarios investigated should G×E independence be incorrectly assumed. Further simulation

studies with individual study sample sizes nk (100-300 subjects), number of individual studies K (2 and 5), minor allele frequency

MAF (5% and 10%), marginal disease prevalence (10% and 20%), and case-control ratios (1:2 and 1:4) are presented in the

Supporting Information (Tables S1-S16). The results of these additional simulation studies are consistent with the findings noted

in our simulation setup described above. More specifically, adjustments in individual study sample sizes, number of individual

studies, MAF, and case-control ratios resulted in different (from our main simulation setup) magnitudes of bias, standard error,
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and MSE, but relative performance of the methods did not notably change. Similar findings resulted when the marginal disease

prevalence was increased to 10%, but when increased to 20%, CML was generally biased and inefficient; however, our MSEB

estimators still offered excellent protection against bias and loss of efficiency.

4 ANALYSIS OF TYPE 2 DIABETES DATA

A number of SNPs in the fat mass associated FTO gene (region 16q12.2) have previously been found to be associated with type

2 diabetes (T2D) and BMI.18-20 Body mass index with a strong genetic heritability also has environmental contribution, so it

is likely that the assumption of G-E independence is violated between SNPs on the FTO gene and BMI. In our data analysis,

we apply our proposed methods to estimate the interaction effects between SNPs (rs11642841, rs6499640, and rs1121980) in

the FTO gene and environmental factors (age and BMI) on T2D using case-control studies that are a part of FIN-D2D 2007

(D2D2007), The DIAbetes GENetic Study (DIAGEN), the Finland-United States Investigation of NIDDM Genetics Stage 2

(FUSION S2), The Nord-Trøndelag Health Study 2 (HUNT), the METabolic Syndrome In Men Study (METSIM), and the

Tromsø Study (TROMSO).18 There are a total of N = 9616 individuals, composed of 4418 cases and 5198 controls. Sample

sizes within each study varied from 1058 to 2215, and the case to control ratio within each study varied from .37 to 1.75 with an

overall case to control ratio of .85. Descriptive summary statistics from the 6 studies are shown in Table 4. Individuals in the case

group were significantly older (62.2 vs 59.0, P value < 0.001), had significantly higher BMI (30.1 vs 26.4, P value < 0.001),

and had a significantly lower percentage of females (34% vs 45%, P value < 0.001) than individuals in the control group.

The minor allele frequency of SNPs rs11642841, rs6499640, and rs1121980 across the 6 studies range from .40 to .45, .37 to .42,

TABLE 4 Summary statistics of age, body mass index (BMI), sex, and MAF (SNPs rs11642841, rs6499640, and rs1121980) stratified by cohort

and T2D disease status in 6 case-control data sets sampled from D2D2007 (1), DIAGEN (2), FUSION S2 (3), HUNT (4), METSIM (5), and

TROMSO (6)

rs11642841 rs6499640 rs1121980
Age BMI Prop. Trenda Trendb Trendc

Study N Mean SD Mean SD female MAF Age p MAF BMI p MAF BMI p

1 1698 59.5 8.3 27.3 5.0 .57 .41 −.16 5.9 × 10−1 .42 −.39 3.0 × 10−2 .40 .38 3.0 × 10−2

2 1058 61.0 14.1 28.1 5.5 .57 .42 .07 9.1 × 10−1 .40 .08 7.3 × 10−1 .47 .19 4.2 × 10−1

3 2215 59.3 8.2 28.7 5.1 .42 .40 −.02 9.3 × 10−1 .42 −.02 8.8 × 10−1 .41 .42 1.0 × 10−2

4 1330 67.1 13.1 28.0 4.4 .48 .45 −.81 1.1 × 10−1 .37 −.16 3.6 × 10−1 .47 .30 7.0 × 10−2

5 1899 58.0 6.9 28.6 5.0 .00 .43 −.19 3.9 × 10−1 .41 −.21 2.0 × 10−1 .44 .56 6.8 × 10−4

6 1416 59.9 12.5 27.6 4.7 .50 .44 .26 5.8 × 10−1 .38 .01 9.7 × 10−1 .49 .33 6.0 × 10−2

