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ABSTRACT
Testing for association between two random vectors is a common and important task

in many fields, however, existing tests, such as Escoufier’s RV test, are suitable only

for low-dimensional data, not for high-dimensional data. In moderate to high dimen-

sions, it is necessary to consider sparse signals, which are often expected with only

a few, but not many, variables associated with each other. We generalize the RV test

to moderate-to-high dimensions. The key idea is to data adaptively weight each vari-

able pair based on its empirical association. As the consequence, the proposed test

is adaptive, alleviating the effects of noise accumulation in high-dimensional data,

and thus maintaining the power for both dense and sparse alternative hypotheses. We

show the connections between the proposed test with several existing tests, such as

a generalized estimating equations-based adaptive test, multivariate kernel machine

regression (KMR), and kernel distance methods. Furthermore, we modify the pro-

posed adaptive test so that it can be powerful for nonlinear or nonmonotonic asso-

ciations. We use both real data and simulated data to demonstrate the advantages

and usefulness of the proposed new test. The new test is freely available in R pack-

age aSPC on CRAN at https://cran.r-project.org/web/packages/aSPC/index.html and

https://github.com/jasonzyx/aSPC.
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1 INTRODUCTION

To investigate genetic control of gene expression, it is com-

mon and useful to conduct association analysis between single

nucleotide polymorphisms (SNPs) and gene expression (i.e.,

mRNA or transcript) levels, also known as eQTL analysis.

This often involves massive univariate testing. For example,

Colantuoni et al. (2011) examined 30,176 expression probes

and 625,439 SNPs, leading to 1.89 × 1010 (19 billion) pos-

sible SNP-gene associations. After the conservative Bonfer-

roni adjustment, only 1,628 individual associations surpassed

the genome-wide significance level. However, when they con-

ducted a global test for possible association between all SNPs

and all transcripts, no association was detected. They noted:

“This dramatic lack of association between genetic distance

and transcriptome distance across our sample is a surprising

result that requires further interrogation. It is possible that no

association is found in Figure 4 because most of the genetic

polymorphisms measured do not impact on gene expression.”

We agree with Colantuoni et al. (2011) on the possible reason

for the lack of a global association in striking contrast to the

presence of some individual associations: it is due to the lack

of power of a global test for high-dimensional data with only

sparse signals. Furthermore, the authors also commented on

that, surprisingly, no association was found even for smaller

subsets of the SNPs and genes. We note that their used method

was Mantel’s (1967) test, which was originally proposed for

low-dimensional data and may have only limited power for
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moderate- to high-dimensional data as to be confirmed. Nev-

ertheless, this example pinpoints the importance of conduct-

ing global association testing with high-dimensional data,

given that most of the existing tests were almost exclusively

developed for low-dimensional data for historical reasons, as

reviewed in Josse and Holmes (2014).

Some commonly used tests for association between two

random vectors include the RV test (Escoufier, 1970), the

Mantel test (Mantel, 1967), and the dCov test (Székely, Rizzo,

& Bakirov, 2007). The RV test is based on the RV coeffi-

cient as a multivariate generalization of Pearson’s correla-

tion coefficient. It is perhaps the most popular one in many

fields, especially in ecology. The Mantel test aims to detect

a possible correlation between two distance matrices among

the subjects based on the two random vectors, respectively;

it is noted that the Mantel test was used by Colantuoni et al.

(2011). The dCov test has only become popular recently due

to its attracting property of being consistent in detecting any

possible associations, including nonlinear and nonmonotonic

relationships. A common problem with the above tests is their

treating all the variables in the two random vectors equally a

priori, which is perhaps reasonable for low-dimensional data,

but not for moderate- to high-dimensional data: as for the

SNP-gene expression data of Colantuoni et al. (2011), most

of the SNPs do not have regulatory function; even for those

regulatory ones, their targets are likely only a few, not most,

of the genes. That is, for high-dimensional data, we expect that

many or even most (e.g., SNP-gene) pairs are not associated,

which is ignored by the above existing tests, leading to their

noise accumulations and thus substantial power loss as to be

confirmed in later numerical studies. Hence, to boost power, it

is important to conduct variable selection or variable weight-

ing. With weak associations, it is difficult for accurate variable

selection, so we take a variable weighting approach. In our

approach, we use the data to adaptively determine a weight for

each pair of the variables: if a pair is more likely to be asso-

ciated, we assign a higher weight to it. This will effectively

downweight many of those nonassociated pairs, alleviating

the effects of noise accumulation hindering most existing tests

for high-dimensional data. Our adaptive test can be regarded

as a generalization of the RV test to high-dimensional data, as

to be shown later.

We note that the above tests aim to tackle the same prob-

lem as SNP set- or gene-based association testing for mul-

tiple traits or longitudinal traits in genetics (e.g., Fan et al.,

2016; He, et al. 2015; Kim, Zhang, & Pan 2016; Maity, Sul-

livan, & Tzeng 2012; Wang et al. 2015; Wang, Lee, Zhu,

Redline, & Lin 2013; Wang, Xu, Zhang, Wu, & Wang 2017

and references therein), but the two lines of research seem to

be largely nonoverlapping; it is also our goal here to bridge

the gap between the two lines of research. In particular, our

proposed test is related to another adaptive test, called adap-

tive sum of powered score test based on generalized esti-

mating equations (GEE-aSPU), originally designed in genet-

ics for testing for multitrait and multi-SNP associations in

low to moderate dimensions (Kim, Zhang, & Pan, 2016),

but we will also show some computational advantages of the

proposed test over GEE-aSPU. It is also connected with ker-

nel machine regression (KMR) and kernel distance methods

(Hua & Ghosh, 2015). Furthermore, due to the simplicity of

our proposed test, it can be also extended to detect nonlinear or

even nonmonotonic associations by borrowing the idea from

the dCov test, though our test is much more powerful than the

dCov test for sparse signals in moderate to high dimensions.

The rest of the article is organized as follows. In Sec-

tion 2, we will briefly review the RV test, which serves to

motivate our proposed adaptive sum of powered correlation

(aSPC) test. We then outline the connections of the aSPC test

to some existing tests before presenting its several general-

izations. Section 3 applies the new and some existing tests

to an eQTL expression dataset drawn from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI), highlighting some

advantages of the new tests over some existing ones. In Sec-

tion 4, more simulation results are shown to support the power

and flexibility of the aSPC test. We end with a summary of the

main conclusions in Section 5.

