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ABSTRACT
Due to the drop in sequencing cost, the number of sequenced genomes is increasing

rapidly. To improve power of rare-variant tests, these sequenced samples could be

used as external control samples in addition to control samples from the study itself.

However, when using external controls, possible batch effects due to the use of dif-

ferent sequencing platforms or genotype calling pipelines can dramatically increase

type I error rates. To address this, we propose novel summary statistics based sin-

gle and gene- or region-based rare-variant tests that allow the integration of external

controls while controlling for type I error. Our approach is based on the insight that

batch effects on a given variant can be assessed by comparing odds ratio estimates

using internal controls only vs. using combined control samples of internal and exter-

nal controls. From simulation experiments and the analysis of data from age-related

macular degeneration and type 2 diabetes studies, we demonstrate that our method

can substantially improve power while controlling for type I error rate.
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1 INTRODUCTION

Identification of genetic variants that predispose to complex

diseases is an essential step toward understanding disease

etiology, which can lead to breakthroughs in diagnosis,

prevention, and treatment. The advance of sequencing

technologies (Shendure & Ji, 2008) enables studying the

full spectrum of genetic variants, including rare variants

(minor allele frequency (MAF) <1%), in large studies.

Although recent sequencing studies have started to identify

disease-associated rare variants (Cruchaga et al., 2014;

Steinthorsdottir et al., 2014), the number of discoveries is

much smaller than initially predicted (Zuk et al., 2014). To

facilitate further discoveries, more efficient and powerful

statistical strategies and methods are needed.

Given decreasing sequencing costs, the number of

sequenced whole exomes and even whole genomes are

rapidly increasing. These sequenced samples provide a great

opportunity to increase the power of rare-variant test. For a

single study, if sequenced samples from other studies are used

as control samples (external control samples), the power of

rare-variant tests can be substantially improved without any

additional sequencing cost. For example, using 1,529 external

control samples from NHLBI GO Exome Sequencing Project

(ESP) data in addition to their own 789 internal control

samples, Zhan et al. (2013) identified a rare coding variant

(MAF = 0.4%, P-value = 2.7 × 10−4) in the C3 gene

associated with age-related macular degeneration (AMD).

When they exclusively used internal controls, the variant was

substantially less significant.

Although the use of external control samples can greatly

improve power, systematic differences between studies can

have a negative impact on type I error control and power.

Study heterogeneity can arise from differences in study popu-

lations, i.e., population stratification, or technical batch effects

due to the use of different sequencing platforms or geno-

type calling pipelines (Quail et al., 2012). Recently, substan-

tial progress has been made in identifying external control

samples with similar genetic background (Bodea et al., 2016;
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Wang et al., 2014); however, only limited success has been

made in adjusting for technical batch effects. Derkach et al.

(2014) developed a robust score test that uses genotype like-

lihoods. The method can control type I error rates when loca-

tions of variants are correctly known; however, inflated type I

error rates are noted when variant locations should be inferred

from genotype calls (Hu, Liao, Johnston, Allen, & Satten,

2016). More recently, Hu et al. (2016) developed a likelihood-

based burden test that uses sequence reads, which can provide

more accurate type I error rate controls. However, given that

raw high depth sequence read data can be >1,000 times larger

than processed genotype data, downloading, storing, and ana-

lyzing external control sequence read data can be a huge com-

putational burden. In addition, the aforementioned methods

need individual-level genotype and phenotype information,

which is often difficult to obtain.

To address these challenges, we propose simple and robust

rare-variant association tests that only require allele counts

from external studies. Our approach, integrating External

Controls into Association Test (iECAT), is based on the

insight that the existence of batch effects on a given vari-

ant can be assessed by comparing two different odds ratio

estimates: odds ratio estimate using internal controls only

vs. odds ratio estimate using combined control samples of

internal and external controls. If a variant is subject to batch

effects, these two should be substantially different; even when

ancestry-matched external controls were used (Mahajan &

Robertson, 2015). In such a case, only internal control sam-

ples should be used to avoid false positives. Otherwise, exter-

nal control samples can be added to increase the sample size.

To approach this problem data adaptively, we propose using

an empirical Bayesian-type method. We first construct a sin-

gle variant test based on the shrinkage method and extend it

to several gene- or region-based tests, such as burden tests (Li

& Leal, 2008; Madsen & Browning, 2009; Morris & Zeggini,

2010), variance-component tests (Wu et al., 2011), and com-

binations of these two (e.g., SKAT-O; Lee, Wu, & Lin, 2012).

Given that only allele counts from external studies are

needed for the proposed method, the method can be used with

summary information publicly available in variant servers,

such as the ESP data on the Exome Variant Server (ESP).

Through extensive simulation studies and analysis of AMD

and type 2 diabetes sequencing data, we demonstrate that the

proposed method can improve power while controlling for

type I error rates.