Total 9616 60.5 10.6 28.1 5.0 .40 .43 −.12 4.3 × 10−1 .40 −.13 7.0 × 10−2 .44 .38 1.4 × 10−7

1 458 63.4 7.5 30.5 5.5 .41 .43 .47 3.5 × 10−1 .39 −.02 9.5 × 10−1 .40 .76 4.0 × 10−2

2 434 65.8 11.7 30.1 6.2 .50 .44 .07 9.3 × 10−1 .40 .26 5.0 × 10−1 .48 .19 6.3 × 10−1

3 1033 59.7 8.7 30.9 5.4 .44 .42 −.48 1.9 × 10−1 .42 .51 3.0 × 10−2 .43 .24 3.1 × 10−1

4 577 68.9 11.4 29.2 4.6 .48 .47 −1.51 2.0 × 10−2 .38 −.09 7.4 × 10−1 .50 .22 4.0 × 10−1

5 1209 60.5 6.6 30.2 5.2 .00 .43 −.16 5.5 × 10−1 .40 −.18 3.9 × 10−1 .45 .64 2.5 × 10−3

6 707 59.9 12.5 29.2 4.9 .50 .45 .59 3.7 × 10−1 .37 .04 8.9 × 10−1 .49 .55 3.0 × 10−2

Cases 4418 62.2 10.1 30.1 5.3 .34 .44 −.17 3.8 × 10−1 .40 .09 4.2 × 10−1 .46 .45 3.8 × 10−5

1 1240 58.1 8.2 26.1 4.3 .63 .41 −.37 2.6 × 10−1 .43 −.38 3.0 × 10−2 .40 .24 1.7 × 10−1

2 624 57.6 14.6 26.7 4.4 .61 .41 −.28 7.4 × 10−1 .39 −.15 5.4 × 10−1 .46 .02 9.2 × 10−1

3 1182 59.0 7.6 26.9 3.9 .40 .39 .32 3.2 × 10−1 .43 −.37 2.0 × 10−2 .39 .23 1.7 × 10−1

4 753 65.8 14.2 27.1 4.0 .48 .44 −.54 4.6 × 10−1 .37 −.21 3.1 × 10−1 .45 .15 4.7 × 10−1

5 690 53.7 5.0 25.9 3.1 .00 .41 −.36 1.9 × 10−1 .43 .01 9.3 × 10−1 .44 .20 2.5 × 10−1

6 709 59.9 12.5 25.9 3.8 .50 .44 −.05 9.4 × 10−1 .38 −.04 8.4 × 10−1 .48 .03 8.6 × 10−1

Controls 5198 59.0 10.9 26.4 4.0 .45 .41 −.19 3.6 × 10−1 .41 −.23 3.3 × 10−3 .43 .17 3.0 × 10−2

Note. Age values are measured in years, and BMI values are measured in kg∕m2. SNP effect estimates and P values are reported for the following trend tests.

aAge is regressed on SNP rs11642841 (0, 1, or 2) controlling for BMI and sex.

bBMI is regressed on SNP rs6499640 (0, 1, or 2) controlling for age and sex.

cBMI is regressed on SNP rs1121980 (0, 1, or 2) controlling for age and sex.
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and .40 to .49, respectively, and the coefficients of linkage disequilibrium are r2 = .24 (rs11642841 and rs6499640), r2 = .48

(rs11642841 and rs1121980), and r2 = .09 (rs6499640 and rs1121980).

The 6 different studies were treated as independent contributors to the IPD/meta-analysis. We applied our proposed MSEB

estimators using several variants of the model specified in Section 2.1 for the following (observed) 3 scenarios: (1) weak G-E
(age and rs11642841) association (trend test P value in Table 4 among controls: 3.6 × 10−1) supporting G-E independence;

(2) strong G-E (BMI and rs6499640) association (trend test P value in Table 4 among controls: 3.3 × 10−3); and (3) modest

G-E (BMI and rs1121980) association (trend test P value in Table 4 among controls: 3.0 × 10−2), which are reflected in the

(conditional) G-E association in the control group across the 6 studies (Table 4). The outcome variable D in each scenario

indicates the presence/absence of T2D, and the variable G (coded 0,1,2) represents the particular SNP specified in each scenario.