2 METHODS

Our goal is to test for association between two random vectors

𝒙𝑝×1 and 𝒚𝑞×1 in 𝑝 and 𝑞 dimensions, respectively. We have 𝑛

independently and identically distributed (iid) observations on

𝒙-𝒚 pair as stored in two matrices 𝑋𝑛×𝑝 and 𝑌𝑛×𝑞 , respectively;

each row of the two matrices corresponds to an observed 𝒙-𝒚

pair. Denote 𝑋⋅𝑙 as the 𝑙th (𝑙 = 1,… , 𝑝) column of matrix 𝑋

and 𝑌.𝑚 as the 𝑚th (𝑚 = 1… 𝑞) column of 𝑌 . It is assumed

throughout that each column of the two matrices is centered

at mean 0 with a unit variance. We will use 𝑋 and 𝑌 to test

for association between 𝒙 and 𝒚; with some abuse of notation,

we also call it association between 𝑋 and 𝑌 .

2.1 Review: The RV test
For the purpose of comparison, we first briefly review the

RV test, largely following Josse and Holmes (2014). The

two cross-product matrices of 𝑋 and 𝑌 are 𝑊𝑋 = 𝑋𝑋𝑇 and

𝑊𝑌 = 𝑌 𝑌 𝑇 , both of which are of size 𝑛 × 𝑛. To measure their

proximity, the Hilbert-Schmidt inner product between matri-

ces 𝑊𝑋 and 𝑊𝑌 can be used:

⟨𝑊𝑋, 𝑊𝑌 ⟩ = 𝑡𝑟(𝑋𝑋𝑇 𝑌 𝑌 𝑇 )

= (𝑛 − 1)2
𝑝∑

𝑙=1

𝑞∑
𝑚=1

Cov2
𝑛
(𝑋.𝑙, 𝑌.𝑚), (1)

where Cov𝑛(𝑋⋅𝑙, 𝑌.𝑚) is the sample covariance between

columns 𝑋⋅𝑙 and 𝑌.𝑚. The RV coefficient, a correlation
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coefficient proposed by Escoufier (1973) for two random vec-

tors, is computed by normalizing the Hilbert-Schmidt inner

product by the matrix norms:

RV(𝑋, 𝑌 ) =
⟨𝑊𝑋, 𝑊𝑌 ⟩||𝑊𝑋||||𝑊𝑌 || = tr(𝑋𝑋𝑇 𝑌 𝑌 𝑇 )√

tr(𝑋𝑋𝑇 )2tr(𝑌 𝑌 𝑇 )2
, (2)

which accounts for possibly different scales of 𝒙

and 𝒚. The population RV coefficient is 𝜌(𝒙, 𝒚) =
tr(Σ

𝒙𝒚
Σ
𝒚𝒙
)∕
√

tr(Σ2
𝒙𝒙
)tr(Σ2

𝒚𝒚
), where Σ

𝒙𝒚
is the popu-

lation covariance between 𝒙 and 𝒚. Our goal is to test

𝐻0 ∶ 𝜌(𝒙, 𝒚) = 0.

If each column of 𝑋 and 𝑌 is standardized to have a zero

mean and a unit variance, as always assumed here, the RV

coefficient can be simplified as:

RV(𝑋, 𝑌 ) = tr(𝑋𝑋𝑇 𝑌 𝑌 𝑇 )
(𝑛 − 1)2𝑝𝑞

=
∑𝑝

𝑙=1
∑𝑞

𝑚=1 corr2
𝑛
(𝑋.𝑙, 𝑌.𝑚)

𝑝𝑞

∝
𝑝∑

𝑙=1

𝑞∑
𝑚=1

corr2
𝑛
(𝑋.𝑙, 𝑌.𝑚), (3)

where corr𝑛(𝑋⋅𝑙, 𝑌.𝑚) is the sample Pearson correlation coef-

ficient between columns 𝑋⋅𝑙 and 𝑌.𝑚.

A permutation method can be used to calculate the 𝑃 -value.

Specifically, for each permutation 𝑏 = 1,… , 𝐵, we permute

the rows of matrix 𝑋 (or 𝑌 ), then calculate the corresponding

RV coefficient RV(𝑏); the 𝑃 -value is calculated as the sample

proportion [
∑𝐵

𝑏=1 𝐼(𝑅𝑉 ≤ 𝑅𝑉 (𝑏)) + 1]∕(𝐵 + 1).

2.2 New method: An adaptive sum of
powered correlation (aSPC) test
To generalize the RV coefficient as reformulated in Equation

(3), we propose a family of so-called sum of powered corre-

lation (SPC) tests:

SPC(𝛾) =
𝑝∑

𝑙=1

𝑞∑
𝑚=1

corr𝛾
𝑛
(𝑋.𝑙, 𝑌.𝑚) (4)

for a set of integers 𝛾 ≥ 1. Each term corr
𝛾
𝑛(𝑋.𝑙, 𝑌.𝑚)

in Equation (4) can be rewritten as corr
𝛾
𝑛(𝑋.𝑙, 𝑌.𝑚) =

𝑤𝑙𝑚corr𝑛(𝑋.𝑙, 𝑌.𝑚), where 𝑤𝑙𝑚 = corr
𝛾−1
𝑛 (𝑋.𝑙, 𝑌.𝑚) is

regarded as a weight for corr𝑛(𝑋.𝑙, 𝑌.𝑚). Therefore, a

larger |corr𝑛(𝑋.𝑙, 𝑌.𝑚)| will yield higher weight |𝑤𝑙𝑚|, which

will help improve power with sparse alternatives that are

common for moderate- to high-dimensional data. Specifi-

cally, when 𝛾 = 1, all corr𝑛(𝑋.𝑙, 𝑌.𝑚)’s will be assigned an

equal weight 1, which will be beneficial for dense alternatives

(i.e., if all or most of the columns of the two matrices 𝑋

and 𝑌 are associated) with the same association direction;

however, when 𝛾 ≥ 2, the larger the 𝛾 , the higher weights

would be assigned to those larger corr𝑛(𝑋.𝑙, 𝑌.𝑚)’s, more

and more favoring sparse alternatives (i.e., when only few

of the columns of 𝑋 and 𝑌 , as indicated by those larger

corr𝑛(𝑋.𝑙, 𝑌.𝑚)’s, are truly associated with each other); an

even integer 𝛾 would give a test robust to varying association

directions while an odd 𝛾 would not. In the extreme case of

a sparse alternative with only one or few associated column

pairs between 𝑋 and 𝑌 , for an even integer 𝛾 → ∞, we have

SPC(𝛾) ∝

(
𝑝∑

𝑙=1

𝑞∑
𝑚=1

corr𝛾
𝑛
(𝑋.𝑙, 𝑌.𝑚)

