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We propose an asymptotically optimal heuristic, which we termed the Randomized Assignment Control

(RAC) for restless multi-armed bandit problems with discrete-time and finite states. It is based on a linear

programming relaxation to the original stochastic control formulation. In contrast to most of the existing

literature, we consider a finite horizon with multiple actions and time-dependent (i.e. non-stationary) upper

bound on the total number of bandits that can be activated each time period. The asymptotic setting is

obtained by letting the number of bandits and other related parameters grow to infinity. Our main contribu-

tion is that the asymptotic optimality of RAC in this general setting does not require indexability properties

or the usual stability conditions of the underlying Markov chain (e.g. unichain) or fluid approximation (e.g.

global stable attractor). Moreover, our multi-action setting is not restricted to the usual dominant action

concept. Numerical simulations confirms that our proposed policy indeed performs well in the asymptotic

setting. Perhaps more surprisingly, these simulations show that RAC performs well in the non-asymptotic

setting as well. Finally, we show that RAC is asymptotically optimal for a dynamic population, where ban-

dits can randomly arrive and depart the system, and discuss how our framework extends to more general

costs and constraints.

Key words : xxx; xxx

1. Introduction

We present a policy that is asymptotically-optimal for a general finite-horizon restless multi-armed

bandit problem. A multi-armed bandits problem (MABP) involves activating competing ban-

dits/arms sequentially over time. A fixed number of bandits have to be activated at any given time,

and each bandit evolves according to a controlled stochastic process when it is activated. A solution

to a MABP specifies which bandits can be activated at each decision epoch to minimize either the

expected discounted or long-run average cost associated with how the bandits evolve over time.

In the MABP literature, one of the most celebrated results is the Gittins index policy, introduced
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by Gittins in 1979. This policy assigns each bandit an index as a function of its current state and

then activates the bandit(s) with the largest indices. When only one bandit can be activated at

each period, this policy optimizes both expected discounted and long-run average costs. About

a decade after Gittins (1979), Whittle (1988) generalized the MABP to allow non-active bandits

to also change states (dubbed by Whittle as a changing world setting), giving rise to the restless

multi-armed bandits problem (RMABP).

RMABP is a general modeling framework encompassing many applications: sequential selection

of clinical trials in medicine, sensor management, manufacturing systems, queueing networks, and

appointment scheduling (e.g., Gittins et al., 2011; Deo et al, 2013). Unfortunately, an optimal

policy for a RMABP is rarely a Gittins index policy and is frequently difficult to determine in any

tractable manner. Whittle (1988) proposed to solve a relaxed version of the RMABP in which the

number of activated bandits per period is no longer fixed, but has an upper bound. He could then

define an indexability property that ensured the relaxed problem has an optimal policy similar to

a Gittins index policy, that is, one that assigns each bandit an index and activates bandits based

on their index. This policy, known as Whittle’s index policy, approximates the solution for the

original RMABP and reduces to Gittins index policy when bandits do not change states if they are

not activated. Whittle conjectured his index policy is asymptotically optimal when the number of

bandits that can be activated per period and the population of bandits grow proportionally large.

In their seminal work, Weber and Weiss (1990) proved Whittle’s conjecture for bandits governed

by the same probability transition matrix as long as the differential equation corresponding to

the fluid approximation of the index policy has a globally stable attractor. Weber and Weiss also

showed Whittle’s index policy can fail to be asymptotically optimal if the global attractor condition

is not satisfied.

In the same asymptotic setting as in Whittle (1998) and Weber and Weiss (1990), we introduce

an asymptotically-optimal policy, called Randomized Assignment Control (RAC), that does not

require an indexability property and applies to general finite-horizon RMABPs. Its control parame-

ters are constructed by formulating a Linear Programming (LP) relaxation of the RMABP and then

finding an optimal solution of a perturbation to this LP relaxation. Finite-horizon RMABPs are

particularly useful when the dynamics of the bandits are either non-stationary or model parameters

need to be re-estimated. Due to this uncertainty, a decision maker may be more concerned with

performance in a finite time window than over the long-run. Although the asymptotic optimality

of RAC is for the finite horizon problem, we also show that it remains asymptotically optimal if

the decision horizon is allowed to grow at a certain rate. Moreover, as we discuss in Remark 1 in

Section 4, the decision horizon can be large when a discount factor is included in the cost term.
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We also show numerically that RAC performs well even when the number of bandits that can be

activated per period and the population size of bandits are relatively small (i.e., the non-asymptotic

setting). So, RAC should be practical for a wide range of applications. We then allow bandits to

arrive and leave stochastically at the beginning of every period (c.f. Verloop, 2015). Again, RAC

is shown to be asymptotically-optimal, thereby extending the utility of RAC to applications that

can be modeled as discrete-time queueing systems when decisions are made in batches.

We view our work as having the following four contributions. First, to the best of our knowledge,

we are the first to propose an asymptotically optimal heuristic for a general RMABP for fixed

and dynamic population models. Second, our proposed heuristic does not rely on any structural

assumptions made in the existing literature. These assumptions include indexability properties, as

well as assumptions on bandit dynamics, such as the global attractor property referenced above

and/or assumptions regarding the recurrence structure of the underlying Markov chain—see Section

2 for a more detailed discussion. Third, we allow for a non-stationary (or period-dependent) bandit

activation budget and an arbitrary finite number of actions, without having to restrict to policies

that implement a so-called dominant action, i.e., the optimal policy always chooses the same action

for each activated bandit of a specific class and in a specific state. We emphasize that the analysis

of RMABP with more than two actions has remained elusive in the literature unless additional

structure is assumed such as dominant action. Our analysis can be easily extended to the setting

with non-stationary transition matrices and costs, as well as to multi-class bandits (c.f. Verloop,

2015). Finally, the generality of our modeling framework means that our heuristic can be used

in diverse applications including worker scheduling (Gittins et. al, 2011), resource allocation to a

population in public health (Brandeau, 2005), and appointment scheduling/capacity management

in healthcare where patients’ health state follow Markovian dynamics and are fully observable (c.f.

Deo et al, 2013).

The remaining of the paper is organized as follows. Section 2 summarizes the related literature

and highlights our contributions. Section 3 details the basic model with a fixed population of

bandits, along with the corresponding LP relaxation of the stochastic RAMBP. Section 4 provides

the definition of RAC policy and analyzes its performance. Section 5 examines simple numerical

examples to test the non-asymptotic performance of RAC. Section 6 analyzes the performance of

RAC in the setting with dynamic population of bandits and Section 7 concludes the paper.

2. Related Literature

As alluded to in the introduction, RMABPs provide a very general modeling framework for sequen-

tial decision-making under uncertainty. It is thus not surprising that they have been used to support

decision-making in many applications. Some of the existing literature on RMBAPs assumes that
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model parameters are given a priori and then focus on characterizing or approximating optimal

policies. There is also literature that consider both learning (i.e., parameter estimation) and char-

acterizing/approximating optimal policies. Our work belongs to the first category; we assume that

the model parameters are already given and focus only on approximating optimal policies. We refer

interested readers to the classic text by Gittins et. al (2011) for a systematic and comprehensive

treatment of MABPs and to the recent paper by Verloop (2015) for other related references. Here,

we will only review works that are most closely related to ours.

