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Problem definition: Shipment consolidation is commonly used to take advantage of the economies of

scale by avoiding some of the shipping costs. However, when pending current orders are consolidated with

future orders it may require more expensive expedited shipment in order to meet shorter deadlines. In this

paper, we study the optimal consolidation policy focusing on the trade-off between economies of scale and

expedited shipping costs. Academic/Practical Relevance: Our work is motivated by the prevalence of

consolidation in the supply chain industry and also by its potential application for online and omni-channel

retailing, especially with the rise of, so-called, on-demand logistic services. In such situations, sellers, have

the flexibility to take advantage of consolidation, by deciding from which warehouse to fulfill the orders and

also when to ship the orders, as long as the orders deadlines are met. Methodology: We use Dynamic

Programming to study the optimal policy and its structure. We also conduct intensive simulation tests

to show the good performance of heuristics which we proposed based on structures of the optimal policy.

Results: The optimal policies and their structures are characterized in settings with up to two warehouses,

where the impact of expedited shipment on both shipping policy and order fulfillment policy are explored.

Utilizing the insights of these structural properties, two easily implementable heuristics are proposed, which

perform within 1-2% of the optimal in intensive numerical tests. Managerial Implications: Despite the

complexity of the actual optimal consolidation policy, sellers can apply the two simple heuristic policies we

proposed to get near-optimal performance in various cases.

Key words : Consolidation, expedited shipment, deadline-driven logistics

1. Introduction

The total costs due to logistics usually accounts for 9% to 14% of sales of a company, depending on

the industry sector and, on aggregate level, for 7.9% of the US GDP in 2015 (27th State of Logistic

Report). Shipping cost alone comprises more than 60% of the total logistics costs (27th State of
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Logistic Report). Thus, it is no surprise that “effectively managing shipping cost directly affects

. . . business’ bottom line” (Fell, 2011). One commonly used strategy to save on shipping costs is

shipment consolidation, i.e., combining multiple small shipments into one large one (Cetinkaya,

2005). Sellers often have a significant opportunity to take advantage of various forms of flexibility

when satisfying customers’ orders, choosing from which warehouse to fulfill the orders and also

when to ship the orders. The latter is because there is usually a time window between the time the

seller receives an order and the time by which the order must be delivered (Lee et al., 2001; Xu et

al., 2009). This time window provides an opportunity for the seller to combine existing orders with

new incoming orders so that several orders can be shipped together, reducing total shipping costs.

However, there is a caveat: Since orders must be delivered by their guaranteed due date, delaying

the shipment of some orders can potentially increase total shipping costs due to the need to use

more expensive expedited shipping modes. Many logistic firms: Expedited Logistics and Freight

Services, ASAP Expedited Logistics, Time Definite Services Inc, etc. increase shipping rates for

faster shipping modes. Major carriers such as UPS, FedEx and USPS also offer shorter lead time

deliveries (3 Day Select, and 2nd Day Air modes, Overnight Delivery etc.) for extra cost. Thus, the

seller needs to carefully balance the trade-off between the benefit of consolidation and the potential

increase in total costs due to the need to use expedited shipping. The key decisions faced by the

seller are three-fold: (1) When should the seller ship an order? (2) Which orders should be included

in the shipment? (3) From which warehouse should the orders be shipped? The last question is

particularly important for the case where not all items are available in every warehouse, or store.

Our work is motivated by the prevalence of consolidation in the supply chain industry and also

by its potential application for online and omni-channel retailing, especially with the rise of, so-

called, on-demand logistic services. In the context of supply chain, for outbound logistics, companies

such as Grainger Integrated Supply Operations or Intercore Group aggregate several suppliers

into an integrated supplier group. Multiple orders containing different products from the same

customer are handled jointly in the same supplier group, providing an opportunity for consolidation
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(Narus, 1996). For inbound logistics, large retailers such as Amazon.com, can also benefit from

order consolidation from multiple vendors. By using multi-stop shipment, Amazon.com can pick

up orders from several vendors before transporting them to its warehouses (Cummings III, 2014).

For online retail, the frequency of orders per customer has continued to increase while the size

of each order has become smaller due to the increasing popularity of subscription-based business

models for delivery (e.g., Amazon Prime) and the popularity of quick-purchase button Amazon

Dash (more than 200 different dash buttons were introduced and dash button orders have grown

five-folds over one year, Lewis, 2006; Gil, 2014). While providing new sources of revenues, this

trend intensifies the logistic pressure for online retailers. For example, Amazon.com had to increase

the prime membership fee due to high shipping cost (Stone, 2014) while Jet.com and Alibris.com

encourage customers to consolidate their own orders. To save shipping cost, online retailers can

consolidate multiple orders placed by one customer, being aware that a faster, more expeditious,

mode of transportation may be used to meet order deadlines. Similarly, in omni-channel retail,

especially for those retailers that offer one-day (or several hours) delivery guarantee, orders from

different customers in nearby locations can be consolidated and executed through multiple drop-

offs.

In this paper, we study the optimal shipping and consolidation policy taking into account both

the delivery deadlines and the availability of expedited shipping options. To gain insights on the

structure of the optimal policy, we consider the setting where the seller operates up to two ware-

houses, or stores. To satisfy individual orders, the seller may satisfy multiple orders in one shipment.

Each shipment incurs both fixed and variable costs, each of which is a function of delivery speed.

We first analyze the case with only fixed cost for both one-warehouse and two-warehouse settings

and, then, the case with both fixed and variable costs for one-warehouse setting. The insights

from these analysis are useful for constructing near-optimal heuristic policies for the setting of two

warehouses with both fixed and variable costs.

Our findings can be summarized as follows. In one-warehouse setting with only fixed cost, the

optimal policy can be characterized by a sequence of time-dependent thresholds—it is optimal to
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ship all pending orders in period t if the slack time (remaining time until the due date) of the most

urgent order is smaller than or equal to a threshold τt. This result has an intuitive appeal and is easy

to implement: Sellers can take advantage of shipment consolidation to a point where the increase

in cost becomes so high that it exceeds the potential benefit of consolidation. For two-warehouse

setting with only fixed cost, the optimal policy is not easy anymore to describe or analyze in

general. In the simplest case, when the two warehouses are symmetric in their cost structure and

order arrival probabilities, the optimal policy can be characterized by six non-linear boundaries

in three-dimensional space. This highlights the non-triviality of generalizing threshold policy from

one-warehouse setting to two-warehouse setting. Motivated by the simplicity of threshold policy

in one-warehouse setting, we propose two heuristic policies that replace the six boundaries in

two-warehouse setting with two or three constant thresholds. The first heuristic, which we call

warehouse-based heuristic, uses two thresholds; the second heuristic order-based heuristic, uses

three thresholds. Under warehouse-based heuristic, once the threshold for a warehouse is crossed,

all orders that can be shipped from that warehouse are shipped; under order-based heuristic, once

the threshold for an order type is crossed, all orders of that type are shipped, together with some

other orders that can be consolidated. Our numerical experiments reveal that the performance of

these heuristics across symmetric and asymmetric problem instances are within 1% of the optimal

policy in most cases.

Adding variable cost into the model creates non-trivial subtleties in the analysis. In particular,

the seller now needs to jointly decide which orders to ship and how to split orders into different

packages. In one-warehouse setting, when all orders are guaranteed delivery within at most three

periods, or equivalently using up to three (equally spaced) delivery modes, we show that the

optimal policy is characterized by volume-dependent thresholds. For two-warehouse setting, we do

not attempt to describe the structure of the optimal policy, due to already complex structure of

the optimal policy with only fixed cost. Instead, given the good performance of constant thresholds

heuristic policies in the fixed-cost case, we propose modified heuristic policies and show, using
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intensive numerical experiments, that their average performances are within 0.29-2.31% of the

optimal policy. These results provide an important insight that, despite the complexity of the

actual optimal policy, simple heuristic policies perform well in most cases. We suspect that our

heuristic policies can be generalized to the setting with n warehouses and consider it a future

research project.

The remainder of this paper is organized as follows. Section 2 provides a brief literature review.

In Sections 3 and 4, we study the case with only fixed cost in one-warehouse and two-warehouse

settings, respectively. The case with both fixed and variable costs are considered in Sections 5 and

6. Finally, in Section 7, we conclude the paper and discuss potential future research directions.

Proofs can be found in Appendix and the supplemental file.

2. Brief Literature Review

Two streams of literature are most closely related to our work: shipment consolidation, which stud-

ies how to combine several orders, and order fulfillment, which studies from which warehouse to

fulfill the orders. The potential cost savings due to shipment consolidation have been extensively

studied in the logistic literature (Daganzo, 1988; Pooley and Stenger 1992; Popken, 1994). The

main trade-off considered in this literature is between constant fixed cost of shipping and inven-

tory holding cost. Three types of consolidation policies are usually considered: (1) time-based, (2)

quantity-based, and (3) hybrid, or time-and-quantity, consolidation. Time-based policy sets a pre-

determined interval within which orders are accumulated and one shipment is dispatched at the

end of the interval; quantity-based policy dispatches one shipment after a pre-determined quan-

tity of orders is accumulated; and, hybrid policy releases a shipment either after a pre-determined

quantity is achieved or at the end of a pre-determined time interval. Note that all these policies

are heuristics – most existing consolidation literature either focuses on evaluating and comparing

the performance of the three policies (Cooper, 1984; Burns et al., 1985; Campbell, 1990; Higginson

and Bookbinder, 1994) or calculating the optimal parameters of these policies with or without inte-

grating inventory decisions (Gupta and Bagchi, 1987; Axsater, 2001; Cetinkaya et al., 2000, 2008;
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Popken 1994). Our work differs from the previous consolidation literature in the following three

ways: (1) We derive the structure of the optimal policy instead of imposing a certain policy form;

(2) we consider the case where all orders must be delivered by strict deadlines; (3) we consider the

possibility of using expedited shipping modes with higher cost. Note that although expedited ship-

ment has been considered in the inventory literature (Zhou and Chao, 2010; Caggiano, etc.,2006;

Huggins and Olsen, 2003; Hoadley and Heyman, 1977), where expedited shipment is used to meet

demand or reduce penalty cost, and supply chain risk management (Qi and Lee, 2015), where expe-

dited shipment serves as a substitution to the reliability of suppliers, it has not been considered in

previous consolidation literature.

The subject of order fulfillment is mainly discussed in the context of online retailing, or e-comerce,

literature. The main trade-off considered in that literature is between shipping cost and future

product availability since not all warehouses may stock the same products and there is typically

an imbalance in the inventory level across all warehouses (Xu et al., 2009; Acimovic and Graves,

2015; Jasin and Sinha, 2015; Lei et al., 2016). However, the possibility of consolidation with future

orders is not considered in this stream of literature. In our work, we allow different availability

across warehouses, similar to this literature, and focus primarily on consolidation decision instead

of split-fulfillment decision.

3. Single Warehouse with Only Fixed Cost

In this section, we study the case where all orders can be shipped from a single warehouse and

there is a single shipping destination. This framework applies when the seller ships products to

multiple customers located in geographically compact region. Multiple orders arriving in the same

period are treated as a single order, even if they are for different products. We consider a finite-

horizon problem with T periods. We count time backward, t = T, . . . ,1, with period 1 being the

last period. The probability of an order arrival in any period is α< 1. Each incoming order must

be delivered no later than d periods after its arrival. For example, an order arriving in period T

must be delivered by period T −d. We define slack time s as the remaining time until the delivery
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deadline, e.g., s = 1 means that the order must reach customer in the next period. If there are

currently n pending orders that have not been delivered, then vector ~s= (s1, s2, . . . , sn) denotes the

corresponding slack times, where s1 < s2 < · · ·< sn. Let F (x) denote the fixed cost of delivering an

order in x periods. We assume that F :R+→R+ is non-increasing and convex. For convenience, we

also assume F (0) =∞ and F (∞) = 0. That is, all delivery times are positive, while the condition

F (0) =∞ ensures that all orders are delivered on time. The sequence of events is as follows: At the

beginning of period t, the seller observes the slack times of all pending orders ~s= (s1, . . . , sn) and

decides whether to ship some of these orders. Let Ω⊆ {1, . . . , n} be the subset of pending orders

that is shipped. Since all orders must be delivered on time, the seller can choose to use an x-period

delivery where x≤ sk and k is the smallest index in Ω, and incurs a shipping cost F (x). After the

delivery has been made (if any), a new order arrives with probability α.

