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ABSTRACT (249 words) 

   

Background: Despite evidence suggesting early metabolic dysfunction impacts cardiovascular 

disease (CVD) risk, current guidelines focus on risk assessments later in life, missing early transitions 

in metabolic risk that may represent opportunities for averting the development of CVD.  

Methods and Results: In 4,420 young adults in the Coronary Artery Risk Development in Young 

Adults (CARDIA) study, we defined a “metabolic” risk score based on components of the ATP-III-

defined metabolic syndrome. Using latent class trajectory analysis adjusted for sex, race, and time-

dependent BMI, we identified six distinct metabolic trajectories over time, specified by initial and final 

risk: low-stable, low-worsening, high-stable, intermediate-worsening, intermediate-stable, high-

worsening. Overall, individuals gained weight over time in CARDIA with statistically but not clinically 

different BMI trend over time. Dysglycemia and dyslipidemia over time were highest in initially high or 

worsening trajectory groups. Divergence in metabolic trajectories occurred in early adulthood (before 

age 40), with 2 in 3 individuals experiencing an increase in metabolic risk over time. Membership in a 

higher risk trajectory (defined as initially high or worsening over time) was associated with greater 
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prevalence and extent of coronary artery calcification (CAC), left ventricular (LV) mass, and decreased 

LV strain at Year 25. Importantly, despite similar rise in BMI across trajectories over 25 years, CAC 

and LV structure and function more closely tracked risk factor trajectories.  

Conclusions: Transitions in metabolic risk occur early in life. Obesity-related metabolic dysfunction is 

related to subclinical cardiovascular phenotypes independent of evolution in BMI, including coronary 

artery calcification, myocardial hypertrophy and dysfunction.  

 

Key Words: obesity; metabolic syndrome; epidemiology; risk factor 

 

 

 

 

 

INTRODUCTION 

 Metabolic syndrome is a well-established risk factor for cardiovascular disease (CVD), 

including coronary artery disease and heart failure1.  Alterations in metabolic risk linked to CVD may 

develop over decades before clinical CVD2-5. Prior work in large, community-based populations have 

defined a role for early, cumulative changes in blood pressure6 and obesity7 in forecasting risk of 

subclinical CVD in mid-life and beyond. This “life-course” perspective on cardiometabolic risk—and 

resulting recommendations to maintain an ideal body weight, diet, physical activity, and lipid profile—is 

critical to decrease incident CVD8. Although obesity has frequently been cited as a central pathogenic 

factor for CVD risk, an emerging literature suggests that cardiometabolic risk may evolve 

independently from body mass index (BMI)9, 10

 We investigated individuals from the Coronary Artery Risk Development in Young Adults 

(CARDIA) study to define transitions in cardiometabolic risk over 25 years independent of obesity. 

Furthermore, we sought to compare markers of subclinical CVD—including left ventricular mass, 

function, and coronary artery calcium—at 25 years after baseline visit among different groups of 

participants that follow distinct patterns of transition in metabolic risk. We hypothesized that individuals 

who experienced worsening cardiometabolic risk during young adulthood would exhibit a poorer 

. Therefore, defining how cardiometabolic risk evolves 

during early adulthood—and how these changes are related to CVD risk independent of cumulative 

exposure to obesity—is critical to differentiate healthy young adult populations from at risk ones, 

ultimately to allow for personalized CVD prevention.  
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subclinical CVD profile at mid-life, defined by increased myocardial mass, decreased myocardial 

function, and coronary artery calcification.  

METHODS 

Study population 
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 The Coronary Artery Risk Development in Young Adults (CARDIA) study is a longitudinal 

cohort designed to study determinants of CVD among 5,115 young adults (aged 18-30) initially 

recruited in 1985-1986. Participants were recruited from four sites across the United States, including 

Birmingham, Alabama; Chicago, Illinois; Minneapolis, Minnesota; and Oakland, California. 

Recruitment balanced enrollment at each site by sex, age (18-24 years old versus 25-30 years old), 

race, and education. Serial follow-up of participants at years 2, 5, 7, 10, 15, 20, and 25 (2010-2011) 

after enrollment has been performed, with 72% retention of surviving participants at year 20 and 25. 

All participants provided written informed consent, with annual Institutional Review Board approval. 

Clinical assessments were performed at each CARDIA visit as described11-15

Metabolic risk score for transitions 

. From an initial cohort of 

5,115 individuals, we excluded individuals with self-reported congenital heart disease, congestive 

heart failure, cardiomyopathy, myocarditis, rheumatic heart disease, valvular heart disease (all 

assessed at baseline study visit), prior myocardial infarction reported at baseline or final study visit, 

bariatric surgery by final study visit, or withdrawn consent for study participation, leaving 4,941 

CARDIA participants (97% of the study cohort) for analysis.  