2 MATERIAL AND METHODS

2.1 Single-variant association test
For a single-variant test, we consider the following shrink-

age estimation-based allelic test with an assumption

T A B L E 1 Data setup for internal case-control and external-control

samples for a single-variant association test

Gj = 1 Gj = 0 Total
Internal Y = 1 rI

1 2nI
1 − rI

1 2nI
1

Y = 0 rI
0 2nI

0 − rI
0 2nI

0

External Y = 0 rE
0 2nE

0 − rE
0 2nE

0

that the Hardy-Weinberg equilibrium (HWE) holds.

Let 𝑌 = 1(𝑌 = 0) denote affected (unaffected) status,

𝐺 = 1(𝐺 = 0) denote the minor allele (major allele) in the

variant. Let 𝑛𝐼0 and 𝑛𝐼1 (𝑛𝐸0 and 𝑛𝐸1 ) denote the number of con-

trols and cases of an internal study (external study), respec-

tively. The data are represented by a 3 × 2 table in Table 1.

Considering the internal study only, let 𝑝𝐼
𝑦

denote the

unknown true MAF (i.e., 𝑝𝐼
𝑦
= 𝑃 𝑟[𝐺 = 1|𝑌 = 𝑦] for y = 0, 1),

and 𝑟𝐼
𝑌

denote the corresponding observed number of minor

alleles. The observed counts can be viewed as a random sam-

ple from two independent binomial distributions, 𝑟𝐼0 ∼ Bino-

mial (2𝑛𝐼0 , 𝑝
𝐼
0 ) and 𝑟𝐼1 ∼Binomial (2𝑛𝐼1 , 𝑝

𝐼
1 ). Note that the num-

ber of trials is two times 𝑛𝐼0 (or 𝑛𝐼1 ) because each sample

consists of two copies of chromosomes. Suppose the param-

eter of interest is a log odds ratio of the genetic effect, given

by

𝛽0 = log[𝑝𝐼1(1 − 𝑝𝐼0)∕{𝑝
𝐼
0(1 − 𝑝𝐼1)}].

Our goal is to test whether 𝐻0 ∶ 𝛽0 = 0 or not. By using

the internal study only, 𝛽0 can be consistently estimated by

𝛽𝐼𝑛𝑡 = log
[
𝑟𝐼1

(
2𝑛𝐼0 − 𝑟𝐼0

)
∕
{
𝑟𝐼0

(
2𝑛𝐼1 − 𝑟𝐼1

)}]
.

Now, suppose 𝑛𝐸0 external control samples are available,

and assume the observed number of minor alleles, 𝑟𝐸0 ,

follows a binomial distribution with 𝑝𝐸0 , the proportion of

the minor allele in the external controls, i.e., 𝑟𝐸0 ∼ Binomial

(2𝑛𝐸0 , 𝑝
𝐸
0 ). Combining control samples from internal and

external studies, the estimate of 𝛽0 is

𝛽𝐶𝑜𝑚 = log[𝑟𝐼1(2𝑛
𝐼
0 + 2𝑛𝐸0 − 𝑟𝐼0 − 𝑟𝐸0 )∕{(𝑟

𝐼
0 + 𝑟𝐸0 )(2𝑛

𝐼
1 − 𝑟𝐼1)}]

When 𝑝𝐼0 = 𝑝𝐸0 , indicating that no batch effect exists,

𝛽𝐶𝑜𝑚 converges to 𝛽0 in probability. When 𝑝𝐼0 ≠ 𝑝𝐸0 , how-

ever, 𝛽𝐶𝑜𝑚 converges to a biased quantity, 𝛽0,𝐶𝑜𝑚 = log
[𝑝𝐼1(1 − 𝑝𝐶𝑜𝑚0 )∕{𝑝𝐶𝑜𝑚0 (1 − 𝑝𝐼1)}], where 𝑝𝐶𝑜𝑚0 = 𝑛𝐼0∕(𝑛

𝐼
0 + 𝑛𝐸0 )

𝑝𝐼0 + 𝑛𝐸0 ∕(𝑛
𝐼
0 + 𝑛𝐸0 )𝑝

𝐸
0 . Thus, the bias can be quantified as 𝜃 =

𝛽0,𝐶𝑜𝑚 − 𝛽0 = log[𝑝𝐼0(1 − 𝑝𝐶𝑜𝑚0 )∕{𝑝𝐶𝑜𝑚0 (1 − 𝑝𝐼0)}]. Taking it

for granted that the bias would exist, we propose a bias-

adjusted estimate of 𝛽0 as follows.