3.1. Dynamic Programming (DP) Formulation

Suppose that there are currently n pending orders. While there are 2n−1 different ways of choosing

the first shipment, it is straightforward to see that, in optimal policy, we either ship all n orders

at the same time or none at all.

Lemma 1. (a) If it is optimal to ship an order at the current period, then it is optimal to ship

all pending orders together. (b) The incurred shipping cost in a period is a function of the smallest

slack time among the shipped orders.

Lemma 1 allows us to consider the smallest slack time instead of the slack times of all pending

orders as the state variable. Let Vt(z) denote the cost-to-go function at the beginning of period t

when the smallest slack time is z (i.e., z = s1). We use z =∞ to denote the case where there is no

order. The pseudo-DP formulation for our problem is as follows.

For t > 1 and 1≤ z <∞, we have:

Vt(z) = min


F (z) +Vt(∞) Ship

Vt−1(z− 1) Do not ship

(1)

Vt(∞) = αVt−1(d) + (1−α)Vt−1(∞).
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For t= 1, we have: V1(z) = F (z).

All orders must be shipped by the end of the horizon, implying V1(z) = F (z). Shipping all orders

in period t incurs a current cost F (z) plus a future cost Vt(∞) while holding all orders to the

next period reduces the slack time by one. Equation (2) corresponds to the case where there is no

pending order – in such a case, either a new order arrives with probability α and the slack time

becomes d, or no order arrives and the slack time remains ∞. The following proposition describes

a property of Vt(·).

Proposition 1. Vt(z) is non-increasing in z ≥ 1 given t and is non-decreasing in t given z ≥ 1.

Proposition 1 has an intuitive interpretation: Smaller slack time means more urgency, which

implies higher expected total shipping costs; smaller t means fewer future orders, which implies

fewer future shipments and smaller expected total shipping costs.

3.2. The Optimal Policy: Its Structure and Its Properties

We now show that the optimal shipping policy has a simple threshold structure. We first state a

lemma that will be used to prove this property.

Lemma 2. For all t≥ 1 and z ≥ 2, Vt(z− 1)−Vt(z)≥ F (z− 1)−F (z).

Lemma 2 provides a link between the cost-to-go function and the current shipping cost. It allows

us to explicitly compare the shipping cost of different alternatives.

Theorem 1. There exists an integer threshold τt such that the optimal decision in period t is

to hold all pending orders if z > τt and to ship all of them if z ≤ τt.

Proof. Fix time period t. To prove the existence of a threshold τt, it is sufficient to show that

if the optimal decision for slack time z ≥ 3 is to ship all orders, then the optimal decision for

slack time z − 1 is also to ship all orders. (The case z = 2 and z = 1 are trivial because we must

ship when slack time equals 1.) By DP formulation, it is optimal to ship with slack time z iff

F (z)+Vt(∞)≤ Vt−1(z−1). By Lemma 2, F (z−1)+Vt(∞) = (F (z−1)−F (z))+(F (z)+Vt(∞))≤
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(F (z − 2)−F (z − 1)) + Vt−1(z − 1)≤ Vt−1(z − 2). But, this implies that it is also optimal to ship

for slack time z− 1, which completes the proof. �

Theorem 1 shows the existence of threshold τt for each time t. Since we assume a stationary

arrival probability, using the standard convergence argument, as in the infinite-horizon literature

(Gosavi, 2003), it is not difficult to show that there exists some τ ∗, such that τt→ τ ∗ as t→∞, see

Figure 1. Thus, when the the seller considers a long-term shipping strategy, s/he does not need to

worry about the time-dependent nature of the threshold; instead, s/he can simply use a constant

threshold policy throughout all periods.

Figure 1 Threshold of slack time as a function of remaining time horizon

Theorem 2. Suppose that we use a constant threshold τ in all periods. Then, the expected

average shipping cost during T periods converges to C(τ,α, d) = F (τ)
(
1
α

+ d− τ
)−1

as T →∞.

Theorem 2 allows us to easily compute the optimal constant threshold τ ∗ by minimizing C(τ,α, d)

over set {1,2, ..., d}. One simple application of Theorem 2 is for the case where F (·) is linear:

Proposition 2. If the fixed cost is linear, then the optimal threshold τ is either 1 or d.

Proposition follows because both the marginal cost and marginal benefit of waiting one additional

period do not vary with slack times. For the marginal cost, this is obvious since the shipping cost

is linear; as for the marginal benefit, since the arrivals are stationary, the potential saving from

consolidation also does not vary with slack times.

We now switch our attention to a critical element influencing the seller’s policy, the probability

of order arrival α.
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Lemma 3. The optimal constant threshold τ ∗ decreases as α increases.

Lemma 3 implies that τ ∗ is smallest when α ≈ 1 and largest when α ≈ 0. This is intuitive: If

orders arrive very frequently, the opportunity of consolidating orders is high, which provides an

incentive for the seller to delay shipping; if, on the other hand, orders arrive only infrequently, the

opportunity of consolidating orders is lower and it is better to ship them earlier due to the risk of

incurring a high shipping cost without the benefit of consolidation.

4. Two Warehouses with Only Fixed Cost

We now consider the case where the seller operates two warehouses, W1 and W2. We classify

incoming orders into three types: type A can only be fulfilled from W1, type C can only be fulfilled

from W2, and type B can be fulfilled from both W1 and W2. If an order contains items of different

types, we assume that the seller simply treats these as separate orders. Consequently, orders for

different products may have the same due date. The optimal policy for two-warehouse setting is,

in general, difficult to characterize. However, when two warehouses are symmetric, we show below

that the optimal policy is characterized by six boundaries, which are functions of the slack times

of all order types. While this result is a generalization of the threshold policy in one-warehouse

setting, unlike the threshold policy in one-warehouse case, the six boundaries in the two-warehouse

setting are not easy to compute optimally. To address this, we propose heuristic policies and show

numerically that their performances are within 1-2% of the optimal policy.

4.1. Dimensionality Reduction and Dynamic Programming (DP) Formulation

In two-warehouse setting the seller needs to consider, for each order type, which subset of orders to

ship and from which warehouse. Before we formulate this problem, we first introduce some notation.

Let αX denote the arrival probability of orders type X ∈ {A,B,C}. The fixed cost functions for

shipping from W1 and W2, in x periods, are denoted by F1(x) and F2(x), respectively. Fi(x), for

i ∈ {1,2}, is assumed to have the same properties (non-increasing and convex) as F (x) in Section

3. The sequence of events is also the same as in Section 3 and all orders also must be delivered no

later than d periods after their arrivals.



11

Figure 2 Problem illustration for two-warehouse setting

Similarly to one-warehouse case (Lemma 1), we show in Lemma 4 that if an order of a particular

type is shipped, then all pending orders of the same type should also be shipped. Thus, the vector

of the smallest slack times (zA, zB, zC), for orders of types A,B, and C completely describe the

state space. We refer to these simply as slack times.

Lemma 4. (a) If it is optimal to ship an order of a particular type in the current period, then it

is optimal to ship all pending orders of the same type. (b) The incurred shipping cost in a period

is a function of the smallest slack times among the shipped orders.

With the simplified decision space, the pseudo-DP formulation for the two-warehouse setting is

as follows. Let xi (i∈ {A,B,C}) denote the decision whether to ship orders type i; we set xi = 1 if

orders type i are shipped and xi =∞, otherwise. Let Vt(zA, zB, zC) denote the cost-to-go function

at the beginning of period t. We can write Vt(·, ·, ·) recursively as follows:

For t > 1: Vt(zA, zB, zC) = min
(xA,xB ,xC)

{f(zAxA, zBxB, zCxC) +E[Vt−1(z̃A, z̃B, z̃C)]}

For t= 1: V1(zA, zB, zC) = f(zA, zB, zC)

where f(y1, y2, y3) = min{F1(min{y1, y2}) +F2(y3),F1(y1) +F2(min{y2, y3})}, ∀y1, y2, y3

To make sure that all pending orders of type X are shipped when zX = 1, we impose boundary

conditions Vt(0, ·, ·) = Vt(·,0, ·) = Vt(·, ·,0) =∞. z̃ are the new slack times, resulting from shipping

decisions xi: (1) for zi <∞, if xi =∞, then z̃i = zi − 1; if xi = 1, with probability αi, z̃i = d and,

with probability 1− αi, z̃i =∞. (2) for zi =∞, with probability αi, z̃i = d and, with probability

1−αi, z̃i =∞ (i∈ {A,B,C}). Similarly to Proposition 1 in Section 3, we have:



12

Proposition 3. Suppose that 1≤ z′A ≤ zA,1≤ z′B ≤ zB, and 1≤ z′C ≤ zC. For all t≥ 1, we have:

Vt(z
′
A, z

′
B, z

′
C)≥ Vt(zA, zB, zC) and Vt(zA, zB, zC)≥ Vt−1(zA, zB, zC).

4.2. The Optimal Policy: Its Structure and Properties

We describe the optimal policy for the case where two warehouses are symmetric, i.e., F1(·) = F2(·)

and αA = αC . We, then, briefly discuss the general case. We start by stating two lemmas that are

useful for describing the general problem.

Lemma 5. Suppose that zA, zB <∞. If it is optimal to ship orders type B from W1, then it is

also optimal to ship orders type A from W1. By symmetry, if zB, zC <∞ and it is optimal to ship

orders type B from W2, then it is also optimal to ship orders type C from W2.

Lemma 6. For all t≥ 1 and zA, zB, zC ≥ 2, the following holds:

1. If zA ≤ zB, then Vt(zA− 1, zB, zC)−Vt(zA, zB, zC)≥ F1(zA− 1)−F1(zA)

2. If zC ≤ zB, then Vt(zA, zB, zC − 1)−Vt(zA, zB, zC)≥ F2(zC − 1)−F2(zC)

3. If zB ≤ min{zA, zC}, then Vt(zA, zB − 1, zC) − Vt(zA, zB, zC) ≥ min{F1(zB − 1) − F1(zB),

F2(zB − 1)−F2(zB)}

Lemma 5 further simplifies the shipping alternatives by eliminating the possibility of shipping

B alone from either W1 or W2 and Lemma 6 is the analog of Lemma 2 in Section 3.

The formal definition of the optimal policy and the corresponding six boundaries are given below.

Lemma 7. In the symmetric two-warehouse setting, for zA, zB, zC ≥ 1, there exist six boundaries

τABA,t (zB, zC)≤ τAA,t(zB, zC), τBCC,t (zA, zB)≤ τCC,t(zA, zB), τ 1B,t(zA, zC) and τ 2B,t(zA, zC) such that

1. If zA ≤ τABA,t (zB, zC), it is optimal to ship both orders type A and B from W1; if zA ≤

τAA,t(zB, zC), it is optimal to ship orders type A from W1;

2. If zB ≤ τ 1B,t(zA, zC), it is optimal to ship both orders type A and B from W1; if zB ≤

τ 2B,t(zA, zC), it is optimal to ship orders type B and C from W2;

3. If zC ≤ τBCC,t (zA, zB), it is optimal to ship both orders type B and C from W2; if zC ≤

τCC,t(zA, zB), it is optimal to ship orders type C from W2.

Moreover, the following also hold: τABA,t (∞, zC) = τAA,t(∞, zC) and τBCC,t (zA,∞) = τCC,t(zA,∞).
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Figure 3 Policy structure when zA = 7 Figure 4 Policy structure when zB = 6

Figure 5 Policy structure when zC = 6

Note that each of the boundaries is a function of two slack variables, so they can be viewed

as surfaces in the three-dimensional space. These boundaries completely characterize the optimal

shipping policy. Figures 3-5 provide illustrations of the boundaries when one of the slack variables

zA, zB and zC is fixed (the parameters used in this and following simulations are shown in Appendix

A). Note that either zA ≤ τABA,t (zB, zC) or zA ≤ τAA,t(zB, zC) implies orders type A must be shipped

from W1. The reverse is also true: If it is optimal to ship orders type A from W1 in period t

(regardless of whether it is also optimal to ship orders type B from W1), we must have either

zA ≤ τABA,t (zB, zC) or zA ≤ τAA,t(zB, zC). We state this formally below.