Existing work on RMABP often assumes both a stationary activation budget (i.e., the maximum

number of active bandits per period is independent of time) and only two possible actions per

bandit (Whittle, 1981; Weiss, 1988; Verloop, 2015). To the best of our knowledge, a non-stationary

activation budget has only been considered in Cohen et. al (2014). These authors derived sufficient

conditions for the optimality of a myopic policy for a particular problem known as the finite-horizon

discounted-cost dynamic spectrum access problem. This problem requires that a decision-maker

search for idle channels in a spectrum of multiple channels with the busy/idle state of each channel

evolving as a two-state Markov chain. In contrast, our work allows for an arbitrary finite number of

actions and states and determines an asymptotically-optimal policy rather than sufficient conditions

for optimality of a certain policy. RMABPs with multiple actions are often referred to as super-

processes (c.f Gittins et. al, 2011) and were first considered in the setting where only one bandit

can be activated per period (Whittle, 1980). For this setting, it was shown that under the condition

that each state has a dominant action, then there is an optimal policy that is indexable. A less

strict condition is given in Gittins et. al (2011), but still to ensure there is an optimal policy that is

indexable. Multiple actions were also considered in Verloop (2015) for multi-class restless bandits

with a long-run average cost criteria. Similar to our work, they developed asymptotically-optimal

policies for a fixed population of bandits that can arrive and depart from the system. Their model,

however, focuses on generalizing the concept of dominant action. Our proposed RAC policy makes

no such restriction to a class of dominant action policies.

Verloop (2015) introduced a broad class of priority policies (i.e., policies that prioritize certain

bandits) that do not require indexability, but can still be asymptotically-optimal. However, since

she considered the long-run average cost criteria, these conditions require that the differential equa-

tion describing the fluid model associated with the RMABP has a globally attracting equilibrium

point, coinciding with similar conditions needed in Weiber and Weiss (1990). This condition is

needed to guarantee that the equilibrium point induces a priority policy and that the process under

this priority policy converges to the equilibrium point independent of initial conditions. To guar-

antee the condition holds, the family of processes that scales to the fluid model must each have a

unique invariant probability distribution with finite first moment and the collection of these unique
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invariant probability distributions must be tight and uniform integrable. For a fixed population of

bandits, these are satisfied when the generated Markov process is unichain (i.e., the Markov chain

has no two disjoint closed sets) so that the resulting Markov chain has a unique equilibrium distri-

bution. For a dynamic population, they are satisfied provided that the generated Markov process

is irreducible and state 0 (i.e., the “empty” state) is positive recurrent for any bandit that is never

activated, i.e., inactivated bandits eventually leave the system. We extend the dynamic population

framework in Verloop (2015) in four ways. First, we allow time-varying constraints on the number

of active bandits per period. Second, we consider a finite-horizon setting, so we do not require a

global attractor condition. Third, we make no assumptions about the transition probability matri-

ces or the underlying dynamics generated by the policies of consideration, such as being unichain.

Fourth, we propose a new type of policy that is neither a priority policy nor an index policy, but

is still asymptotically-optimal under certain conditions.

In terms of methodology, our work is related to the literature that uses LP relaxation to approxi-

mate RMABPs. Bertsimas and Nino-Mora (2000) were the first to consider a sequence of LP relax-

ations to obtain a primal-dual index policy for the infinite-horizon discounted-cost RMABP. Ny et.

al (2008) extended the work of Bertsimas and Nino-Mora (2000) to include switching times/costs

between activating bandits. Both Bertsimas and Nino-Mora (2000) and Ny et. al (2008) considered

LP relaxations of the Dynamic Programming (DP) formulation of infinite-horizon RMABPs. An

alternative LP relaxation can be derived by considering a fluid model of the RMAPB that only

takes into account mean drifts of bandit dynamics (Weber and Weiss, 1990; Verloop, 2015). This

fluid approach is also called the Certainty Equivalent approach in the broader Operations Research

literature and is closest to the LP formulation in this paper.

Finite-horizon MABPs have been studied in Robbins (1972) and Bradt et. al (1956), who focused

on the well-studied case where engaging a project corresponds to sampling from a Bernoulli popu-

lation with unknown success probability and the objective is to maximize the expected number of

successes over a finite number of plays. We refer interested readers to the monograph by Berry and

Fristedt (1985) for additional references on finite-horizon MABPs. More recently, Caro and Gallien

(2007) considered the setting motivated by a dynamic assortment problem in the fashion retail

industry. Nino-Mora (2011) (see also the references therein) considered a class of finite-horizon

discrete-state bandit problems whose optimal policy is known to be of index type (i.e., the counter-

part of the Gittins index for a finite-horizon discrete-state bandit) and proposed both an efficient

and exact algorithms to compute the index. To the best of our knowledge, we are the first to

analyze finite-horizon RMABPs with a non-stationary activation budget and optimal policies that

are non-indexable.
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3. Basic Model

We consider a finite-horizon, discrete-time model where time t ∈ {1, . . . , T + 1} with T <∞. Let

J= {j : 1≤ j ≤ J} denote the set of feasible states and A= {a : 0≤ a≤A} denote the set of feasible

actions. Our analysis will still apply when each state has its own set of feasible actions, so without

loss of generality, we will simply assume that all states share the same set of feasible actions A. We

also introduce a set of states U⊆ J, called the undesirable states, that represent states in which a

bandit will incur a high penalization cost at the end of the horizon. We refer to action a= 0 as no

action (or no treatment) and any action a> 0 as a proper action (or proper treatment). Moreover,

we will call a bandit either active when a proper action is applied to it or passive otherwise. We

assume that each bandit transitions from state i to state j under action a according to a probability

pai,j and that the maximum number of active bandits at time t is bt > 0, called the activation budget.

Two types of costs can be incurred by the system. First, a cost caj is incurred each time action a is

applied to a bandit in state j. Second, a cost φ is incurred for each excess bandit that ends up in

an undesirable state at time T + 1, where we allow for at most m bandits to be in an undesirable

state at time T + 1 without being penalized.

The decision-making scenario is as follows. At time t, the decision-maker decides the number

of bandits in each state to receive a specific treatment. After receiving treatment, a bandit incurs

a cost and transitions to a potentially new state at time t+ 1. The objective is to minimize the

expected total treatment and penalty costs. Let Π denote the set of all non-anticipating policies

and π denote a feasible policy in Π. Because each bandit has identical transition and cost dynamics,

we do need to keep track of individual bandits and instead keep track of the number of bandits

in state j that receive treatment a at period t under π, denoted by Xπ,a
j (t), as well as the the

number of bandits in state i that receive treatment a at time t under π and then transition to state

j, denoted by Y π,a
i,j (t). Additionally, we assume that Y π,a

i (t) = (Y π,a
i,j (t)) is a vector of multinomial

random variables and that nj,1 is the initial number of arms in state j at time t= 1.