We first estimate the bias 𝜃 by using an empirical Bayesian

approach. It begins with an estimate 𝜃̂ = 𝛽𝐶𝑜𝑚 − 𝛽𝐼𝑛𝑡 that

asymptotically follows a normal distribution N(𝜃, 𝜎2
𝜃
) , where

𝜎2
𝜃

is the variance of 𝜃̂. To account for the uncertainty in

the bias, we assume that 𝜃 is a random variable following

a normal distribution N(0, 𝜈), where the unknown hyper-
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parameter, 𝜈, reflects the magnitude of uncertainty by the

batch effects. Note that the consistent estimator of 𝜈 from the

marginal distribution of 𝜃̂ is 𝜈̂+ = max(0, 𝜃̂2 − 𝜎̂2
𝜃
), where 𝜎̂2

𝜃

is an estimate of 𝜎2
𝜃

(Morris, 1983). Recently Mukherjee and

Chatterjee (2008) have proposed to use 𝜈̂∗ = 𝜃̂2, a more con-

servative estimator of 𝜈. The main advantage of using 𝜈̂∗

instead of 𝜈̂+ is that 𝜈̂∗ provides a closed form of variance

estimator of the subsequent 𝜃 estimator. They also showed that

there is essentially no loss of efficiency of using 𝜈̂∗. Therefore,

we propose to use 𝜈̂∗, and the resulting estimate of the poste-

rior mean of 𝜃 is 𝜃 = 𝜃̂2

𝜃̂2+𝜎̂2
𝜃

𝜃̂. Finally, the proposed estimator

of 𝛽0 is

𝛽 = 𝛽𝐶𝑜𝑚 − 𝜃 = (1 − 𝜏) 𝛽𝐶𝑜𝑚 + 𝜏 𝛽𝐼𝑛𝑡; 𝜏 = 𝜃̂2

𝜃̂2 + 𝜎̂2
𝜃

. (1)

When 𝜃̂ (i.e., the difference between 𝛽𝐶𝑜𝑚 and 𝛽𝐼𝑛𝑡) is large,

𝜏 is close to one, and hence 𝛽 becomes 𝛽𝐼𝑛𝑡. In contrast, when

𝜏 is close to zero due to a small 𝜃̂, 𝛽 is close to 𝛽𝐶𝑜𝑚. Regard-

less of the size of the true bias 𝜃, 𝛽 is an asymptotically unbi-

ased estimator of 𝛽0 (supplementary Appendix A). The exact

expression of the asymptotic variance of 𝛽 can be found in the

supplementary Appendix A. When 𝜏 is large and hence close

to one, 𝛽 can have a larger variance than 𝛽𝐼𝑛𝑡. In this case, we

propose to use 𝛽𝐼𝑛𝑡 to achieve better power.

If there is a prior information on when 𝜃 could be zero

under the null hypothesis (i.e., 𝑝𝐼1= 𝑝𝐼0 ), using 𝜏 = 0 can

increase power without inflating type I error rates. Suppose

that observed MAFs of external controls (i.e., 𝑟𝐸0 ∕2𝑛
𝐸
0 ) is in

between observed MAFs of cases and internal controls (i.e.,

𝑟𝐼
𝑦
∕2𝑛𝐼

𝑦
), and hence 𝛽𝐶𝑜𝑚 is closer to zero than 𝛽𝐼𝑛𝑡 (i.e.,|𝛽𝐶𝑜𝑚| < |𝛽𝐼𝑛𝑡|). Under the null hypothesis with the batch

effects (i.e., 𝑝𝐼1 = 𝑝𝐼0 ≠ 𝑝𝐸0 ), because observed MAFs con-

verge to true MAFs, the probability to observe this phe-

nomenon will converge to zero. This indicates that using

𝜏 = 0 in this situation will not increase type I error rates.

In contrast, using 𝜏 = 0 in this situation will increase power

especially when the external controls include case samples,

because the case contamination will cause either 𝑝𝐼1 < 𝑝𝐸0 <

𝑝𝐼0 𝑜𝑟 𝑝𝐼1 > 𝑝𝐸0 > 𝑝𝐼0 under the alternative hypothesis. And

hence when this phenomenon occurs, we used 𝜏 = 0 as a

default value in simulation studies and real data analysis.

2.2 Gene- or region-based tests
For gene- or region-based tests, we extend the proposed

single-variant test in the previous section to burden, SKAT-

and SKAT-O type tests. The key idea is first to construct

a single-variant score-type statistic for each variant using

𝛽 and then to aggregate them using their weighted linear or

quadratic sums. To aggregate association signals in each vari-

ant, the burden test uses a weighted linear sum of score statis-

tics, whereas SKAT uses a weighted quadratic sum of score

statistics. The combined test, SKAT-O, uses a linear combi-

nation of the burden and SKAT test statistics.

