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Abstract20

Testing for association between two random vectors is a common and important task in many21

fields, however, existing tests, such as Escoufier’s RV test, are suitable only for low-dimensional22

data, not for high-dimensional data. In moderate to high dimensions, it is necessary to consider23

sparse signals, which are often expected with only a few, but not many, variables associated with24

each other. We generalize the RV test to moderate to high dimensions. The key idea is to data-25

adaptively weight each variable pair based on its empirical association. As the consequence,26

the proposed test is adaptive, alleviating the effects of noise accumulation in high-dimensional27

data, and thus maintaining the power for both dense and sparse alternative hypotheses. We28

show the connections between the proposed test with several existing tests, such as a generalized29

estimating equationsG-based adaptive test, multivariate kernel machine regression, and kernel30

distance methods. Furthermore, we modify the proposed adaptive test so that it can be powerful31

for non-linear or non-monotonic associations. We use both real data and simulated data to32

demonstrate the advantages and usefulness of the proposed new test. The new test is freely33

available in R package aSPC at https://github.com/jasonzyx/aSPC.34

Key words: aSPC test, dCov test, eQTL, GEE-aSPU test, RV test35

1 Introduction36

To investigate genetic control of gene expression, it is common and useful to conduct association37

analysis between single nucleotide polymorphisms (SNPs) and gene expression (i.e. mRNA or tran-38

script) levels, also known as eQTL analysis. This often involves massive univariate testing. For39

example, Colantuoni et al. (2011) examined 30,176 expression probes and 625,439 SNPs, leading to40

1.89 × 1010 (19 billion) possible SNP-gene associations. After the conservative Bonferroni adjust-41

ment, only 1,628 individual associations surpassed the genome-wide significance level. However,42

when they conducted a global test for possible association between all SNPs and all transcripts,43

no association was detected. They noted: “This dramatic lack of association between genetic44

distance and transcriptome distance across our sample is a surprising result that requires further45

interrogation. It is possible that no association is found in Fig. 4 because most of the genetic poly-46

morphisms measured do not impact on gene expression.” We agree with Colantuoni et al. (2011) on47

the possible reason for the lack of a global association in striking contrast to the presence of some48

individual associations: it is due to the lack of power of a global test for high-dimensional data49

with only sparse signals. Furthermore, the authors also commented on that, surprisingly, no asso-50

ciation was found even for smaller subsets of the SNPs and genes. We note that their used method51
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was Mantel’s (1967) test, which was originally proposed for low-dimensional data and may have52

only limited power for moderate- to high-dimensional data as to be confirmed. Nevertheless, this53

example pinpoints the importance of conducting global association testing with high-dimensional54

data, given that most of the existing tests were almost exclusively developed for low-dimensional55

data for historical reasons, as reviewed in Josse and Holmes (2014).56

Some commonly used tests for association between two random vectors include the RV test57

(Escoufier, 1970), the Mantel test (Mantel, 1967) and the distance covariance (dCov) test (Székely,58

Rizzo and Bakirov, 2007). The RV test is based on the RV coefficient as a multivariate generalization59

of Pearson’s correlation coefficient. It is perhaps the most popular one in many fields, especially in60

ecology. The Mantel test aims to detect a possible correlation between two distance matrices among61

the subjects based on the two random vectors respectively; it is noted that the Mantel test was used62

by Colantuoni et al. (2011). The dCov test has only become popular recently due to its attracting63

property of being consistent in detecting any possible associations, including non-linear and non-64

monotonic relationships. A common problem with the above tests is their treating all the variables65

in the two random vectors equally a priori, which is perhaps reasonable for low-dimensional data,66

but not for moderate- to high-dimensional data: as for the SNP-gene expression data of Colantuoni67

et al. (2011), most of the SNPs do not have regulatory function; even for those regulatory ones,68

their targets are likely only a few, not most, of the genes. That is, for high-dimensional data, we69

expect that many or even most (e.g. SNP-gene) pairs are not associated, which is ignored by the70

above existing tests, leading to their noise accumulations and thus substantial power loss as to be71

confirmed in later numerical studies. Hence, to boost power, it is important to conduct variable72

selection or variable weighting. With weak associations, it is difficult for accurate variable selection,73

so we take a variable weighting approach. In our approach, we use the data to adaptively determine74

a weight for each pair of the variables: if a pair is more likely to be associated, we assign a higher75

weight to it. This will effectively down-weight many of those non-associated pairs, alleviating the76

effects of noise accumulation hindering most existing tests for high-dimensional data. Our adaptive77

test can be regarded as a generalization of the RV test to high-dimensional data, as to be shown78

later.79

We note that the above tests aim to tackle the same problem as SNP-set- or gene-based associ-80

ation testing for multiple traits or longitudinal traits in genetics (e.g., Maity, Sullivan and Tzeng,81

2012; He et al., 2015; Fan et al., 2016; Wang, Lee, Zhu, Redline and Lin, 2013;, Wang et al.,82

2015; Wang, Xu, Zhang, Wu and Wang, 2017; Kim, Zhang and Pan, 2016 and references therein),83
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but the two lines of research seem to be largely non-overlapping; it is also our goal here to bridge84

the gap between the two lines of research. In particular, our proposed test is related to another85

adaptive test, called adaptive sum of powered score test based on generalized estimating equations86