 To reflect current metrics for metabolic risk assessment in the clinic16, we defined a “metabolic 

risk score” by assigning +1 point for each of the following 5 high risk features, based on the ATPIII 

definition of metabolic syndrome17: (1) triglyceride concentration ≥ 150 mg/dl; (2) high-density 

lipoprotein concentration ≤ 40 mg/dl (males) or ≤ 50 mg/dl (females); (3) waist circumference ≥ 102 cm 

(males) or ≥ 89 cm (females); (4) systolic blood pressure ≥ 135 mmHg (mean of two different 

readings), self-reported history of hypertension, or current or former use of blood pressure medication; 

(5) self-reported diabetes or

  

 fasting glucose concentration ≥ 100 mg/dl. Self-reported diabetes only 

was used for the fifth criteria in examinations at year 2 and year 5, as glucose was not measured on 

these visits. The range for the metabolic risk score was therefore 0-5 points. We did not include body 

mass index in the metabolic risk score, as we sought to measure metabolic risk development 

independent of obesity status. (Cumulative body mass index adjustment was performed in logistic 

models; see Statistical Analysis, below.) The presence of each risk factor used to construct the 

score over all CARDIA examinations is shown in Table S1. 

Cardiovascular imaging  

 We examined the coronary artery calcium score at the most contemporary CARDIA 

examination (year 25, 2010-2011), using a standard multi-detector CT scanner platform as 

described18. Coronary artery calcium score (CAC) was handled as “non-zero” and as a continuous 
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variable (with log-transformation) for positive CAC scores. Speckle tracking echocardiography and M-

mode echocardiography were performed using an Artida cardiac ultrasound scanner (Toshiba Medical 

Systems, Otawara, Japan) using standardized protocols across all centers at Year 25, with offline 

imaging interpretation (Digisonics, Houston, Texas)19. Left ventricular mass (LVM) was derived from 

the Devereux formula20

 

, and indexed to height. Speckle tracking echocardiography images for 

myocardial strain measurements were analyzed for LV mid-wall layer, using Wall Motion 2-

dimensional Tracking software (Toshiba Medical Systems), from three cardiac cycles for each view, 

recorded for offline analyses. Strain was calculated as the change in segment length relative to its 

end-diastolic length, and the peak systolic value from the 4-chamber images was recorded as the 

longitudinal strain. 

Statistical analysis 

 Baseline clinical and demographic characteristics were compared via analysis of variance or 

non-parametric (Kruskal Wallis) techniques, as appropriate. From the initial 4,941 CARDIA 

participants, we excluded participants without a measurable metabolic risk score at baseline, less than 

three assessments of the metabolic risk score over 8 total CARDIA examinations, or missing body 

mass index, sex, or race assessment at baseline study visit, leaving 4,420 CARDIA participants (89% 

of initial study cohort) for trajectory analysis.  

 To specify transitions in metabolic risk over time, we used latent class models to identify 

groups of CARDIA participants that share a common trajectory of metabolic risk over time.21

 We estimated the relationship between group membership and subclinical CVD using logistic 

regression models, with group membership entered as an independent variable. “Subclinical CVD” 

was defined by (1) the presence of coronary artery calcification (modeled as CAC > 0) at Year 25 or a 

significant extent of CAC at Year 25 (>100); (2) height-adjusted left ventricular mass at Year 25; and 

 

Trajectories in metabolic risk score (using a censored normal model using PROC TRAJ in SAS) were 

specified as a function of participant age, with baseline adjustment by sex and race (using the RISK 

option), and time-dependent adjustment for body mass index (using the TCOV option). We determined 

the optimal number of underlying trajectories (starting from 8 total trajectories modeled with second-

order terms) by a composite criteria consisting of: (1) confirming visually distinct trajectories; (2) 

ensuring >5% membership in any single trajectory group; (3) observing improvement in the Bayesian 

information criterion. The average posterior probability of group membership was 0.76 (range 0.72-

0.82). Metabolic score at Year 25 was calculated in 3,262 participants (74% of the initial 4,420 analytic 

cohort; relative to 72% overall retention in the overall CARDIA study).  A
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(3) left ventricular longitudinal strain at Y25. Each model was adjusted for baseline age, race, sex, 

education, lifetime pack-years of smoking (at Year 25), and total intentional (heavy) physical activity 

(at Year 25). Given our central goal to separate obesity from metabolic risk, in addition to using BMI as 

a time-dependent covariate in defining metabolic groups, we further adjusted for a “cumulative BMI 

exposure” (in BMI-years), defined as the sum of each product between BMI at a given CARDIA 

examination and the time between that examination and the following examination. To calculate 

cumulative BMI exposure, we required participants to have BMI measures at Year 0 and Year 25 and 

a minimum of 2 BMI measures at interim exams. We calculated multivariable-adjusted least squares 

means for LV mass and LV strain across all trajectory groups. Because a large number of participants 

were missing data on the three subclinical CVD outcomes, we performed a sensitivity analysis using 

inverse probability of treatment weighting (IPTW) using the propensity score, as described in our 

previous work22

 Given that latent group modeling assigns individuals to groups in a probabilistic fashion, we 

generated 50 separate replicates (based on the distribution of posterior probability of group 

membership). We subsequently estimated logistic regression models for each outcome in every 

replicate, yielding a composite result across the different imputed group assignment datasets. SAS 

version 9.3 (SAS Institute, Cary, NC) was used for all analyses, and a two-tailed P<0.05 was 

statistically significant.  