)1∕𝛾

→ max
𝑗

|corr𝑛(𝑋.𝑙, 𝑌.𝑚)| = SPC(∞), (5)

which we can see largely eliminates the effects of nonassoci-

ated pairs and thus is expected to be more powerful for more

sparse alternatives. We emphasize that, with large 𝑝 and 𝑞 in

moderate to high dimensions, noise accumulation is a severe

problem for sparse alternatives, which explains power loss of

many nonadaptive tests such as the RV test, as to be shown

later.

In summary, depending on the type of a true alternative

hypothesis to be tested, i.e. dense or sparse, a small or a large

𝛾 would yield higher power for the SPU(𝛾) test. In practice,

because it is unknown what is the true alternative and thus

which 𝛾 value would yield high power, we develop an aSPC

test to combine the evidence across the SPC tests:

aSPC = min
𝛾∈Γ

𝑃SPC(𝛾) (6)

where 𝑃SPC(𝛾) is the 𝑃 -value of the SPC(𝛾) test, and Γ
contains a set of candidate values for 𝛾 . In general, Γ =
{1, 2,… , 𝛾𝑢,∞} with 1 < 𝛾𝑢 < ∞ can be used; larger 𝑝 and

𝑞 require a larger 𝛾𝑢; a practical guideline on the choice of

𝛾𝑢 is that SPC(𝛾𝑢) gives results similar to SPC(∞). We used

Γ = {1,… , 8,∞} throughout this paper for its good perfor-

mance based on our limited experience.

A permutation method can be used to obtain the 𝑃 -values

of all the SPC and aSPC tests in a single loop (or layer) of

permutations. Briefly, 𝐵 copies of the null statistic SPC(𝛾)(𝑏)
for each 𝛾 ∈ Γ and 𝑏 = 1,… , 𝐵 can be calculated by permut-

ing the rows of matrices 𝑋 (or 𝑌 ) 𝐵 times. The 𝑃 -value of

each SPC(𝛾) is calculated as 𝑃SPC(𝛾) = [
∑𝐵

𝑏=1 𝐼(|SPC(𝛾)(𝑏)| ≥|SPC(𝛾)|) + 1]∕(𝐵 + 1). Furthermore, based on the same

𝐵 copies of the null statistics, we calculate the 𝑃 -

value for the aSPU test as 𝑃aSPC = [
∑𝐵

𝑏=1 𝐼(aSPC(𝑏) ≤

aSPC) + 1]∕(𝐵 + 1) with aSPC(𝑏) = min𝛾∈Γ 𝑝
(𝑏)
𝛾 and 𝑝

(𝑏1)
𝛾 =

[
∑

𝑏≠𝑏1
𝐼(|SPC(𝛾)(𝑏)| ≥ |SPC(𝛾)|)(𝑏1) + 1]∕𝐵.

2.3 Connections with some existing tests
We start by establishing a relationship between the aSPC test

(with the Pearson correlation coefficient) and an existing test

called GEE-aSPU, which was proposed by Kim et al. (2016)
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for multiple trait-multiple SNP associations. We first review

the GEE-aSPU test before pointing out its connection to the

aSPC test.

First we need some notations. Denote 𝑋𝑖⋅ = (𝑥𝑖1,… , 𝑥𝑖𝑝)
and 𝑌𝑖⋅ = (𝑦𝑖1,… , 𝑦𝑖𝑞)𝑇 as 𝑖th row in matrices 𝑋 and trans-

pose of 𝑖th row in 𝑌 for 𝑖 = 1,… , 𝑛, respectively; denote

𝑋𝑖 = 𝐼 ⊗ 𝑋𝑖⋅, where 𝐼 is a 𝑞 × 𝑞 identity matrix, and ⊗ rep-

resents the Kronecker product.

Suppose we treat each column 𝑌⋅𝑚 for 𝑚 = 1,… , 𝑞 in 𝑌𝑛×𝑞

as a response, each column 𝑋⋅𝑙 for 𝑙 = 1,… , 𝑝 in 𝑋𝑛×𝑝 as a

covariate or predictor of interest; recall that 𝑌⋅𝑚 and 𝑋⋅𝑙 have

been standardized to have zero mean and unit variance. We

can then test if there is any association between the columns

of 𝑋 and those of 𝑌 with a marginal generalized linear model

𝑔(𝐸(𝑌𝑖⋅|𝑋𝑖)) = 𝑋𝑖𝛽, (7)

where 𝑔(.) is a canonical link function, and 𝛽 is a 𝑝𝑞-

dimensional vector of unknown parameters of interest. We

aim to test the null hypothesis 𝐻0 ∶ 𝛽 = 0. Denote 𝑌 as the

mean vector of columns of 𝑌 , which is a zero vector of length

𝑞. With a canonical link function and a working independence

model in GEE (Liang & Zeger, 1986), the generalized score

vector for 𝛽 is

𝑈 = 1
𝑛 − 1

𝑛∑
𝑖=1

𝑋𝑇
𝑖
(𝑌𝑖⋅ − 𝑌 ) = 1

𝑛 − 1

𝑛∑
𝑖=1

𝑋𝑇
𝑖

𝑌𝑖⋅. (8)

