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Significance 

 

1. Demonstrated a soft hydrogel can be micro-machined into scaffolds with 

high aspect ratio channels.  

 

2. Developed a novel kink-resistant, suture-able nerve growth conduit capable 

of stabilizing and reinforcing the hydrogel microchannel scaffolds for 

peripheral nerve repair 

 

3. Demonstrated the hybrid polymer conduit/hydrogel microchannel scaffold 

approach guides the linear penetration of axons and Schwann cells into 1 cm-

long rat sciatic nerve gaps. 

Abstract 

Nerve repair in several mm-long nerve gaps often requires an interventional technology.  

Microchannel scaffolds have proven effective for bridging nerve gaps and guiding axons 

in the peripheral nervous system (PNS).  Nonetheless, fabricating microchannel scaffolds 

at this length scale remains a challenge and/or is time consuming and cumbersome.  In 

this work, a simple computer-aided microdrilling technique was used to fabricate 10 mm-

long agarose scaffolds consisting of 300 µm-microchannels and 85 µm-thick walls in less 
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than an hour.  The agarose scaffolds alone, however, did not exhibit adequate stiffness 

and integrity to withstand the mechanical stresses during implantation and suturing.  To 

provide mechanical support and enable suturing, poly caprolactone (PCL) conduits were 

fabricated and agarose scaffolds were placed inside.  A modified salt-leaching technique 

was developed to introduce interconnected porosity in PCL conduits to allow for tuning 

of the mechanical properties such as elastic modulus and strain to failure.  It was shown 

that the PCL conduits were effective in stabilizing the agarose scaffolds in 10 mm-long 

sciatic nerve gaps of rats for at least 8 weeks.  Robust axon ingress and Schwann cell 

penetration were observed within the microchannel scaffolds without using growth 

factors.  

1. Introduction 

Peripheral nerve injury (PNI) occurs in 3% of all trauma cases and 30% of combat 

injuries
(1)-(3)

, which results in approximately 600,000 surgical procedures for PNI 

annually
(4)

.  Although spontaneous nerve regeneration can occur, functional restoration 

depends on the severity of the injury and is often limited.  Interventional technology may 

be required to repair cm-long injuries after acute nerve trauma.  Autologous grafts are the 

current gold standard approach to treat PNI, but have practical limitations such as donor 

site morbidity and can result in painful neuromas
(2),(5),(6)

.  

Bioengineered grafts are under development as an alternative therapy and several 

helpful review papers describe and compare different designs
 (7)-(11)

.  The goal of this 

approach is to circumvent issues related to donor availability while guiding axons in cm-

scale peripheral nerve gaps.  Several types of bioengineered conduits such as 

Page 2 of 23

John Wiley & Sons, Inc.

Journal of Biomedical Materials Research: Part A

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le

3 

 

Neurotube
®(11)

, Surgisis
®(12)-(14)

, NeuroMatrix
®(11)

, Neuroflex
®(15)

 and NeuraGen
®(1),(3)

 are 

currently approved by the USA FDA for PNI.  There are, however, a few shortcomings 

that are yet to be addressed
(11)

.  First, there are currently limitations in producing few cm-

long conduits that correspond to clinical demands with the longest grafts being less than 

6.5 cm.  Second, it is necessary to fabricate a flexible, kink-resistant conduit in order to 

prevent the compression of growing axons
(11),(15)-(17)

 that has been a challenge to achieve.  

For example, Neuroflex
®

 is one of the most flexible FDA-approved conduits to-this-date, 

which is reported by the manufacturer as kink-free for up to 60˚ of bending.  However, 

Neuroflex
® 

is not available in lengths more than 2.5 cm.  Overall, a more compliant nerve 

conduit is necessary to prevent or limit injuries caused by relatively stiff conduits.  

Lastly, the clinical efficacy of conduits is usually limited to nerve gaps less than 3 cm.  