. The propensity score for inclusion in the analysis of the subclinical CVD outcome was 

based on a logistic regression model containing as baseline predictors age, race, sex, systolic blood 

pressure, education, heavy physical activity, cigarette smoking, total cholesterol, HDL cholesterol, 

triglycerides, BMI, diabetes status, blood pressure medications at baseline, fasting glucose, serum 

creatinine, alcohol intake, and weighted life-events score. The inverse propensity probability of 

inclusion in the analysis was used to perform a weighted regression analysis of the outcomes, without 

significant change in results. Finally, we evaluated multiplicative interaction terms for sex and race. 

RESULTS  

 The six metabolic trajectories obtained through latent class trajectory modeling in this analysis 

to identify metabolic transitions are shown in Figure 1. The baseline clinical and demographic 

characteristics and outcomes of the 4,420 CARDIA participants stratified by metabolic trajectory are 

displayed in Table 1. Six distinct metabolic trajectories were labeled by the metabolic score at 

baseline study visit and Year 25 study visit: group 1 (low-stable; 17%), group 2 (low-worsening; 21%), 

group 3 (intermediate-stable; 17%), group 4 (intermediate-worsening; 14%), group 5 (high-stable; 

23%), group 6 (high-worsening; 7%). On average, the overall CARDIA sample in this analysis 

(N=4,420) was evenly divided by sex (54% female), with a normal BMI (24.4±4.9 kg/m2), normal 

fasting glucose (82.3±13.3 mg/dl), and minimal prevalent metabolic dysfunction (only 0.6% prevalent 
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diabetes). We observed very slight, clinically insignificant heterogeneity in BMI and waist 

circumference across trajectory groups at baseline. There was clinically and statistically significant 

heterogeneity in baseline pro-atherogenic dyslipidemia (triglycerides and HDL).  

 On average, participants who attended the final Year 25 CARDIA examination were heavier 

than those attending the initial study visit (initial BMI 24.4±4.9 kg/m2 to final BMI 30.1±7.2 kg/m2), with 

greater central obesity (by waist circumference), dysglycemia, and a more pro-atherogenic lipid profile. 

Of 4,420 participants at baseline, 1,516 (34%) were overweight or obesity (by BMI ≥ 25 kg/m2

 Despite similar trends in weight gain over time in CARDIA across metabolic trajectories, there 

was significant heterogeneity in fasting glucose, triglyceride, and HDL levels. Specifically, initially low 

or intermediate 

); of the 

3,274 CARDIA participants in our analytic sample at Year 25, 2,435 (74%) were overweight or obese. 

While individuals on average gained weight over time (with statistically significant differences in weight 

gain across trajectories, P<0.0001), among those participants with BMI assessed at Year 0 and Year 

25 in our analytic cohort, there was an increase in BMI and central obesity, with a similar pattern 

across all trajectories (Figure 2A and 2B). In addition, we considered waist circumference to BMI ratio 

(a marker of preferential visceral fat stores; Figure 2C). We found that individuals with worsening 

metabolic trajectories have a stable ratio over time, while individuals with stable trajectories have a 

declining ratio, suggesting that less excess weight gained over time is visceral in these individuals. Of 

note, waist circumference also appeared to have a similar association with baseline metabolic score in 

lean and overweight/obese individuals (Figure S1). 

and

 Logistic models for presence of coronary calcium and extent of coronary artery calcification, 

and linear models for left ventricular mass, and strain are shown in Table 2. After accounting for age, 

sex, race, education, smoking, physical activity, and obesity exposure (defined in Methods), all 

groups (except group 3: intermediate-stable) had a higher odds of subclinical coronary artery disease, 

as reflected by prevalent CAC and CAC score greater than 100 at Year 25, compared to the low-

stable group. Similarly, after accounting for cumulative BMI and other risk factors, relative to low-

stable (group 1), all other trajectory groups were associated with significantly greater height-indexed 

LV mass; all but group 3 were associated with poorer longitudinal strain (Table 2). These results were 

robust in sensitivity analyses using 50-fold replication over posterior group probabilities and to inverse 

probability weighting. Relationships between trajectory groups and CAC were similar excluding 

individuals with prior revascularization. In a sensitivity analysis, we considered the form of the 

trajectory (stable vs. worsening) as an outcome to address whether baseline characteristics would 

 stable trajectories of metabolic risk (group 1 and 3) had only modest worsening in 

these metabolic parameters over 25 years, while CARDIA participants in the most adverse trajectories 

(e.g., group 6: high-worsening) had the poorest metabolic indices at Year 25 (Table 1).   
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identify metabolic progression over time; baseline characteristics only had a moderate discrimination 

for worsening versus stable trajectories (C-statistic 0.72, 95% CI 0.70-0.74). In addition, worsening 

trajectories were associated with greater subclinical CVD. 