If we let V π denote the total expected costs (both treatment and penalty costs) under policy

π ∈Π with certain constraints:

V π = Eπ
 T∑
t=1

A∑
a=0

J∑
j=1

caj ·X
π,a
j (t) + φ ·

(
A∑
a=0

∑
j∈U

Xπ,a
j (T + 1)−m

)+


s.t.
A∑
a=0

Xπ,a
j (t) =

A∑
a=0

J∑
i=1

Y π,a
i,j (t− 1) ∀ j ≥ 1, t≥ 2

A∑
a=0

Xπ,a
j (1) = nj,1 ∀ j ≥ 1

A∑
a=1

J∑
j=1

Xπ,a
j (t)≤ bt ∀ t≥ 1,
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then the stochastic control model can be expressed as:

V S = min
π∈Π

V π, (1)

where the constraints hold almost surely.

A few remarks are in order. First, the seemingly simple stochastic control model in (1) is in

fact surprisingly general. As alluded, it can be used to model applications in scheduling, capacity

management (e.g. admission and/or service rate control), resource allocation, and others. It can

also be easily modified to include several features that are commonly used in the queueing control

literature such as non-stationary random arrival processes, non-stationary random service processes

(e.g. non-stationary budget), random service completions, and random abandonments (see Section

6). Second is that the cost structure and budget constraints for the stochastic control model

presented in (1) follow those that are commonly found in the RMABP literature. We have done this

for clarity of presentation. However, our analysis and results also hold under more general settings.

For example, the cost terms caj can depend on time, so that, for instance, we can include discounted

costs. This versatility comes from the fact that we consider a finite-horizon total expected cost

criteria instead of infinite-horizon discounted expected or long-run average expected costs as our

optimization objective. This frees us from having to impose structural conditions on the model

required to guarantee convergence to an equilibrium point (c.f Verloop, 2015). In what follows, for

ease of notation, whenever it is clear from context which policy is being used, we will suppress the

notational dependency on π.

Rather than solving the stochastic control model in (1), we will instead solve a family of associ-

ated Linear Programs (LP) indexed by ε= (ε1, ε2, . . . , εT )≥ 0:

V D(ε) = min
x,z

T∑
t=1

A∑
a=0

J∑
j=1

caj ·xaj (t, ε) + φ · z(ε) (2)

s.t.
A∑
a=0

xaj (t, ε) =
A∑
a=0

J∑
i=1

xai (t− 1, ε) · pai,j ∀ j ≥ 1, t≥ 2

A∑
a=0

xaj (1, ε) = nj,1 ∀ j ≥ 1

A∑
a=1

J∑
j=1

xaj (t, ε)≤ bt− εt ∀ t≥ 1

z(ε) ≥
∑
j∈U

A∑
a=0

J∑
i=1

xai (T, ε) · pai,j −m

z(ε), xaj (t, ε)≥ 0 ∀a≥ 0, j ≥ 1, t≥ 1

One can arrive at LP (2) by replacing all the random variables in (1) with their expected values,

replacing the original budget bt in (1) with bt− εt, and introducing a new variable z(ε) to capture
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the penalty for bandits in undesirable states at the end of the time horizon. In the special case

when ε = 0, the LP (2) is simply the deterministic relaxation of the original stochastic problem

(1). Otherwise when ε > 0, we interpret ε as a buffer to not exceed the activation budget as Xa,π
j (t)

randomly deviates from xaj (t). The magnitude of εt is chosen such that we avoid exceeding the

activation budget with a high probability.

We end this section with the following result. The proof is straightforward and is therefore

omitted.

Lemma 1. V D(0)≤ V S.

The result tells us that V D(0) is a lower bound of V S. As a result, we can use V D(0) as a proxy

for V S and study the performance of any feasible policy π by analyzing the difference between V π

and V D(0). In this paper, we will refer to V π −V D(0) simply as the loss of policy π.

4. Randomized Activation Control

We define our policy Randomized Activation Control (RAC) for the stochastic control model in

(1) using an optimal solution x∗,aj (t, ε) and z∗(ε) of LP (2) for a given ε≥ 0. We use this optimal

solution, which may not be unique, to introduce categorical random variables Zj,l(t, ε) ∈ A with

the property that P(Zj,l(t, ε) = a) = q∗,aj (t, ε) for all a∈A where

n∗j (t, ε) =
A∑
a=0

x∗,aj (t, ε)

q∗,aj (t, ε) =


x
∗,a
j (t,ε)

n∗j (t,ε)
if n∗j (t, ε)> 0

1{a=0} if n∗j (t, ε) = 0

By definition, n∗j (1, ε) = nj,1 and q∗,aj (t, ε)∈ [0,1]. These random variables specify which actions are

taken by our policy at time t, as described below.

Randomized Activation Control (RAC)

1: Pick ε and solve LP (2).
2: Compute q∗(ε).
3: At time t, do:

a. Randomly pick an arm l that has not been picked before;
b. If bandit l is in state j, randomly generate Zj,l(t, ε);
c. If total activated bandit so far is smaller than bt, apply action Zj,l(t, ε) to arm l;
d. If total activated bandit so far is exactly bt, apply action 0 to arm l;

Note that RAC randomizes the order in which bandits are assigned an action at time t. An

alternative policy could adjust RAC to prioritize certain bandits over others. For example, bandits

in a state j = 1 could be assigned an action at time t before bandits in state j = 2 are assigned an
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action. While this is an important consideration, we do not address how changes to bandit order

in the algorithm could improve the policy.

The performance of RAC for the stochastic control model in (1) depends crucially on the choice

of ε. To see this, note that we can decompose the loss of RAC as follows:

V RAC −V D(0) = [V RAC −V D(ε)] + [V D(ε)−V D(0)].

If ε is close to 0, then V D(ε)− V D(0) is also close to 0. However, V RAC − V D(ε) could be large,

since deviations of Xa
j from xaj is likely to lead RAC to exhaust the activation budget each time

period before those bandits that should have been activated are even considered for activation. As

a result, many bandits may end up in undesirable states at the beginning of period T + 1. On the

other hand, if ε is large, then V RAC − V D(ε) will be close to 0. In this case, there is a negligible

probability that we will reach the per period budget each time period, and we will be able to

activate all of bandits that need to be activated to prevent too many bandits from reaching the set

of undesirable states at the beginning of period T + 1. However, V D(ε)− V D(0) in this case can

be potentially large. It follows that care must be taken when choosing ε.

The following lemma provides an upper bound for V D(ε)−V D(0):

Lemma 2. There exists a constant M > 0 independent of T and ε≥ 0 satisfying εt ≤ bt for all t

such that V D(ε)−V D(0)≤M ·
[∑T

t=1 εt

]
.

Lemma 2 says that V D(ε)−V D(0) is roughly proportional to
∑T

t=1 εt. The proof of this Lemma

can be found in the Appendix and is based on a duality argument. The proof depends on the fact

that LP (2) can be transformed into a separable LP whose optimal dual solution is also an optimal

dual solution for the original LP (2). We remark that we cannot directly apply existing results on

LP sensitivity analysis, like the one presented in Schrijver (2000, see Section 10.4) since it yields a

bound for V D(ε)−V D(0) =O(T 2 ||ε||∞) that will be too loose to prove asymptotic-optimality.