14

Theorem 3. The six boundaries in Lemma 7 completely characterize an optimal policy in the

symmetric two-warehouse setting.

In some cases, the six boundaries in two-warehouse setting can be reduced to thresholds, similar

to these in one-warehouse setting. In an extreme case, if αB = 0, since type-B orders do not

exist, then W1 is independent of W2 and the optimal policy for orders types A and C are each

characterized by a time-dependent threshold policy. This can also be observed based on Lemma 7.

Since αB = 0, the slack time of orders type B always equal ∞. As τABA,t (∞, zC) = τAA,t(∞, zC) and

τBCC,t (zA,∞) = τCC,t(zA,∞), the six boundaries reduce to only two boundaries. Further, it can be

shown that these two boundaries are time-dependent constants, which is consistent with our result

in Section 3. In general, however, all six boundaries are required to properly define the optimal

shipping policy.

We now consider the behavior of the optimal time-independent (stationary) boundaries. The

following lemma is the analog of Lemma 3.

Lemma 8. The optimal stationary boundaries are all decreasing in αX , X ∈ {A,B,C}.

Two things are worth noting: First, increasing the arrival probability of order type A (or C)

not only decrease its own boundaries, but also the boundaries of order type B. This is because

increasing the arrival probability of order type A (or C) increases the chance of future consolidation

with its own type, which gives the seller more incentive to wait longer. Such incentive can be

passed down to order type B, as B can be also shipped together with order type A (or C) without

incurring additional cost. Second, increasing the arrival probability of order type A (or C) can also

decrease the boundary for order type C (or A). This means that if the arrival probability for the

orders in one warehouse increases, the seller should wait longer for the pending orders in the other

warehouse. The intuition is that increasing the arrival probability for order type A (or C) leads

to a lower boundary for order type B, which provides more opportunities for orders type A to be

jointly shipped with orders type B without incurring additional cost.
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In the asymmetric case, where either the cost functions of the two warehouses or the arrival

probability of order types A and C are not the same, the optimal policy can no longer be charac-

terized by the six boundaries in Lemma 7 (see Figures 6 and 7 for illustrations). In Figure 6, for a

fixed zA, when zB decreases, the optimal solution for state (zA, zB, zC) can change from “Do not

ship” to “ship A and B from warehouse 1” and then to “Do not ship” again. In Figure 7, for a

fixed zC , the region of “Ship A from warehouse 1” is not even connected. Since the optimal policy

for asymmetric case can be very complex, we do not study its structural properties; instead, we

propose simple heuristic policies that can perform well for most cases. We discuss them next.

Figure 6 Asymmetric case 1 when zA = 8 Figure 7 Asymmetric case 2 when zC = 9

4.3. Simple Heuristic Policies

We now propose two heuristic policies that replace the six boundaries in Lemma 7 with no more

than three constant thresholds for warehouse-based and for order-based heuristics. The first heuris-

tic utilizes two thresholds, one for each warehouse, and the second heuristic utilizes three thresh-

olds, one for each order type. Their performance is evaluated using percentage gap, defined as

(CH −C∗)/C∗, where CH is the expected average cost per period by applying the heuristic and C∗

is the expected average cost under the optimal policy. Their performances are tested numerically

on 100 cases with a variety of costs structures and arrival probabilities of order types and they

both turn out to perform very well.
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4.3.1. Warehouse-Based Heuristic. Warehouse-based heuristic assigns a constant thresh-

old for each warehouse (τ1 for W1 and τ2 for W2). The slack time of a warehouse is defined as

the smallest slack time of orders that can be fulfilled from that warehouse. If the slack time of an

order type falls below the threshold for the corresponding warehouse, then all pending orders for

that warehouse are shipped. Note that this heuristic is not equivalent to treating the two ware-

houses independently as it allows orders type B to be fulfilled from either warehouses. The formal

description of the heuristic follows:

Warehouse-Based Heuristic

Given (τ1, τ2) and (zA, zB, zC), do:

1. If min{zA, zB} ≤ τ1, ship orders types A and B from W1 and update zA = zB =∞;

2. If min{zB, zC} ≤ τ2, ship orders types B and C from W2 and update zB = zC =∞.

Warehouse-based heuristic is easy to implement. It simplifies the decisions by bundling the

shipment of orders types A and B (or C and B) together and reducing the number of variables to

keep track of, i.e., only one slack time for each warehouse. Despite its simplicity, our numerical tests

show that warehouse-based heuristic has a very good performance with the average percentage

gap equal to 1.93% and its standard deviation equal to 2.39%. This suggests that the simple two-

threshold warehouse-based heuristic can capture some of the key structures of the optimal six

boundaries.

4.3.2. Order-Based Heuristic. Order-based heuristic assigns a constant threshold for each

order type (τX for order type X ∈ {A,B,C}). It replaces the two boundaries for each order type

in the optimal policy with one constant threshold: If the threshold of a particular order type is

triggered, all pending orders of this type are shipped and orders of other types may also be jointly

shipped according to a pre-specified consolidation rule. Basically, for each order type, the heuristic

replaces the two boundaries in the optimal policy with one constant threshold and uses a myopic

consolidation rule to decide whether to ship the order type alone, or with other orders from the
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same warehouse. Order-based heuristic is more flexible than warehouse-based heuristic as it allows

not only shipping order types A and B (or B and C) together as in the case of warehouse-based

heuristic, but also shipping order type A or C alone. That said, order-based heuristic is also more

complex. Note that, in warehouse-based heuristic, there is no need to decide which order types

should be consolidated as it naturally consolidates all orders in the same warehouse. In order-based

heuristic, when the threshold of an order type is triggered, the seller needs to properly decide

whether to consolidate it with other order types.

Before we discuss the details of our proposed consolidation rule, we first highlight the importance

of having a good consolidation rule when implementing order-based heuristic. Let us consider a

naive threshold policy where we set a constant threshold τX for each order type X (X ∈ {A,B,C})

and implement no consolidation at all (i.e., if τX is the trigger, then we ship only orders type X

from the cheapest warehouse). Our numerical tests reveal that the performance of this policy is

very sensitive with the magnitude of αB: For the policy to perform sufficiently well, αB must be

sufficiently close to 0; otherwise, its performance can be very poor (it can incur more than 35% of

optimal cost as shown in Figure 8).

The importance of good consolidation rule is easy to explain. Consider a case where both orders

type A and B are triggered and shipped jointly. With no, or poor, consolidation policy, an additional

shipping cost would be incurred.

We now discuss a one-period myopic consolidation rule. Under our proposed rule, consolidation

is decided by comparing to the best alternative, as if all orders had to be shipped in the current

period. The details are shown below.

Order-Based Heuristic

Given (τA, τB, τC) and (zA, zB, zC), do:

1. If zA ≤ τA and F1(min{zA, zB}) +F2(zC)≤ F1(zA) +F2(min{zB, zC}), ship all orders types A

and B from W1; otherwise, ship only all orders type A (no consolidation);

2. If zB ≤ τB and F1(min{zA, zB})+F2(zC)≤ F1(zA)+F2(min{zB, zC}), ship orders types A and

B from W1; otherwise, ship all orders types B and C from W2;
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Figure 8 Gaps of Naive Order-based Heuristic

3. If zC ≤ τC and F1(zA) +F2(min{zB, zC})≤ F1(min{zA, zB}) +F2(zC), ship all orders types B

and C from W2; otherwise, ship only all orders type C (no consolidation);

4. If more than one thresholds are hit at the same time, orders type B are the highest propriety

and then A and C (e.g., if τB and τC are hit, we first proceed according to #2 and then to #3).

Our numerical experiments show that order-based heuristic performs very well, with an average

percentage gap of 0.11% and a standard deviation of 0.25%. Surprisingly, this is despite the fact

that the one-period myopic consolidation rule ignores expected total costs for future periods.1

We conclude that both warehouse-based and order-based heuristic policies perform very well.

Their performance suggests that the six optimal boundaries in Theorem 3 can be well-approximated

by constant thresholds, either corresponding to warehouses or order types. This approximation not

only provides an easy-to-implement heuristic policy, but also justifies the use of these heuristic

policies in a more complex setting in Sections 6.

1 Interestingly, the myopic consolidation rule described above, although based on one-period comparisons, performs

slightly better than two-period myopic consolidation rule, where the total shipment costs are calculated as if all orders

must be shipped in the next two periods.
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5. One Warehouse with Fixed and Variable Costs

In this section, we study one-warehouse setting with fixed and variable costs. All orders are assumed

to have the same volume of one unit, but there may be multiple orders with the same due date.

Both the fixed cost F (z) and variable shipping cost v(z) are determined by the slack time z of the

most urgent order in the package.

That is, if orders with slack time (z1, z2, . . . , zl) are shipped in one package, then the shipping

cost is F (z1) + l · v(z1). We assume that v(.) is convex and non-increasing function, similar to the

assumption we imposed for F (.). While the optimal policy for the case with only fixed cost is

easy to characterize (Section 3), the optimal policy for the case with both fixed and variable costs

is more challenging. First, once shipped in some period, it may no longer be optimal to ship all

outstanding orders in one package (i.e., package splitting is possible).2 Second, when some orders

are shipped, it may no longer be optimal to ship all pending orders in the same period. It may

be more economical (cheaper) to delay shipment of some orders in order to consolidate them with

future orders.3

Due to the monotonicity of fixed and variable costs, for a given set of orders to ship, with slack

time ~s= (z1, z2, . . . , zn), it is easy to write cost function C(z1, z2, . . . , zn) in a recursive way:

C(z1, z2, . . . , zn) = min



F1(z1) + v(z1) +C(z2, . . . , zn) ship 1 order in the 1st package

F1(z1) + 2v(z1) +C(z3, . . . , zn) ship 2 orders in the 1st package

. . .

F1(z1) +nv(z1) +C(∅) ship n orders in the 1st package

2 As an illustration, consider a case with two orders to ship, one with slack time 1 and the other with slack time 10.

The costs are F (1) = 20, v(1) = 10, and F (10) = 2, v(10) = 1. The cost of shipping the orders in two separate packages

is 20 + 10 + 2 + 1 = 33, which is smaller than the cost of shipping both orders in one package 20 + 2× 10 = 40.

3 Consider the case where d= 10 and there are two orders to ship, with slack time 1 and 10 respectively. The costs

are F (1) = 20, v(1) = 10, F (9) = 2.5, v(9) = 1.25, and F (10) = 2, v(10) = 1. Knowing that a new (third) order arrives

in the next period, the cost of shipping only the order with slack time of 1 in the current period and shipping orders

2 and 3 in the next period is 20 + 10 + 2.5 + 2× 1.25 = 35, which is smaller than the cost of shipping orders 1 and 2

in the current period and shipping the new order 3 in the next period 20 + 10 + 2 + 1 + 2 + 1 = 36.
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C(∅) = 0

In what follows, we first discuss the shipping cost of orders and the pseudo-DP formulation. Next,

we show that the optimal policy is a volume-dependent threshold policy. To simplify this policy, we

approximate the optimal threshold with a constant and show, using numerical experiments, that

this approximation incurs very small additional cost compared to the optimal policy.

5.1. Dynamic Programming (DP) Formulation

To calculate the shipping cost of orders, we first need to consider how to split them into shipments.

Given m orders with slack times z1, z2, . . . , zm (z1 < z2 < · · ·< zm), the number of package splitting

alternatives is very high (1
e

∑∞
k=0

km

k!
, according to Lovasz, 1993).

Fortunately, the optimal package-splitting policy is monotonic, implying that if two orders zi1

and zi2 (i1 ≤ i2) are included in the same package, then all orders i1 ≤ j ≤ i2 must also be included

in the package (Lemma 9).