 In examining the sex- and race-based heterogeneity in metabolic risk and CVD, we first 

observed that men were much more likely to be in metabolically worsening trajectories relative to 

women. We identified a significant race interaction for LV mass (P<0.0001) and LV strain (P=0.01), 

and a significant sex interaction for presence of coronary artery calcification (P=0.001). Figure 3 

shows the patterns of group differences by race for LV mass (Figure 3A) and LV strain (Figure 3B) 

and by sex for coronary artery calcification (Figure 3C). We found that the blacks consistently had 

higher LV mass and worse LV strain than whites in each group (Figure 3). Furthermore, the 

worsening metabolic trajectory had a greater impact on blacks than whites, most notably in the high-

worsening group (group 6).  We also found that while women generally had lower rates of coronary 

calcification at year 25 than men, this difference was attenuated in worse metabolic trajectories 

(Figure 3C).  

DISCUSSION 

 In a large cohort of young adults followed over 25 years, we defined specific trajectories of 

metabolic risk associated with prognostic markers of subclinical CVD, including myocardial mass, 

function, and coronary artery calcification in mid-life. Importantly, metabolic risk diverged early, at age 

20-30s, before most young adults would be eligible for modern lipid prevention guidelines23. We 

demonstrated that the evolution of metabolic risk during early adulthood may occur independently of 

changes in BMI: despite an overall rise in BMI by Year 25 in CARDIA (to overweight or obese on 

average), parameters of cardiometabolic risk (e.g., dysglycemia, diabetes risk, dyslipidemia, waist 

circumference) had distinct patterns of change over time in each trajectory. Moreover, we could not in 

general identify a trajectory to which a given individual belonged based on baseline BMI or 

cardiometabolic characteristics, given their similarity at baseline. While we did observe that adverse 

trajectories (defined by initially high or worsening metabolic risk trajectories) were associated with 

worse cardiovascular structure and function at late follow-up, lower risk, stable trajectories (groups 1 

and 3) had a similar risk of coronary calcification and subclinical LV dysfunction. The critical finding of 

our work is that these associations were observed in the face of a similar pattern of increase in BMI 

across trajectories, suggesting that BMI may not fully explain metabolic deterioration in through young 

adulthood to mid-life. Collectively, despite a “healthy” profile in young adulthood (including normal BMI 

on average), adverse trajectories in cardiometabolic risk may evolve early in adulthood (before age 

40) and are associated with subclinical cardiovascular disease by mid-life.  
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 Metabolic syndrome, defined by abdominal obesity, pro-atherogenic dyslipidemia, 

hypertension, and insulin resistance, is a risk factor for incident CVD17.  Most clinical prevention has 

focused on body mass index as a central arbiter of cardiometabolic risk, with screening beginning in 

childhood to mitigate chronic consequences of obesity24. Indeed, trajectories of obesity in childhood 

are strongly associated with CVD and diabetes in adulthood25. Nevertheless, the United States 

Preventive Services Task Force guidelines do not recommend any additional screening for 

dysglycemia or dyslipidemia prior to middle age (35 years old for men, 45 years old for women) in 

individuals not at “significant risk” for CVD or diabetes (defined as obesity, hypertension, smoking, 

diabetes, or personal or family history)26. While prior work in CARDIA has defined the importance of 

cumulative exposure to obesity7, 27 on cardiovascular structure, the divergence between metabolic risk 

and obesity (e.g., “metabolically healthy obese” and “metabolically unwell lean” subtypes) is 

increasingly recognized. Previous work by our group28 and others29-33 has indicated that differences in 

metabolic susceptibility defined by visceral adiposity or inflammation may refine obesity-related 

cardiometabolic risk. In addition, studies involving cardiac magnetic resonance suggest that even 

tissue-level myocardial phenotypes may be affected in adolescent obesity, in proportion to systemic 

inflammation and dysglycemia34. These findings suggest that early detection of and focus on obesity-

associated metabolic risk may provide a more nuanced conception of cardiometabolic disease early in 

adulthood that may directly impacts heart disease, and may help to understand heterogeneity in 

clinical risk in individuals across the spectrum of obesity29

 In this context, using well-defined, clinically accessible risk factors, we found that individuals 

who were at low metabolic risk at baseline had already diverged in terms of metabolic risk in early 

adulthood (e.g., between age 20-40 years), before standard prevention guidelines urge routine 

screening (e.g., for dyslipidemia). Importantly, there were no clinically important differences in these 

groups in terms of baseline body mass index, lipid panel, fasting glucose, or other important 

cardiometabolic indices to facilitate their distinction. In addition, despite a similar pattern of weight gain 

across all metabolic risk trajectories over time in CARDIA, we observed distinct associations between 

metabolic trajectories and subclinical CVD. Importantly, we observed significant race and sex-based 

heterogeneity in the relationship between adverse metabolic risk over 25 years and subclinical CVD: 

African Americans exhibited a higher LV mass and poorer systolic function relative to Caucasians, 

potentially explaining well-described race-related differences in heart failure risk

.  