Next, let CRAC denote a realization of total costs incurred over the horizon under RAC. By

definition, we have E[CRAC ] = V RAC . The following lemma tells us that CRAC − V D(ε) is also

roughly proportional to
∑T

t=1 εt, with a positive probability.

Lemma 3. For any ε≥ 0, we have

CRAC −V D(ε) ≤
[
φ+ max

a,j
caj

]
·

[
T∑
t=1

εt

]
(3)

with probability at least

1− 3 ·A ·J2 ·
T∑
t=1

exp

− ε2t

12 ·A2 ·J4 ·
[∑J

`=1 n`,1

]
+ exp

{
− εt

6 ·A ·J2

} . (4)
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If ε is small, then the bound in (3) is small and holds with a small probability; if, on the other

hand, ε is large, the bound in (3) is large and holds with a large probability. Ideally, we would like

to choose ε that yields a small bound in (3) and a large probability in (4). To do this, we consider

an asymptotic setting where nj,1 (for all j), bt (for all t), and m are uniformly scaled by a factor

of θ > 0. This is the same asymptotic setting considered in Weber and Weiss (1990) and Verloop

(2015). Let V S
θ and V π

θ denote the corresponding total expected costs under the optimal policy and

a feasible policy π ∈Π, respectively. Also, let V D
θ (ε) denote the optimal value of the corresponding

LP (2). It is not difficult to see that the optimal solution of the LP (2) for ε= 0 and θ > 0 is given

by x∗,aθ,j (t,0) = θ · x∗,aj (t,0) and z∗θ(0) = θ · z∗(0) so that V D
θ (0) = θ · V D(0). We can define n∗θ,j(t, ε)

and q∗,aθ,j (t, ε) analogously to how n∗j (t, ε) and q∗,aj (t, ε) are defined, but with x∗,aj (t,0) replaced with

x∗,aθ,j (t,0). Let ntot :=
∑J

i=1 ni,1 and define S(t) := {(a, j) : x∗,aj (t,0) > 0 and caj > 0}. We state our

main result in this section below.

Theorem 1. For all t, suppose that S(t) 6= ∅ and εt = 6 ·A ·J2 ·
√
d ·ntot · θ · log θ for some d> 0.

If θ · bt ≥ εt for all t, we have:

V RAC
θ −V S

θ

V S
θ

= O

(
T

θd
+

√
d · log θ

θ

)
. (5)

Proof. By Lemma 3, under the choice of ε in Theorem 1, CRAC
θ − V D

θ (ε) is O(T ·
√
d · θ · log θ)

with probability at least 1−Θ
(
T
θd

)
(for the second exponential term in (4), for any given d> 0, we

can further bound
√
d ·ntot · θ · log θ≥ d · log θ for all large θ). Since there is a total of θ ·ntot bandits

in each period, CRAC
θ − V D

θ (ε) is at most Θ(T · θ · ntot) with probability at most Θ
(
T
θd

)
. Putting

these two results together, we get V RAC
θ −V D

θ (ε) =O
(
T ·
√
d · θ · log θ+ T2

θd−1

)
. By Lemma 1, under

the choice of ε in Theorem 1, V D
θ (ε)−V D

θ (0) is O(T ·
√
d · θ · log θ). Putting the bounds for V RAC

θ −

V D
θ (ε) and V D

θ (ε)− V D
θ (0) together yields V RAC

θ − V D
θ (0) =O

(
T ·
√
d · θ · log θ+ T2

θd−1

)
. The proof

is complete by noting that
V RACθ −V Sθ

V S
θ

≤ V RACθ −VDθ (0)

VD
θ

(0)
and V D

θ (0) is Θ(T · θ) (because S(t) 6= ∅ for all

t, which implies that in each period we always incur a cost that is at least proportional to θ). �

The condition S(t) 6= 0 for all t is relatively mild and simply means that we always activate

some bandits in the deterministic system. As for the condition θ · bt ≥ εt for all t, it is immediately

satisfied for all sufficiently large θ. Since we do not scale T in our asymptotic setting, the bound

in Theorem 1 tells us that RAC is asymptotically optimal as long as d> 0. However, note that the

bound depends on T only through the term T
θd

; technically, this means that we can also consider

an alternative asymptotic setting where T is allowed to grow as a function of θ. For example, if

T ∼ θn, then we can choose d > n and RAC is still asymptotically optimal. Thus, despite the fact
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that our model is set as a finite-horizon model, our result suggests that RAC is quite versatile and

can be applied to a problem with a very long decision horizon.

Remark 1 (Discounted Cost Criteria). Suppose that we multiply the cost term at time t

with δt−1 for some discount factor δ ∈ (0,1). Using the same arguments in the proofs of Lemmas 2

and 3, it can be shown that the bound in Lemma 2 becomes M ·
[∑T

t=1 δ
t−1 · εt

]
for some M > 0

independent of T and ε≥ 0, and the bound in (3) becomes
[
φ+ maxa,j c

a
j

]
·
[∑T

t=1 δ
t−1 · εt

]
. Suppose

that S(t) 6= 0 for all t. If we now use εt = 6 ·A · J2 ·
√
d ·ntot · ln(t+ e− 1) · θ · lnθ , then using the

same arguments in the proof of Theorem 1, it is not difficult to see that

CRAC
θ −V D

θ (ε) =O

(
T∑
t=1

δt−1 ·
√
d · ln(t+ e− 1) · θ · lnθ

)
=O(

√
d · θ · lnθ)

with probability at least 1−Θ
(∑T

t=1
1

(t+e−1)d·ln θ

)
. Additionally, CRAC

θ −V D
θ (ε) is at most

Θ

(
T∑
t=1

δt−1 · θ ·ntot

)
= Θ(θ ·ntot)

with probability at most Θ
(∑T

t=1
1

(t+e−1)d·ln θ

)
. Since V D

θ (0) is Θ(
∑T

t=1 δ
t−1 · θ) = Θ(θ) and

T∑
t=1

1

(t+ e− 1)d·lnθ
≤ 1

ed·lnθ
+

∫ ∞
1

dx

(x+ e− 1)d·lnθ
≤ 2

ed·lnθ
=

2

θd

for all large θ, we have

V RAC
θ −V S

θ

V S
θ

≤ V RAC
θ −V D

θ (0)

V D
θ (0)

= O

(
1

θd
+

√
d · lnθ
θ

)
.

For this bound to hold, we need θ · bt ≥ εt for all t otherwise the LP (2) has a negative activation

budget and hence, is infeasible. Given our choice of εt, this condition is immediately satisfied for

all t and all large θ so long as T = o
(

exp
{

θ
d·log θ

})
. Thus, not only RAC is asymptotically optimal

in the setting with discounted cost, its relative loss is also independent of T for very large T . This

constraint on T tightens the bound in Theorem 1, which would otherwise grow exponentially with

θ when T is close to exp
{

θ
d·log θ

}
.