In scenario (1), the exposure variable E denotes age and we used the stratification variable S = (S1, S2) where S1 is BMI and

S2 is gender. In scenarios (2) and (3), the exposure variable E denotes BMI and we used the stratification variable S = (S1, S2)
where S1 is age and S2 is gender. In particular, the standard logistic regression model was specified as

log

{
P(Dki = 1|Eki,Gki,Ski)
P(Di = 0|Ei,Gi,Ski)

}
= 𝛽0k + 𝛽1Eki + 𝛽2Gki + 𝛽3GkiEki + 𝛽4Ski1 + 𝛽5Si2 (10)

in the IPD joint-analysis and specified as

log

{
P(Dki = 1|Eki,Gki,Ski)
P(Di = 0|Ei,Gi,Ski)

}
= 𝛽0k + 𝛽1kEki + 𝛽2kGki + 𝛽3kGkiEki + 𝛽4kSki1 + 𝛽5kSi2 (11)

TABLE 5 Meta-analysis results of G-E interactions (SNP1 × age, SNP2 × body mass

index (BMI), and SNP3 × BMI) for the 6 case-control data sets sampled from D2D2007,

DIAGEN, FUSION S2, HUNT, METSIM, and TROMSO controlling for BMI, age, and sex

resulting from a standard logistic regression models

Univariate Multivariate
G × E Model Estimate SE P value Estimate SE P value

SNP1 LOG −0.0009 0.0034 8.0 × 10−1 −0.0029 0.0033 3.8 × 10−1

× age UML −0.0009 0.0034 8.0 × 10−1 −0.0023 0.0030 4.4 × 10−1

CML −0.0011 0.0030 7.1 × 10−1 −0.0030 0.0023 1.8 × 10−1

EB −0.0011 0.0032 7.4 × 10−1 −0.0028 0.0028 3.1 × 10−1

EB1 −0.0028 0.0026 2.7 × 10−1

EB2 −0.0030 0.0023 1.8 × 10−1

EB3 −0.0030 0.0023 1.9 × 10−1

EB4 −0.0030 0.0023 1.8 × 10−1

SNP2 LOG 0.0241 0.0084 4.1 × 10−3 0.0209 0.0083 1.1 × 10−2

× BMI UML 0.0241 0.0084 4.1 × 10−3 0.0182 0.0067 6.5 × 10−3

CML 0.0174 0.0068 1.1 × 10−2 0.0024 0.0041 5.6 × 10−1

EB 0.0179 0.0076 1.9 × 10−2 0.0050 0.0050 3.2 × 10−1

EB1 0.0178 0.0068 8.9 × 10−3

EB2 0.0167 0.0070 1.7 × 10−2

EB3 0.0174 0.0069 1.1 × 10−2

EB4 0.0174 0.0069 1.2 × 10−2

SNP3 LOG 0.0007 0.0082 9.3 × 10−1 0.0014 0.0080 8.6 × 10−1

× BMI UML 0.0007 0.0082 9.3 × 10−1 0.0035 0.0066 5.9 × 10−1

CML 0.0046 0.0067 5.0 × 10−1 0.0152 0.0041 1.8 × 10−4

EB 0.0026 0.0071 7.1 × 10−1 0.0065 0.0062 3.0 × 10−1

EB1 0.0041 0.0068 5.5 × 10−1

EB2 0.0152 0.0041 1.8 × 10−4

EB3 0.0152 0.0041 1.8 × 10−4

EB4 0.0152 0.0041 1.8 × 10−4

Note. SNPs are abbreviated as SNP1= rs11642841, SNP2= rs6499640 and SNP3= rs1121980. Estimates

shown are inverse-variance weighted averages across all studies.
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in the meta-analysis where D denotes T2D disease status, G (coded 0,1,2) corresponds to rs11642841 (SNP1), rs6499640

(SNP2), or rs1121980 (SNP3), E corresponds to age (BMI) when G corresponds to SNP1 (SNP2 or SNP3), S1 corresponds to

BMI (age) when E corresponds to age (BMI), S2 indicates male sex, i indexes subjects, and k indexes studies. For the UML,

CML, EB, and our proposed MSEB estimators, we further model the minor allele frequency using a logistic regression model

with covariates E and S under HWE similar to Section 2.1.