35. Moreover, the well-

described protection from CVD enjoyed by pre-menopausal women (relative to men) was attenuated 

with worsening metabolic trajectory. Alongside general cardiometabolic prevention, these results 

suggest that focused efforts in selected populations to limit the evolution of cardiometabolic risk from 

young adulthood may curb later CVD and its associated cost and morbidity.  
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 A critical step in the formulation of metabolic trajectories in this work is the metabolic score 

used to specify risk. We decided to use ATP-III defined metabolic syndrome components to comprise 

our risk score due to their clinical accessibility and previous association with cardiometabolic 

disease16. While more granular, longitudinal and direct measures of physical activity (by 

accelerometry), cardiorespiratory fitness (e.g., exercise duration), visceral fat30

 The identification of early divergence in metabolic risk independent of BMI prompts several 

additional questions. First, early clinical differentiation of the different metabolic trajectories would 

allow the identification of individuals at higher risk at an earlier stage of cardiometabolic disease for 

prompt prevention. Certainly, those individuals who enter young adulthood at high metabolic risk 

tended to remain at high metabolic risk or worsen over time, warranting aggressive, guideline-

mandated surveillance and prevention. Previous seminal work has demonstrated that changes in 

waist circumference over time track changes in cardiometabolic risk

, and dietary patterns 

would likely contribute to defining trajectories, we did not have access to longitudinal accelerometry, 

fitness, adiposity or dietary data in every examination within CARDIA. In addition, our score 

purposefully excluded BMI; instead, we specified a time-dependent BMI adjustment in trajectory 

modeling to account for longitudinal changes in BMI over time. Ultimately, these results suggest that 

metabolic deterioration occurs early in adulthood in parallel to (but are not necessarily explained 

completely by) a rise in BMI over time.  

36, 37. While clinical factors in our 

study only modestly discriminated risk of worsening metabolic trajectory over time, CARDIA was an 

observational (not an interventional) study. As such, directed clinical interventions based on known 

markers (e.g., triglycerides, low fitness or activity levels, poorer dietary quality, or enlarging waistline36, 

37) may offer preventative benefits. Whether more sensitive markers of early metabolic dysfunction 

(e.g., adipokines, metabolite profiles) central to insulin resistance and cardiometabolic risk would 

further call attention to patients at high risk remains an area of active investigation. Moreover, it is 

critical to note that these results certainly do not negate the importance of BMI in standard risk 

prediction: obesity is a well-established marker of increased CVD risk1

 The limitations of this study must be viewed in the context of its design. While the use of self-

report to exclude participants with CVD may introduce bias, the overall reduction in study population 

was modest (5,114 to 4,941). With subject dropout over time, 3,262 participants (74% of the initial 

4,420 analytic cohort) had quantified metabolic scores at Year 25. However, we adjusted for known 

CVD risk factors (smoking, self-reported physical activity) in our final models to reduce the impact of 

biases related to systematic differences in characteristics of retained subjects

, though these results suggest 

that it does not fully explain CVD risk. Ultimately, these results suggest that a “life-course” approach to 

risk assessment that begins early and integrates BMI, known risk factors (e.g., waist circumference) 

with metabolic risk will be critical in halting CVD progression.  

6. Furthermore, while not 
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all participants had metabolic scores assessed at every CARDIA study visit, the median number of 

metabolic score assessments was 7 (interquartile range 6-8 of 8 total CARDIA visits, similar across 

trajectory groups (between 7-8 across all groups) and suggested that any systematic patterns in 

missing data are unlikely to impact trajectory assignments. Given the absence of a priori weighting 

schemes, we weighted each metabolic component equally, ascribing an equivalent degree of 

cardiometabolic risk to each component. Finally, serial dietary and physical activity assessments were 

not available at every exam in CARDIA, and represent a potential area of future study.  