5. Numerical Experiments

In this section, we test the performance of RAC using two experiments. In the first experiment,

we consider an instance of RMABP with 2 states and 2 actions; in the second, we consider an

instance of RMABP with 5 states and 5 actions. In each experiment, we use εt =
√
θ · log θ for all t

and choices of θ. The details of all other parameters can be found in the Appendix. We report the

percentage loss of RAC (i.e.,
V RACθ −VDθ (0)

VD
θ

(0)
) for the two experiments in Tables 1 and 2, respectively.
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Table 1 Percentage loss for 2 states/2 actions

θ T = 10 T = 30 T = 50 T = 100
1 5.40 6.45 5.77 5.14
5 4.90 3.44 5.09 5.40
10 3.76 5.25 4.46 3.80
20 3.35 3.53 4.34 3.98
40 3.32 2.17 2.67 2.72
60 2.37 2.79 2.29 1.83
80 2.49 2.29 1.85 1.66
100 2.14 1.38 2.33 1.92
200 1.32 1.05 1.58 1.48

Table 2 Percentage loss for 5 states/5 actions

θ T = 10 T = 30 T = 50 T = 100
1 3.12 2.67 2.75 3.01
5 2.80 3.60 3.10 3.18
10 2.40 2.10 2.30 2.68
20 1.70 1.80 1.70 1.65
40 1.20 1.10 0.90 1.02
60 1.00 1.00 1.00 0.77
80 0.80 0.80 0.70 0.73
100 0.70 0.70 0.80 0.70
200 0.50 0.60 0.50 0.49

Note that, as predicted by Theorems 1 and 2, RAC performs better as θ increases. However,

what is perhaps surprising, RAC also appears to be performing very well when θ is small (its

relative loss is only about 6% when θ = 1). These results suggest RAC performs well not only in

the asymptotic regime, but for a wide range of θ.

6. Model with Arrivals

We extend the basic model in Section 3 to allow for arrivals. We use the same notation as Section

3 with the addition of a stochastic arrival of Λj,t bandits in state j at time t. We assume that Λj,t

is a Poisson random variable with mean λj,t. Both the stochastic and deterministic formulations

of our new model can be written as follows:

V S = min
π∈Π

E

 T∑
t=1

A∑
a=0

J∑
j=1

caj ·X
π,a
j (t) + φ ·

(∑
j∈U

Nπ
j (T + 1)−m

)+
 (6)

s.t.
A∑
a=0

Xπ,a
j (t) =

A∑
a=0

J∑
i=1

Y π,a
i,j (t− 1) + Λj,t ∀ j ≥ 1, t≥ 2

A∑
a=0

Xπ,a
j (1) = nj,1 + Λj,1 ∀ j ≥ 1

A∑
a=1

J∑
j=1

Xπ,a
j (t)≤ bt ∀ t≥ 1
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V D(ε) = min
x,z

T∑
t=1

A∑
a=0

J∑
j=1

caj ·xaj (t, ε) + φ · z(ε) (7)

s.t.
A∑
a=0

xaj (t, ε) =
A∑
a=0

J∑
i=1

xai (t− 1, ε) · pai,j + λj,t ∀ j ≥ 1, t≥ 2

A∑
a=0

xaj (1, ε) = nj,1 +λj,1 ∀ j ≥ 1

A∑
a=1

J∑
j=1

xaj (t, ε)≤ bt− εt ∀ t≥ 1

z(ε) ≥
∑
j∈U

A∑
a=0

J∑
i=1

xai (T, ε) · pai,j −m

z(ε), xaj (t, ε)≥ 0 ∀a≥ 0, j ≥ 1, t≥ 1

Lemmas 1 and 2 still hold (we omit the details), and RAC is defined exactly as it was in Section

4. The following result is the analogue of Lemma 3:

Lemma 4. For any ε≥ 0, we have

CRAC −V D(ε) ≤
[
φ+ max

a,j
caj

]
·

[
T∑
t=1

εt

]
(8)

with probability at least

1− 3 ·A ·J2 ·
T∑
t=1

exp

− ε2t

48 ·A2 ·J4 ·
[∑J

`=1 n`,1

]
+ exp

{
− εt

12 ·A ·J2

}
−3 ·A ·J2 ·

T∑
t=1

exp

− ε2t

64 ·A2 ·J4 ·
[∑t

s=1

∑J

i=1 λi,s

]
 . (9)

Note that the last summation in (9) is due to arrivals of new bandits at each time point. If

λt,j = 0 for all t and j, then the last summation equals zero and the bound in (9) is identical to

the bound in (4) except for that the numbers 48 and 12 appear in the expression rather than 12

and 6. Let λtot := maxt
∑J

j=1 λj,t. We consider the same asymptotic setting as in Section 4, where

we also scale the arrival rate λj,t with θ. The following theorem is the analogue of Theorem 1:

Theorem 2. For all t and i, suppose that λt,i > 0, S(t) 6= ∅, and εt = 12 · A · J2 ·√
t · d ·max{ntot, λtot} · θ · log θ for some d> 0. If θ · bt ≥ εt for all t, we have:

V RAC
θ −V S

θ

V S
θ

= O

(
T 3/2

θd/2
+

√
d ·T · log θ

θ

)
. (10)
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The proof of Theorem 2 is similar to the proof of Theorem 1, and as a result, we defer the

complete argument to the Appendix. Similar to when there were no arrivals, the condition θ ·bt ≥ εt
for all t is immediately satisfied for large θ, and the bound in Theorem 2 tells us that RAC is

asymptotically-optimal, since we do not scale T with θ. However, note that the bound is weaker

than the bound in Theorem 1 as the parameter T also shows up in the term
√

d·T ·log θ
θ

. This

term is the consequence of having more randomness in the system (from new arrivals), which

requires more conservative buffers. From a practical perspective, this means that RAC generally

performs best with new stochastic arrivals when the length of the decision horizon is not too long

(mathematically, T = o
(

θ
log θ

)
). That said, we want to stress that the bound in Theorem 2 is very

loose as it does not exploit special structures/properties that may exist in the problem. Below, we

provide two examples where imposing additional structure on the problem leads to a tighter bound

in Theorem 2.

Example 1. Suppose that bandits arrive and stay in the system throughout the entire time

horizon. Such a situation could arise modeling a population of patients with a chronic disease (e.g.

type-I diabetes) whose health states can change, but never fully recover. For such a model, it is rea-

sonable to assume that bt should be proportional to t in order to avoid unbounded population sizes

(i.e., the number of bandits that need to be properly treated grows faster than the available budget

as the length of horizon gets larger). In addition, if a significant number of bandits are supposed to

be properly activated at each period (i.e., there exists ρ > 0 such that
∑A

a=1

∑J

j=1 x
∗a
j (t,0)≥ ρ · bt

for all t), we immediately get V S
θ ≥ V D

θ (0) = Θ(θ ·
∑T

t=1 t) = Θ(T 2 · θ). Using the same choice of εt

as in Theorem 2, it is not difficult to see show that

V RAC
θ −V S

θ

V S
θ

= O

(
T 1/2

θd/2
+

√
d · log θ

T · θ

)
.