Lemma 9. If zi is the most urgent order in a package and n orders are to be shipped in this

package, then the other orders included in the same package should be zi+1, . . . , zi+n−1.

However, the optimal order-shipping policy is not necessary to be monotonic. In other words,

for m (∀m> 0) pending orders, if it is to ships l (≤m) pending orders under a policy, it is not

necessarily optimal to ship the most urgent l orders. For example, for state (z1, z2, z3, z4, z5, z6) =

(4,8,9,10,11,12), shipping orders (8,9,10,11,12) and leaving order (4) to future periods can be

more economic comparing to shipping orders (4,8,9,10,11) instead.4

In general, characterizing the optimal shipping policy needs to consider two joint optimization

problems, which orders to ship and how to split the current-period shipment into packages. The

lack of monotonicity of order-shipping policy and the lack of closed-form expression for the cost

4 Consider the case where d= 12, F (.) = 15, v(z) = 13− z for 0< z ≤ 8 and v(z) = 5 for 8< z ≤ 12. In period t, for

state (z1, z2, z3, z4, z5, z6) = (4,8,9,10,11,12), suppose a policy suggests to ship 5 orders in period t and the remaining

order with a new-arrival order z7 in period t− 3. Shipping orders (z1, z2, z3, z4, z5) in period t and (z6, z7) in period

t− 3 incurs cost of 85, while shipping (z2, z3, z4, z5, z6) in period t and (z1, z7) in period t− 3 incurs less cost, 79.
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function C(.) increase the difficulty of studying the properties of the optimal policy. Fortunately,

we are able to derive some results for the case when d≤ 3.

Theorem 4. For d≤ 3, the optimal policy has the following properties:

1. If a state can be reached under the optimal policy, then it is optimal to either ship all pending

orders or not ship any order.

2. Given m pending orders, the optimal policy can be captured by volume-dependent thresholds

τt(m). If z1 ≤ τt(m), it is optimal to ship all pending orders; otherwise, it is optimal not to ship

any order.

3. For all t, the threshold τt(m) is non-decreasing in m.

Theorem 4 further simplifies the decision space: Instead of having to keep track of the slack

time of all pending orders, the seller only needs to keep track of the smallest slack time z1 and the

volume of orders m; and, instead of having to consider how many orders to ship, the seller only

needs to choose between shipping all orders and shipping no order. It is worth noting that when

it is optimal to ship all pending orders, it may still be optimal to ship orders in more than one

package.5

Although the results of Theorem 4 are only proved for the case d≤ 3, our numerical tests across

instances where d varies from 6 to 10 show that these results continue to hold. The pseudo-DP

formulation of our problem follows:

For t > 1,

Vt(z1, z2, . . . , zm) = min


C(z1, z2, . . . , zm) +Vt(∞) Ship m orders

αVt−1(z− 1,m+ 1) + (1−α)Vt−1(z− 1,m) Do not ship

Vt(∞) = αVt−1(d) + (1−α)Vt−1(∞).

For t= 1, V1(z1, z2, . . . , zm) =C(z1, z2, . . . , zm).

5 Consider the case where the orders have two possible volume, 1 or 100, with arrival probability α1 and α2 respectively.

The deadline of orders is d= 2. The cost function is F (1) = 100, F (2) = 99, v(1) = 2, v(2) = 1. In any period, for state

where there are two orders, one with volume 1 and slack time 1, the other with volume 100 and slack time 2, it is

optimal to ship both orders but in two separate packages.
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5.2. Heuristic Policy and Numerical Experiments

While the optimal policy in Theorem 4 can be characterized by volume-dependent thresholds, it is

still not easy to implement, especially since the package splitting decision requires another layer of

optimization. Motivated by the constant-threshold policy in Section 3, we propose to (1) replace

the volume-dependent threshold τt(m) with constant τ independent of vector of orders and (2)

only allow orders to be shipped in one package without ever splitting the packages. The heuristic

is formally defined as follows:

Constant-Threshold One-Package Heuristic

Given τ and (z1, z2, . . . , zn), do:

1. If z1 ≤ τ , ship all n pending orders in one package incurring cost F (z1) +nv(z1).

2. Otherwise, wait for future orders.

The following theorem provides a theoretical performance bound for our heuristic policy.

Theorem 5. Suppose that v(·) = γF (·) for some γ ≥ 0. Let C̃ denote the average cost per period

for a problem with T periods under the Constant-Threshold One-Package Heuristic and let C∗

denote the optimal average cost per period. Then,

C̃ −C∗

C∗
≤min

{
γ(d− τ)α

1 + γ
,

k

γ+ 1− k

}
, where k= dα

1+dα
.

Note that the bound in Theorem 5 converges to 0 if γ→ 0 or γ→ 1. This is quite intuitive, when

γ ≈ 0, fixed cost dominates variable cost and the optimal policy is a threshold policy as in Section

3; when γ ≈ 1, variable cost dominates fixed cost and the optimal policy is to ship immediately

upon order arrival (in other words, τ = d).

We conduct numerical experiments to test the performance of our heuristic policy in general

case. Three heuristic policies are tested: (1) constant-threshold heuristic where the thresholds τ(m)

are approximated by a constant and package splitting is allowed, (2) one-package heuristic where

all orders must be shipped in one package and the thresholds τ(m) can vary with order volume,
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and (3) constant-threshold one-package heuristic described above. Numerical tests are conducted

for 630 cases where d varies from 4 to 10. The percentage gap, compared to the optimal cost, are

shown in Table 1. Note that allowing either volume-dependent thresholds or package-splitting does

not significantly improve the performance of the proposed heuristic (3).

Heuristic (1) (2) (3)

Varying Thresholds No Yes No

Splitting-package Yes No No

Average 0.24% 0.08% 0.24%

Minimum 0.00% 0.00% 0.00%

10th percentile 0.00% 0.00% 0.00%

25th percentile 0.00% 0.00% 0.00%

50th percentile 0.10% 0.00% 0.10%

75th percentile 0.39% 0.07% 0.39%

90th percentile 0.74% 0.30% 0.74%

Maximum 1.24% 0.97% 1.24%

Table 1 Percentage Gaps to Optimal Cost

Further, we conduct robustness test of heuristic (3) in cases where F (.) and v(.) are in different

function forms. Table 2 shows the average percentage gaps of each case. The results further support

the good performance of heuristic (3).

aaaaaaaa
F (.) v(.) 1/x 1/x2 1/ log(x+ 1) e−x quadratic

1/x - 0.00% 0.00% 0.01% 0.00%

1/x2 0.00% - 0.00% 0.00% 0.00%

1/ log(x+ 1) 0.07% 0.36% - 0.23% 0.00%

e−x 0.00% 0.00% 0.00% - 0.00%

quadratic 0.56% 0.58% 0.28% 0.52% -

Table 2 Percentage Gaps with Different Cost Functions
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6. Two Warehouses with Fixed and Variable Costs

In this section, we consider two-warehouse setting with both fixed and variable costs. Note that

the same challenges discussed in Section 5 continue to appear in this case, with a new complicating

factor: not only a joint optimization of which orders to ship and how to split orders need to be

solved, but also the possible consolidation across different order types need to be considered. Given

the already complex structure of the optimal policy for two-warehouse setting with only fixed cost,

we do not attempt to characterize the optimal policy. Instead, we propose and numerically test

heuristic policies inspired by our results in the previous sections. In particular, since constant-

threshold heuristic policies perform very well in the case with only fixed cost, we propose two

constant-threshold heuristics with some modifications to account for the variable cost.

6.1. Proposed Heuristic Policies

We propose Warehouse-Based One-Package Heuristic and Order-Based One-Package Heuristic.

The first heuristic is exactly the same as warehouse-based heuristic in Section 4. The second

heuristic is very similar to order-based heuristic in Section 4, with only a minor difference: In

Section 4, as only fixed cost in considered, consolidation is decided by the comparison between

F1(min{zA, zB}) + F2(zC) and F1(zA) + F2(min{zB, zC}). To incorporate variable cost, consolida-

tion is now decided by the comparison between C1(min{zA,1, zB,1}, nA + nB) + C2(zC , nC) and

C1(zA,1, nA) +C2(min{zB,1, zC,1}, nB + nC), where zX,1 (X ∈ {A,B,C}) denote the smallest slack

time for order type X and Ci(z,n) = Fi(z) + n · vi(z) (i ∈ {1,2}). For brevity, in the following

discussions we refer to these two heuristics simply as warehouse-based and order-based heuristics.

6.2. Comparison to Other Commonly Used Heuristic Policies

We test the performance of warehouse-based and order-based heuristic policies in a large scale

simulation experiments with 1,458 different problem instances. We compare the performance of

our proposed heuristic policies with three commonly used heuristic policies (1) Myopic heuristic,

which ships orders immediately upon arrival; (2) Time-threshold heuristic, which ships orders every

several periods, from each of the warehouses; and (3) Volume-threshold heuristic, which ships all
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pending orders of a certain type whenever the volume of that type triggers a threshold. Myopic

policies are simple and popular, e.g., they are implemented in Amazon.com (Ng 2012). Time- and

volume-threshold heuristics, as discussed in Section 2, are the most widely considered heuristic

policies in the consolidation literature (Cooper, 1984; Higginson and Bookbinder, 1994, Gupta and

Cetinkaya et al., 2000, 2008). All three heuristics are appropriately modified to allow consolidation

across the warehouses.

We separately describe the results for small and large size problems. For small-size problem

(d≤ 5), the optimal DP policy can be numerically solved and, thus, the costs of all heuristic policies

are compared with the optimal cost, see Table 3. Note that both warehouse-based and order-based

heuristic policies are close to optimal and they clearly outperform the other benchmark heuristic

policies by significant margins.

d Warehouse-Based Order-Based Myopic Time-threshold Volume-threshold

3 0.66% 0.11% 15.44% 15.44% 1.22%

4 1.60% 0.29% 20.16% 6.99% 3.32%

5 2.44% 1.43% 25.83% 6.58% 7.98%

Table 3 Percentage gap to Optimal

For large size problem (d > 5), the optimal policy cannot be solved in a reasonable time (> 40

hours). Therefore, we use order-based heuristic policy as our benchmark, i.e. the performance of

other heuristic policies are measured by the percentage gap to the cost of order-based heuristic

policy, see Table 4. Note that myopic heuristic policy performs very poorly while the popular time-

and volume-threshold heuristic policies incur 3− 9% more cost compared to order-based heuristic.

This highlights the value of using slack time-based shipping and consolidation policy, compared to

the more popular time- and volume-based policies.

Similar to Section 5, for robustness test of the heuristics, we conducted numerical experiments

where F1, v1, F2 and v2 have different function forms. The results are summarized in 4 cases: (1)

v1 has similar magnitude as v2, while F1 is larger than F2; (2) v1 is larger than v2, while F1 has

similar magnitude as F2; (3) v1 is larger than v2 and F1 is also larger than F2; (4) v1 is smaller
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d Warehouse-Based Myopic Time-threshold Volume-threshold

6 1.43% 37.59% 3.57% 7.41%

8 1.80% 60.22% 3.52% 8.52%

10 2.42% 80.79% 3.77% 9.52%

Table 4 Percentage gap to Order-Based Heuristic

than v2, while F1 is larger than F2. The percentage gaps, shown in Table 5, are consistent with the

heuristics performances in previous tests.

case Warehouse-Based Myopic Time-threshold Volume-threshold

1 0.15% 53.82% 18.23% 0.46%

2 2.30% 67.32% 21.99% 0.84%

3 0.48% 44.44% 10.61% 2.79%

4 0.69% 42.40% 11.26% 2.64%

Table 5 Percentage gap to Order-Based Heuristic

While warehouse-based heuristic may incur about 2% higher cost than order-based heuristic, it

should be noted that warehouse-based heuristic is much simpler to implement than order-based

heuristic and is easily scalable to the setting with n warehouses because of its natural by-warehouse

consolidation rule. In contrast, for order-based heuristic, the exact consolidation rule must be

carefully constructed.