CONCLUSIONS 

Transitions in metabolic risk occur in early adulthood, are not be completely explained by increases in 

BMI over time, and are associated with coronary artery calcification and myocardial hypertrophy and 

dysfunction. Targeting therapeutic interventions focused on weight, body composition, and physical 

activity maintenance early in life alongside regular cardiometabolic surveillance are critical to halt heart 

disease.   
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Table 1. Characteristics of 4,420 CARDIA participants by metabolic trajectory group. Abbreviations: standard deviation, SD; interquartile 

range, IQR; body mass index, BMI; myocardial infarction, MI; high density lipoprotein, HDL; Int, intermediate. Educational attainment is 

defined as years of education attained by initial CARDIA study examination. Psychosocial stress scores (e.g., life events, hostility scores) 

are as described in prior work in CARDIA15

 

. 

Covariate Study population 

(N=4,420) 

Metabolic Trajectory Groups P value 

Group 1 

(Low-Stable) 

(N=759) 

Group 2 

(Low-Worsening) 

(N=934) 

Group 3 

(Int-Stable) 

(N=753) 

Group 4 

(Int-

Worsening) 

(N=637) 

Group 5 

(High-

Stable) 

(N=1033) 

Group 6 

(High- 

Worsening) 

(N=304) 

BASELINE DEMOGRAPHICS 

Age, mean (SD), y 24.9 (3.6) 25.2 (3.6) 25.0 (3.6) 24.7 (3.6) 25.0 (3.7) 24.7 (3.7) 25.2 (3.4) 0.01 

Male sex, n (%) 2020 (45.7) 284 (37.4) 612 (65.5) 204 (27.1) 418 (65.6) 306 (29.6) 196 (64.5) <0.0001 

Black race, n (%) 2210 (50.0) 371 (48.9) 487 (52.1) 387 (51.4) 332 (52.1) 538 (52.1) 95 (31.3) <0.0001 

Educational attainment at Y0, mean (SD), y 13.9 (2.3) 14.3 (2.3) 14.1 (2.3) 13.9 (2.2) 13.6 (2.2) 13.6 (2.2) 13.6 (2.3) <0.0001 

Current smoker, n (%; N=4392) 1289 (29.4) 148 (19.6) 235 (25.4) 200 (26.7) 240 (37.9) 357 (34.7) 109 (36.3) <0.0001 

Physical activity (moderate and vigorous), 

median at baseline (IQR), exercise units 

Y0 (N=4419) 

Y25 (N=3251) 

 

 

365 (198, 577) 

279 (134, 493) 

 

 

380 (209, 620) 

328 (168, 556) 

 

 

426 (246, 645) 

312 (146, 522) 

 

 

328 (185, 

545) 

266 (120, 

494) 

 

 

396 (208, 

620) 

272 (144, 

482) 

 

 

305 (156, 

500) 

231 (108, 

410) 

 

 

347 (192, 559) 

247 (112, 456) 

 

 

<0.0001 

<0.0001 

Alcohol consumption, median (IQR), ml/day 

(N=4403) 

4.8 (0.0, 14.6) 4.8 (0, 14.3) 7.6 (0, 19.8) 2.4 (0, 

10.6) 

7.2 (0, 

17.7) 

2.4 (0, 

12.1) 

4.8 (0, 14.5) <0.0001 

Medication use ever, n (%) 

Anti-hypertensive 

Lipid-lowering 

 

1077 (24.4) 

614 (13.9) 

 

49 (6.5) 

41 (5.4) 

 

234 (25.1) 

119 (12.7) 

 

102 (13.6) 

71 (9.4) 

 

227 (35.6) 

140 (22.0) 

 

307 (29.7) 

145 (14.0) 

 

158 (52.0) 

98 (32.2) 

 

<0.0001 

<0.0001 

CARDIOMETABOLIC RISK FACTORS 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



 

This article is protected by copyright. All rights reserved 

Mean BMI, kg/m
2 

Baseline (Y0) 

(SD) 

Follow-up (Y25)(N=3274) 

 

24.4 (4.9) 

30.1 (7.2) 

 

23.5 (3.9) 

28.6 (6.3) 

 

24.1 (3.7) 

29.7 (5.4) 

 

25.4 (6.8) 

31.3 (10.3) 

 

24.0 (4.0) 

29.0 (5.1) 

 

24.7 (5.2) 

31.1 (7.5) 

 

24.5 (4.4) 

30.4 (5.3) 

 

<0.0001 

<0.0001 

Waist circumference, mean (SD) 

Baseline (Y0) 

Follow-up (Y25) (N=3271) 

 

77.6 (11.2) 

94.3 (15.9) 

 

73.9 (9.2) 

88.2 (14.1) 

 

78.0 (9.1) 

95.5 (13.3) 

 

77.5 (13.8) 

92.6 (19.6) 

 

78.9 (10.4) 

96.4 (13.3) 

 

77.7 (11.8) 

96.1 (16.9) 

 

82.0 (11.4) 

101.1 (13.1) 

 

<0.0001 

<0.0001 

Glucose, mean (SD), mg/dl, 

Baseline (Y0) (N=4278) 

Follow-up (Y25) (N=3146) 

 

82.3 (13.3) 

99.3 (27.5) 

 

79.7 (6.9) 