It is easy to verify 𝑈 = (𝑈11,… , 𝑈𝑝1,… , 𝑈1𝑞,… , 𝑈𝑝𝑞)𝑇 with

𝑈𝑙𝑚 = 𝑋𝑇
⋅𝑙 𝑌⋅𝑚∕(𝑛 − 1) = corr𝑛(𝑋⋅𝑙, 𝑌⋅𝑚). That is, each ele-

ment 𝑈𝑙𝑚 measures the association between columns 𝑋⋅𝑙 and

𝑌⋅𝑚. The GEE-SPU test statistic is defined by

SPU(𝛾1, 𝛾2) =
𝑞∑

𝑚=1

⎡⎢⎢⎣
(

𝑝∑
𝑙=1

𝑈
𝛾1
𝑙𝑚

) 1
𝛾1 ⎤⎥⎥⎦

𝛾2

=
𝑞∑

𝑚=1

⎡⎢⎢⎣
(

𝑝∑
𝑙=1

corr
𝛾1
𝑛 (𝑋⋅𝑙, 𝑌⋅𝑚)

) 1
𝛾1 ⎤⎥⎥⎦

𝛾2

. (9)

Denote Γ1 and Γ2 are two sets of positive integers. The GEE-

aSPU test statistic is then defined as the minimum P-value of

SPU(𝛾1, 𝛾2)’ tests for all 𝛾1 ∈ Γ1 and 𝛾2 ∈ Γ2:

aSPU = min
𝛾1,𝛾2

𝑝𝛾1,𝛾2
(10)

Here, we observe a close connection between the SPC test

and the GEE-SPU test: if 𝛾1 = 𝛾2 = 𝛾 , we have SPU(𝛾, 𝛾) =
SPC(𝛾). The difference between the aSPC and aSPU tests

is that the latter searches for two optimal (𝛾1, 𝛾2) in a two-

dimensional space (i.e., over Γ1 × Γ2), while aSPC searches

over only a one-dimensional space (i.e., Γ); the GEE-aSPU

test reduces to aSPC if we impose 𝛾1 = 𝛾2 = 𝛾 .

Due to the currently inefficient implementation of the GEE-

aSPU test (in its general regression framework) in R package

GEE-aSPU, it cannot be applied to high-dimensional data: it

requires a large memory space for its inefficient storage of the

design matrix with dimension 𝑛𝑝 × 𝑝𝑞 (or 𝑛𝑞 × 𝑝𝑞) if 𝑌 (or 𝑋)

is treated as the response. As an example, the GEE-aSPU test

will need about a 40 GB memory space if 𝑝 = 𝑞 = 300 and

sample size 𝑛 = 200, not yet available on many computers. In

contrast, due to its simplicity, the aSPC test is applicable to

high-dimensional data.

Finally, we comment on that the SPC(2) test is also closely

related to several other tests, further illustrating the poten-

tial power of the aSPC test. First, because the dCov test

and the Hilbert-Schmidt independence criterion (HSIC) test

are equivalent (Sejdinovic, Sriperumbudur, Gretton, & Fuku-

mizu, 2013), Hua and Ghosh (2015) called them kernel dis-

tance covariance method (KDC); they further established the

equivalence of KDC and multivariate KMR test (Maity, Sulli-

van, & Tzeng, 2012) (if the same kernels are used in the two).

On the other hand, Kim et al. (2016) pointed out that GEE-

SPU(2,2) is similar to multivariate KMR with a linear kernel;

the two are exactly the same if the true correlation matrix is

used as the working correlation structure in GEE for the for-

mer, which in general does not hold (unless the columns of 𝑌

are independent), because the working independence model

is used in GEE-SPU tests. Now, by the equivalence between

SPC(2) and GEE-aSPU(2,2) and by the above results, we see

the close similarity between SPC(2) and other tests. Using

the weighting argument motivating the development of other

SPC(𝛾) tests with 𝛾 > 2, we expect that the other tests (i.e.,

dCov, HSIC, and KMR with linear kernels) may lose power

with sparse association patterns, which will be confirmed in

our later simulations.

2.4 Extensions
So far we define the SPC test with the Pearson correlation

coefficients between the columns of the two matrices. Here,

we generalize the SPC and thus aSPC tests with several other

dependence measures and with covariates.

2.4.1 Fisher’s transformation
We may take Fisher’s z-transformation on the sample Pearson

correlation coefficient 𝑟𝑙𝑚 = corr𝑛(𝑋.𝑙, 𝑌.𝑚) before plugging

into Equation (4). The reason is to account for heterogeneous

variances of the sample correlations for an alternative hypoth-

esis; as to be shown next, the variance of a sample correlation

increases monotonically as the absolute value of the true cor-

relation decreases (under the normality assumption). Specifi-

cally, the sample correlation 𝑟𝑙𝑚 = corr𝑛(𝑋.𝑙, 𝑌.𝑚) is replaced

by 𝑧𝑙𝑚 = 1
2 ln((1 + 𝑟𝑙𝑚)∕(1 − 𝑟𝑙𝑚)) in Equation (4). Under the

normality assumption (on each pair of the columns of 𝑋

and 𝑌 ), 𝑧𝑙𝑚 is approximately normally distributed with mean
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1
2 ln((1 + 𝜌𝑙𝑚)∕(1 − 𝜌𝑙𝑚)) and a constant variance 1∕(𝑛 − 3),
where 𝜌𝑙𝑚 is the population Pearson correlation coefficient.

Given that 𝑧𝑙𝑚∼̇𝑁( 12 ln((1 + 𝜌𝑙𝑚)∕(1 − 𝜌𝑙𝑚)), 1∕(𝑛 − 3)), it

is not hard to find that the approximate distribution of the

sample Pearson correlation coefficient is 𝑟𝑙𝑚∼̇𝑁(𝜌𝑙𝑚, (1 −
𝜌2

𝑙𝑚
)2∕(𝑛 − 3)); the variance (1 − 𝜌2

𝑙𝑚
)2∕(𝑛 − 3) is obtained by

the delta method and clearly confirms the monotonicity men-

tioned above. In particular, because the variance is largest for

no correlations, not taking Fisher’s transformation or not sta-

bilizing the variance may lead to loss of power, especially

for high-dimensional data, for which sparse alternatives are

expected with many nonassociated pairs.