(GEE-aSPU), originally designed in genetics for testing for multi-trait and multi-SNP associations87

in low to moderate dimensions (Kim et al., 2016), but we will also show some computational ad-88

vantages of the proposed test over GEE-aSPU. It is also connected with kernel machine regression89

and kernel distance methods (Hua and Ghosh, 2015). Furthermore, due to the simplicity of our90

proposed test, it can be also extended to detect non-linear or even non-monotonic associations by91

borrowing the idea from the dCov test, though our test is much more powerful than the dCov test92

for sparse signals in moderate- to high-dimensions.93

The rest of the article is organized as follows. In section 2 we will briefly review the RV test,94

which serves to motivate our proposed aSPC test. We then outline the connections of the aSPC95

test to some existing tests before presenting its several generalizations. Section 3 applies the new96

and some existing tests to an SNP-gene expression dataset drawn from the Alzheimer’s Disease97

Neuroimaging Initiative (ADNI), highlighting some advantages of the new tests over some existing98

ones. In section 4 more simulation results are shown to support the power and flexibility of the99

aSPC test. We end with a summary of the main conclusions in section 5.100

2 Methods101

Our goal is to test for association between two random vectors xp×1 and yq×1 in p and q dimensions102

respectively. We have n iid observations on x-y pair as stored in two matrices Xn×p and Yn×q,103

respectively; each row of the two matrices corresponds to an observed x-y pair. Denote X·l as the104

lth (l = 1, . . . , p) column of matrix X and Y.m as the mth (m = 1 . . . q) column of Y . It is assumed105

throughout that each column of the two matrices is centered at mean 0 with a unit variance. We106

will use X and Y to test for association between x and y; with some abuse of notation, we also107

call it association between X and Y .108

2.1 Review: the RV test109

For the purpose of comparison, we first briefly review the RV test, largely following Josse and110

Holmes (2014). The two cross-product matrices of X and Y are WX = XXT and WY = Y Y T ,111

both of which are of size n × n. To measure their proximity, the Hilbert-Schmidt inner product112

3
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between matrices WX and WY can be used:113

< WX ,WY >= tr(XXTY Y T ) = (n− 1)2
p∑

l=1

q∑

m=1

Cov2
n(X.l, Y.m), (1)

where Covn(X·l, Y.m) is the sample covariance between columns X·l and Y.m. The RV coefficient,114

a correlation coefficient proposed by Escoufier (1973) for two random vectors, is computed by115

normalizing the Hilbert-Schmidt inner product by the matrix norms:116

RV(X,Y ) =
< WX ,WY >

||WX ||||WY ||
=

tr(XXTY Y T )√
tr(XXT )2tr(Y Y T )2

, (2)

which accounts for possibly different scales of x and y. The population RV coefficient is ρ(x,y) =117

tr(ΣxyΣyx)/
√

tr(Σ2
xx)tr(Σ2

yy), where Σxy is the population covariance between x and y. Our goal118

is to test H0 : ρ(x,y) = 0.119

If each column of X and of Y is standardized to have a zero mean and a unit variance, as always120

assumed here, the RV coefficient can be simplified as:121

RV(X,Y ) =
tr(XXTY Y T )

(n− 1)2pq
=

∑p
l=1

∑q
m=1 corr2

n(X.l, Y.m)

pq
∝

p∑

l=1

q∑

m=1

corr2
n(X.l, Y.m), (3)

where corrn(X·l, Y.m) is the sample Pearson correlation coefficient between columns X·l and Y.m.122

A permutation method can be used to calculate the P -value. Specifically, for each permutation123

b = 1, . . . , B, we permute the rows of matrix X (or Y ), then calculate the corresponding RV124

coefficient RV(b); the P -value is calculated as the sample proportion [
∑B

n=1 I(RV ≤ RV (b)) +125

1]/(B + 1).126

2.2 New method: an adaptive sum of powered correlation (aSPC) test127

To generalize the RV coefficient as reformulated in equation (3), we propose a family of so-called128

sum of powered correlation (SPC) tests:129

SPC(γ) =

p∑

l=1

q∑

m=1

corrγn(X.l, Y.m) (4)

for a set of integers γ ≥ 1. Each term corrγn(X.l, Y.m) in equation (4) can be re-written as130

corrγn(X.l, Y.m) = wlmcorrn(X.l, Y.m), where wlm = corrγ−1
n (X.l, Y.m) is regarded as a weight for131

4
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corrn(X.l, Y.m). Therefore, a larger |corrn(X.l, Y.m)| will yield higher weight |wlm|, which will help132

improve power with sparse alternatives that are common for moderate- to high-dimensional data.133

Specifically, when γ = 1, all corrn(X.l, Y.m)’s will be assigned an equal weight 1, which will be134

beneficial for dense alternatives (i.e. if all or most of the columns of the two matrices X and Y are135

associated) with the same association direction; however, when γ ≥ 2, the larger the γ, the higher136

weights would be assigned to those larger corrn(X.l, Y.m)’s, more and more favoring sparse alterna-137

tives (i.e. when only few of the columns of X and Y , as indicated by those larger corrn(X.l, Y.m)’s,138

are truly associated with each other); an even integer γ would give a test robust to varying asso-139

ciation directions while an odd γ would not. In the extreme case of a sparse alternative with only140

one or few associated column-pairs between X and Y , for an even integer γ →∞, we have141

SPC(γ) ∝
(

p∑

l=1

q∑

m=1

corrγn(X.l, Y.m)