Suppose that a region being tested has p variant loci. For

variant j, let 𝛽𝑗 be the log odds ratio estimate in (1), 𝜎̂𝑗 the

standard error estimate, and qj the MAF estimate from the

internal samples. In supplementary Appendix B, we show that

a single-variant score statistic is approximately proportional

to the product of log odds ratio estimate, sample size, and the

genotype variance. Using this fact, we construct a score-type

statistic for a single variant j as 𝑆𝑗 = 𝑛𝑒𝑓𝑓 𝑞𝑗(1 − 𝑞𝑗)𝛽𝑗 , where

neff is the effective sample size, and propose the following test

statistics:

𝑄𝑖𝐸𝐶𝐴𝑇 (𝜌) = (1 − 𝜌)
𝑝∑

𝑗=1

(
𝑤𝑗𝑆𝑗

)2 + 𝜌

(
𝑝∑

𝑗=1
𝑤𝑗𝑆𝑗

)2

,

where wj is a weight for variant j, and 𝜌 is a parameter between

0 and 1. Clearly, 𝜌 = 0 corresponds to the SKAT-type test,

and 𝜌 = 1 corresponds to the burden-type tests. Note that

QiECAT(𝜌) has a similar form to the variance component test

with the compound symmetric kernel structure proposed by

Lee et al. (2012). More details on the test and P-value calcu-

lation are given in supplementary Appendix C.

Burden-type tests (i.e., 𝜌 = 1) are powerful when large per-

centage of variants are causal and effects are in the same direc-

tion. SKAT-type tests (i.e., 𝜌 = 0) are powerful when hetero-

geneity is noted regarding effect sizes and the direction of the

effects (Basu & Pan, 2011; Lee, Abecasis, Boehnke, & Lin,

2014). SKAT-O type tests combine burden and SKAT tests

using the minimum P-values from a grid of 𝜌. We propose

the following SKAT-O type combined test as

𝑄𝑖𝐸𝐶𝐴𝑇−𝑂 = min 𝑃 − 𝑣𝑎𝑙𝑢𝑒 (𝜌) ,

where P-value(𝜌) is the P-value 𝑄𝑖𝐸𝐶𝐴𝑇 (𝜌) with a given 𝜌.

We used a grid of eight 𝜌 values (0, 0.12, 0.22, 0.32, 0.42,

0.52, 0.5, 1) in simulation studies and real data analysis. This

approach has been used in previous studies and shown to pro-

vide good performances in type I error control and power

(Lee, Teslovich, Boehnke, & Lin, 2013). P-values of QiECAT-O
can be obtained using numerical integration, as described in

Lee et al. (2012).

2.3 Type I error and power simulations
We performed extensive simulation studies to evaluate the

performance of the proposed iECAT method. To gener-

ate sequence information, we simulated 40,000 European-

like and 40,000 African America like haplotypes for 200

kbps using the coalescent simulator COSI with the cali-

brated demographic model (Schaffner et al., 2005). The binary
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phenotypes were generated from the following logistic regres-

sion model:

𝑙𝑜𝑔𝑖𝑡 𝑃 (𝑌 = 1) = 𝛼0 + 𝐺′
𝑐𝑎𝑢𝑠𝑎𝑙

𝛽𝑐𝑎𝑢𝑠𝑎𝑙, (2)

where Gcausal is a genotype matrix containing causal variants,

and 𝛽causal is a vector of the genetic effect coefficients. The

intercept 𝛼0 was chosen for the disease prevalence of 0.05.

We presumed that 3% of the variants had different MAFs

between internal and external control samples due to batch

effects, mimicking the level of the batch effects observed in

the real data analysis (see Section 3 for details). For these

variants, MAFs in external control samples were randomly

generated from Uniform (0.1 × q, 4 × q), where q is the

MAFs in internal study samples. To mimic realistic scenarios

of population stratification between internal and external con-

trol samples, we generated 0% (no population stratification),

5%, and 10% of external control samples from the African

American like haplotypes. All other internal and remaining

external control samples were simulated from the European-

like haplotypes.

We compared the following methods for a region-based

test: (1) the proposed iECAT-O; (2) SKAT-O using the

internal control only; (3) iECAT-O without adjusting for

batch effects (iECAT-ONoadj)—i.e., 𝛽 = 𝛽𝐶𝑜𝑚 was always

used regardless of the existence of the batch effects; (4)

iECAT-O assuming that batch effect variants were known

prior to the test (iECAT-OKnown)—i.e., 𝛽 = 𝛽𝐼𝑛𝑡 was used

(i.e., 𝜏 is fixed with 1) in the presence of true batch effects.

Otherwise, 𝛽 = 𝛽𝐶𝑜𝑚 was used (i.e., 𝜏 is fixed with 0). Because

iECAT-OKnown was constructed given that variants subject to

batch effects were fully known, iECAT-OKnown could reach

the theoretical maximum power under the iECAT framework.