This could be because all synthetic FDA-approved PNI implants consist of single-lumen 

tubes.  An alternative implant to more effectively guide axons is the use of multi-lumen 

microchannels that organize or group axons into fascicles
(5),(7),(10),(11)

 and guide them 

toward distal targets.  Examples include multi-lumen microchannel scaffolds, which were 

demonstrated effective in linearly guiding axons in 2 mm-long transected sections of the 

spinal cord
(18)-(21)

.  Particularly, agarose microchannel scaffolds were produced using a 

fiber-optic templating technology and provided axon guidance in nerve gaps
(18),(22),(23)

.  

However, there are limitations in fabricating multiple cm-long templated agarose 

scaffolds
(24)

 and these processes may take up to two weeks to produce a scaffold and may 

require training to be reproduced by an individual.  In addition, a PNI implant needs to be 

secured (for example be sutured to a nerve stump) in regions such as the sciatic nerve 
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where muscle tissue undergoes significant displacement
(11),(15)-(17)

.  To address these 

shortcomings, we aimed to produce a microchannel scaffold embedded inside a kink-

resistant conduit that can be sutured to the nerve stumps in a rat sciatic nerve gap. 

To fabricate few mm-long microchannel scaffolds, we used a simple subtractive 

mechanical technique (microdrilling) to produce agarose scaffolds with hexagonally-

arranged cm-scale microchannels in less than an hour.  The scaffolds consisted of 300 µm 

diameter microchannels and 85 µm walls.  To our knowledge, this is the first report to 

demonstrate the successful drilling of micro-scale features in a hydrogel.  To secure the 

microchannel scaffold to the nerve stumps, a suturable outer conduit was fabricated to fit 

around the agarose scaffold.  This is because agarose hydrogel does not have adequate 

mechanical integrity to withstand suturing.  The conduits consisted of poly caprolactone 

(PCL).  PCL was selected as the conduit material since it is FDA-approved for 

applications such as sutures and it is known to be biocompatible with the nerve 

tissue
(25),(26)

.  However, dense PCL is brittle
(27)

 and not suitable for suturing.  To enable 

suturing, porosity was introduced into the PCL using a simple salt-leaching technique. 

The porosity reduced the PCL elastic modulus (stiffness) and increased strain to failure, 

both of which make suturing facile.  By introducing porosity into the PCL using a salt-

leaching technique, the strain to failure was increased from 17% to over 100%.   

Moreover, the porous PCL conduit was kink-resistant when bent around fingertips; a 

property comparable to a flexible state-of-the-art PNI conduit- Neuroflex
®

.  In addition, a 

tube manufacturing process was developed to prepare relatively thin-wall PCL conduits 
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(100 µm) to minimize the conduit/scaffold construct volume.  These tubes could be 

fabricated > 10 cm in length; longer than any FDA-approved PNI conduit.   

When sutured to both sides of a 1 cm-long transected rat sciatic nerve, the 

scaffold/conduit construct remained mechanically stable after 8 weeks in vivo and some 

axon and Schwann cell penetration into the proximal end of the scaffold was observed.  

Overall, this work demonstrated the efficacy of a hybrid nerve guidance scaffold 

approach whereby a hydrogel microchannel scaffold (agarose) physically guided axons 

toward distal targets while a flexible outer conduit was sutured to nerve stumps and 

stabilized the scaffold in a highly mobile region of rat sciatic nerve for at least 8 weeks.  

It is suggested that the hybrid design is a promising alternative to autologous nerve grafts.  

2. Methods 

2.1. Agarose scaffold fabrication 

Agarose hydrogel was prepared by heating agarose powder (3 wt.%, Sigma Aldrich; St. 

Louis, MO) in autoclaved reverse osmosis (RO) water at ~ 100˚C.  To eliminate air 

bubbles, the agarose solution was centrifuged at 1500 rotations per minute (rpm) for 30 s.  