Note that the above bound is stronger than the bound in Theorem 2. Since the parameter T

appears in the second term only in the denominator, if T ∼ θn, we can choose d > n and RAC is

asymptotically optimal. Thus, similar to our result in Theorem 1, RAC can also be applied to a

problem with a very long decision horizon. �

Example 2. Similar to Example 1, suppose that each bandit may stay in the system throughout

the entire horizon. However, assume also that the probability that a bandit stays exactly L periods

in the system decays exponentially with L. Such a situation could arise in a model where bandits

wait to receive a proper treatment and immediately leave the system once they receive a proper

treatment. If a bandit has not received a proper treatment up until the end of the current period,

it will stay in the system for the next period with probability α< 1. For this setting, we can replace
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the summation
∑t

s=1

∑J

j=1 λj,t in bound (9) with
∑t

s=1α
t−s ·

[∑J

j=1 λj,t

]
. Again, if the hypotheses

in Theorem 2 hold except with εt = 12 ·A · J2 ·
√

(
∑t−1

s=0α
s) · d ·max{ntot, λtot} · θ · log θ for some

d> 0, then

V RAC
θ −V S

θ

V S
θ

= O

(
1

1−α
· T

1/2

θd/2
+

√
d · log θ

(1−α) · θ

)
.

Similar to the bound provided in Example 1, if T ∼ θn, we can choose d > n and RAC is

asymptotically optimal. This means, for example, that RAC performs well for a large decision

horizon T even with Poisson arrivals and/or geometrically distributed waiting times. �

The preceding examples highlight an important point: specific structure of the problem can be

exploited to significantly tighten the bound in Theorem 2. It suggests, for instance, that the poor

performance of RAC can be due to poor capacity management. The latter can be remedied by

either making sure that we have a sufficiently large activation budget in each period or by limiting

the admission of new bandits to the system. Thus, our RAC heuristic can be essentially coupled

with either budget optimization, admission control, or both.

Remark 2 (Discounted Cost Criteria). As in Remark 1, suppose that we multiply the cost

term in period t with δt−1 for some discount factor δ ∈ (0,1). If S(t) 6= ∅ for all t and εt = 12 ·

A ·J2 ·
√
t · log(t+ e− 1) · d ·max{ntot, λtot} · θ · log θ , using similar arguments as those presented in

Remark 1 and in the proof of Theorem 2, it is not difficult to show that

V RAC
θ −V S

θ

V S
θ

≤ V RAC
θ −V D

θ (0)

V D
θ (0)

= O

(
1

θd/2
+

√
d · log θ

θ

)
.

However, unlike in Remark 1 where the bound holds for T = o
(

exp
{

θ
d·log θ

})
, the above bound

holds so long as T · logT = o
(

θ
log θ

)
. This is because we need to ensure that θ · bt ≥ εt for all t≤ T ,

which will yield a similar order of T for RAC for the undiscounted problem to be asymptotically

optimal (c.f Theorem 2). However, we can still recover the exponential order of T (as in Remark

1) by exploiting additional structure of the problem such as that imposed in Examples 1 and 2.

7. Closing Remarks

We considered discrete-time, finite-horizon Restless Multi-armed Bandit Problems for a population

of bandits. To our knowledge, we are the first to simultaneously allow for multiple actions and the

maximum number of active bandits per period to depend on time (i.e. a non-stationary model).

We propose a heuristic we termed the Randomized Assignment Control (RAC), which is based

on a linear programming relaxation to the original stochastic control formulation and showed
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it is asymptotically- optimal. Similar to Verloop (2015), our heuristic does not depend on any

indexability properties. However, in contrast to Verloop (2015), it does not require assumptions

on the underlying structure of the Markov process generated by each policy (e.g. unichain) or

assumptions on the dynamics on the associated deterministic approximation (e.g. globally stable

attractor for the fluid approximation). We also extended our model to include random bandit

arrivals and departures, more general costs (i.e. non-stationary), and general constraints. This

extension ensures our approach could also apply to discrete-time queueing control models. We

again show that RAC is asymptotically-optimal in this more general setting.

There are several avenues for further research. Developing and analyzing alternative policies is

of clear interest. Comparing alternative policies with RAC in a numerical study can be considered.

There are several model extensions worthy of consideration. One might consider the same model

but allow for states to be observed only when a treatment is applied. This would extend the

model considered by Deo et al (2013) that is motivated by capacity management in healthcare.

This model requires keeping track of additional information (i.e. the time between interventions),

and hence, will require a larger state space. In this case, RAC may no longer be asymptotically-

optimal, and more broadly, the model would present significant technical challenges for the analysis

and computation of good control policies. Another consideration is the possibility of allowing

more general (i.e. nonlinear) cost structure and constraints. For instance, to capture the fact that

for many settings (e.g. EMS response, humanitarian logistics), the number of available servers is

random, the budget bt may be assumed to be a random variable for each t. Needless to say, RMABPs

are a very useful modeling framework that can be applied to a broad range of problems, they

provide significant technical challenges for optimal control, which are a bright research direction.

APPENDIX

Proof of Lemma 2. As noted in the paragraph following Lemma 2, we cannot directly use existing

results on LP sensitivity analysis (e.g., Schrijver, 2000). However, we are still able to apply these

results after transforming the LP. Define:

Ṽ D(ε) = min
x,z

T∑
t=1

A∑
a=0

J∑
j=1

caj ·xaj (t, ε) + φ · z(ε) (11)

s.t.
A∑
a=0

J∑
i=1

xai (t, ε) · pai,j = n∗j (t+ 1, ε) ∀ j ≥ 1, t≥ 1

A∑
a=0

xaj (1, ε) = nj,1 ∀ j ≥ 1

A∑
a=1

J∑
j=1

xaj (t, ε)≤ bt− εt ∀ t≥ 1
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z(ε) ≥
∑
j∈U

A∑
a=0

J∑
i=1

xai (T, ε) · pai,j −m

z(ε), xaj (t, ε)≥ 0 ∀a≥ 0, j ≥ 1, t≥ 1

Note that LP (11) is separable over t and it has the same optimal solution as LP (2). Moreover,

since the set of constraints in LP (2) can also be written in the same format as the set of constraints

in LP (11) by simply replacing n∗j (t+ 1, ε) with nj(t+ 1, ε) and including nj(t, ε) (for all j and t)

as part of decision variables, an optimal dual solution for LP (11) is also an optimal dual solution

for LP (2). This observation is important because, according to Schrijver (2000, Section 10.4),

V D(ε)−V D(0) can be bounded by a dot product of an optimal dual solution and a vector whose

elements are either 0 or εt for some t. Applying the bound in equation (24) in Schrijver (2000) to

our setting, the absolute magnitude of dual solution can be bounded by a number that is at least

of order order T 2 (in Schrijver’s notation, it is n ·∆ · ||c||1, and both n and ||c||1 are of order T in

our setting). This bound, however, is too loose. To deal with this, we start with LP (11) instead

of LP (2) and use the optimal dual solution of LP (11). Since LP (11) is separable over t, the

absolute magnitude of dual solution corresponding to the sub-LP for period t is independent of

T . As a result, we can uniformly bound the absolute magnitude of dual solution corresponding to

any constraint by a constant that is independent of T , which yields the bound in Lemma 2 after

applying equation (24) in Schrijver (2000). This completes the proof. �

Proof of Lemma 3. Consider a modified RAC (call it MRAC) that proceeds in the same manner

as RAC, with an exception that it ignores the budget constraint in Steps 3c and 3d (i.e., MRAC

continues activating arms regardless of the given budget bt). Let X̃a
j (t, ε) denote the number of

bandits in state j being applied action a at period t under MRAC, and let Ñj(t, ε) denote the

number of bandits in state j at the beginning of period t under MRAC. Define Ã(ε) := Ã1(ε) ∩

Ã2(ε)∩ Ã3(ε), where

Ã1(ε) =
{
X̃a
j (t, ε)−x∗aj (t, ε)≤ εt

2AJ
∀a≥ 1, j, t

}
,

Ã2(ε) =
{
X̃0
j (t, ε)−x∗0j (t, ε)≤ εt

2J
∀ j, t

}
, and

Ã3(ε) =

{
Ñj(T + 1, ε)−n∗j (T + 1, ε)≤ εT

|U|
∀ j ∈U

}
.