)1/γ

→ max
j
|corrn(X.l, Y.m)| = SPC(∞), (5)

which we can see largely eliminates the effects of non-associated pairs and thus is expected to be142

more powerful for more sparse alternatives. We emphasize that, with large p and q in moderate143

to high dimensions, noise accumulation is a severe problem for sparse alternatives, which explains144

power loss of many non-adaptive tests like the RV test, as to be shown later.145

In summary, depending on the type of a true alternative hypothesis to be tested, i.e. dense or146

sparse, a small or a large γ would yield higher power for the SPU(γ) test. In practice, because it is147

unknown what is the true alternative and thus which γ value would yield high power, we develop148

an adaptive SPC (aSPC) test to combine the evidence across the SPC tests:149

aSPC = min
γ∈Γ

PSPC(γ) (6)

where PSPC(γ) is the P -value of the SPC(γ) test, and Γ contains a set of candidate values for γ. In150

general, Γ = {1, 2, . . . , γu,∞} with 1 < γu < ∞ can be used; larger p and q require a larger γu; a151

practical guideline on the choice of γu is that SPC(γu) gives results similar to SPC(∞). We used152

Γ = {1, . . . , 8,∞} throughout this paper for its good performance based on our limited experience.153

A permutation method can be used to obtain the P -values of all the SPC and aSPC tests in154

a single loop (or layer) of permutations. Briefly, B copies of the null statistic SPC(γ)(b) for each155

γ ∈ Γ and b = 1, . . . , B can be calculated by permuting the rows of matrices X (or Y ) B times. The156

P -value of each SPC(γ) is calculated as PSPC(γ) = [
∑B

b=1 I(|SPC(γ)(b)| ≥ |SPC(γ)|) + 1]/(B + 1).157

5
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Furthermore, based on the same B copies of the null statistics, we calculate the P -value for the158

aSPU test as PaSPC = [
∑B

b=1 I(aSPC(b) ≤ aSPC) + 1]/(B + 1) with aSPC(b) = minγ∈Γ p
(b)
γ and159

p
(b1)
γ = [

∑
b6=b1 I(|SPC(γ)(b)| ≥ |SPC(γ)|)(b1) + 1]/B.160

2.3 Connections with some existing tests161

We start by establishing a relationship between the aSPC test (with the Pearson correlation co-162

efficient) and an existing test called GEE-aSPU, which was proposed by Kim et al. (2016) for163

multiple trait-multiple SNP associations. We first review the GEE-aSPU test before pointing out164

its connection to the aSPC test.165

First we need some notations. Denote Xi· = (xi1, . . . , xip) and Yi· = (yi1, . . . , yiq)
T as ith row166

in matrices X and transpose of ith row in Y for i = 1, . . . , n, respectively; denote Xi = I ⊗ Xi·,167

where I is a q × q identity matrix, and ⊗ represents the Kronecker product.168

Suppose we treat each column Y·m for m = 1, . . . , q in Yn×q as a response, each column X·l169

for l = 1, . . . , p in Xn×p as a covariate or predictor of interest; recall that Y·m and X·l has been170

standardized to have zero mean and unit variance. We can then test if there is any association171

between the columns of X and those of Y with a marginal generalized linear model172

g(E(Yi·|Xi)) = Xiβ, (7)

where g(.) is a canonical link function, and β is a pq-dimensional vector of unknown parameters of173

interest. We aim to test the null hypothesis H0 : β = 0. Denote Ȳ as the mean vector of columns of174

Y , which is a zero vector of length q. With a canonical link function and a working independence175

model in GEE (Liang and Zeger, 1986), the generalized score vector for β is176

U =
1

n− 1

n∑

i=1

XT
i (Yi· − Ȳ ) =

1

n− 1

n∑

i=1

XT
i Yi·. (8)

It is easy to verify U = (U11, . . . , Up1, . . . , U1q, . . . , Upq)
Twith Ulm = XT

·l Y·m/(n−1) = corrn(X·l, Y·m).177

That is, each element Ulm measures the association between columns X·l and Y·m. The GEE-SPU178

test statistic is defined by179

SPU(γ1, γ2) =

q∑

m=1



(

p∑

l=1

Uγ1lm

) 1
γ1



γ2

=

q∑

m=1



(

p∑

l=1

corrγ1n (X·l, Y·m)

) 1
γ1



γ2

. (9)

6
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Denote Γ1 and Γ2 are two sets of positive integers. The GEE-aSPU test statistic is then defined as180

the minimum p-value of SPU(γ1, γ2)’ tests for all γ1 ∈ Γ1 and γ2 ∈ Γ2:181

aSPU = min
γ1,γ2

pγ1,γ2 (10)

Here we observe a close connection between the SPC test and the GEE-SPU test: if γ1 = γ2 = γ,182

we have SPU(γ, γ) = SPC(γ). The difference between the aSPC and aSPU tests is that the latter183

searches for two optimal (γ1, γ2) in a two-dimensional space (i.e. over Γ1 × Γ2), while aSPC184

searches over only a one-dimensional space (i.e. Γ); the GEE-aSPU test reduces to aSPC if we185

impose γ1 = γ2 = γ.186

Due to the currently inefficient implementation of the GEE-aSPU test (in its general regression187

framework) in R package GEE-aSPU, it cannot be applied to high-dimensional data: it requires188

a large memory space for its inefficient storage of the design matrix with dimension np × pq (or189

nq × pq) if Y (or X) is treated as the response. As an example, the GEE-aSPU test will need190

about a 40GB memory space if p = q = 300 and sample size n = 200, not yet available on many191

computers. In contrast, due to its simplicity, the aSPC test is applicable to high-dimensional data.192