The solution was poured into a sterile 12 well-plate (VWR; Radnor, PA) and cooled to 

room temperature in a sterile hood to form a hydrogel.  After gelation, the cylindrically-

shaped hydrogel cylinders were extracted from the well plate and machined to produce 

10.0 mm-tall cylinders.  A computer numerical control (CNC) machine (US Digital, 

Vancouver, WA) was used to machine the height of the hydrogel cylinder using a 3.0 mm 

drill bit (McMaster, Aurora, IL) and create cylinders with parallel faces.   
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To microdrill scaffolds, a 3 x 8 mm piece of polystyrene (PS) (VWR) was 

attached to the top corner of a well of a 12-well plate (Fig. 1).  To ensure the channels 

extended through the 10 mm-tall cylinder, a sacrificial layer (7 mm-thick) of agarose 

hydrogel was prepared similar to the 10 mm-tall cylinder and was placed at the bottom of 

the well plate.  The 10 mm-tall agarose cylinder was placed over the sacrificial agarose 

with the PS piece anchoring the cylinder and preventing it from spinning/moving during 

microdrilling.  A 300 µm (McMaster) microdrill bit was used to drill the agarose cylinder 

in a hexagonal arrangement with spacing of 100 µm using the CNC and a patterning 

program (Artsoft Software Inc.; Livermore Falls, ME).  A feed rate of 25.4 mm/min was 

used to microdrill channels.  After each 250 µm of drilling, the bit was extracted from the 

agarose hydrogel disk to remove swarf (also known as peck drilling).  Feed rates and 

peck drilling depths above and below the mentioned values did not result in linear 

channels or symmetric hexagonal patterning.  A total depth of 11.6 mm was drilled (thus 

drilling into the sacrificial cylinder) to ensure the channels extended the entire length of 

the scaffold.  A few ml of water was maintained above the hydrogel cylinder during 

drilling to prevent dehydration and help remove swarf from the channels and the 

microdrill bit.  The agarose cylinder was drilled for at least 1.4 x 1.4 mm-wide surface to 

fabricate a scaffold with a diameter of 1.4 mm. The entire process took less than 45 

minutes to complete. 

A customized sharpened punch with an inner diameter of 1.4 mm was used to 

extract agarose scaffold from the drilled cylinder.  The punch was inserted perpendicular 

to the surface of the cylinder at a speed of 25.4 mm/min for a depth of 14 mm using a 1 
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mm diameter rod.  Air was gently blown into the scaffold to remove swarf.  The channel 

linearity and agarose scaffold dimensions were characterized using optical microscopy 

(Leica EZ4D; Buffalo Grove, IL).  The scaffolds were sterilized and stored in RO water 

with 5 vol% ethanol (Alfa Aesar; Ward Hill, MA) until implantation.  

2.2. PCL conduit fabrication and scaffold assembly 

Porosity was introduced into PCL using sodium chloride (NaCl) particles as a porogen. 

NaCl (Columbus Chemical Industries, INC.; Columbus, WI) was ground using a 

planetary ball-mill (Retsch PM 100; Haan, Germany) in a 250 ml agate jar with 12 agate 

balls for 1 hr at 400 rpm with 5 min rest every 5 min.  ε-caprolactone (MW: 114.14) 

(Sigma; St. Lois, MO) was dissolved in chloroform (Sigma) (3 wt.%) and added to the 

ball-milled NaCl to produce a 30:70 vol% of PCL:NaCl mixture.  The mixture was ball-

milled for 20 min at 400 rpm with 5 min rest every 5 min.  The rest period prevented 

over-heating of the jar.  To fabricate porous PCL conduits, a steel rod with an outer 

diameter of 1.4 mm was placed in the PCL/NaCl mixture and air-dried.  After the solvent 

(chloroform) evaporated (~ 2 min), the PCL-coated rod was immersed in methanol 

(Sigma) for ~ 1 min. The PCL tubes were removed from the rod and cut into 12 mm-long 

tubes using a razor.  The tubes were then placed in RO water with 5 vol% ethanol to 

remove NaCl.  PCL tubes used for implantation were further sterilized under uv light for 

15 min.  The PCL conduit was bent around fingertips and optical images were taken 

(iPhone 5, Apple Inc.; Cupertino, CA).  

Assembling the scaffolds entailed the insertion of the agarose scaffolds into the 

tubes.  Agarose scaffolds (fabricated in section 2.1) were partially dehydrated with the 
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touch of a kimwipe (Kimberly-Clack; Roswell, GA) to temporarily cause radial 

contraction and facilitate insertion into the tubes.  Using a 1 mm-diameter metal rod, 

dehydrated scaffolds were pushed into and manually centered in the 12 mm-long PCL 

tubes with 1 mm overhangs at each end.  Agarose scaffolds immediately returned to the 

original dimensions after rehydration in RO water.  By dehydrating, inserting, and re-

hydrating, the outer diameter of the agarose scaffolds matched the inner diameter of the 

PCL tube, which significantly limited the scaffold movement inside the PCL tubes.  The 

scaffolds were stored in 5 vol% ethanol in RO water for up to 14 days and rinsed in 

sterile 1xDPBS buffer for 15 minutes prior to implantation. 