Note that Ã1(ε) implies
∑A

a=1

∑J

j=1 X̃
a
j (t, ε)≤ bt for all t; so, under the same random realizations,

MRAC is technically equivalent to RAC on Ã(ε). Moreover, on Ã(ε), we also have:

CMRAC −V D(ε) ≤
[
max
a,j

caj

]
·

[
T∑
t=1

εt

]
+φ · εT ≤

[
φ+ max

a,j
caj

]
·

[
T∑
t=1

εt

]
,
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where the first inequality holds because (a−x)+− (b−x)+ ≤ (a−b)+ for all a, b, x. We now need to

compute a lower bound on P(Ã(ε)). We do this by computing an upper bound for each P(Ãi(ε)c),
i= 1,2,3. We start with P(Ã1(ε)c). By the sub-additive property of probability,

P(Ã1(ε)c) ≤
T∑
t=1

A∑
a=1

J∑
j=1

P
(
X̃a
j (t, ε)−x∗aj (t, ε) >

εt
2AJ

)
.

We make an important observation: For all a and j, the random variable X̃a
j (t, ε) can be written

as a sum of J independent Binomial random variables. Specifically, we can write:

X̃a
j (t, ε) ∼

J∑
i=1

Bin(ni,1, vi,a,j(t, ε))

where vi,a,j(t, ε) is the probability that a bandit that starts with state i at the beginning of period 1

ends up with state j at the beginning of period t and then being applied action a in period t. (It is

possible to give an explicit expression of vi,a,j(t, ε) in terms of {pai,j} and {q∗aj (t, ε)}, but this is not

necessary for our purpose.) Note that x∗aj (t, ε) =
∑J

i=1 ni,1 ·vi,a,j(t, ε). Let S̃a,j(t, ε) = {i : vi,a,j(t, ε)>

0}. Then, we can further bound P(Ã1(ε)c) as follows:

P(Ã1(ε)c) ≤
T∑
t=1

∑
(a,j): S̃a,j(t,ε)6=∅

i∈S̃a,j(t,ε)

P

(
Bin(ni,1, vi,a,j(t, ε))−ni(1) · vi,a,j(t, ε) >

εt

2|S̃a,j(t, ε)|AJ

)

≤
T∑
t=1

∑
(a,j): S̃a,j(t,ε)6=∅

i∈S̃a,j(t,ε)

exp

{
− ε2t

12 · |S̃a,j(t, ε)|2 ·A2 ·J2 ·ni,1 · vi,a,j(t, ε)

}

+
T∑
t=1

∑
(a,j): S̃a,j(t,ε)6=∅

i∈S̃a,j(t,ε)

exp

{
− εt

6 · |S̃a,j(t, ε)| ·A ·J

}

≤ A ·J2 ·
T∑
t=1

exp

− ε2t

12 ·A2 ·J4 ·
[∑J

`=1 n`,1

]
+ exp

{
− εt

6 ·A ·J2

} .
The first inequality follows since S̃a,j(t, ε) = ∅ implies P(X̃a

j (t, ε)− x∗aj (t, ε) > εt
2AJ

) = 0 (because

we must have X̃a
j (t, ε) = 0 almost surely); the second inequality follows by application of Chernoff

bound for Binomial random variable (specifically, if X ∼ Bin(n,p), then P(X − np > δ) ≤ exp{
− δ2

3np

}
for all δ ∈ [0, np) and P(X − np > δ)≤ exp

{
− δ

3

}
for all δ ≥ np; this implies P(X − np >

δ)≤ exp
{
− δ2

3np

}
+ exp

{
− δ

3

}
for all δ≥ 0); and the last inequality follows since |S̃a,j(t, ε)| ≤ J and

ni,1 · vi,a,j(t, ε)≤
∑J

`=1 n`,1. Similarly, we can also bound P(Ã2(ε)c) and P(Ã3(ε)c) as follows:

P(Ã2(ε)c) ≤ J2 ·
T∑
t=1

exp

− ε2t

12 ·J4 ·
[∑J

`=1 n`,1

]
+ exp

{
− εt

6 ·J2

} and
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P(Ã3(ε)c) ≤ J2 ·

exp

− ε2T

3 ·J4 ·
[∑J

`=1 n`,1

]
+ exp

{
− εT

3 ·J2

} .
The last bound for P(Ã3(ε)c) follows because |U| ≤ J , and also by noting that Ñj(T + 1, ε) can

be written as a sum of J independent Binomial random variables (specifically, Ñj(T + 1, ε) ∼∑J

i=1 Bin(ni,1, ri,j(t, ε)), where ri,j(t, ε) is the probability that an arm starting with state i at the

beginning of period 1 ends up with state j at the beginning of period T + 1).

Putting everything together, we conclude that

P(Ã(ε)) ≥ 1−P(Ã1(ε)c)−P(Ã2(ε)c)−P(Ã3(ε)c)

≥ 1− 3 ·A ·J2 ·
T∑
t=1

exp

− ε2t

12 ·A2 ·J4 ·
[∑J

`=1 n`,1

]
+ exp

{
− εt

6 ·A ·J2

} .
This completes the proof. �

Proof of Lemma 4. The proof is similar to that of Lemma 3 (unless otherwise noted, all the

notations have the same meaning as in the proof of Lemma 3). The difference lies in computing a

bound for P(Ãi(ε)c) for i= 1,2,3. Note that X̃a
j (t, ε) is now the sum of J independent Binomial

random variables and a Poisson random variable (to capture new arrivals), i.e.,

X̃a
j (t, ε) ∼

J∑
i=1

Bin(ni,1, vi,a,j(t, ε)) + Pois

(
t∑

s=1

J∑
i=1

λi,s · ṽi,a,j(s, t, ε)

)

where ṽi,a,j(s, t, ε) is the probability that a new bandit arriving in state i in period s ends up with

state j at the beginning of period t and being applied action a. We will use the following inequality

for Poisson random variable: If X ∼ Pois(λ), then P(X − λ > δ)≤ exp{λr2− δr} for all r ∈ [0,1].