Obviously, this batch effect information could not be known

in real data. Therefore, iECAT-OKnown will be used only for

power comparison to quantify the efficiency loss in iECAT-

O due to the uncertainty in 𝜏. For a single-variant test, we

used aforementioned approaches (iECAT-O, iECAT-ONoadj,

and iECAT-OKnown) and the Wald test (internal controls only)

with testing one variant at a time.

For region-based tests, we randomly selected a 3 kbp region

and tested for an association between variants in the region

and the phenotypes. For very rare variants, the proposed meth-

ods cannot be used because 𝜃̂ estimates can be unstable. We

thus only used variants observed in both internal and external

studies with internal study MAC > 3. For single-variant tests,

we randomly selected a variant and tested for an association

between the variant and the phenotypes.

In type I error simulations, phenotypes were generated

from (2) with 𝛽𝑐𝑎𝑢𝑠𝑎𝑙 = 0. For each simulation, to evaluate

type I error rates at genome-wide significance levels, we

generated 107 datasets for region-based tests and 5 × 107

datasets for single-variant tests. Given that generating these

large datasets was computationally intensive, we considered

only two internal study sample sizes, moderate and large

(Ninternal = 4,000 and 10,000). In each sample size, two differ-

ent ratios of case-control (1:1 and 2:1) were considered. The

external control sample size (Nexternal) was set to be the same

as the internal study sample size.

For power simulations for gene-based tests, 5%, 10%, or

30% of rare variants (MAF < 1%) were assumed to be causal.

In each setting, either all causal variants were risk-increasing

or 80% of causal variants were risk increasing (the remain-

ing 20% were risk decreasing). Given that it is possible that

rarer variants have larger effect sizes, we modeled log OR as a

decreasing function of MAF. Specifically, 𝛽 = c|log10(MAF).

When 30% of variants were causal, we used c = log(2)/2,

which led to OR = 2 for a causal variant with MAF = 1%.

When 5% or 10% of rare variants were causal, we used c =
log(4)/2 and c = log(3)/2 to compensate the decreased num-

bers of causal variants. For single-variant tests, we evaluated

power for testing a variant with MAF = (0.01, 0.005) and

OR = 2.

To evaluate the power when external control samples con-

tain samples with the disease of interest (i.e., case contami-

nation), we generated external control samples of which 0%,

5%, and 10% were the diseased samples. Because 5% disease

prevalence was noted, 5% contamination was equivalent to

using the general population as external controls. In all power

simulation scenarios, the external control sample size was the

same as the internal study sample size (Nexternal = Ninternal).

For each power simulation setting, we generated 5,000 data

sets.

2.4 Real data analysis
We applied our method to two sequence datasets while using

4,300 ESP European samples as external controls: targeted

sequencing data from the AMD study (Zhan et al., 2013) and

deep whole exome sequence data from the Genetics of Type-2

Diabetes (GoT2D) study (Fuchsberger et al., 2016). The AMD

study sequenced 10 target loci spanning 56 genes (2.7 Mb in

total). We downloaded 3,350 mapped SRA files from dbGaP

(Tryka et al., 2014) (phs000684.v1.p1), applied variant call-

ing and QC procedures as described in Zhan et al. (2013),

and retained 2,317 cases and 791 controls. The GoT2D study

whole exome sequenced 1,326 European T2D cases and 1,331

European T2D controls at high depth. For both datasets, we

applied LASER software with the HGDP reference (Wang

et al., 2014) to identify population structure. Given that Finish

samples were separately clustered from other European sam-

ples (supplementary Fig. S8), and ESP has only a small num-

ber of samples clustered together with Finish samples (supple-

mentary Fig. S8), we exclusively used the non-Finish cohorts

(British, German, and Sweden) in the GoT2D data analysis,

leading to a total of 650 cases and 646 controls.
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For external controls, allele counts of ESP samples were

downloaded from the ESP Exome Variant Sever. Variants

observed in both internal and external studies were included

in the analysis, after excluding variants that did not pass

each study’s own QC criteria. We further excluded variants

with internal study MAC ≤ 3. For gene-based tests, we used

genes with at least three rare variants. To investigate whether

ancestry matching can improve type I error control and power

for whole exome scale data analysis, we obtained individual-

level genotype data of ESP for the GoT2D data analysis.

We used LASER software with the HGDP reference for 1:2

matching between internal and external samples and identi-

fied 2,568 ancestry-matched external control samples (sup-

plementary Fig. S8).