2.3. Characterizing the porosity and mechanical properties of PCL 

To characterize porosity, the salt-leached PCL tubes described in section 2.2. were 

fractured after immersion in liquid N2 followed by sputter coating with gold for 120 s (3 

nm-thick coating) (SPI Supplies; West Chester, PA).  The fracture surfaces were imaged 

using scanning electron microscopy (SEM) (FEI Nova NanoLab
TM

 600 DualBeam; 

Columbus, OH).  In addition, a needle was passed through a salt-leached PCL tube in 

vitro to evaluate its suture-ability.  The punctured PCL was gold-coated similar to the 

PCL tube and characterized with SEM.  

Non-porous and porous PCL films were fabricated to characterize the mechanical 

properties of PCL.  The 3 wt.% PCL dissolved in chloroform and the PCL/NaCl mixture 

(described in section 2.2) was poured on copper foil (MTI Corporation; Richmond, CA) 

secured to an automated tape casting coater (MTI Corporation).  A doctorblade (MTI 

Corporation) with a height of 50 µm was used to evenly spread the solutions.  The PCL 
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films were air-dried.  To delaminate the films from the copper foil, methanol (Sigma) was 

poured on top of the films.  The film with NaCl was then placed in water for at least 12 hr 

to remove NaCl.  PCL rectangular pieces (25 x 6 mm) were cut using a razor, and tensile 

testing was performed with a 1.5 N/min loading rate (n = 5) (Instron; Norwood, MA).  

2.4. In vivo testing  

Animals were housed 2-3 per cage with free access to food and water in a vivarium 

approved by the American Association for the Accreditation of Laboratory Animal Care.  

All animal studies were carried out according to protocols approved by the Institutional 

Animal Care and Use Committee of the VA Healthcare System, San Diego and following 

the IASP Guidelines for Use of Animals in Research.  Adult male Sprague-Dawley rats 

(150-200 g) underwent surgery under anesthesia using ketamine (25 mg/ml), xylazine 

(1300 mg/ml) and acepromazine (0.25 mg/ml). The hindquarters were shaved and 

sterilized with ethanol (Sigma).  Skin was incised parallel to the femur, and the sciatic 

nerve was exposed via a gluteal muscle-splitting approach.  A 10-mm segment of sciatic 

nerve, 5 mm proximal to the sciatic trifurcation, was cut.  A sterilized 10 mm-long 

agarose scaffold inside a 12 mm-long PCL conduit (described in sections 2.1 and 2.3) (n 

= 7) or a 12 mm-long hollow PCL conduit (n = 3) was inserted in each rat nerve gap and 

the PCL conduit was sutured to the ends of nerve stumps with two interrupted 9-0 nylon 

microsutures. Muscle was sutured with 5-0 polyglactin (Vicryl Ethicon Suture; 

Somerville, NJ), and the skin was stapled.  Following surgery, rats received banamine (1 

mg/kg) and ampicillin (0.2 mg/kg) in Ringer’s lactate for three days.  
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Paraformaldehyde (PFA) (4%) was used to perfuse the animals eight weeks after 

implantation.  The site of surgery was cut and the implant and the nerve were transferred 

to sucrose:1xDPBS solution (30:70 wt. ratio) prior to dissection and sectioning.  For 

evaluation of the implant site, 20 µm-thick longitudinal tissue sections were 

cryosectioned.  The slides were treated with proteinase K:antigen retrieval (1:20) 

(Millipore; Darmstadt, Germany) for 20 min.  Subsequent washes were followed using 

50% methanol for 10 min, 100%  methanol for 20 min and 50%  methanol for 5 min.  