Finally, we comment on that the SPC(2) test is also closely related to several other tests, further193

illustrating the potential power of the aSPC test. First, since the dCov test and the Hilbert-194

Schmidt independence criterion (HSIC) test are equivalent (Sejdinovic, Sriperumbudur, Gretton195

and Fukumizu, 2013), Hua and Ghosh (2015) called them kernel distance covariance method (KDC);196

they further established the equivalence of KDC and multivariate kernel machine regression (KMR)197

test (Maity et al., 2012) (if the same kernels are used in the two). On the other hand, Kim et al.198

(2016) pointed out that GEE-SPU(2,2) is similar to multivariate KMR with a linear kernel; the199

two are exactly the same if the true correlation matrix is used as the working correlation structure200

in GEE for the former, which in general does not hold (unless the columns of Y are independent),201

because the working independence model is used in GEE-SPU tests. Now, by the equivalence202

between SPC(2) and GEE-aSPU(2,2) and by the above results, we see the close similarity between203

SPC(2) and other tests. Using the weighting argument motivating the development of other SPC(γ)204

tests with γ > 2, we expect that the other tests (i.e. dCov, HSIC and KMR with linear kernels)205

may lose power with sparse association patterns, which will be confirmed in our later simulations.206
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2.4 Extensions207

So far we define the SPC test with the Pearson correlation coefficients between the columns of208

the two matrices. Here we generalize the SPC and thus aSPC tests with several other dependence209

measures and with covariates.210

2.4.1 Fisher’s transformation211

We may take Fisher’s z-transformation on the sample Pearson correlation coefficient rlm = corrn(X.l, Y.m)212

before plugging into equation (4). The reason is to account for heterogeneous variances of the213

sample correlations for an alternative hypothesis; as to be shown next, the variance of a sample214

correlation increases monotonically as the absolute value of the true correlation decreases (un-215

der the normality assumption). Specifically, the sample correlation rlm = corrn(X.l, Y.m) is re-216

placed by zlm = 1
2 ln ((1 + rlm)/(1− rlm)) in equation (4). Under the normality assumption (on217

each pair of the columns of X and Y ), zlm is approximately normally distributed with mean218

1
2 ln((1 + ρlm)/(1 − ρlm)) and a constant variance 1/(n − 3), where ρlm is the population Pearson219

correlation coefficient.220

Given that zlm∼̇N(1
2 ln((1 + ρlm)/(1− ρlm)), 1/(n− 3)), it is not hard to find the approximate221

distribution of the sample Pearson correlation coefficient is rlm∼̇N(ρlm, (1 − ρ2
lm)2/(n − 3)); the222

variance (1 − ρ2
lm)2/(n − 3) is obtained by the delta method and clearly confirms the monotonic-223

ity mentioned above. In particular, since the variance is largest for no correlations, not taking224

Fisher’s transformation or not stabilizing the variance may lead to loss of power, especially for225

high-dimensional data, for which sparse alternatives are expected with many non-associated pairs.226

Whenever needed, to distinguish using Fisher’s z-transformed Pearson correlation coefficients227

from using other dependence measures for the SPC and aSPC tests, we will use SPC.P and aSPC.P228

to refer to the former:229

SPC.P(γ) =

p∑

l=1

q∑

m=1

zγlm, (11)

and the aSPC.P test is similarly defined as before.230

2.4.2 The aSPC test with Spearman’s correlation231

More generally, the sample Pearson correlation coefficient term rlm = corrn(X.l, Y.m) in equation232

(4) can be replaced by a different dependence measure. For example, we can use Spearman’s233

(1904) rank correlation coefficient, which is effective for monotonic relationships, in contrast to only234
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linear relationships by Pearson’s coefficient. The Spearman correlation coefficient is defined as the235

Pearson correlation coefficient between the ranked variables. Specifically, X·l and Y·m (l = 1, . . . , p236

and m = 1, . . . , q) are converted to the rank score vectors rank(X·l) and rank(Y·m) (e.g. rank score237

= 1 for the smallest value in X·l (or Y·m) and rank score = n for the largest value in X·l or (Y·m)).238

The sample Spearman correlation coefficient is calculated as239

rlm(Spearman) =
Covn(rank(X·l), rank(Y·m))√

Covn(rank(X·l), rank(X·l))Covn(rank(Y·m), rank(Y·m))
, (12)

where Covn(u, v) is a sample covariance between vectors un×1 and vn×1. Then the SPC statistic240

with Spearman’s rank correlation coefficient is defined as:241

TSPC.Sp(γ) =

p∑

l=1

q∑

m=1

rγlm(Spearman), (13)

and aSPC.Sp is defined similarly as before.242

2.4.3 The aSPC test with the distance correlation243

Another extension is to replace each sample Pearson correlation coefficient in equation (4) by244

a corresponding distance correlation coefficient (dCor), which is derived based on the distance245

covariance (dCov) (Szykely et al., 2007) and is consistent in detecting any dependency, not only246

the linear ones (detectable by Pearson’s) or monotonic ones (by Spearman’s); for example, in247

the presence of non-linear (and non-monotonic) dependency, use of dCor is expected to be more248

powerful, as to be confirmed in our later simulations. We first review the usual dCov test and then249

modify the SPC test with the distance correlations.250

The standard dCov test utilizes all columns in X and Y to calculate the pairwise distance before251

computing the sample distance covariance:252

aij = ||Xi· −Xj·||t, bij = ||Yi· − Yj·||t, (14)

where || · || denotes the Euclidean distance/norm; Xi· and Yi· denote the ith row of X and Y253

respectively (i = 1, . . . , n); t ∈ (0, 2] and t = 1 corresponds to the Euclidean norm, which was254

used in our data analysis throughout unless specified otherwise. The pairwise distances are doubly255

centered:256

Aij = aij − āi· − ā·j + ā··, Bij = bij − b̄i· − b̄·j + b̄··, (15)
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where āi·, ā·j and ā·· are the ith row mean, the jth column mean and the grand mean of matrix257