Whenever needed, to distinguish using Fisher’s z-

transformed Pearson correlation coefficients from using other

dependence measures for the SPC and aSPC tests, we will

use SPC.P and aSPC.P to refer to the former:

SPC.P(𝛾) =
𝑝∑

𝑙=1

𝑞∑
𝑚=1

𝑧
𝛾

𝑙𝑚
, (11)

and the aSPC.P test is similarly defined as before.

2.4.2 The aSPC test with Spearman’s
correlation
More generally, the sample Pearson correlation coefficient

term 𝑟𝑙𝑚 = corr𝑛(𝑋.𝑙, 𝑌.𝑚) in Equation (4) can be replaced by

a different dependence measure. For example, we can use

Spearman (1904a) rank correlation coefficient, which is effec-

tive for monotonic relationships, in contrast to only linear

relationships by Pearson’s coefficient. The Spearman corre-

lation coefficient is defined as the Pearson correlation coeffi-

cient between the ranked variables. Specifically, 𝑋⋅𝑙 and 𝑌⋅𝑚
(𝑙 = 1,… , 𝑝 and 𝑚 = 1,… , 𝑞) are converted to the rank score

vectors rank(𝑋⋅𝑙) and rank(𝑌⋅𝑚) (e.g., rank score = 1 for the

smallest value in 𝑋⋅𝑙 (or 𝑌⋅𝑚) and rank score= 𝑛 for the largest

value in 𝑋⋅𝑙 or (𝑌⋅𝑚)). The sample Spearman correlation coef-

ficient is calculated as

𝑟𝑙𝑚(Spearman)

=
Cov𝑛(rank(𝑋⋅𝑙), rank(𝑌⋅𝑚))√

Cov𝑛(rank(𝑋⋅𝑙), rank(𝑋⋅𝑙))Cov𝑛(rank(𝑌⋅𝑚), rank(𝑌⋅𝑚))
,

(12)

where Cov𝑛(𝑢, 𝑣) is a sample covariance between vectors 𝑢𝑛×1
and 𝑣𝑛×1. Then the SPC statistic with Spearman’s rank corre-

lation coefficient is defined as:

𝑇SPC.Sp(𝛾) =
𝑝∑

𝑙=1

𝑞∑
𝑚=1

𝑟
𝛾

𝑙𝑚
(Spearman), (13)

and aSPC.Sp is defined similarly as before.

2.4.3 The aSPC test with the distance
correlation
Another extension is to replace each sample Pearson corre-

lation coefficient in equation (4) by a corresponding distance

correlation coefficient (dCor), which is derived based on dCov

(Székely et al. 2007) and is consistent in detecting any depen-

dency, not only the linear ones (detectable by Pearson’s) or

monotonic ones (by Spearman’s); for example, in the presence

of nonlinear (and nonmonotonic) dependency, use of dCor is

expected to be more powerful, as to be confirmed in our later

simulations. We first review the usual dCov test and then mod-

ify the SPC test with the distance correlations.

The standard dCov test utilizes all columns in 𝑋 and 𝑌 to

calculate the pairwise distance before computing the sample

dCov:

𝑎𝑖𝑗 = ||𝑋𝑖⋅ − 𝑋𝑗⋅||𝑡, 𝑏𝑖𝑗 = ||𝑌𝑖⋅ − 𝑌𝑗⋅||𝑡, (14)

where || ⋅ || denotes the Euclidean distance/norm; 𝑋𝑖⋅ and 𝑌𝑖⋅
denote the 𝑖th row of 𝑋 and 𝑌 , respectively (𝑖 = 1,… , 𝑛);

𝑡 ∈ (0, 2] and 𝑡 = 1 corresponds to the Euclidean norm, which

was used in our data analysis throughout unless specified oth-

erwise. The pairwise distances are doubly centered:

𝐴𝑖𝑗 = 𝑎𝑖𝑗 − �̄�𝑖⋅ − �̄�⋅𝑗 + �̄�⋅⋅, 𝐵𝑖𝑗 = 𝑏𝑖𝑗 − �̄�𝑖⋅ − �̄�⋅𝑗 + �̄�⋅⋅, (15)

where �̄�𝑖⋅, �̄�⋅𝑗 , and �̄�⋅⋅ are the 𝑖th row mean, the 𝑗th column

mean, and the grand mean of matrix [𝑎𝑖𝑗]; �̄�𝑖⋅, �̄�⋅𝑗 , and �̄�⋅⋅ are

similar defined for matrix [𝑏𝑖𝑗]. Then the squared sample dCov

of 𝑋 and 𝑌 is defined as:

dCov2
𝑛
(𝑋, 𝑌 ) = 1

𝑛2

𝑛∑
𝑖,𝑗=1

𝐴𝑖𝑗𝐵𝑖𝑗 . (16)

A permutation method can be used to calculate the 𝑃 -value.

The null statistics 𝑇
(𝑏)
dCov

= 1
𝑛2

∑𝑛

𝑖,𝑗=1 𝐴
(𝑏)
𝑖𝑗

𝐵
(𝑏)
𝑖𝑗

can be calcu-

lated based on each permuted sample 𝑋(𝑏) and 𝑌 (𝑏), where

𝑋(𝑏) (or 𝑌 (𝑏)) is generated by permuting the rows of 𝑋 (or

𝑌 ). The 𝑃 -value is calculated as 𝑃dCov = (
∑𝐵

𝑏
𝐼(dCov(𝑏) ≥

dCov) + 1)∕(𝐵 + 1) based on 𝐵 permutations.

In the standard dCov test, all columns of 𝑋 and 𝑌 are used

to calculate the pairwise distances; that is, each variable (or

dimension) is treated equally a priori, which may not be a good

idea for high-dimensional data for the abundance of sparse

alternatives. In contrast, in our SPC test, each column/variable

of 𝑋 and 𝑌 is treated differently according to the magnitudes

of their estimated pairwise associations. Specifically, similar

to the standard dCov test, first we define all pairwise distances

among the observations based on the 𝑖th and 𝑗th elements of

𝑋⋅𝑙 and 𝑌⋅𝑚 as

𝑎𝑖𝑗(𝑙) = ||𝑋𝑖𝑙 − 𝑋𝑗𝑙||𝑡, 𝑏𝑖𝑗(𝑚) = ||𝑌𝑖𝑚 − 𝑌𝑗𝑚||𝑡, (17)
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which computes the 𝑛 × 𝑛 distance matrices (𝑎𝑖𝑗(𝑙)) and (𝑏𝑖𝑗(𝑚))
for 𝑖 = 1,… , 𝑛, 𝑗 = 1,… , 𝑛, 𝑙 = 1,… , 𝑝, and 𝑚 = 1,… , 𝑞.