91.0 (16.0) 

 

82.2 (7.6) 

101.6 (26.2) 

 

81.2 (9.9) 

92.0 (15.3) 

 

83.8 (11.6) 

109.8 

(38.6) 

 

82.6 (16.4) 

97.3 (22.4) 

 

87.9 (27.9) 

119.1 (46.3) 

 

<0.0001 

<0.0001 

Diabetes, n % 

Baseline (Y0) 

Follow-up (Y25)(N=3272) 

 

25 (0.6) 

456 (13.9) 

 

0 (0) 

20 (3.5) 

 

1 (0.1) 

88 (12.4) 

 

5 (0.7) 

43 (7.5) 

 

4 (0.6) 

114 (24.2) 

 

5 (0.5) 

113 (15.1) 

 

10 (3.3) 

78 (38.6) 

 

<0.0001 

<0.0001 

TG, mean (SD), mg/dL 

Baseline (Y0) 

Follow-up (Y25) (N=3147) 

 

72.6 (47.5) 

113.8 (86.1) 

 

54.7 (21.4) 

76.0 (30.5) 

 

63.2 (26.4) 

111.2 (71.3) 

 

66.6 (40.0) 

84.7 (33.8) 

 

78.7 (49.9) 

151.7 

(106.6) 

 

78.5 (46.1) 

112.8 

(58.7) 

 

128.4 (93.1) 

229.5 (185.0) 

 

<0.0001 

<0.0001 

HDL mean (SD) 

Baseline (Y0) (N=4322) 

Follow-up (Y25) (N=3269) 

 

53.2 (13.1) 

57.8 (17.8) 

 

62.6 (11.8) 

70.2 (17.5) 

 

57.2 (11.2) 

58.6 (17.1) 

 

53.7 (12.1) 

63.1 (14.6) 

 

51.1 (11.9) 

51.4 (19.0) 

 

47.1 (11.4) 

52.4 (14.0) 

 

40.5 (9.2) 

40.5 (8.6) 

 

<0.0001 

<0.0001 

Systolic Blood pressure, mean (SD), mmHg 

Baseline (Y0) 

Follow-up (Y25)(N=3276) 

 

110.4 (10.9) 

118.7 (15.3) 

 

106.8 (9.6) 

112.9 (12.7) 

 

111.5 (9.5) 

120.2 (14.7) 

 

108.6 

(10.8) 

116.2 

(15.1) 

 

112.7 

(10.2) 

123.4 

(16.6) 

 

110.0 

(11.5) 

118.7 

(15.4) 

 

117.0 (12.9) 

125.3 (15.2) 

 

<0.0001 

<0.0001 

Diastolic Blood pressure, mean (SD), mmHg 

Baseline (Y0) 

Follow-up (Y25)(N=3275) 

 

68.6 (9.6) 

74.0 (10.9) 

 

66.4 (8.3) 

70.0 (9.8) 

 

69.2 (8.8) 

75.0 (10.7) 

 

67.5 (8.7) 

72.4 (11.0) 

 

69.1 (10.1) 

76.7 (11.1) 

 

68.4 (10.2) 

74.4 (10.5) 

 

73.9 (11.3) 

78.0 (10.9) 

 

<0.0001 

<0.0001 

PSYCHOSOCIAL RISK FACTORS 

Number of life events at Year 0, mean (SD) 

(N=4418) 

8.3 (4.6) 7.9 (4.4) 8.3 (4.8) 8.3 (4.8) 8.5 (4.6) 8.3 (4.5) 8.3 (4.9) 0.31 
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Weighted life events score at Year 0, mean 

(SD) (N=4418) 

2363 (1397) 2281 (1316) 2377 (1463) 2361 

(1460) 

2437 

(1398) 

2350 

(1331) 

2415 (1450) 0.42 

Cook Medley Hostility Score at Year 0, mean 

(SD) (N=4261) 

19.4 (8.6) 18.0 (8.1) 20.0 (8.5) 19.1 (8.9) 20.8 (8.5) 19.3 (8.7) 19.5 (8.5) <0.0001 

MARKERS OF SUBCLINICAL CARDIOVASCULAR DISEASE 

CAC score at Year 25, median (IQR; N=2997) 0 (0, 3.9) 0 (0, 0) 0 (0, 4.7) 0 (0, 0) 0 (0, 18.7) 0 (0, 3.1) 1.6 (0, 60.7) <0.0001 

Presence of any CAC at Year 25, n % (N=2997) 834 (27.8) 86 (17.0) 188 (29.1) 105 (19.7) 169 (39.1) 190 (27.5) 96 (50.8) <0.0001 

LV mass index, mean (SD), g/m

Year 5 (N=3868) 

2.7 

Year 25 (N=2932) 

 

35.1 (9.2) 

39.7 (11.6) 

 

34.0 (9.1) 

36.6 (9.4) 

 