It is also worth noting that the performance gap between the two heuristics shrinks when either

(1) the two warehouses are symmetric or (2) orders arrive more frequently to the cheaper warehouse.

The intuition for (1) is as follows: In general, when shipping order type A (or C), the order-based

heuristics can purposefully delay type B order and ship from the cheaper warehouse later, while

the warehouse-based heuristic cannot do it. Such delay, however, is less likely to save costs when

the warehouse costs and order arrivals are symmetric. For (2), let warehouse 1 be the cheaper

one. When order type A triggers a shipment from warehouse 1, the order-based heuristic tends

to also ship order type B, as warehouse 1 has lower shipping cost. Note that this is consistent

with the policy of the warehouse-based heuristic. Thus, the higher the arrival probability of order
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type A, the more frequently such an outcome is achieved. Observations from the numerical tests

further support such insights: For (1), the warehouse-based heuristic incurs 2.52% more cost than

the order-based one in general cases, comparing to only 0.55% in symmetric case. For (2), the

gap between warehouse-based and order-based is only 1.31% when αA = 0.9, while 2.96% when

αA < 0.9.

7. Conclusion

We analyze a practical trade-off in consolidation of shipments that has not been addressed in

literature. Specifically, combining several orders into one shipment can reduce the total shipping

costs; however, waiting to consolidate current orders with some future ones may require expedited

shipping, thus, increasing the costs. In this paper, we study the optimal consolidation policy,

focusing on the trade-off between economies of scale (combining multiple orders) and expedited

shipping costs (shorter delivery window). With only fixed cost, if all orders are shipped from the

same warehouse, we show that the optimal policy can be characterized by a sequence of time-

dependent thresholds. With two warehouses and overlapping availability of products, the optimal

policy is, in general, complex. We show that in the simplest symmetric case, the optimal policy

can be characterized by six non-linear boundaries in three-dimensional space. In two-warehouse

case with asymmetric fixed costs, we show that heuristics that replace the six boundaries with

no more than three constant thresholds, perform very well (within 1% of the optimal policy) in

most of numerically tested cases. With both fixed cost and variable cost, the difficulty of analysis

increases. In one-warehouse case, the optimal policy is shown to be characterized by volume-

dependent thresholds, while in two-warehouse case, we show through numerical tests that constant-

threshold heuristic policies performs within 0.29 - 2.31% of the optimal policy and significantly

outperform other commonly used naive heuristics.

Appendix A: Parameters in simulation experiments

In Section 4.2: In Figures 3-5: d= 10, (αA, αB, αC) = (0.1,0.1,0.1), F1 = F2 = F (x) = ax2 + bx+ c, where

a= 2.5, b=−27.5, c= 130. In Figures 6 and 7: d= 10, T = 100, (αA, αB, αC) = (0.1,0.1,0.1), F1 = ax2+bx+c,
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where a= 2.5, b=−27.5, c= 130. F2(z) = 100− 2z in Figure 6 and F2 = 1/x+ 50 in Figure 7. In Section

4.3: d = 5. F1 = ax2 + bx+ c, where a = 2.5, b = −27.5, c = 130. F2 = F1 + β1 or F2 = F1 ∗ β2, β1 ∈ [0,90]

and β2 ∈ [0.01,0.9]. αX (x ∈ {A,B,C}) varies in [0.1, 0.9]. In Figure 8, d= 5, T = 20, F1(x) = 1 + 3/x and

F2(x) = 2 + 5/x. In Section 5.2: In Table 1, variable cost is proportional to fixed cost (v(.) = γF (.) where

γ ∈ (0,1)), α∈ [0.10.9]. The linear relation between variable cost and fixed cost is a good approximation for

UPS rates: fitting data for next day air, next day, 3 day, ground rate data in linear relation results in R2 ≥ 0.8.

The rate of UPS, as one of the major courier, can be viewed as a good representative of shipping costs. In

Table 2, d = 6, α ∈ (0,1), and quadratic function refers to g(x) = ax2 + bx+ c, where a = 2.5, b = −27.5,

c= 130. In Section 6.2: d∈ {3,4, . . . ,10}, F1 = ax2 + bx+ c, where a= 2.5, b=−27.5, c= 130, F2 = F1 +β1

or F2 = F1 ∗ β2, where β1 ∈ [0,90] and β2 ∈ [0.01,0.9], αX ∈ [0.1,0.9] (x ∈ {A,B,C}) , and vi(.) = γFi(.),

i ∈ {1,2} where γ ∈ [0.1,0.9]. In Table 5, Fi is in the form of either quadratic or 1/ log(x+ 1) and vi either

1/x or 1/x2 (such function forms generated the largest percentage gaps in Section 5).

Appendix B: Proofs in section 3

Proof of Lemma 1: Suppose that we are at the beginning of period t and there are n pending orders that

have not been fulfilled. If it is optimal to ship order 1, then it is also optimal to ship orders 2,3, ..., n because

including orders 2,3, ..., n does not increase the current shipping cost. If, on the other hand, it is not optimal

to ship order 1 in period t, then it is also not optimal to ship any subset of orders 2,3, ..., n in period t. To

see this, suppose that it is optimal to ship orders S = {i1, i2, ..., ik}, where 1< i1 < i2 < ... < ik. Consider the

following alternative shipping policy: instead of shipping S in period t, we ship them in a later period t′ < t

when order 1 is shipped. The current shipping cost is saved and no new additional cost is incurred, which

contradicts the optimality of shipping orders in S.

Proof of Lemma 2: We first show that the cost-to-go function Vt(z) can also be written as: Vt(z) =

min{F (z) + Vt(∞), F (z − 1) + Vt−1(∞), . . . ,F (z − k) + Vt−k(∞)} where k = min{t, z} − 1. The terms after

the equality represent the costs of different alternatives. For example, F (z) + Vt(∞) is the cost of shipping

all orders in period t, F (z − 1) + Vt−1(∞) is the cost of delaying for one period and shipping all orders in

period t− 1, etc. It is important to note that the cost-to-go function Vt(z) is completely characterized by

the values of Vt(∞) for all z. We then show a technical lemma which shows that the difference between the

minimum of two set of numbers is larger than the minimal pairwise difference.

Lemma 10. Define x= min{a1 + b1, ..., an + bn} and y= min{a1, ..., an}. If b1 ≥ b2...≥ bn, then x−y≥ bn.



29

Proof. Suppose that x= ak + bk for some k. Then, x− y≥ (ak + bk)− ak = bk ≥ bn. �

Then we show the proof of Lemma 2. Suppose that t≥ d (the case t < d can be proved in a similar manner

and so is omitted). We can write: Vt(z−1) = min{F (z−1)+Vt(∞), F (z−2)+Vt−1(∞), · · · , F (1)+Vt−(z−2)}

and Vt(z) = min{F (z)+Vt(∞), F (z−1)+Vt−1(∞), · · · , F (1)+Vt−(z−1)(∞)} ≤min{F (z)+Vt(∞), F (z−1)+

Vt−1(∞), · · · , F (2) + Vt−(z−2)(∞)}. By the convexity of F (.), F (1)− F (2)≥ F (2)− F (3)≥ ...≥ F (z − 1)−

F (z). So, by lemma 10, Vt(z− 1)−Vt(z)≥ Vt(z− 1)− Ṽt(z)≥ F (z− 1)−F (z).

Appendix C: Proofs in Section 4

Proof of Lemma 4: (a) For order type i (i ∈ {A,B,C}) , suppose that we are at the beginning of period

t and there are n pending orders that have not been fulfilled. If it is optimal to ship order 1, then it is also

optimal to ship orders 2,3, ..., n because including orders 2,3, ..., n does not increase the current shipping

cost. If, on the other hand, it is not optimal to ship order 1 in period t, then it is also not optimal to ship any

subset of orders 2,3, ..., n in period t. To see this, suppose that it is optimal to ship orders S = {i1, i2, ..., ik},

where 1< i1 < i2 < ... < ik. Consider the following alternative shipping policy: instead of shipping S in period

t, we ship them in a later period t′ < t when order 1 is shipped. The current shipping cost is saved and no

new additional cost is incurred, which contradicts the optimality of shipping orders in S. (b) As the orders

should be shipped using one shipment and the earliest order should meet the due date, the shipping cost is

a function of the smallest slack time of orders.

Proof of Lemma 6: We prove it by induction.

For t = 1: for zA ≤ zB, Vt(zA, zB, zC) = min{F1(min{zA, zB}) + F2(zC), F1(zA) + F2(min{zB, zC})} =

F1(zA) + F2(zC). Thus, Vt(zA − 1, zB, zC) − Vt(zA, zB, zC) ≥ F1(zA − 1) − F1(zA). Similarly, for zC ≤ zB,

Vt(zA, zB, zC) = F1(zA) + F2(zC) = F1(zA) + F2(zC) and Vt(zA, zB, zC − 1) − Vt(zA, zB, zC) ≥ F2(zC − 1) −

F2(zC); For zB ≤ min{zA, zC}, Vt(zA, zB, zC) = min{F1(zB) + F2(zC), F1(zA) + F2(zB)}. Thus, Vt(zA, zB −

1, zC)− Vt(zA, zB, zC) ≥ min{F1(zB − 1)− F1(zB), F2(zB − 1)− F2(zB)}, where the last inequality is from

Lemma 10. Then, suppose the inequalities hold for t≤ t′ (for some t′). Then for t= t′+ 1, we compare the

cost of all the possible shipping alternative in Vt(zA, zB, zC) and Vt(zA, zB, zC).

We first prove the Vt(zA − 1, zB, zC) − Vt(zA, zB, zC) part for zA ≤ zB. We divide the shipping alter-

natives into the following 2 cases. (1) For (xA, xB, xC) with xA = 1, C(xA,xB ,xC)(zA − 1, zB, zC) −

C(xA,xB ,xC)(zA, zB, zC) = f(zA − 1, zBxB, zCxC) − f(zA, zBxB, zCxC) = F1(zA − 1) + F2(zCxC) − F1(zA) −

F2(zCxC) = F1(zA− 1)−F1(zA). The first equation is from the fact that when xA = 1, E[Vt−1(z̃A, z̃B, z̃C)] =
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E[Vt−1(z̃′A, z̃B, z̃C)] where (z′A = zA − 1). And the second equation is from zA ≤ zB and simple algebra.

(2) For xA =∞, C(xA,xB ,xC)(zA− 1, zB, zC)−C(xA,xB ,xC)(zA, zB, zC) = E[Vt−1(zA− 2, z̃B, z̃C)]−E[Vt−1(zA−

1, z̃B, z̃C)] ≥ F1(zA − 1) − F1(zA). The last inequality is from the linearity of expectation and induction

hypothesis that for each scenario of z̃B and z̃C , Vt−1(zA − 2, z̃B, z̃C)− Vt−1(zA − 1, z̃B, z̃C) ≥ F1(zA − 2)−

F1(zA − 1) ≥ F1(zA − 1) − F1(zA). With (1) and (2), the proof for the Vt(zA − 1, zB, zC) − Vt(zA, zB, zC)

part for zA ≤ zB is complete. By the symmetric structure of product A and C, it is easy to see that the

Vt(zA, zB, zC − 1)−Vt(zA, zB, zC) part for zC ≤ zB can be proved by similar logic as above.

Then, we prove the Vt(zA, zB − 1, zC)− Vt(zA, zB, zC) part for zB ≤min{zA, zC}. We divide the 8 alter-

natives into the following 2 cases. (1) For xB = 1, C((xA,xB ,xC))(zA, zB − 1, zC)−C((xA,xB ,xC))(zA, zB, zC) =

f(zAxA, zB − 1, zCxC)− f(zAxA, zB, zCxC)≥min{F1(zB − 1)−F1(zB), F2(zB − 1)−F2(zB)}. The first equa-

tion is from the fact that when xB = 1, E[Vt−1(z̃A, z̃B, z̃C)] = E[Vt−1(z̃A, z̃′B, z̃C)] where (z′B = zB − 1).