3 RESULTS

3.1 Type I error rate simulation results
The empirical type I error rates estimated for iECAT-O and

the other methods are presented in Table 2 for 𝛼 = 10−4

and 2.5 × 10−6, corresponding to candidate gene studies of

500 genes and exome-wide studies of 20,000 genes. All inter-

nal and external samples were simulated using European-like

haplotypes. In all the simulation scenarios we considered,

iECAT-O had well controlled or slightly inflated type I error

rates. As expected, when we used the combined control sam-

ples but ignored batch effects (iECAT-ONoadj), type I error

rates were significantly inflated. For example, empirical type

I error rates were increased more than 10,000-fold compared

to the nominal 𝛼 level on average when 𝛼 = 2.5 × 10−6. When

we exclusively used the internal control samples (SKAT-O),

type I error rates were well controlled.

When only summary-level information for external con-

trol samples is available, samples with different genetic back-

ground cannot be excluded. We carried out additional type I

error simulations with 5% and 10% of external control sam-

ples from the African American like haplotypes, and the

results have shown that iECAT-O had robust type I error con-

trol even in the presence of population stratification (details

See supplementary Appendix D).

3.2 Power simulation results
Next, we compared power of the proposed and existing meth-

ods to identify genetic associations at 𝛼 = 2.5 × 10−6.

Figure 1 presents power simulation results when all causal

variants were deleterious variants. iECAT-O had substan-

tially improved power compared to the approach using inter-

nal study samples only. For example, when the internal study

case-control ratio was 1:1 and the internal study sample

size was 10,000, iECAT-O was on average 38–60% more

powerful. When the internal study case-control ratio was

2:1, iECAT-O exhibited increased power. On average, when

the internal study sample size was 10,000, the strategy to

sequence more cases (2:1 case-control ratio compared to

1:1) resulted in 11–17% increased power for iECAT-O com-

pared to sequencing the same number of cases and controls

(Fig. 1, bottom panel). As expected, the power of iECAT-

OKnown, where the optimal value of shrinkage weight 𝜏 was

used, was higher than that of iECAT-O, but the difference

was not substantial. This implies that estimating 𝜏 in iECAT-

O method did not reduce the efficiency so much. Given that

iECAT-ONoadj greatly increased type I error rates, we did not

include it in this plot. The relative performance of the methods

in the presence of both risk-increasing and risk-decreasing

variants was quantitatively similar (supplementary Fig. S2).

Given that external studies were not performed for the tar-

get disease of interest in the internal study, it is possible that

external control samples included cases (i.e., the diseased

samples), and this case contamination can reduce the power.

Figure 2 presents power evaluation results with 0%, 5%, and

10% of the external control samples being cases. Given that

5% disease prevalence was assumed, 5% contamination is

equivalent to using the general population as external controls.

When Ninternal = 10,000, the power was decreased on average

by 2–4% for 5% contamination and 3–8% for 10% contami-

nation. When the sample size was small, the power reduction

was slightly larger.

Next, we performed power simulations in the presence of

population stratification between internal and external sam-

ples in which 5% and 10% of the external control samples

were generated from African American like haplotypes and

all other samples were generated from European-like hap-

lotypes. Given that population stratification can inflate type

I error rates, we used empirical 𝛼 levels obtained in the

type I error simulation studies for fair comparisons. Sup-

plementary Figure S3 indicates that the power of iECAT-O

slightly decreased in the presence of population stratifica-

tion. These results suggest that the power of iECAT-O can

be improved if the ancestry-based matching method is used

to exclude external control samples with different genetic

backgrounds.

As expected, the power simulation results with for iECAT

with 𝜌 = 0 (SKAT-type test) and 𝜌 = 1 (burden type of tests)

were quantitatively similar (supplementary Figs. S4 and S5).

We obtained power with empirical 𝛼 levels instead of nomi-

nal 𝛼 levels for Ninternal = 4,000 and 10,000, and the results

were also quantitatively similar (supplementary Fig. S6). We

then performed power simulations for single-variant tests for

two different MAFs (1% and 0.5%) (supplementary Fig. S7).

The power curves revealed that iECAT had greatly improved

power compared with the method exclusively using internal

controls (e.g., 43% vs. 12% when MAF = 0.5%, Ninternal =
10,000 and case:control = 1:1). Interestingly, the strategy of
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T A B L E 2 Empirical type I error rates for iECAT-O, SKAT-O, and iECAT-ONoadj

Internal sample size Internal case:control Level 𝜶 iECAT-O SKAT-O iECAT-ONoadj

4,000 1:1 10−4 7.40 × 10−5 1.10 × 10−4 7.00 × 10−2

1:1 2.5 × 10−6 1.40 × 10−6 2.10 × 10−6 5.50 × 10−2

2:1 10−4 8.00 × 10−5 1.20 × 10−4 8.40 × 10−2

2:1 2.5 × 10−6 2.60 × 10−6 2.10 × 10−6 7.00 × 10−2

10,000 1:1 10−4 8.60 × 10−5 1.10 × 10−4 1.10 × 10−1

1:1 2.5 × 10−6 3.50 × 10−6 2.90 × 10−6 9.30 × 10−2

2:1 10−4 8.70 × 10−5 1.10 × 10−4 1.20 × 10−1

2:1 2.5 × 10−6 2.40 × 10−6 3.10 × 10−6 1.10 × 10−1

Each cell has an empirical type I error rate estimated from 107 simulated datasets. The external control sample sizes were the same as the internal sample sizes. All internal

and external controls samples were simulated from European-like haplotypes.