In fact, if 0≤ δ ≤ 2λ, then P(X − λ > δ)≤ exp
{
− δ2

4λ

}
(this can be proved by simply substituting

r= δ
2λ

in the previous bound). Now, as in the proof of Lemma 3, we can bound:

P(Ã1(ε)c) ≤
T∑
t=1

∑
(a,j): S̃a,j(t,ε)6=∅

i∈S̃a,j(t,ε)

P

(
Bin(ni,1, vi,a,j(t, ε))−ni(1) · vi,a,j(t, ε) >

εt

2(1 + |S̃a,j(t, ε)|)AJ

)

+
T∑
t=1

P

(
Pois

(
t∑

s=1

J∑
i=1

λs,i · ṽi,a,j(s, t, ε)

)
−

t∑
s=1

J∑
i=1

λs,i · ṽi,a,j(s, t, ε) >
εt

2(1 + |S̃a,j(t, ε)|)AJ

)

≤ A ·J2 ·
T∑
t=1

exp

− ε2t

48 ·A2 ·J4 ·
[∑J

`=1 n`,1

]
+ exp

{
− εt

12 ·A ·J2

}
+

T∑
t=1

exp

− ε2t

64 ·A2 ·J4 ·
[∑t

s=1

∑J

i=1 λi,s

]
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where the last inequality follows since J ≥ 1 and therefore 1 + |S̃a,j(t, ε)| ≤ 1 +J ≤ 2J .

Similarly, we can also bound P(Ã2(ε)c) and P(Ã3(ε)c) as follows:

P(Ã2(ε)c) ≤ J2 ·
T∑
t=1

exp

− ε2t

48 ·J4 ·
[∑J

`=1 n`,1

]
+ exp

{
− εt

12 ·J2

}
+

T∑
t=1

exp

− ε2t

64 ·J4 ·
[∑t

s=1

∑J

i=1 λi,s

]
 and

P(Ã3(ε)c) ≤ J2 ·

exp

− ε2T

12 ·J2 ·
[∑J

`=1 n`,1

]
+ exp

{
− εT

6 ·J

}+ exp

− ε2T

16 ·J4 ·
[∑T

s=1

∑J

i=1 λi,s

]
 .

Putting everything together, we conclude that

P(Ã(ε)) ≥ 1−P(Ã1(ε)c)−P(Ã2(ε)c)−P(Ã3(ε)c)

≥ 1− 3 ·A ·J2 ·
T∑
t=1

exp

− ε2t

48 ·A2 ·J4 ·
[∑J

`=1 n`,1

]
+ exp

{
− εt

12 ·A ·J2

}
−3 ·A ·J2 ·

T∑
t=1

exp

− ε2t

64 ·A2 ·J4 ·
[∑t

s=1

∑J

i=1 λi,s

]
 .

This completes the proof. �

Proof of Theorem 2. The proof is similar to that of Theorem 1. Let E denote the event where (8)

is satisfied. By Lemma 4 and our choice of ε in Theorem 2, we already know that P(E) is at least

1−Θ
(
T
θd

)
. Now, we consider the event Ec. Unlike in the proof of Theorem 1 where we can simply

bound CRAC
θ −V D

θ (ε) with a number that is of order T · θ ·ntot, we now have new bandits arriving

at each period. At period t, we have at most θ ·ntot +
∑t

s=1

∑J

j=1 Λθ
j,s bandits in the system, where

Λθ
j,s is Poisson with rate θ ·λj,s. So, we can bound:

E
[
(CRAC

θ −V D
θ (ε)) ·1{Ec}

]
≤
[
φ+ max

a,j
caj

]
·E

[(
T · θ ·ntot +

T∑
t=1

t ·

(
J∑
j=1

Λθ
j,t

))
·1{Ec}

]
.

Note that
∑T

t=1 t ·
(∑J

j=1 Λθ
j,t

)
is stochastically dominated by X ∼ Poisson(T 2 · θ ·λtot). Applying

this fact together with Cauchy-Schwarz inequality yields:

E
[
(CRAC

θ −V D
θ (ε)) ·1{Ec}

]
≤ E

[
(T · θ ·ntot +X)

2
]1/2

· P(Ec)1/2 = O

(
T 5/2

θd/2−1

)
.

Putting the above bound together with E [(CRAC
θ −V D

θ (ε)) ·1{E}] = O(T 3/2 ·
√
d · θ · log θ) (by

Lemma 4, our choice of ε, and our previous discussions about P(E)) and the fact that V D
θ (0) =

Ω(T · θ) (because S(t) 6= ∅ for all t) gives the desired result. �

Parameters used in numerical experiments.
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Table 3 Parameters Used in Numerical Experiments

Parameter (Notation) Experiment 1 Experiment 2

Number of states (|J|) 2 5
Undesirable state (|U|) 1 2
Number of arms (nj∈J,1)

[
2 1
] [

2 2 1 1 1
]

Number of actions (|A|) 2 5
Penalty threshold (m) 1 2
Penalty cost (φ) 20 20

Cost matrix (ca∈Aj∈J )

[
6 4
9 5

] 
0.4 1.5 0.3 0.2 0.1
2.0 2.5 0.4 1.3 0.2
5.5 5.0 2.5 0.4 0.3
6.0 7.0 1.7 3.5 1.4
9.5 7.5 1.8 1.6 4.5


Transition matrix (P a∈A

j∈J,k∈J)

P 0
j∈J,k∈J =

[
0.9 0.1
0.3 0.7

] 
0.50 0.45 0.02 0.02 0.01
0.45 0.48 0.04 0.02 0.01
0.43 0.45 0.09 0.02 0.01
0.40 0.43 0.11 0.04 0.02
0.38 0.40 0.10 0.05 0.07



P 1
j∈J,k∈J =

[
0.5 0.5
0.2 0.8

] 
0.45 0.40 0.07 0.05 0.03
0.40 0.43 0.09 0.05 0.03
0.38 0.40 0.14 0.05 0.03
0.35 0.38 0.16 0.07 0.04
0.33 0.35 0.15 0.08 0.09



P 2
j∈J,k∈J =

[
0.4 0.6
0.1 0.9

] 
0.40 0.35 0.12 0.08 0.05
0.35 0.38 0.14 0.08 0.05
0.33 0.35 0.19 0.08 0.05
0.30 0.33 0.21 0.10 0.06
0.28 0.30 0.20 0.11 0.11



P 3
j∈J,k∈J =


0.35 0.30 0.17 0.11 0.07
0.30 0.33 0.19 0.11 0.07
0.28 0.30 0.24 0.11 0.07
0.25 0.28 0.26 0.13 0.08
0.23 0.25 0.25 0.14 0.13



P 4
j∈J,k∈J =


0.30 0.25 0.22 0.14 0.09
0.25 0.28 0.24 0.14 0.09
0.23 0.25 0.29 0.14 0.09
0.20 0.23 0.31 0.16 0.10
0.18 0.20 0.30 0.17 0.15



P 5
j∈J,k∈J =


0.25 0.20 0.27 0.17 0.11
0.20 0.23 0.29 0.17 0.11
0.18 0.20 0.34 0.17 0.11
0.15 0.18 0.36 0.19 0.12
0.13 0.15 0.35 0.20 0.17