And the second inequality is from zB ≤ min{zA, zC}, Lemma 10 and simple algebra. (2) For xB = ∞,

C((xA,xB ,xC))(zA, zB − 1, zC) − C((xA,xB ,xC))(zA, zB, zC) = E[Vt−1(z̃A, zB − 2, z̃C)] − E[Vt−1(z̃A, zB − 1, z̃C)] ≥

min{F1(zB − 1)−F1(zB), F2(zB − 1)−F2(zB)}. The last inequality is from the linearity of expectation and

the fact that, for each scenario of z̃A and z̃C , from induction hypothesis, Vt−1(z̃A, zB− 2, z̃C)−Vt−1(z̃A, zB−

1, z̃C) ≥ min{F1(zB − 2) − F1(zB − 1), F2(zB − 2) − F2(zB − 1)} ≥ min{F1(zB − 1) − F1(zB), F2(zB − 1) −

F2(zB)}. With (1) and (2), the zB ≤min{zA, zC} part is complete.

Appendix D: Proofs in Section 5

Proof of Lemma 9: Suppose a package (denote Pi) includes zi as the most urgent order and n orders

are shipped in it, suppose it is optimal to include zk(k > i+ n− 1) in it. Then there must be some order

zj (i < j ≤ i+ n− 1) shipped in other package (denote Pj). By exchanging zk and zj , the shipping cost of

package Pj is reduced while the cost of package Pi doest not change. This contradicts with the optimality.
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Online Appendix:
Shipping Consolidation with Delivery Deadline and

Expedited Shipment Options

Proof of Proposition 1: For any optimal solution of Vt(z), it is also feasible for Vt(z+1). Thus, Vt(z+1)≤

Vt(z). Also, extending the time-to-go horizon increases the total shipping cost, as the shipping cost is positive.

Proof of Theorem 2: Let Xi ∼ Geometric(α) for all i. (We assume that X ′is are i.i.d.) Consider a

sufficiently long time horizon T. If we use the same threshold τ in all periods, then the whole selling horizon

can be approximately decomposed into N random cycles S1, S2, ..., SN , where Si = Xi + d − τ and N is

the smallest n such that
∑n

i=1 Si > T . (Intuitively, N − 1 is the number of shipments during T periods.)

Note that N is a stopping time, so by Wald’s equation, E
[∑N

i=1 Si
]

= E[N ] ·E[S1] = E[N ]
(
1
α

+ d− τ
)
.

Since
∑N−1

i=1 Si ≤ T <
∑N

i=1 Si, we have (E[N ]− 1)
(
1
α

+ d− τ
)
≤ T < E[N ]

(
1
α

+ d− τ
)
. If T is sufficiently

large, E[N ] is approximately T
(
1
α

+ d− τ
)−1

and the average shipping costs is approximately C(τ,α, d) :=

F (τ)
(
1
α

+ d− τ
)−1

.

Proof of Proposition 2: Denote F (x) = a − bx (F (d) ≥ 0), the long run cost is C = minxC(x) =

minx
a−bx

1
α
−1+d−x . We have C ′(x) =

−b( 1
α
−1+d−x)+(a−bx)
( 1
α
−1+d−x)2 =

b(1− 1
α
)+a−bd

( 1
α
−1+d−x)2 . (1) When b(1− 1

α
) + a− bd ≥ 0 (α ≥

b
a−bd+b ), τ

∗ = 1. (2) When b(1− 1
α

) + a− bd < 0 (α< b
a−bd+b ), τ

∗ = d− 1.

Proof of Lemma 3: We have C ′τ = T
F ′(τ)[ 1

α
+d−τ ]+F (τ)

( 1
α
+d−τ)2 . As F (z) is first-order continuous, C ′τ is continu-

ous. Next, we show that C ′τ is increasing in τ by showing C ′τ −C ′τ−δ ≥ 0 ∀δ. C ′τ −C ′τ−δ = T
F ′(τ)[ 1

α
+d−τ ]+F (τ)

( 1
α
+d−τ)2 −

T
F ′(τ−δ)[ 1

α
+d−τ+δ]+F (τ−δ)

( 1
α
+d−τ+δ)2 ≥ T F ′(τ)[ 1

α
+d−τ ]+F (τ)−F ′(τ−δ)[ 1

α
+d−τ+δ]+F (τ−δ)

( 1
α
+d−τ+δ)2 . As the denominator is always posi-

tive, we evaluate the numerator. F ′(τ)[ 1
α

+d−τ ]+F (τ)−F ′(τ−δ)[ 1
α

+d−τ+δ]+F (τ−δ) = [F ′(τ)−F ′(τ−

δ)](1/α+ d− τ) + [F (τ)− F (τ − δ)− δF ′(τ − δ)] ≥ 0. The inequality follows as F ′(τ)− F ′(τ − δ) ≥ 0 and

F (τ)≥ F (τ−δ)+δF ′(τ−δ), since F (x) is decreasing and convex. Next, we divide the analysis into two parts.

Scenario 1: If F ′(0)[1/α+ d] + F (0) < 0: We discuss the changes of threshold in the following two cases:

(a) F ′(d)1/α+F (d)> 0 and (b) F ′(d)1/α+F (d)≤ 0, for a specific α and τ = d. (a) As C ′τ is continuous,

∃τ∗ <d, such that F ′(τ∗)[1/α+ d− τ∗] +F (τ∗) = 0 and τ∗ is the smallest τ that satisfies this equation. For

α′ ≥ α, F ′(τ∗)[1/α′+ d− τ∗] +F (τ∗)> 0. Thus, there exist τ ′ < τ∗, such that F ′(τ ′)[ 1
α

+ d− τ ′] +F (τ ′) = 0.

Therefore, when α increases, τ decreases. (b) F ′(d)1/α + F (d) ≤ 0. As C ′τ is continuous and increasing,

together with F ′(0)[1/α+ d] +F (0)< 0, F ′(τ)[1/α+ d− τ ] +F (τ) must be negative for all τ ∈ [0, d]. Thus

τ∗ = d. Also, F ′(d)[1/α] +F (d) increases in α, since F ′(d) is negative. For α′ >α, if F ′(d)[1/α′] +F (d)> 0,

1
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then it is the same logic as in case (a) and the optimal τ∗ moves to τ ′ where τ ′ < τ∗. If F ′(d)[1/α′]+F (d)≤ 0,

then τ∗ = d. In either case, τ is non-increasing when α increases. Scenario 2: If F ′(0)[1/α+ d] +F (0)≥ 0:

As C ′τ is increasing with τ , F ′(τ)[1/α+d− τ ] +F (τ)≥ 0 for all τ ∈ [0, d]. Thus, τ∗ = 1. For α′ >α, it is easy

to see that F ′(τ)[1/α+ d− τ ] +F (τ)≥ 0 for all τ ∈ [0, d] also hold, as F ′(.) is negative. Thus, τ∗ stays as 1.

Thus, in either scenario, when α increases, τ decreases.

Proof of Proposition 3: For the first part, we argue the case z′A ≤ zA in detail. The other cases are

similar. For any Vt(zA− 1, zB, zC), the same optimal shipping policy can be applied for Vt(zA, zB, zC). Thus,

the optimal solution is a feasible one for Vt(zA, zB, zC) and Vt(zA−1, zB, zC)≥ Vt(zA, zB, zC). For the second

part, a longer time horizon increases the total shipping cost, as the shipping cost is positive.

Proof of Lemma 5: We only focus on the first part, as the second one can be argued in a similar way.

Suppose that zA, zB <∞ and it is optimal to ship product B from W1. We will argue that it is also optimal

to ship order type A together with B. We divide the analysis into two cases: (1) If zA ≤ zB, consider a

modified policy that does not ship order type B in the current period, but instead ships it at time t′ < t

when type A is shipped. Clearly, we save the current shipment cost without adding new cost. (2) If zA > zB,

then shipping type A together with type B in the current period does not increase shipping cost.

Proof of Lemma 7 We first provide the following two results, Lemma E1 and Lemma E2, which will be

useful in the proof of Lemma 7.

LEMMA E1. In symmetric case where F1(x) = F2(x) = F (x) ∀x and αA = αC, Vt(zA,∞,∞) −

Vt(∞,∞,∞)≥ F (zA)− F (d), Vt(∞, zB,∞)− Vt(∞,∞,∞)≥ F (zB)− F (d), Vt(∞,∞, zC)− Vt(∞,∞,∞)≥

F (zC)− F (d). Vt(∞, zB, zC)− Vt(∞,∞, zC) ≥ F (zB)− F (zC), for zB ≤ zC. Vt(zA, zB,∞)− Vt(zA,∞,∞) ≥

F (zB)−F (zA) for zB ≤ zA.

Proof of Lemma E1: We prove the claims above by induction. For t = 1, Vt(zA,∞,∞)− Vt(∞,∞,∞) =

F (zA) ≥ F (zA) − F (d) and it is easy to see that other inequalities also hold. Suppose the inequal-

ities hold for all t ≤ t0. Then for t = t0 + 1, we show the proof for the first inequality in detail.

We know that Vt(zA,∞,∞) = minC(xA,xB ,xC)(zA,∞,∞) = min{f(zAxA,∞,∞) + E[Vt−1(z̃A, z̃B, z̃C)]} and

Vt(∞,∞,∞) = minC(xA,xB ,xC)(∞,∞,∞) = min{f(∞,∞,∞) + E[Vt−1(z̃A, z̃B, z̃C)]}. For each (xA, xB, xC),

C(xA,xB ,xC)(zA,∞,∞)−C(xA,xB ,xC)(∞,∞,∞)≤ F (zA)−F (d), where the last inequality follows from induc-

tion hypothesis and simple algebra. Other inequalities can be shown in a similar way. �
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Before stating Lemma E2, note that the DP formulation can be equivalently written as a pseudo-DP formu-

lation as follows. Note that the shipping alternative of shipping only B from W1 or W2 is omitted by Lemma

5. For t > 1 and zA, zB, zC ≥ 1, we have: Vt(zA, zB, zC) = min{F1(zA) + Ṽ 1
t (∞, zB, zC), F1(min{zA, zB}) +

Ṽ 1
t (∞,∞, zC), Ṽ 1

t (zA − 1, zB − 1, zC − 1)}, where the corresponding alternatives are “Ship A from W1,”

“Ship A and B from W1,” and “Do not ship from W1,” respectively. Ṽ 1
t (zA, zB, zC) = min{F2(zC) +

Ṽ 2
t (zA, zB,∞), F2(min{zB, zC}) + Ṽ 2

t (zA,∞,∞), Ṽ 2
t (zA, zB, zC)}, where the corresponding alternatives are

“Ship C from W2,” “Ship C and B from W2,” and “Do not ship from W2,” respectively. Ṽ 2
t (zA, zB, zC) =

E[Vt−1(gA(zA), gB(zB), gC(zC))], where gX(zX) is a random variable which equals zX − 1 with probability

1 − αX and d with probability αX . For t = 1 and zA, zB, zC ≥ 1, V1(zA, zB, zC) = min{F1(min{zA, zB}) +

F2(zC), F1(zA) +F2(min{zB, zC})}.

LEMMA E2. In a symmetric case, where F1(x) = F2(x) = F (x) ∀x and αA = αC: (1) If zA ≥max{zB, zC},

then Vt(zA − 1, zB, zC)− Vt(zA, zB, zC)≥ F1(zA − 1)−F1(zA). (2) If zC ≥max{zA, zB}, then Vt(zA, zB, zC −

1)−Vt(zA, zB, zC)≥ F2(zC − 1)−F2(zC).