F I G U R E 1 Power comparisons when all causal variants were risk increasing variants.

Each line represents empirical power at 𝛼 = 2.5 × 10−6. From left to right, the plots consider that 5%, 10%, and 30% of variants were causal variants,

respectively. From top to bottom the plots consider that internal study case:control ratio was 1:1 and 2:1, respectively. The external control sample

sizes were the same as the internal study sample sizes. For causal variants, we assumed that 𝛽 = c|log10(MAF)| (see Section 2)

sequencing more cases (case:control = 2:1) did not always

improve the power compared with the one case per one con-

trol strategy. For example, when MAF = 0.5% and Ninternal =
15,000, case:control = 2:1 design had 72% power, whereas

case:control = 1:1 design had 75% power. This occurred in

part because having a smaller number of internal controls

increased the variability of the bias estimate, which had a neg-

ative impact on power. We note that this increased variability

had a smaller effect on gene-based tests given that the gene-

based approach combines multiple single-variant odds ratios.

Overall, our simulation studies demonstrate that iECAT

can substantially improve power compared with the existing

approaches that exclusively use internal control samples,

while controlling for type I error in a wide range of scenarios.

In contrast, if the external control samples are used without

adjusting for batch effects, it can result in significantly

increased type I error rates.

3.3 Real data analysis
We applied our proposed methods to the analysis of AMD

targeted sequencing and GoT2D whole exome sequencing

datasets. For both datasets, we used allele count statistics

of 4,300 ESP European samples downloaded from ESP as
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F I G U R E 2 Empirical power of iECAT-O in the presence of case contamination in external controls.

Each line represents empirical power at 𝛼 = 2.5 × 10−6. From left to right, the plots consider that 5%, 10%, and 30% of variants were causal vari-

ants, respectively. From top to bottom the plots consider that internal study case:control ratio was 1:1 and 2:1, respectively. All causal variants were

risk-increasing variants. The external control sample sizes were the same as the internal study sample size. For causal variants, we assumed that

𝛽 = c|log10(MAF)| (see Section 2)

external controls. In addition, for the GoT2D data analysis we

obtained the ancestry-matched external control samples using

individual-level genotype data of ESP to investigate whether

matching can improve type I error control and power in whole

exome scale analysis.

AMD Study: We applied iECAT to 56 candidate genes in

the AMD targeted sequencing dataset. After quality control,

we retained 2,317 cases and 791 controls. Table 3 presents

the top five genes by iECAT-O. For this analysis, we focused

on rare variants (MAF < 1%). By combining the internal

and external controls, iECAT-O revealed that two well-

known AMD-related genes, C3 and CFH, had the smallest

P-values (P-value = 5.75 × 10−6 and P-value = 7.44 × 10−6,

respectively), and the P-values were still significant after the

Bonferroni correction (corrected 𝛼 = 0.05/56 = 8.9 × 10−4).

In contrast, when SKAT-O was performed with the AMD

dataset alone, the P-values were greater than 0.01, indicating

that the proposed test significantly improved power. We also

performed single-variant tests for a total of 538 rare variants

(supplementary Table S3). We found that SNV rs147859257

in C3 (P-value = 1.23 × 10−5) and rs121913059 in CFH
(P-value = 1.24 × 10−5) were the top two variants by iECAT.

However, when the AMD dataset was used alone, these

two SNVs resulted in P-values > 10−2. The single-variant

test results were largely consistent with Zhan et al. (2013),

in which 1,529 ancestry-matched external controls were

used.

GoT2D Study: We performed single-variant and gene-

based tests with GoT2D deep exome sequencing data. Given

that the ESP dataset contains few Finish samples (see Section

2), we focused on non-Finish GoT2D cohorts in this analy-

sis, which included 650 cases and 646 controls. The gene-

based rare-variant test results are summarized through QQ

plots in Figure 3 (top panel); the iECAT-O QQ plot was fairly

well calibrated. In contrast, iECAT-ONoadj resulted in a sig-

nificantly inflated QQ plot. Even after the external control

samples were ancestry matched (a total of 2,568 external con-

trol samples; supplementary Fig. S8), the QQ plot by iECAT-

ONoadj remained significantly inflated, which suggests that

technical batch effects were a major source of the type I error

inflation (Fig. 3, bottom panel). In contrast, iECAT-O had a

well-calibrated QQ plot. Supplementary Figure S9 compares

P-values calculated with all 4,300 ESP external control sam-

ples and 2,568 ancestry-matched external control samples.