4.1 Meta-analysis
Table 5 displays the G×E interaction effect estimates resulting from a standard inverse variance weighted univariate

meta-analysis and our proposed MSEB estimators in the meta-analysis setting. As expected, an interaction effect was not

detected in scenarios (1) and (3) and was detected in scenario (2). In our data results, our MSEB estimators tend to have smaller

standard error than the standard logistic regression approach and UML approach. In addition, we point out that our proposed

estimators EB2, EB3, and EB4 reduce to the CML estimates in the case that the uncertainty parameter 𝜏2 is estimated to be 0

as was the case in scenarios (1) and (3).

To evaluate the G-E independence assumption, we estimate the association parameter of G (rs6499640) with BMI among

controls across the 6 case-control data sets sampled from D2D2007 (1), DIAGEN (2), FUSION S2 (3), HUNT (4), METSIM

(5), and TROMSO (6) adjusting for age and sex using a standard multivariate regression model. In Figure 1, we report these

estimated association parameters−0.38 (−.72,−.04),−0.15 (−.65, .34),−0.37 (−.68,−.06),−0.21 (−.62, .20), 0.01 (−.32, .35),

and−0.04 (−.46, .38) for the 6 individual studies, respectively. While the figure may suggest evidence against G-E independence,

we draw attention to the differences in the confidence intervals with respect to the point estimates and widths which reflects

varying uncertainty in the G-E independence assumption.

4.2 Individual patient data
In Table 6, we display the results for scenarios (1) to (3) using our proposed MSEB estimators in the following variants of the

model specified in Section 2.1: (1) 𝜃k = 𝜃 for all k and 𝜼k is allowed to vary across each study; (2) both 𝜃k and 𝜼k are allowed

to vary across studies; (3) 𝜃k = 𝜃 and 𝜼k = 𝜼 for all k; and (4) 𝜃k is allowed to vary across studies while 𝜼k = 𝜼 for all k. The

estimates and standard errors are similar in each scenario; however, there is generally precision gain in comparison with the

standard logistic regression and comparable results to the MSEB estimators in the meta-analysis setting (Table 4). In particular,

we make the following two key observations: (1) In the estimation of the age × rs11642841 (weak G-E association) interaction

effect, all the methods provide very close estimates and improved precision over the standard logistic or unconditional approach,

FIGURE 1 Estimated association parameter of G (rs6499640) with body mass index (BMI) among controls across the 6 case-control data sets

sampled from D2D2007 (1), DIAGEN (2), FUSION S2 (3), HUNT (4), METSIM (5), and TROMSO (6) adjusting for age and sex using a standard

multivariate regression model [Colour figure can be viewed at wileyonlinelibrary.com]

http://onlinelibrary.wiley.com/
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FIGURE 2 Estimated disease (T2D) odds ratios among subjects with genotype measured for the SNP rs6499640 (coded 0, 1, or 2) located on the

FTO gene associated with a 5-unit increase (interquartile range) in exposure (body mass index (BMI)) adjusting for age, sex, and study cohort

resulting from individual patient data joint analysis using standard logistic regression. Estimated marginal odds ratio for BMI without adjusting for

genotype is also provided and labeled “Overall”

and (2) in the estimation of the BMI × rs1121980 and BMI × rs6499640 interactions effects, the constrained model estimates

differed substantially from the estimates resulting from the unconstrained model. As expected, our MSEB estimates tend towards

the constrained model estimates when the G-E association is weak and tends towards the unconstrained estimate when the G-E
association is strong.