Proof of Lemma E2: This is an extension of Lemma 6. We prove it by induction. For t = 1, Vt(zA −

1, zB, zC) = F (zA − 1) + F (zC) and Vt(zA, zB, zC) = F (zA) + F (zC), where the inequality holds. Suppose it

holds for t≤ t0. Then, for t= t0 + 1: (1) for zA ≥ zB ≥ zC , “ship A and B from W1” is dominated by “ship

B and C from W2.” As in symmetric case Vt(∞,∞, zC) − Vt(zA,∞,∞) = Vt(zC ,∞,∞) − Vt(zA,∞,∞) ≥

F (zC) − F (zA) ≥ F (zC) − F (zB), F (min{zA, zB}) + Vt(∞,∞, zC) ≥ F (min{zB, zC}) + Vt(zA,∞,∞). Sec-

ond, note that “ship C from W2” cannot be optimal, as F (zC) + Vt(zA − 1, zB,∞) ≥ F (zC) + Vt(zA −

1,∞,∞) = F (min{zB, zC}) + Vt(zA − 1,∞,∞). (2) for zA ≥ zC ≥ zB, “Shipping C from W2” is dominated

by “shipping both B and C from W2” as F (zB) +Vt(zA,∞,∞)≤ F (zC) +Vt(zA, zB,∞), which follows from

Vt(zA, zB,∞)− Vt(zA,∞,∞) ≥ F (zB)− F (zA) ≥ F (zB)− F (zC). Also, “ship A and B from W1” is domi-

nated by “ship B and C from W2” as F (zB) + Vt(∞,∞, zC) ≥ F (zB) + Vt(zA,∞,∞), which follows from

Vt(∞,∞, zC) = Vt(zC ,∞,∞) ≥ Vt(zA,∞,∞). Thus, only three shipping alternatives need to be considered

in the pseudo-DP: “Ship A from W1,” “Ship C and B from W2” and “Do not ship.” Vt(zA, zB, zC) =

min{F (zA) + Vt(∞, zB, zC), F (min{zB, zC}) + Vt(zA,∞,∞), Vt−1(zA − 1, zB − 1, zC − 1)}. Then, from induc-

tion hypothesis, Lemmas 6 and 11, Vt(zA − 1, zB, zC)− Vt(zA, zB, zC)≥ F (zA − 1)− F (zA). This completes

the proof. The zC ≥max{zA, zB} part can be proved by similar logic. �
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Next, we show the six-boundary result by splitting the proof into three parts. In the first part, we show

the existence of thresholds τABA,t (zB, zC) and τBCC,t (zA, zB). The second part is for boundaries τAA,t(zB, zC) and

τCC,t, while the third part describes τ1B,t(zA, zC) and τ2B,t(zA, zC).

Part 1: The existence of thresholds τABA,t (zB, zC) is proved below in detail. Similar argument holds

for τBCC,t (zA, zB). We divide the proof into two cases, zA ≤ zB and zA > zB. Case 1: zA ≤ zB. We show

that, if for some (zA, zB, zC), the optimal policy (x∗A, x
∗
B, x

∗
C) is to ship A and B from W1 (x∗A, x

∗
B =

1), then for (zA − 1, zB, zC), the optimal policy is also to ship A and B from W1. For (zA − 1, zB, zC),

C(x∗
A
,x∗
B
,x∗
C
)(zA − 1, zB, zC) = f(zA − 1, zB, zCx

∗
C) + E[Vt−1(z̃′A, z̃B, z̃C)], where z′A = zA − 1. As x∗A = 1,

E[Vt−1(z̃′A, z̃B, z̃C)] = E[Vt−1(z̃A, z̃B, z̃C)]. Thus, C(x∗
A
,x∗
B
,x∗
C
)(zA−1, zB, zC)−C(x∗

A
,x∗
B
,x∗
C
)(zA, zB, zC) = f(zA−

1, zB, zCx
∗
C) − f(zA, zB, zCx

∗
C) = F (zA − 1) − F (zA). Using (x∗A, x

∗
B, x

∗
C) for (zA − 1, zB, zC) incurs F (zA −

1)− F (zA) more cost than (zA, zB, zC). From Lemma 6, we know that Vt(zA − 1, zB, zC)− Vt(zA, zB, zC)≥

F (zA − 1)−F (zA), which indicates that using shipping policies other than (x∗A, x
∗
B, x

∗
C) for (zA − 1, zB, zC)

will incur at least additional F (zA − 1)− F (zA) in cost compared to (zA, zB, zC). Thus, (x∗A, x
∗
B, x

∗
C) is the

optimal policy of (zA − 1, zB, zC), which ships A and B from W1. Case 2: zA > zB. As (x∗A, x
∗
B, x

∗
C) is opti-

mal for (zA, zB, zC), we know that f(zA, zB, zCx
∗
C) = F (zB) + F (zCx

∗
C) and F (zB) + F (zCx

∗
C) ≤ F (zA) +

F (min{zB, zCx∗C}). For (zA−1, zB, zC), C(x∗
A
,x∗
B
,x∗
C
)(zA−1, zB, zC) = f(zA−1, zB, zCx

∗
C)+E[Vt−1(z̃′A, z̃B, z̃C)]

where f(zA − 1, zB, zCx
∗
C) = F (zB) + F (zCx

∗
C) as F (zB) + F (zCx

∗
C)≤ F (zA) + F (min{zB, zCx∗C})≤ F (zA −

1) +F (min{zB, zCx∗C}). Thus, C(x∗
A
,x∗
B
,x∗
C
)(zA−1, zB, zC) =C(x∗

A
,x∗
B
,x∗
C
)(zA, zB, zC). Following similar logic as

in case 1, we know that using shipping policies other than (x∗A, x
∗
B, x

∗
C) for (zA− 1, zB, zC) incurs higher cost

than (zA, zB, zC). Thus, (x∗A, x
∗
B, x

∗
C) is the optimal policy of (zA− 1, zB, zC), which ships A and B from W1.

Part 2: The existence of thresholds τ1A,t(zB, zC) is proved in detail. Similar arguments hold for τ1C,t(zA, zB).

We want to show that if, for some Vt(zA, zB, zC), the optimal policy (x∗A, x
∗
B, x

∗
C) is to ship both A and B

from W1 or to ship only A from W1 (x∗A = x∗B = 1 or x∗A = 1), then for Vt(zA− 1, zB, zC), the optimal policy

is also to ship both A and B from W1 or to ship only A from W1. For x∗A = x∗B = 1, it is already discussed

in part 1. We next prove x∗A = 1 part: We want to show that if, for some Vt(zA, zB, zC), the optimal policy

(x∗A, x
∗
B, x

∗
C) is to ship only A from W1 (x∗A = 1), then for Vt(zA − 1, zB, zC), the optimal policy is also to

ship both A and B from W1 or to ship only A from W1. Only zA >max{zB, zC} need to be analyzed in this

part, because in other two cases (1) and (2), shipping A from W1 incurs larger cost than shipping A and B

from W1: (1) with zA ≤ zB, F (zA) +Vt(∞, zB, zC)≥ F (min{zA, zB}) +Vt(∞,∞, zC). (2) with zC ≥ zA > zB,
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F (zA) + Vt(∞, zB, zC)≥ F (zB) + Vt(∞,∞, zC), as Vt(∞, zB, zC)− Vt(∞,∞, zC)≥ F (zB)−F (zC)≥ F (zB)−

F (zA) by Lemma E1. With zA > max{zB, zC}, as x∗A = 1, E[Vt−1(z̃′A, z̃B, z̃C)] = E[Vt−1(z̃A, z̃B, z̃C)]. Thus,

C(x∗
A
,x∗
B
,x∗
C
)(zA − 1, zB, zC)− C(x∗

A
,x∗
B
,x∗
C
)(zA, zB, zC) = f(zA − 1, zBx

∗
B, zCx

∗
C)− f(zA, zBx

∗
B, zCx

∗
C) = F (zA −

1)− F (zA). From Lemma E2, we know that Vt(zA − 1, zB, zC)− Vt(zA, zB, zC)≥ F (zA − 1)− F (zA), which

indicates that using shipping policies other than (x∗A, x
∗
B, x

∗
C) for (zA − 1, zB, zC) will incur cost at least

F (zA−1)−F (zA) higher than (zA, zB, zC). Thus, (x∗A, x
∗
B, x

∗
C) is the optimal policy of (zA−1, zB, zC), which

ships A and B from W1.

Part 3: The existence of thresholds τ1B,t(zA, zC) is proved in detail. Similar arguments hold for τ2B,t(zA, zC).

We want to show that if, the optimal policy (x∗A, x
∗
B, x

∗
C) is to ship both A and B from W1 (x∗A =

x∗B = 1), then for Vt(zA − 1, zB, zC), the optimal policy is also to ship both A and B from W1. Only

zA < zC need to be considered in this part. Otherwise, with zA ≥ zC , shipping both A and B from W1

is dominated by shipping both B and C from W2. This is because F (min{zA, zB}) + Vt(∞,∞, zC) ≤

F (min{zB, zC}) + Vt(zA,∞,∞), as Vt(∞,∞, zC) − Vt(zA,∞,∞) = Vt(∞,∞, zC) − Vt(∞,∞, zA) ≥ F (zC) −

F (zA) ≥ F (min{zA, zB}) − F (min{zB, zC}) (the first inequality is from Lemma E1). We divide the proof

into two cases: (1) zB ≤ zA < zC . (2) zA <min{zB, zC}. Case 1: zB ≤ zA < zC . C(x∗
A
,x∗
B
,x∗
C
)(zA, zB − 1, zC)−

C(x∗
A
,x∗
B
,x∗
C
)(zA, zB, zC) = f(zA, zB−1, zCx

∗
C)−f(zA, zB−1, zCx

∗
C) = F (zB−1)−F (zB), as in symmetric case

F (min{zA, zB−1})+Vt(∞,∞, zC)−F (min{zA, zB})+Vt(∞,∞, zC) = F (zB−1)−F (zB). From Lemma 6, we

know that Vt(zA, zB−1, zC)−Vt(zA, zB, zC)≥ F (zB−1)−F (zB), which indicates that using shipping policies

other than (x∗A, x
∗
B, x

∗
C) for (zA, zB−1, zC) will incur at least additional cost of F (zB−1)−F (zB) compared to

(zA, zB, zC). Thus, (x∗A, x
∗
B, x

∗
C) is the optimal policy of (zA, zB−1, zC), which ships A and B from W1. Case

2: zA <min{zB, zC}. C(x∗
A
,x∗
B
,x∗
C
)(zA, zB − 1, zC)−C(x∗

A
,x∗
B
,x∗
C
)(zA, zB, zC) = f(zA, zB − 1, zCx

∗
C)− f(zA, zB −

1, zCx
∗
C) = 0. From Proposition 3, we know that Vt(zA, zB − 1, zC)≥ Vt(zA, zB, zC), which indicates that for

(zA, zB− 1, zC) using shipping policies other than (x∗A, x
∗
B, x

∗
C) will incur higher cost than (zA, zB, zC). Thus,

(x∗A, x
∗
B, x

∗
C) is the optimal policy of (zA, zB − 1, zC), which ships A and B from W1.

Proof of Lemma 8 First, we show a result of the effect of α on Vt(zA, zB, zC)− Vt−1(zA, zB, zC), which

will be useful in the proof of Lemma 8. Denote the cost-to-go function as V̄t(zA, zB, zC) and Vt(zA, zB, zC) for

ᾱ and α, respectively. Note that under optimal stationary policy, Vt(zA, zB, zC)−Vt−1(zA, zB, zC) converges

to the expected one-period cost. For ᾱ≥ α, the expected one-period cost of ᾱ is larger than that of α. This

is because on average, more orders arrive per period in the case of ᾱ, which incurs more shipping cost. Thus,
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V̄t(zA, zB, zC)− V̄t−1(zA, zB, zC)≥ Vt(zA, zB, zC)−Vt−1(zA, zB, zC). Next, we show the proof of τAA (zB, zC) in

detail. Other cases are similar. For any zB, zC and zA = τAA {zB, zC}, Vt(zA, zB, zC) = F1(zA)+Vt(∞, zB, zC)≤

Vt−1(zA − 1, zB − 1, zC − 1), where we can write Vt(zA, zB, zC) recursively (as a function of Vt(∞, zB, zC))

because under optimal policy it is optimal to not ship in Vt(∞, zB, zC). Then consider V̄t(zA, zB, zC). Fol-

lowing V̄t(zA, zB, zC)− V̄t−1(zA, zB, zC)≥ Vt(zA, zB, zC)− Vt−1(zA, zB, zC) and V̄1(zA, zB, zC) = V1(zA, zB, zC)

(∀zA, zB, zC), we have V̄t(∞, zB, zC)−Vt(∞, zB, zC)≥ V̄t−1(zA−1, zB−1, zC−1)−Vt−1(zA−1, zB−1, zC−1).