Later the slides were placed in 5% of goat serum and Tris-buffered saline (TBS) for 20 

min.  Mouse-anti-Neurofilament 200 (1:500) (Millipore) and rabbit-anti-S100 protein 

(1:500) (Dako; Carpenteria, CA) were used to label neurofilaments and Schwann cells, 

respectively.  Slides were washed with TBS and labeled with Goat-anti-mouse Alexa-

Fluor 488 and Goat-anti-rabbit 594 (Life Technologies, Carlsbad, CA).  Slides are 

visualized using an Olympus BX 53 microscope.  Fluorescent images were taken with a 

mounted camera (Q imaging Retina 2000R) and CellSens Digital Imaging computer 

software. 

3. Results  

3.1. Agarose scaffold and PCL conduit characterization 

The agarose scaffolds were 10.0 mm in length and 1.4 mm in outer diameter (n = 5).  

Each microchannel diameter was 300 ± 10 µm with spacing of 85 ± 5 µm (average ± SD) 

(Fig. 2(a)).  The spacing between the channels (specified as 100 µm on the CNC) was the 

smallest spacing that resulted in continuous linear channels when microdrilling the 

agarose and was therefore used to maximize the lumen volume of the scaffold.  Attempts 
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in reducing the wall thickness to increase the lumen volume resulted in scaffolds with 

inadequate mechanical integrity to withstand implantation.  To ensure microchannel 

linearity, longitudinal images were analyzed (Fig. 2(b)).  The linear features in Fig. 2(b) 

represent the microchannels, which appear continuous and regular along the entire 

scaffold length.  The optical analysis confirms that the microdrilling process was 

successful in fabricating microchannel agarose scaffolds with relatively thin walls (85 ± 5 

µm) and high aspect ratio channels (33:1), but using a mechanical process rather than 

previously introduced chemical removal process
(18)

.  Unlike for example fiber templating 

processes, microdrilling one scaffold was completed in less than an hour and could be 

performed by an individual without a special training.  

The agarose microchannel scaffolds did not have sufficient mechanical properties 

to allow for their suturing to nerve stumps.  Thus, PCL conduits were developed to 

mechanically reinforce the agarose scaffolds  (Fig. 2(c)).  To better understand the 

mechanical behavior, PCL mechanical property characterization was conducted and 

separated into two sections described below: stress-strain behavior and flexibility.  

3.1.1. Characterizing conduit porosity and mechanical properties  

To assess the mechanical integrity of PCL against rupturing and to characterize the effect 

of porosity on this property, tensile testing and SEM was performed.  The elastic moduli 

of non-porous PCL and 70 vol% porous PCL were 182.15 ± 17.46 MPa and 2.09 ± 0.34 

MPa (average ± SD, n = 5), respectively.  In addition, using tensile testing, the strain to 

failure of PCL with and without porosity was obtained (Fig. 2(d) and Fig. 2(e)).  Strain to 

failure is the strain% (percentage of change in length) before rupture and was selected as 
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the characterization method to assess the performance of PCL under tension in vivo.  

Non-porous PCL ruptured at 17.9 ± 1.3% strain while 70 vol% porous PCL (cross-

sectional SEM image shown in Fig. 2(f)) ruptured at 101.8 ± 12.2% strain (average ± SD, 

n = 5).  In addition, while non-porous PCL tore upon puncturing with a suturing needle, 

porous PCL with a thickness comparable to non-porous PCL did not tear and its 

morphology surrounding the punctured site was not disturbed (Fig. 2(g)).  The increase in 

the strain to failure of PCL with increased porosity may be the reason for the improved 

suture-ability of the material when porosity is introduced.  Overall, it was determined that 

porous PCL had adequate mechanical integrity to allow suturing.  Therefore, only porous 

conduits were selected for the rest of the study. 

3.1.2. PCL conduit flexibility 

The PCL conduits were fabricated in lengths > 10 cm and exhibited flexibility 

comparable to state-of-the-art nerve guidance conduits
(11)

.  PCL conduit flexibility was 

demonstrated by measuring the maximum bend angle before a kink occurred.  As 

demonstrated in Fig. 2(h), the tubes were kink-free up to a bend angle of 58˚ exhibiting a 

bend radius of ~7.5 mm.  Based on their flexibility and kink-resistance property, the PCL 

conduits were comparable to state-of-the-art, FDA-approved nerve guidance conduits.  