[aij ]; b̄i·, b̄·j and b̄·· are similar defined for matrix [bij ]. Then the squared sample distance covariance258

of X and Y is defined as:259

dCov2
n(X,Y ) =

1

n2

n∑

i,j=1

AijBij . (16)

A permutation method can be used to calculate the P -value. The null statistics T
(b)
dCov = 1

n2

∑n
i,j=1A

(b)
ij B

(b)
ij260

can be calculated based on each permuted sample X(b) and Y (b), where X(b) (or Y (b)) is gener-261

ated by permuting the rows of X (or Y ). The P -value is calculated as PdCov = (
∑B

b I(dCov(b) ≥262

dCov) + 1)/(B + 1) based on B permutations.263

In the standard dCov test, all columns of X and Y are used to calculate the pairwise distances;264

that is, each variable (or dimension) is treated equally a priori, which may not be a good idea for265

high-dimensional data for the abundance of sparse alternatives. In contrast, in our SPC test, each266

column/variable of X and Y is treated differently according to the magnitudes of their estimated267

pairwise associations. Specifically, similar to the standard dCov test, first we define all pairwise268

distances among the observations based on the ith and jth elements of X·l and Y·m as269

aij(l) = ||Xil −Xjl||t, bij(m) = ||Yim − Yjm||t, (17)

which computes the n × n distance matrices (aij(l)) and (bij(m)) for i = 1, . . . , n, j = 1, . . . , n,270

l = 1, . . . , p and m = 1, . . . , q. Denote āi·(l), ā·j(l) and ā··(l) as the ith row mean, the jth column271

mean and the grand mean of [aij(l)]; similarly, denote b̄i·(m), b̄·j(m) and b̄··(m) for [bij(m)]. The272

elements aij(l) and bij(m) are then doubly centered as:273

Aij(l) = aij(l) − āi·(l) − ā·j(l) + ā··(l), Bij(m) = bij(m) − b̄i·(m) − b̄·j(m) + b̄··(m), (18)

then the squared sample distance covariance is defined as:274

dCov2
n(X·l, Y·m) =

1

n2

n∑

i,j=1

Aij(l)Bij(m). (19)

The sample distance correlation (dCor) between X·l and Y·m is then defined as275

dCorn(X·l, Y·m) =
dCovn(X·l, Y·m)√

dCovn(X·l, X·l)dCovn(Y·m, Y·m)
. (20)
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The SPC.dCor test statistic is defined as:276

SPC.dCor(γ) =

p∑

l=1

q∑

m=1

dCorγn(X·l, Y·m) (21)

and the aSPC.dCor is similarly defined as before.277

As to be shown later in simulations, the aSPC.dCor test was much more powerful than the278

standard distance covariance (dCov) test for sparse alternatives in even only moderate dimensions,279

presumably because the former’s weighting on the pairwise dCor’s alleviates the harmful effects of280

noise accumulations in the latter.281

2.4.4 The aSPC test with covariates282

The aSPC test can be applied to situations with covariates. We only need to first regress X and/or283

Y on the covariates, then use the residuals to construct the SPC tests. We will illustrate such an284

application in the example section.285

2.5 Software286

The asymptotic- and permutation-based RV tests are available as functions coeffRV() and RV.rtest()287

in R packages FactoMineR and ade4, respectively. The permutation-based Mantel test, dCov test288

and GEE-aSPU test are in functions mantel(), dcov.test(), GEEaSPUset() in R packages vegan,289

energy and GEEaSPU, respectively. We implemented various versions of the new SPC and aSPC290

tests in an R package aSPC, which is available on github (and CRAN).291

3 Simulations292

3.1 Simulation I: linear associations293

To further investigate the operating characteristics of the proposed tests, we compare their power294

performance with several existing tests. We first consider an ideal situation with a linear association295

between two sets of normal variates.296

To generate a simulated dataset, two matrices Xn×p and Yn×p were simulated with n = 500.297

First, for each X and Y , p (= 25 ,45 or 65) independent columns were simulated from a standard298

multivariate normal distribution. Second, a matrix Zn×10 with ten columns were simulated from a299

multivariate normal distribution with mean 0 and a compound symmetry covariance matrix (with300
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all diagonal elements equal to 1 and all off-diagonal elements equal to 0.1); for power comparisons,301

we added the first 5 columns of Z to X and the last 5 columns of Z to Y .302

We applied the aSPC.P, aSPC.Sp, aSPC.dCor, RV, Mantel and dCov tests to each simulated303

dataset, and and compared their empirical Type I error and power estimates. The Mantel and dCov304

tests were conducted with the Euclidean distance. We set B = 1000 for any permutation-based305

tests. To save computing time, the empirical Type I error rates and power of aSPC.dCor were306

based on 1,000 replicates while for all other tests, they were based on 10,000 replicates.307

As shown in Table 1, first, the Type I error rates were in general well controlled for each test.308

Second, among all the tests, GEE-aSPU was most powerful, followed by aSPC.P. Note that, due to309

the linear association, aSPC.P is expected to be more powerful than aSPC.Sp (and aSPC.dCor).310