In Figure 2, we present stratified odds ratios associated with a 5-unit change (1 interquartile change) in BMI across the 3

genotype subgroups after adjusting for age, sex, and study cohort. The marginal OR is 2.57, 95% CI (2.43, 2.72). When stratified

by genotype status the homozygous major allele G = 0 group had OR of 2.34, 95% CI (2.16, 2.55) while the homozygous

minor allele subgroup had an OR of 2.95 (2.64, 3.31). The P value for testing interaction was 0.005. This finding needs follow

up and replication in future studies. In Li et al12, we noticed a significant BMI × rs1121980 interaction effect with high-density

lipoproteins cholesterol level as outcome.

5 DISCUSSION

In this paper, we extended the single-study EB type shrinkage estimators proposed by Mukherjee and Chatterjee (2008) to a

meta-analysis setting that adjusts for uncertainty in the assumption of G-E independence. We used the retrospective likelihood

framework to derive an adaptive combination of estimators obtained under the constrained model (assuming G-E independence)

and unconstrained model (without any assumptions of independence) with weights determined by measures of G-E associa-

tion derived from multiple studies. Our simulation studies indicate that these newly proposed MSEB estimators have smaller

MSE than the standard alternative of using constrained, unconstrained, or EB estimators in the meta-analysis summary statis-

tic setting when the G-E independence assumption is moderately violated. As previously noted, a contributor to these results

is that the standard inverse variance-covariance weighted EB estimates do not necessarily lie between the standard inverse

variance-covariance weighted UML and CML estimates (weight contamination). We also note that in other simulation settings

the CML and EB can sometimes offer better performance than the newly proposed MSEB estimators. However, in terms of

average performance across different scenarios of uncertainty regarding the G-E independence assumption, the newly proposed

MSEB estimators offer protection in terms of bias without sacrificing much efficiency.

In the face of uncertainty, when historic data nor biology has established G-E independence, our recommendation is that the

EB estimator be used in the IPD setting and our proposed MSEB estimators be used in the meta-analysis setting when IPD are

not available. Specifically, we point to our MSEB estimator EB1 as the estimator of choice (in the meta-analysis setting) for

the following various reasons. (1) EB1 is easy to implement and does not require an iterative process in the estimation of the

covariance matrix A (required in EB3 and EB4); (2) EB1 does not have the inherent problem (with probability 1) of yielding
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estimates identical to CML as does EB2 to EB4 (when 𝜏 2 is estimated to be 0), which deteriorates their ability to protect against

bias and loss of efficiency when the assumption of G-E independence is false; (3) EB1 has smaller MSE relative to standard

logistic regression (LOG) and the UML estimator when G-E independence holds; (4) EB1 offers protection against inflated bias

and MSE when G-E independence does not hold; (5) the derived variance approximation formula (Supporting Information) for

EB1 is simpler, easier to implement, and more stable than the derived variance approximation formulas for EB2 to EB4. While

our simulation studies support the use of our variance approximations, it is important to note that the variance approximations

for EB2, EB3, and EB4 depend on (𝜽̂
T
𝜽̂)−2, which can become very large if 𝜃k is estimated too close to 0 for all k. This can

make these approximations unstable. A caveat of our proposed method is the additional modeling of the conditional mean of

G given E. Various forms of model misspecification in the profile likelihood approach of Chatterjee and Carroll3 have been

considered in literature, eg, Tchetgen Tchetgen and Kraft.21,22 Misspecification of either P(D|G,E) or P(G|E) can lead to bias.

Model misspecification and measurement error are ubiquitous in the G×E literature and also remain a concern in our approach.

We applied our methods to 6 different case-control data sets sampled from D2D2007, DIAGEN, FUSION S2, HUNT, MET-

SIM, and TROMSO. Our MSEB estimators reported sensible results relative to other considered estimates (eg, standard logistic

regression, UML, and CML) and suggest that there is evidence to support SNP × BMI effects (rs6499640 and rs1121980) on

T2D. We provide R codes for the simulation study at https://github.com/jpestes/mseb/blob/master/sim.txt.

Typically, IPD are not available to researchers for systematic review. Summary data provide a nice alternative avenue for

analysis; however, it may be challenging to obtain the full covariance matrix from the researchers responsible for each individual

study because only the diagonal elements are typically published. Nevertheless, increasing communication and advancements

in technology among researchers can alleviate these issues.
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