3.2 Scaffold nerve stump integration 

Microchannel agarose scaffolds placed inside PCL conduits were implanted in 10 mm-

long rats sciatic nerve gaps (Fig. 3(a)).  The agarose scaffolds were 10 mm long and were 

inserted into 12 mm long PCL conduits.  The additional PCL conduit length created 1 

mm overhangs (cuff) on each end of the implant.  The overhangs enabled suturing of the 
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scaffolds to the ends of the nerve stump.  After 8 weeks of implantation, the scaffold 

remained integrated with the nerve, demonstrating the efficacy of the PCL tube in 

stabilizing a scaffold in the highly mobile region of sciatic nerve (Fig. 3(b) and 3(c)).  In 

addition, the PCL tubes and agarose scaffolds maintained their mechanical integrity and 

no signs of degradation were visible.  The overhangs allowed for suturing of the nerve 

stumps to the scaffold.  Such design has been previously used by for example Huang et 

al. when PGA Neurotube
TM

 conduits with 3 mm-long overhangs were sutured to the 

nerve stumps of 10 mm-long rat sciatic nerve gaps using 4 sutures on each side
(28)

.  The 

conduits remained stable for at least 8 weeks confirming the advantages of overhangs in 

stabilizing scaffolds to nerve stumps.  

3.3 In vivo characterization 

Animals were perfused eight weeks post-implantation and longitudinal slides of the 

scaffolds were obtained.  The longitudinal view of the proximal end showed axons and 

Schwann cells were present in about 25% of the scaffold channels of all animals (n = 7) 

(Fig. 3(d-f)).  Neural growth was along the longitudinal axis of the channels.  In addition, 

axons and Schwann cells grew within the 10 mm-long scaffold channels and egressed 

from the scaffolds into the host tissue for three out of the seven animals (Fig. 3(g-i)).  To 

validate the efficacy of microchannel scaffolds for bridging nerve gaps and to confirm 

that the presence of axons and Schwann cells at the distal ends of the scaffolds is 

primarily due to the presence of linear channels, axon growth within hollow PCL 

conduits implanted in 10 mm-long sciatic nerve gaps was assessed.  Fig. 4(a) is a 

representative image of axons at the proximal end of a PCL conduit that did not contain 

Page 13 of 23

John Wiley & Sons, Inc.

Journal of Biomedical Materials Research: Part A

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le

14 

 

an agarose microchannel scaffold.  Axon penetration into the conduit at the proximal end 

was observed, but axon growth was not oriented and axons were scarcely present at the 

distal end (Fig. 4(b)).  

4. Discussion 

A computer-controlled microdrill was used to fabricate agarose hydrogel scaffolds 

consisting of 1 cm-long microchannels.  To provide mechanical support, a robust PCL 

outer conduit technology was introduced to create kink-resistant conduits.  The conduit 

reinforced the agarose microchannel scaffolds and enabled suturing of the PCL conduits 

to peripheral nerve stumps.  While few cm-long PCL conduits could be easily fabricated, 

it is recognized that microdrilling agarose scaffolds longer than 1.5 cm may be 

challenging.  Thus, for nerve gaps larger than 1.5 cm, one possibility is to stack multiple 

agarose scaffolds inside a continuous PCL conduit to provide few cm-long 

scaffold/conduit construct.  Overall, this investigation demonstrated that the combination 

of synthetic microchannel scaffolds and outer protective conduits could be a viable 

alternative to autologous nerve implants. 