Third, SPC.P(2) gave the results essentially the same as both the asymptotic and permutation-311

based RV tests, as expected. Fourth, due to the presence many independent columns in the two312

matrices X and Y , a SPC.P test with a larger and finite γ (e.g. γ = 6) was more powerful than313

that with a small γ ≤ 4; their power difference increased with the number of independent columns.314

Fifth, aSPC.dCor gave much higher power than dCov test, due to that SPC.dCor(γ) with larger315

γ reduced the effects of noise accumulation with independent columns. Moreover, we note the316

extremely low power of the Mantel test, followed by MANOVA.317

To assess the computing time and feasibility for the permutation-based RV, GEE-aSPU and318

aSPC tests, we changed the number of columns in X and Y to 30, 50, 70 and 100 respectively, and319

with a sample size n = 200. We then calculated the computing time with a permutation number320

B = 1×103. Note that, for example, for p = q = 300, GEE-aSPU needs to construct a large design321

matrix with dimension 60, 000 × 90, 000, requiring about 40GB of memory. The computing time322

was based on one processor (Intel Haswell E5-2680v3 with 2.5GB of memory on Unix system) from323

a cluster at the Minnesota Supercomputing Institute (MSI).324

As shown in Figure 1, first, our implementation of aSPC.P completely in R was even faster325

than the RV.perm test, which was surprising given that aSPC.P involved conducting SPC.P(γ) for326

γ = 1, . . . , 8,∞ and RV.perm is equivalent to SPC.P(2). Second, aSPC.dCor was more computing-327

intensive than other tests; for data matrices Xn×p and Yn×q, aSPC.dCor required calculating pair-328

wise distance covariances pq times based on p+ q distance matrices, even if we used more memory329

space to save the distance matrices in our current implementation in R.330
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3.2 Simulation II: non-linear associations331

Now we consider a more challenging case with a non-linear and non-monotonic association. Our332

simulation set-up was similar to that of Székely et al. (2007).333

Data matrix Xn×5 was simulated from a multivariate standard normal distribution. To calculate334

the empirical type I error rates, for each replicate a matrix Yn×5 was simulated from a multivariate335

standard normal distribution. For power, Yn×p was generated such that each of the first p0 (p0 =336

1, 2, 3, 4 or 5) columns Yij = log(X2
ij) for j = 1, . . . , p0 and i = 1 . . . n; when p0 ≤ 4, each of337

the other columns of Yn×p was independently and identically simulated from a standard normal338

distribution. We were interested in how the empirical power changed as the number of non-linearly339

associated column pairs (p0) between X and Y varied from 1 to 5. Six tests were applied, including340

aSPC.dCor, aSPC.Sp, aSPC.P, permutation-based RV test, the Mantel test with the Euclidean341

distance and Pearson correlation, and dCov. One thousand datasets were simulated to calculate342

the empirical type I error and power. We used B = 1000 for any permutation-based tests. The343

simulation results are summarized in the left panel of Figure 2 with sample size n = 40.344

First, the type I error rates were well controlled for all tests. Second, our aSPC.dCor test gave345

much higher power than the usual dCov test. For example, with only one truly associated pair,346

the power of aSPC.dCor was 86.5%, much higher than 12.0% of the dCov test. Third, due to the347

underlying non-monotonic true associations, as expected, none of the RV, aSPC.P, aSPC.Sp and348

Mantel tests performed well.349

To further explore the performance of the tests with increasingly sparse associations, in addition350

to the above set-up with p0 = 5, we added 75, 115, 195, 295 or 395 independent columns to matrix351

Y , each of which was simulated from a standard normal distribution. The power curves are shown352

in the right panel of Figure 2. It is clear that the power of aSPC.dCor remained significantly higher353

than that of the dCov test, whereas all other tests had no power.354

4 Real data application355

4.1 ADNI data356

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neu-357

roimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 by358

the National Institute on Aging (NIA), the National Institute of Biomedical Imaging and Bioengi-359
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neering (NIBIB), the Food and Drug Administration (FDA), private pharmaceutical companies360

and non-profit organizations, as a $60 million, 5-year public-private partnership. The primary goal361

of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission362

tomography (PET), other biological markers, and clinical and neuropsychological assessment can363

be combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s364

disease (AD). Determination of sensitive and specific markers of very early AD progression is in-365

tended to aid researchers and clinicians to develop new treatments and monitor their effectiveness,366

as well as lessen the time and cost of clinical trials.367

The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical Center and368

University of California-San Francisco. ADNI is the result of efforts of many co-investigators from369

a broad range of academic institutions and private corporations, and subjects have been recruited370

from over 50 sites across the U.S. and Canada. The initial goal of ADNI was to recruit 800 subjects371

but ADNI has been followed by ADNI-GO and ADNI-2. To date these three protocols have372

recruited over 1500 adults, ages 55 to 90, to participate in the research, consisting of cognitively373

normal older individuals, people with early or late MCI, and people with early AD. The follow up374

duration of each group is specified in the protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects375

originally recruited for ADNI-1 and ADNI-GO had the option to be followed in ADNI-2. For376

up-to-date information, see www.adni-info.org.377

4.2 Testing for SNP-gene expression associations378

To understand gene regulation, it is important to detect genetic variants like single nucleotide379

polymorphisms (SNPs) that are associated with gene expression (i.e. transcript) levels, called380

eQTL (Minas, Curry and Montana, 2013). Due to the relatively small sample size and a severe381

penalty on multiple testing for a large number of SNP-gene pairs, it is often low-powered to detect382

many associations at the individual pair level. As an alternative, we may first test the association383

between a set of SNPs and a set of the genes.384

The ADNI genotype data consist of 757 subjects from ADNI-1, two hundred and thirty six385

of whom also have genome-wide gene expression data based on the whole blood. A pathway386

for Alzheimer’s disease (hsa05010, http://www.genome.jp/dbget-bin/www_bget?hsa05010) was387

downloaded from Kyoto Encyclopedia of Genes and Genomes (KEGG) website (Kanehisa, Sato,388