35.8 (8.7) 

40.2 (10.4) 

 

35.2 (9.8) 

39.8 (13.6) 

 

34.5 (8.2) 

40.1 (11.5) 

 

35.1 (9.2) 

40.3 (11.8) 

 

36.2 (10.7) 

43.6 (13.4) 

 

0.0008 

<0.0001 

LV longitudinal strain at Year 25, mean (SD), % 

(N =2849) 

-15.1 (2.4) -15.7 (2.3) -14.9 (2.3) -15.4 (2.4) -14.6 (2.3) -15.1 (2.4) -14.1 (2.4) <0.0001 
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Table 2. Multivariable models for coronary artery calcification, left ventricular mass and strain. Abbreviations: Y25, year 25; LV, left 

ventricular; BMI, body mass index. P values for groups are for comparisons with referent (group 1, low-stable). 

 

Covariate Presence of coronary 

artery calcification at Y25 

(N=2941) 

Coronary artery 

calcium score at Y25 > 

100 

(N=2941) 

Height-indexed  

LV mass at Y25 

(N=2882) 

LV strain at Y25 

(N=2796) 

Odds ratio P Odds ratio P β P β P 

Age, year 25 (per year) 1.15 (1.12-1.18) <0.0001 1.24 (1.19-1.30) <0.0001 0.12 0.02 0.03 0.007 

Sex         

     Female Ref Ref Ref Ref Ref Ref Ref Ref 

     Male 3.34 (2.74-4.06) <0.0001 3.48 (2.53-4.78) <0.0001 1.89 <0.0001 0.75 <0.0001 

Race         

     White  Ref Ref Ref Ref Ref Ref Ref Ref 

     Black  0.80 (0.65-0.97) 0.03 0.97 (0.72-1.31) 0.86 2.05  <0.0001 0.89 <0.0001 

Smoking (per pack-year) 1.03 (1.02-1.04) <0.0001 1.02 (1.01-1.04) <0.0001 0.06 0.002 0.004 0.36 

Physical activity, year 25 (heavy 

intensity, per 1 standard 

deviation) 

1.13 (1.04-1.24) 0.007 1.09 (0.95-1.25) 0.23 0.36 0.07 -0.042 0.35 

Education, year 25 (per year) 0.97 (0.93-1.00) 0.07 0.93 (0.88-0.98) 0.01 -0.30 0.0001 -0.01 0.48 

Cumulative BMI (per 1 standard 

deviation in BMI-years) 

1.41 (1.28-1.55) <0.0001 1.43 (1.24-1.64) <0.0001 5.47 <0.0001 0.37 <0.0001 

Metabolic Trajectory Groups 

Group 1: low-stable 1.00 (Ref) - Ref - Ref - Ref - 
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Group 2: low-worsening 1.50 (1.10-2.04) 0.01 1.67 (0.99-2.83) 0.057 1.85 0.002 0.51 0.0002 

Group 3: intermediate-stable 1.24 (0.89-1.77) 0.20 1.69 (0.94-3.04) 0.08 1.28 0.04 0.25 0.08 

Group 4: intermediate-worsening 2.47 (1.78-3.42) <0.0001 2.57 (1.50-4.39) 0.0006 1.67 0.01 0.80 <0.0001 

Group 5: high-stable 1.95 (1.43-2.67) <0.0001 1.80 (1.05-3.10) 0.03 1.56 0.009 0.58 <0.0001 

Group 6: high-worsening 3.61 (2.41-5.41) <0.0001 3.66 (2.00-6.69) <0.0001 4.34 <0.0001 1.36 <0.0001 
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Figure Legends: 

 

Figure 1. Metabolic trajectories over time in CARDIA. Each trajectory is represented by a different color, with 

shaded bands representing 95% confidence intervals.  

 

Figure 2. Trends in body mass index [BMI] (A), waist circumference [WC] (B) and ratio of WC / BMI over 

time in CARDIA, stratified by trajectory group computed using linear mixed effects models with discrete time 

points for each CARDIA exam and exam*trajectory group interaction terms. Over time, all groups had similar 

increases in BMI and WC.  While worsening groups had stable WC / BMI ratios (P≥0.29 for exam 1 vs. exam 

8), the stable groups all had declining WC / BMI ratios (P≤0.0005 for exam 1 vs. exam 8), suggesting greater 

proportionate increases in abdominal adiposity in the metabolically worsening groups. 

 

Figure 3. Effect modification by race and sex. Left ventricular (LV) mass index (A) and longitudinal strain (B) 

across metabolic trajectories by race. Points represents the adjusted least-squares means with 95% confidence 

intervals. (C) Rate of coronary artery calcification (CAC) score >0 by metabolic trajectory and sex. Differences 

by sex are significant (P<0.0001) in each group except high-worsening (p=0.06) with evidence of effect 

modification of metabolic trajectory by sex (interaction P=0.001). 
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