Denote �̄�𝑖⋅(𝑙), �̄�⋅𝑗(𝑙) and �̄�⋅⋅(𝑙) as the 𝑖th row mean, the 𝑗th col-

umn mean, and the grand mean of [𝑎𝑖𝑗(𝑙)]; similarly, denote

�̄�𝑖⋅(𝑚), �̄�⋅𝑗(𝑚), and �̄�⋅⋅(𝑚) for [𝑏𝑖𝑗(𝑚)]. The elements 𝑎𝑖𝑗(𝑙) and

𝑏𝑖𝑗(𝑚) are then doubly centered as:

𝐴𝑖𝑗(𝑙) = 𝑎𝑖𝑗(𝑙) − �̄�𝑖⋅(𝑙) − �̄�⋅𝑗(𝑙) + �̄�⋅⋅(𝑙),

𝐵𝑖𝑗(𝑚) = 𝑏𝑖𝑗(𝑚) − �̄�𝑖⋅(𝑚) − �̄�⋅𝑗(𝑚) + �̄�⋅⋅(𝑚), (18)

then the squared sample distance covariance is dened as:

dCor2
𝑛
(𝑋⋅𝑙, 𝑌⋅𝑚) =

1
𝑛2

𝑛∑
𝑖,𝑗=1

𝐴𝑖𝑗(𝑙)𝐵𝑖𝑗(𝑚). (19)

The sample distance correlation (dCor) between 𝑋⋅𝑙 and 𝑌⋅𝑚
is then defined as

dCor𝑛(𝑋⋅𝑙, 𝑌⋅𝑚) =
dCov𝑛(𝑋⋅𝑙, 𝑌⋅𝑚)√

dCov𝑛(𝑋⋅𝑙, 𝑋⋅𝑙)dCov𝑛(𝑌⋅𝑚, 𝑌⋅𝑚)
. (20)

The SPC.dCor test statistic is defined as:

SPC.dCor(𝛾) =
𝑝∑

𝑙=1

𝑞∑
𝑚=1

dCor𝛾
𝑛
(𝑋⋅𝑙, 𝑌⋅𝑚) (21)

and the aSPC.dCor is similarly defined as before.

As to be shown later in simulations, the aSPC.dCor test was

much more powerful than the standard dCov test for sparse

alternatives in even only moderate dimensions, presumably

because the former’s weighting on the pairwise dCor’s alle-

viates the harmful effects of noise accumulations in the

latter.

2.4.4 The aSPC test with covariates
The aSPC test can be applied to situations with covariates. We

only need to first regress 𝑋 and/or 𝑌 on the covariates, then

use the residuals to construct the SPC tests. We will illustrate

such an application in the example section.

2.5 Software
The asymptotic- and permutation-based RV tests are available

as functions coeffRV() and RV.rtest() in R packages

FactoMineR and ade4, respectively. The permutation-based

Mantel test, dCov test, and GEE-aSPU test are in functions

mantel(), dcov.test(), GEEaSPUset() in R packages

vegan, energy, and GEEaSPU, respectively. We imple-

mented various versions of the new SPC and aSPC tests in an

R package aSPC, which is available on github (and CRAN).

3 SIMULATIONS

3.1 Simulation I: Linear associations
To further investigate the operating characteristics of the pro-

posed tests, we compare their power performance with several

existing tests. We first consider an ideal situation with a linear

association between two sets of normal variates.

To generate a simulated dataset, two matrices 𝑋𝑛×𝑝 and

𝑌𝑛×𝑝 were simulated with 𝑛 = 500. First, for each 𝑋 and 𝑌 ,

𝑝 (= 25, 45, or 65) independent columns were simulated from

a standard multivariate normal distribution. Second, a matrix

𝑍𝑛×10 with ten columns were simulated from a multivariate

normal distribution with mean 0 and a compound symme-

try covariance matrix (with all diagonal elements equal to 1

and all off-diagonal elements equal to 0.1); for power compar-

isons, we added the first five columns of 𝑍 to 𝑋 and the last

five columns of 𝑍 to 𝑌 .

We applied the aSPC.P, aSPC.Sp, aSPC.dCor, RV, Mantel,

and dCov tests to each simulated dataset, and compared their

empirical Type I error and power estimates. The Mantel and

dCov tests were conducted with the Euclidean distance. We

set 𝐵 = 1000 for any permutation-based tests. To save com-

puting time, the empirical Type I error rates and power of

aSPC.dCor were based on 1,000 replicates while for all other

tests, they were based on 10,000 replicates.

As shown in Table 1, first, the Type I error rates were in

general well controlled for each test. Second, among all the

tests, GEE-aSPU was most powerful, followed by aSPC.P.

Note that, due to the linear association, aSPC.P is expected

to be more powerful than aSPC.Sp (and aSPC.dCor). Third,

SPC.P(2) gave the results essentially the same as both the

asymptotic- and permutation-based RV tests, as expected.

Fourth, due to the presence of many independent columns in

the two matrices 𝑋 and 𝑌 , a SPC.P test with a larger and finite

𝛾 (e.g., 𝛾 = 6) was more powerful than that with a small 𝛾 ≤ 4;

their power difference increased with the number of inde-

pendent columns. Fifth, aSPC.dCor gave much higher power

than dCov test, due to that SPC.dCor(𝛾) with larger 𝛾 reduced

the effects of noise accumulation with independent columns.

Moreover, we note the extremely low power of the Mantel test,

followed by MANOVA.

To assess the computing time and feasibility for the

permutation-based RV, GEE-aSPU, and aSPC tests, we

changed the number of columns in 𝑋 and 𝑌 to 30, 50,

70, and 100, respectively, and with a sample size 𝑛 = 200.