Kawashima, Furumichi and Tanabe, 2016). Since the ADNI-1 genotype data are based on the389

human genome version hg18, we used the hg18 gene coordinate file downloaded from the PLINK390
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website (http://pngu.mgh.harvard.edu/~purcell/plink/) to identify the starting base pair (bp)391

and ending bp for each gene. We then extracted two sets of the SNPs for the genes in the AD392

pathway. In the first, the SNPs within each gene were selected, including possibly both protein393

coding and regulatory SNPs; in the second, to focus on only regulatory SNPs, only the SNPs within394

the upstream 20kb of a gene’s starting bp or within the downstream 20kb of its ending bp were395

selected. Since the results were similar, we will discuss only the first dataset.396

To account for possible effects of age and gender on gene expression, we used a linear regression397

model to regress each gene’s expression level on the two covariates, then used the residuals as the398

gene’s adjusted expression levels in the subsequent analysis. In the end, there were 441 probes399

corresponding to 151 genes, and 2,483 SNPs (after excluding those with a minor allele frequency400

less than 0.05) in the first dataset.401

To demonstrate the effects of association patterns, especially the signal sparsity levels, on the402

testing results, we screened the SNP-gene pairs using each pair’s P-value for their marginal associa-403

tion, which was based on a simple linear regression of each gene’s adjusted expression level on each404

SNP in the set. The expression level of each gene was calculated as the average of its corresponding405

probes for those genes with more than one probe. We used various threshold values to select subsets406

of the SNP-gene pairs, with a marginal P-value smaller than a given threshold. Then we pooled407

the SNPs and the probes in the genes surviving such a screening into a SNP set and a probe set408

respectively, then tested their associations using various methods. For any permutation-based test,409

we used a permutation number B = 1× 104 (unless specified otherwise). As the dimensions of the410

probes and the SNPs were high (i.e. in hundreds to thousands), it would be infeasible to run the411

GEE-aSPU test as it required a too large memory space. The results are summarized in Table 2.412

We have the following observations. First, when we included all the SNPs and the probes (with413

a P-value threshold 1), the aSPC tests (i.e. aSPC.P, aSPC.Sp, and aSPC.dCor) all gave significant414

P-values; in contrast, none of the other tests, including the RV test, the Mantel test and dCov test,415

gave any significant P-value less than the nominal level 0.05. Second, most strikingly, regardless416

of the dimensions (p, q) with various threshold values, the aSPC tests consistently gave small and417

significant P-values (e.g. < 0.001), showing their robustness to the varying association patterns418

(e.g. signal sparsity levels); in contrast, as fewer and fewer, but more significant, SNPs and probes419

were included, other global tests gradually gave more and more significant P-values, suggesting420

their loss of power in the presence of sparse signals due to their none-adaptiveness. Third, among421

the SPC tests, those SPC.P(γ) tests with larger γ (e.g. γ >= 4) gave more significant P-values422
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than those with smaller γ (e.g. γ < 4), indicating sparse signals as expected (i.e. most SNP-probe423

pairs were not associated).424

5 Discussion425

We have proposed an adaptive and powerful association test called aSPC for two moderate- to high-426

dimensional random vectors. It has been shown to be more powerful in a a variety of simulations427

than several commonly used tests. In an application to a real genotype-gene expression dataset,428

under various moderately high dimensions for the SNPs and genes, the proposed test robustly and429

consistently gave more significant P-values than other existing tests, which appeared to lose power430

dramatically for larger sets of the SNPs and genes. The proposed aSPC test can be regarded as a431

generalization of the standard RV test from low-dimensional data to moderate- to high-dimensional432

data with the incorporation of data-adaptive weighting on each variable pair. The main idea is433

that, for moderate- to high-dimensional data, often there will be many variable pairs that are not434

associated; treating these null pairs equally as other truly associated pairs will simply accumulate435

noises, leading to substantial power loss as in most other existing tests like the RV test. Hence,436

this main idea is related to the GEE-aSPU test in genetics. Indeed the aSPC test (more precisely,437

the version denoted aSPC.P with Pearson’s correlation) is a special case of the GEE-aSPU test.438

However, due to its simplicity, the aSPC.P test has some computational advantage over the GEE-439

aSPU test, which in its currently implementation is not applicable to high-dimensional data. More440

importantly, the aSPC.P test can be easily extended by replacing the Pearson correlation coefficient441

with other coefficient, which may be more suitable for other non-linear associations. For example,442

if the distance correlation is used as in aSPC.dCor, it can detect non-monotonic associations.443

Compared to the usual dCov (or dCor) test, again due to its adaptiveness, the aSPC.dCor test444

is much more powerful for less dense or sparse signals for high-dimensional data, as shown in our445

simulations.446

In the current implementation of the new tests, we have resorted to permutations to calculate447

their P-values, which seems feasible and satisfactory in many applications. However, it would be448

interesting to establish their asymptotics as both p and q diverge with n (Xu et al., 2016), which449

may be challenging due to the dependencies among the individual correlation coefficients in each450