These two P-values were largely consistent, indicating that

iECAT-O analyses with and without ancestry-based matching

were largely similar in this dataset.

We also performed single-variant tests (supplementary Fig.

S10) for low frequency and rare variants with MAF < 5%. As

expected, QQ plots of iECAT were well calibrated, whereas

QQ plots of iECATNoadj were greatly inflated. When we com-

pared allele frequencies between the internal control samples

and the matched external control samples, approximately 13%

and 23% variants had P-values < 10% and 20%, respectively.
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T A B L E 3 Top five genes by iECAT-O P-values from the AMD data analysis

Gene Chr No. of varianta iECAT-O P-values SKAT-O P-values
CFH 1 14 5.75 × 10−6 6.70 × 10−2

C3 19 27 7.44 × 10−6 1.04 × 10−2

DOM3Z 6 7 1.16 × 10−4 1.69 × 10−3

CFHR4 1 6 8.03 × 10−4 6.66 × 10−2

SLC44A4 6 16 1.39 × 10−3 4.47 × 10−2

The 4,300 European ESP samples were used as external controls. Rare variants (MAF < 1%) were exclusively used for this analysis.
aVariants with internal study MAC ≤ 3 were excluded from the analysis.

F I G U R E 3 Analysis of the GoT2D exome data with ESP as external control samples.

QQ plots of −log10 P-values of gene-based tests for rare variants (MAF < 1%). A total of 11,283 genes with at least three rare variants were tested for

associations with T2D status. The dashed line represents a 95% confidence band. Top panel: all 4,300 European ESP samples were used as external

controls. Bottom panel: 2,568 ancestry-matched ESP samples were used as external controls

These 3% inflation may indicate that approximately 3% of

variants were subject to technical batch effects. To investigate

whether the batch effects vary by minor allele counts (MACs),

we obtained a distribution of the shrinkage weight 𝜏 by MAC

(supplementary Fig. S11). The box plots were similar across

all four MAC bins, indicating that there was no clear pattern

in batch effects by MAC.

Supplementary Table S4 presents the top five genes by

iECAT-O. Although GoT2D analysis did not identify statisti-

cally significant T2D-associated genes, this analysis provided

a suggestive association and demonstrated that the proposed

approach can control for type I errors.

4 DISCUSSION

In this paper, we proposed rare-variant tests that increase

power by integrating external control samples. By estimating

bias using an empirical Bayesian approach, the proposed

iECAT method provides an effective way to adjust for

possible batch effects. The type I error simulation and GoT2D

data analysis revealed that iECAT can control for type I

errors in the presence of technical batch effects. The power

simulation and AMD data analysis revealed that iECAT

can improve power compared with the exclusive use of

internal controls. The method is implemented in the iECAT

R package (available on the author’s website).

One of the important features of iECAT is that it only

needs allele counts from external studies. By utilizing allele

count information readily available in variant servers, such as

ESP and ExAC browser (Lek et al., 2016), our method can

greatly facilitate the use of external control samples. This is

a desirable property considering the difficulties in obtaining

individual-level genotype data. One possible issue of using

allele count information in a variant server is that we cannot

filter out samples with different genetic background. In such

case, iECAT could yield slightly inflated type I error rates.

We believe that it will become less problematic in the future
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as variant servers are starting to provide allele counts for fine-

scale ancestry.

There are several limitations in the present proposal. First,

the proposed method cannot adjust for covariates such as

age, gender, and principal components. In supplementary

Appendix E, we present a simple approach that can adjust

for covariates by estimating covariate-adjusted MACs. The

approach is similar to the principal component adjustment

method used in EigenStrat (Price et al., 2006), and a small-

scale simulation study shows that the method can adjust for

population stratification when the population index was used

as a covariate. The presented approach, however, requires

individual-level genotype and phenotype data from external

controls. Second, the proposed method mainly assumed that

one external study is used for external controls. If multiple

study data are used as external controls, it is possible that

there exist multiple batch effects. One possible way to address-

ing it is to apply the covariate adjustment in supplementary

Appendix E to adjust for batch effects in the external control

genotypes and to use adjusted MAC for the association tests.

Third, the method assumes that HWE holds (Guedj, Nuel, &

Prum, 2008). Because it is uncommon to observe rare allele

homozygotes, the violation of HWE condition would have

limited effects on the proposed tests. Fourth, we do not recom-

mend using the method for singletons or doubletons because

log odds ratio estimates can be unstable for these variants. In

future work, we will extend the method to incorporate single-

tons and doubletons.

With the advances in sequencing technologies, the num-

ber of sequenced genomes is increasing rapidly. Our method

provides a robust and effective way to utilize these sequenced

genomes in rare-variant tests and will contribute to the under-

standing of the genetic architecture of complex diseases.
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