We then calculated the computing time with a permutation

number 𝐵 = 1 × 103. Note that, for example, for 𝑝 = 𝑞 =
300, GEE-aSPU needs to construct a large design matrix

with dimension 60,000 × 90,000, requiring about 40 GB of

memory. The computing time was based on one processor

(Intel Haswell E5-2680v3 with 2.5GB of memory on Unix
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system) from a cluster at the Minnesota Supercomputing

Institute (MSI).

As shown in Figure 1, first, our implementation of aSPC.P

completely in R was even faster than the RV.perm test,

which was surprising given that aSPC.P involved conducting

SPC.P(𝛾) for 𝛾 = 1,… , 8,∞, and RV.perm is equivalent to

SPC.P(2). Second, aSPC.dCor was more computing intensive

than other tests; for data matrices 𝑋𝑛×𝑝 and 𝑌𝑛×𝑞 , aSPC.dCor

required calculating pairwise dCovs 𝑝𝑞 times based on

𝑝 + 𝑞 distance matrices, even if we used more memory space

to save the distance matrices in our current implementation

in R.

3.2 Simulation II: Nonlinear associations
Now we consider a more challenging case with a non-linear

and non-monotonic association. Our simulation set-up was

similar to that of Székely et al. (2007).

Data matrix 𝑋𝑛×5 was simulated from a multivariate stan-

dard normal distribution. To calculate the empirical Type

I error rates, for each replicate a matrix 𝑌𝑛×5 was simu-

lated from a multivariate standard normal distribution. For

power, 𝑌𝑛×𝑝 was generated such that each of the first 𝑝0 (𝑝0 =
1, 2, 3, 4 or 5) columns 𝑌𝑖𝑗 = 𝑙𝑜𝑔(𝑋2

𝑖𝑗
) for 𝑗 = 1,… , 𝑝0 and

𝑖 = 1… 𝑛; when 𝑝0 ≤ 4, each of the other columns of 𝑌𝑛×𝑝

was independently and identically simulated from a standard

normal distribution. We were interested in how the empir-

ical power changed as the number of nonlinearly associ-

ated column pairs (𝑝0) between 𝑋 and 𝑌 varied from 1 to

5. Six tests were applied, including aSPC.dCor, aSPC.Sp,

aSPC.P, permutation-based RV test, the Mantel test with the

Euclidean distance and Pearson correlation, and dCov. One

thousand datasets were simulated to calculate the empiri-

cal Type I error and power. We used 𝐵 = 1000 for any

permutation-based tests. The simulation results are sum-

marized in the left panel of Figure 2 with sample size

𝑛 = 40.

First, the Type I error rates were well controlled for all

tests. Second, our aSPC.dCor test gave much higher power

than the usual dCov test. For example, with only one truly

associated pair, the power of aSPC.dCor was 86.5%, much

higher than 12.0% of the dCov test. Third, due to the under-

lying nonmonotonic true associations, as expected, none

of the RV, aSPC.P, aSPC.Sp, and Mantel tests performed

well.

To further explore the performance of the tests with

increasingly sparse associations, in addition to the above setup

with 𝑝0 = 5, we added 75, 115, 195, 295, or 395 independent

columns to matrix 𝑌 , each of which was simulated from a

standard normal distribution. The power curves are shown

in the right panel of Figure 2. It is clear that the power

of aSPC.dCor remained significantly higher than that of the

dCov test, whereas all other tests had no power.
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F I G U R E 2 Simulation II results. The left panel: when the number of columns in 𝑋 and 𝑌 are 5, the empirical Type I error and power curves of

the tests as the number of truly nonlinearly associated column pairs between 𝑋 and 𝑌 ranges from 0 (Type I error) to 5. Right panel: when the number

of nonlinearly associated column pairs in 𝑋 and 𝑌 is fixed at 5, the power curves of the tests as more and more nonassociated columns are added to

𝑌 . The nominal significance level is 0.05

4 REAL DATA APPLICATION

4.1 ADNI data
Data used in the preparation of this article were obtained from

the ADNI database (http://adni.loni.usc.edu). The ADNI was

launched in 2003 by the National Institute on Aging (NIA), the

National Institute of Biomedical Imaging and Bioengineer-

ing (NIBIB), the Food and Drug Administration (FDA), pri-

vate pharmaceutical companies, and nonprofit organizations,

as a $60 million, 5-year public-private partnership. The pri-

mary goal of ADNI has been to test whether serial magnetic

resonance imaging (MRI), positron emission tomography

(PET), other biological markers, and clinical and neuropsy-

chological assessment can be combined to measure the pro-

gression of mild cognitive impairment (MCI) and early

Alzheimer’s disease (AD). Determination of sensitive and

specific markers of very early AD progression is intended to

aid researchers and clinicians to develop new treatments and

monitor their effectiveness, as well as lessen the time and cost

of clinical trials.

The Principal Investigator of this initiative is Michael

W. Weiner, MD, VA Medical Center and University of

California-San Francisco. ADNI is the result of efforts of

http://adni.loni.usc.edu
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many co-investigators from a broad range of academic insti-

tutions and private corporations, and subjects have been

recruited from over 50 sites across the United States and

Canada. The initial goal of ADNI was to recruit 800 subjects

but ADNI has been followed by ADNI-GO and ADNI-2. To

date these three protocols have recruited over 1,500 adults,

ages 55 to 90, to participate in the research, consisting of cog-

nitively normal older individuals, people with early or late

MCI, and people with early AD. The follow up duration of

each group is specified in the protocols for ADNI-1, ADNI-

2, and ADNI-GO. Subjects originally recruited for ADNI-1

and ADNI-GO had the option to be followed in ADNI-2. For

up-to-date information, see http://www.adni-info.org.

4.2 Testing for SNP-gene expression
associations
To understand gene regulation, it is important to detect genetic

variants such as SNPs that are associated with gene expres-

sion (i.e., transcript) levels, called eQTL (Minas, Curry, &

Montana, 2013). Due to the relatively small sample size and a

severe penalty on multiple testing for a large number of SNP-

gene pairs, it is often low-powered to detect many associations

at the individual pair level. As an alternative, we may first test

the association between a set of SNPs and a set of the genes.