SPC test statistic. Nevertheless, an asymptotic theory will be useful in facilitating speedy P-value451

calculations, especially for a high significance level.452
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The various versions of the aSPC test are implemented in R package aSPC, freely available on453

CRAN or at https://github.com/jasonzyx/aSPC.454
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Table 1: Simulation I: empirical Type I error and power rates when the number of independent columns (denoted as “No. ind”) is 25,
45, and 65 respectively. “RV.asy” and “RV.perm” stand for the asymptotic and permutation-based RV tests, respectively

SPC.P(γ)
No.Ind γ = 1 2 3 4 5 6 7 8 Inf aSPC.P aSPC.Sp aSPC.dCor RV.asy RV.perm Mantel dCov GEE-aSPU MANOVA

25 Type I 0.047 0.053 0.049 0.050 0.050 0.051 0.052 0.053 0.054 0.046 0.049 0.049 0.053 0.055 0.050 0.052 0.055 0.046
Power 0.417 0.844 0.886 0.932 0.917 0.908 0.879 0.852 0.589 0.933 0.893 0.828 0.840 0.838 0.098 0.819 0.955 0.378

45 Type I 0.055 0.052 0.052 0.052 0.052 0.053 0.050 0.050 0.048 0.052 0.049 0.050 0.052 0.051 0.050 0.053 0.061 0.045
Power 0.196 0.538 0.587 0.753 0.732 0.759 0.710 0.700 0.425 0.749 0.674 0.587 0.539 0.538 0.074 0.522 0.832 0.174

65 Type I 0.056 0.055 0.050 0.052 0.054 0.050 0.050 0.051 0.049 0.050 0.050 0.047 0.056 0.055 0.052 0.054 0.057 0.041
Power 0.118 0.352 0.371 0.581 0.558 0.627 0.576 0.578 0.328 0.594 0.506 0.450 0.355 0.354 0.072 0.345 0.702 0.110
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Table 2: The analysis results for the ADNI data. p and q denote the numbers of SNPs and of probes surviving the P-value cut-off based
on the corresponding univariate SNP-gene expression associations

Cut- SPC.P(γ)
off (p, q) γ = 1 2 3 4 5-8, ∞ aSPC.P RV.asy RV.perm Mantel dCov aSPC.Sp aSPC.dCor

1 (2483, 382) 5.85e-02 3.68e-02 2.87e-01 3.00e-04 1.00e-04 8.00e-04 6.89e-02 7.17e-02 8.69e-02 5.61e-02 9.00e-04 5.00e-04
0.9 (2274, 380) 3.63e-02 4.50e-02 2.16e-01 5.00e-04 1.00e-04 8.00e-04 6.47e-02 6.37e-02 9.76e-02 4.99e-02 8.00e-04 5.00e-04
0.8 (2069, 371) 2.29e-02 2.09e-02 2.22e-01 1.00e-04 1.00e-04 8.00e-04 3.87e-02 3.86e-02 7.40e-02 2.62e-02 8.00e-04 5.00e-04
0.7 (1871, 357) 3.26e-02 8.60e-03 2.39e-01 1.00e-04 1.00e-04 7.00e-04 2.01e-02 2.05e-02 5.81e-02 1.27e-02 8.00e-04 5.00e-04
0.6 (1647, 353) 1.39e-02 4.40e-03 1.74e-01 1.00e-04 1.00e-04 9.00e-04 9.22e-03 8.90e-03 4.71e-02 6.50e-03 7.00e-04 6.00e-04
0.5 (1435, 351) 1.62e-02 2.90e-03 2.80e-01 1.00e-04 1.00e-04 6.00e-04 6.69e-03 7.70e-03 5.96e-02 3.10e-03 6.00e-04 6.00e-04
0.4 (1228, 340) 1.99e-02 8.00e-04 2.54e-01 1.00e-04 1.00e-04 9.00e-04 1.91e-03 2.30e-03 1.49e-02 1.60e-03 9.00e-04 4.00e-04
0.3 (999, 306) 5.95e-02 1.20e-03 4.62e-01 1.00e-04 1.00e-04 8.00e-04 1.48e-03 1.50e-03 7.30e-03 9.00e-04 8.00e-04 1.00e-04
0.2 (756, 286) 7.54e-02 6.00e-04 5.93e-01 1.00e-04 1.00e-04 7.00e-04 6.07e-04 2.00e-04 2.00e-03 4.00e-04 9.00e-04 4.00e-04
0.1 (485, 245) 2.93e-01 1.00e-04 3.34e-01 1.00e-04 1.00e-04 7.00e-04 8.29e-05 3.00e-04 4.00e-04 2.00e-04 8.00e-04 4.00e-04
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Figure 1: The computing time of the permutation-based RV, GEE-aSPU, aSPC.P, aSPC.Sp and
aSPC.dCor tests. The left panel shows the computing time of aSPC.dCor test as compared to that
of all the other tests, while the right panel is a zoom-in for all the tests except aSPC.dCor
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Figure 2: Simulation II results. The left panel: when the number of columns in X and Y are 5, the
empirical type I error and power curves of the tests as the number of truly non-linearly associated
column pairs between X and Y ranges from 0 (type I error) to 5. Right panel: when the number
of non-linearly associated column pairs in X and Y is fixed at 5, the power curves of the tests as
more and more non-associated columns are added to Y . The nominal significance level is 0.05
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