Thus, shipping only A (the policy corresponding to τAA {zB, zC}) is not necessarily the policy with smallest

cost, which indicates the decreasing of τA(zB, zC).

Proof of Theorem 4: Before we show the proof, we first introduce notations for the changes of states

across periods. For any state i in period t, we denote its predecessor in period t+ 1 as p(i) and successors in

period t− 1 as s(i). We start from proving parts 1 and 2. The states for d= 3 are (∞). (1), (2), (3), (1,2),

(1,3), (2,3) and (1,2,3). We prove, by induction, that in (1,2), (1,3), (2,3) and (1,2,3), it is not optimal

to ship only partial of the orders. For t = 1, by definition, it is optimal to ship all of the pending orders.

Suppose it is not optimal to ship only partial of the orders for t≤ t′−1 periods. In other words, it is optimal

to either ship all orders or do not ship in states (1, 3), (1, 2), (1, 2, 3) and (2, 3). We only list these four

cases, as in other cases it is natural to either ship the order or not. For t= t′, we consider the following 4

cases. Case 1: State (1,3). Suppose in period t under the optimal policy π∗ it is optimal to ship only order

1 in state (1,3). Note that p(1,3) = (2) in period t+1 and the optimal policy for (2) has to be ”Do not ship.”

Next, we argue that ”Do not Ship” cannot be an optimal policy for (2). If (2) is not shipped in period t+ 1,

the state in period t becomes (1) with probability α and (1,3) with probability 1−α. In either case, order

1 is shipped, resulting in a higher cost than in the previous period. Now, if the optimal policy of (1,3) is to

ship both orders but in separate packages, the above argument also holds. Thus, if state (1,3) is reachable,

the optimal policy is to ship both orders in one package. Vt(1,3) = C(1,3) + Vt(∞) ≤ C(1) + Vt(3), where

C(1,3) = F (1) + 2v(1)≤ F (1) + v(1) + F (3) + v(3), and the following inequality holds, v(1)≤ F (3) + v(3).

Note that the equation (v(1) ≤ F (3) + v(3)) does not impose any assumption about the relation between

F (.) and v(.). It only states that, if state (1,3) is reachable, then this equation must hold. In other words,

if this equation does not hold, then state (1,3) cannot be reached under the optimal policy. Case 2: State

(1,2). Suppose that under the optimal policy π∗, it is optimal to ship only order 1 in state (1,2) in period

t. Then, in period t− 1, the remaining order (2) has successor s(2) = {(1,3), (1)} with probability α and



7

1−α, respectively. Thus, state (1,3) is reachable and inequality (v(1)≤ F (3) + v(3)) holds. Then, C(1,2) =

min{F (1) + 2v(1), F (1) + v(1) + F (2) + v(2)} = F (1) + 2v(1) = C(1,3), as F (1) + 2v(1) ≤ F (1) + v(1) +

F (3)+v(3)≤ F (1)+v(1)+F (2)+v(2), where the first inequality follows from v(1)≤ F (3)+v(3). Also, note

that Vt(1,2) = min{C(1,2) +Vt(∞),C(1) +Vt(2)}=C(1,2) +Vt(∞), as C(1,2) +Vt(∞) =C(1,3) +Vt(∞)≤

C(1) +Vt(3)≤C(1) +Vt(2). Thus, shipping both order 1 and 3 in one package incurs smaller cost than π∗,

which contradicts the optimality of π∗. Thus, if state (1,2) is reachable, the optimal policy is to ship both

orders in one package. Vt(1,2) =C(1,2)+Vt(∞), where C(1,2) = F (1)+2v(1). Case 3: State (1,2,3). There

are 4 shipment alternatives for state (1,2,3): ship 1 alone, ship 1 and 2, ship 1 and 3 and ship all orders. We

argue that the first three alternatives cannot be optimal. First, suppose that under the optimal policy π∗ it is

optimal to ship only order (1,2) in state (1,2,3) in period t. Note p(1,2,3) = (2,3) where the optimal policy

for (2,3) should be ”Do not ship.” Thus, s(2,3) = {(1,2,3), (1,2)} with probability α and 1−α, respectively.

As (1,2) is reachable, from the results in Case 2, C(1,2) = F (1) + 2v(1). Note that in both cases of (1,2,3)

and (1,2), orders (1,2) are shipped in one package and incur cost F (1) + 2v(1). Consider policy π̃ which

chooses to ship in state (2,3) in period t+ 1 and keeps other decisions the same as π∗. The cost of π̃ is

F (2) + 2v(2), which is smaller than that of π∗, which contradicts the optimality of π∗. Also, note that, if the

optimal policy for (1,2,3) is to ship order 1 and 2 in package one and order 3 in package two, the argument

also holds. Second, suppose it is optimal to ship 1 and 3 in state (1,2,3) in period t. If (2) is not shipped in

period t, the state in period t−1 becomes (1,3) with probability α and (1) with probability 1−α. As (1,3) is

reachable, v(1)≤ F (3) + v(3) holds. Then, C(1,3) = F (1) + 2v(1)≤ F (1) + v(1) +F (3) + v(3). Thus, 1 and 3

should be shipped in the same package. Consider policy π̃ that ships orders 1 and 2 in period t and ships order

3 following the same policy as order 2 in policy π∗. π̃ incurs the same cost in period t but lower cost in future

period. It contradicts the optimality of policy π∗. Third, suppose under the optimal policy π∗ it is optimal to

ship only order (1) in state (1,2,3) in period t. Thus, in period t−1, s(2,3) = {(1,2,3), (1,2)} with probability

α and 1− α, respectively. From induction hypothesis, it is optimal to ship all orders in state (1,2,3) and

(1,2) in period t−1. Thus, the remaining order 2 in period t incurs at least variable cost v(1) in period t−1.

Consider policy π̃ which chooses to ship (1,2) in state (1,2,3) in period t, and keeps other decisions the same

as π∗. π̃ incurs additional cost of v(1) in period t, while the cost decreases at least by v(1) in period t− 1.

It contradicts the optimality of policy π∗. Thus, if state (1,2,3) is reachable, the optimal policy is to ship

all orders. Whether to ship them in one package or in separate packages depends on the relationship of F (.)
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and v(.): C(1,2,3) = min{F (1) + 3v(1), F (1) + v(1) +F (2) + 2v(2), F (1) + v(1) +F (2) + v(2) +F (3) + v(3).

Case 4: State (2,3). We show that shipping either (2) or (3) along can not be optimal. First, suppose

under the optimal policy π∗ it is optimal to ship only order 2 in state (2,3) in period t. In period t− 1,

the remaining order (3) has successor s(3) = {(2,3), (2)} with probability α and (1−α), respectively. From

induction hypothesis, in state (2,3), it is optimal to either ship both orders or not to ship. Thus, the

remaining order (3) in period t will be shipped with other orders arriving in later periods, which incurs at

least variable cost v(2). Consider policy π̃ which ships (2,3) in period t and keep other decisions the same

as in policy π∗. π̃ incurs v(2) higher cost in period t while decrease at least v(2) cost in later periods. It

contradicts the optimality of policy π∗. Second, suppose under the optimal policy π∗ it is optimal to ship only

order 3 in state (2,3) in period t. In period t− 1, the remaining order (2) has successor s(2) = {(1,3), (1)}

with probability α and (1− α), respectively. It is easy to see that exchange the policy of order 2 and 3 in

period t incurs v(2)− v(3) higher cost in period t while decreases at least v(2)− v(1) cost in period t− 1.

It contradicts with the optimality of π∗. Thus, if state (2,3) is reachable, the optimal policy is to ship both

orders. Whether to ship them in one package or in separate packages depends on the relation between F (.)

and v(.): C(2,3) = min{F (2) + 2v(2), F (2) + v(2) +F (3) + v(3)}.

Finally, we proof the third part of Theorem 4 using the result from the first and second parts of Theorem

4. Note that it is sufficient to consider the following three scenarios: Scenario 1, if it is optimal to ship

for state (1), then it is optimal to ship in states (1,2) and (1,3); Scenario 2, if it is optimal to ship for

state (1,2) or (1,3), then it is optimal to ship in state (1,2,3); Scenario 3, if it is optimal to ship for state

(2), then it is optimal to ship in state (2,3). The first two scenarios are obvious, as the order needs to be

shipped for z1 = 1. Thus, we only need to prove the third scenario. As the optimal policy for Vt(2) (∀t > 1)

is to ship, F (2) + v(2) +Vt(∞)≤ αVt−1(1) + (1−α)Vt−1(1,3). Then, for state (2,3), F (2) + 2v(2) +Vt(∞)≤

Vt−1(1) + (1−α)Vt−1(1,3) + v(2)≤ αVt−1(1,2,3) + (1−α)Vt−1(1,2). Thus, it is also optimal to ship in state

(2,3).

Proof of Theorem 5: Denote the packages shipped under any policy π in T periods as pπi (i≤ kπ, where

kπ is the total number of packages). In package pπi , denote the smallest slack time as z(pπi ) and the number

of orders in the package as m(pπi ). The total cost of any policy π is E[
∑

i≤kπ F (z(pπi )) + m(pπi ) v(z(pπi ))].

For the first bound: We derive the relation between the costs C∗ of the optimal policy π∗ and the costs

CF of the policy πF which considers only fixed cost. C∗ = E[
∑

i≤kπ∗ F (z(pπ
∗

i )) + m(pπ
∗

i ) v(z(pπ
∗

i ))] ≥
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E[
∑

i≤kπ∗ F (z(pπ
∗

i )) + γ F (z(pπ
∗

i ))] =E[(1+γ)
∑

i≤kπ∗ F (z(pπ
∗

i ))]≥ (1+γ)E[
∑

i≤kπF F (z(pπFi ))]. The first

inequality follows from v = γF and the fact that there must be at least one order in each packages. The

second inequality follows from the optimality of πF , which considers only fixed cost. Thus, C∗ ≥ (1 + γ)CF .

Let C(πF ) denote the cost of applying πF in the case with both fixed and variable cost. Then, C(πF ) ≥

C∗ ≥ (1 + γ)CF . As πF is one-threshold(τ) policy, the cost of C(πF ) and CF can be derived explicitly

as CF = T
1
α
+d−τF (τ) and C(πF ) = T

1
α
+d−τ [F (τ) + E(m)v(τ)] where E(m) = 1 + (d − τ)α. Plugging in the

inequality C(πF ) ≥ C∗ ≥ (1 + γ)CF and by simple algebra, C(πF )−C∗

C∗
≤ 1

1+γ

C(πF )

CF
− 1 ≤ γ(d−τ)α

1+γ
. For the

second bound: We derive the relation between C∗ and the costs Cv of the policy πv which considers only

variable cost. C∗ = E[
∑

i≤kπ∗ F (z(pπ
∗

i )) + m(pπ
∗

i )v(z(pπ
∗

i ))] = E[
∑

i≤kπ∗
1
γ
v(z(pπ

∗

i )) + m(pπ
∗

i )v(z(pπ
∗

i ))] ≥

E[
∑

i≤kπ∗
1
γ
v(d) +m(pπ

∗

i )v(d)]≥ v(d)

γ
T

1
α
+d

+Cv. The last inequality follows from the fact that the expected

number of packages shipped in the long run is T
1
α
+d

and the optimality of Cv, which considers only vari-

able cost. Denote the cost of applying πv to the case with both fixed and variable cost as C(πv). Then,

C(πv)≥ C∗ ≥ Cv + v(d)

γ
T

1
α
+d

. Note that C(πv) and Cv can be written explicitly as orders are shipped upon

arrivals: C(πv) = T
1
α

[F (d) +v(d)] = Tα[F (d) +v(d)] and Cv = Tαv(d). Plugging C(πv) and Cv into the above

inequality and by simple algebra, C(πv)−C∗

C∗
≤

C(πv)−Cv−
v(d)
γ

T
1
α

+d

Cv−
v(d)
γ

T
1
α

+d

= k
γ+1−k , where k= dα

1+dα
.