The ADNI genotype data consist of 757 subjects from

ADNI-1, 236 of whom also have genome-wide gene

expression data based on the whole blood. A pathway for

AD (hsa05010, http://www.genome.jp/dbget-bin/www_

bget?hsa05010) was downloaded from Kyoto Encyclo-

pedia of Genes and Genomes (KEGG) website (Kane-

hisa, Sato, Kawashima, Furumichi, & Tanabe, 2016).

Because the ADNI-1 genotype data are based on the

human genome version hg18, we used the hg18 gene

coordinate file downloaded from the PLINK website

(http://pngu.mgh.harvard.edu/~purcell/plink/) to identify

the starting base pair (bp) and ending bp for each gene.

We then extracted two sets of the SNPs for the genes in

the AD pathway. In the first, the SNPs within each gene

were selected, including possibly both protein coding and

regulatory SNPs; in the second, to focus on only regulatory

SNPs, only the SNPs within the upstream 20 kb of a gene’s

starting bp or within the downstream 20 kb of its ending

bp were selected. Because the results were similar, we will

discuss only the first dataset.

To account for possible effects of age and gender on gene

expression, we used a linear regression model to regress each

gene’s expression level on the two covariates, then used the

residuals as the gene’s adjusted expression levels in the subse-

quent analysis. In the end, there were 441 probes correspond-

ing to 151 genes, and 2,483 SNPs (after excluding those with

a minor allele frequency less than 0.05) in the first dataset.

To demonstrate the effects of association patterns, espe-

cially the signal sparsity levels, on the testing results, we

screened the SNP-gene pairs using each pair’s P-value for

their marginal association, which was based on a simple linear

regression of each gene’s adjusted expression level on each

SNP in the set. The expression level of each gene was cal-

culated as the average of its corresponding probes for those

genes with more than one probe. We used various thresh-

old values to select subsets of the SNP-gene pairs, with a

marginal P-value smaller than a given threshold. Then we

pooled the SNPs and the probes in the genes surviving such

a screening into a SNP set and a probe set, respectively,

then tested their associations using various methods. For any

permutation-based test, we used a permutation number 𝐵 =
1 × 104 (unless specified otherwise). As the dimensions of

the probes and the SNPs were high (i.e., in hundreds to thou-

sands), it would be infeasible to run the GEE-aSPU test as it

required a too large memory space. The results are summa-

rized in Table 2.

We have the following observations. First, when we

included all the SNPs and the probes (with a P-value thresh-

old 1), the aSPC tests (i.e., aSPC.P, aSPC.Sp, and aSPC.dCor)

all gave significant P-values; in contrast, none of the other

tests, including the RV test, the Mantel test, and dCov test,

gave any significant P-value less than the nominal level 0.05.

Second, most strikingly, regardless of the dimensions (𝑝, 𝑞)
with various threshold values, the aSPC tests consistently

gave small and significant P-values (e.g., < 0.001), showing

their robustness to the varying association patterns (e.g., sig-

nal sparsity levels); in contrast, as fewer and fewer, but more

significant, SNPs and probes were included, other global tests

gradually gave more and more significant P-values, suggest-

ing their loss of power in the presence of sparse signals due

to their nonadaptiveness. Third, among the SPC tests, those

SPC.P(𝛾) tests with larger 𝛾 (e.g., 𝛾 >= 4) gave more signif-

icant P-values than those with smaller 𝛾 (e.g., 𝛾 < 4), indi-

cating sparse signals as expected (i.e., most SNP-probe pairs

were not associated).

5 DISCUSSION

We have proposed an adaptive and powerful association test

called aSPC for two moderate- to high-dimensional random

vectors. It has been shown to be more powerful in a variety of

simulations than several commonly used tests. In an applica-

tion to a real genotype-gene expression dataset, under various

moderately high dimensions for the SNPs and genes, the pro-

posed test robustly and consistently gave more significant P-

values than other existing tests, which appeared to lose power

dramatically for larger sets of the SNPs and genes. The pro-

posed aSPC test can be regarded as a generalization of the

standard RV test from low-dimensional data to moderate- to

http://www.adni-info.org
http://www.genome.jp/dbget-bin/www_bget?hsa05010
http://www.genome.jp/dbget-bin/www_bget?hsa05010
http://pngu.mgh.harvard.edu/~purcell/plink/
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high-dimensional data with the incorporation of data-adaptive

weighting on each variable pair. The main idea is that, for

moderate- to high-dimensional data, often there will be many

variable pairs that are not associated; treating these null pairs

equally as other truly associated pairs will simply accumu-

late noises, leading to substantial power loss as in most other

existing tests such as the RV test. Hence, this main idea is

related to the GEE-aSPU test in genetics. Indeed the aSPC test

(more precisely, the version denoted aSPC.P with Pearson’s

correlation) is a special case of the GEE-aSPU test. However,

due to its simplicity, the aSPC.P test has some computational

advantage over the GEE-aSPU test, which in its currently

implementation is not applicable to high-dimensional data.

More importantly, the aSPC.P test can be easily extended by

replacing the Pearson correlation coefficient with other coef-

ficient, which may be more suitable for other nonlinear asso-

ciations. For example, if the distance correlation is used as in

aSPC.dCor, it can detect nonmonotonic associations. Com-

pared to the usual dCov (or dCor) test, again due to its adap-

tiveness, the aSPC.dCor test is much more powerful for less

dense or sparse signals for high-dimensional data, as shown

in our simulations.

In the current implementation of the new tests, we have

resorted to permutations to calculate their P-values, which

seems feasible and satisfactory in many applications. How-

ever, it would be interesting to establish their asymptotics as

both 𝑝 and 𝑞 diverge with 𝑛 (Xu, Lin, Wei, & Pan, 2016),

which may be challenging due to the dependencies among the

individual correlation coefficients in each SPC test statistic.

Nevertheless, an asymptotic theory will be useful in facilitat-

ing speedy P-value calculations, especially for a high signifi-

cance level.

The various versions of the aSPC test are implemented

in R package aSPC, freely available on CRAN and at

https://github.com/jasonzyx/aSPC.
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