In vivo testing in the sciatic nerve model demonstrated that the agarose 

microchannel scaffold/PCL nerve guidance implants were effective in linearly guiding 

and organizing axons and Schwann cells.  When implanted in rat sciatic nerves, linear 

neural cell growth through the length of some of the scaffold channels confirmed the 

microchannel construct provided a structure that, compared to hollow conduits, was more 

effective in linearly guiding axons through the nerve gap and maintaining their 

organization.  While not all the scaffolds provided full growth of axons and Schwann 
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cells through the entire 1 cm nerve gap, we believe that the axon and Schwann cell 

density and degree of axon growth can be significantly augmented if growth factors for 

axon and Schwann cell growth were present.  Providing a longer regeneration time (more 

than the experimented 8 weeks) may also improve neural growth to the distal end.  Future 

work will involve filling scaffolds with growth factors and increasing the experimental 

time in efforts to significantly improve axon growth and recapitulation.   
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Fig. 1. Steps in microdrilling agarose scaffolds. (a) A sacrificial agarose disk is placed 

at the bottom of the well of a well-plate.  An agarose disk with a height equivalent to the 

desired height of the scaffold (10 mm in the present study) was placed over the sacrificial 

layer.  (b) A CNC-controlled microdrilling linear channels in the agarose disk.  (c) A 

titanium tube was sharpened to a knife-edge and was used to cut scaffolds.  (d) The 

scaffolds with linear channels were extracted from the sharpened punch. 

Fig. 2. Agarose microchannel scaffold and PCL conduit characterization.  (a) Cross-

section of the agarose scaffold shows an array of 300 µm inner diameter channels and 85 

µm thick walls.  The solid arrow points to the PCL conduit around the agarose scaffold 

and the dashed arrow points the interstitial channels created by the conduit around the 

scaffold.  (b) The longitudinal view of an agarose scaffold consisted of 10 mm-long 

linear channels.  (c) The longitudinal view of the PCL conduit.  (d) The stress-strain 

behavior of non-porous and porous PCL.  The dashed line is the stress-strain curve for 

100% non-porous PCL and the solid line is the curve for 70 vol% porosity PCL.   (e) The 

stress-strain behavior of 70 vol% porosity PCL.   (f) The SEM image of the PCL fracture 

surface.  (g) The SEM image of a PCL conduit after a simulated in vitro suturing.  (h) 

PCL tube bent around fingertips.  The scale bars are as following: (a) is 0.3 mm, (b) and 

(c) are 10 mm, (f) is 0.02 mm, (g) is 1 mm and (h) is 10 mm. 

 

Fig. 3. In vivo testing and efficacy of conduit/scaffold construct.  (a) Orientation and 

location of the implantation.   (b, c) The scaffold/conduit 8 weeks post-implantation was 

integrated with host tissue and remained intact: (b) in the nerve tissue and (c) dissected 
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from the nerve tissue.  The conduit was sutured to the host nerve using two sutures at 

each end as shown with solid arrows.  Some capillary formation was observed at the 

distal end as indicated by the dashed arrow.  The penetration of axons and Schwann cells 

into the proximal site of a scaffold channel in shown in figures (d) through (f) using 

NF200 (red) for axons and S100 (green) with (d) as the superimposed image, (e) showing 

axon penetration and (f) showing Schwann cell presence.  The arrows demonstrate the 

direction of axon and Schwann cell penetration.  Images of the proximal site are 

representative of all the seven tested animals.  Figures (g) through (i) show the distal end 

of the scaffold with (g) axons and Schwann cells superimposed, (h) axons and (i) 

Schwann cells.  The arrows demonstrate the direction of cell egress.  Images of the distal 

end are representative of three out of the seven tested animals.  The scale bars in (b) and 

(c) are 10 mm. All other scale bars are 0.1 mm. 

 

Fig. 4.  In vivo performance of a hollow PCL tube.  Axon immunoreactivity with 

NF200 (red) in an implanted hollow 12 mm-long PCL conduit demonstrate (a) the 

penetration of axons into the scaffold at the proximal site and their growth at random 

orientations.  (b) Relative to the proximal end, limited number of axons is present at the 

distal end of the conduit.  Images are representative of all the three animals.  The scale 

bars are 0.5 mm. 
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Fig. 1. Steps in microdrilling agarose scaffolds. (a) A sacrificial agarose disk is placed at the bottom of the 
well of a well-plate. An agarose disk with a height equivalent to the desired height of the scaffold (10 mm in 
the present study) was placed over the sacrificial layer. (b) A CNC-controlled microdrilling linear channels in 

the agarose disk. (c) A titanium tube was sharpened to a knife-edge and was used to cut scaffolds. (d) The 
scaffolds with linear channels were extracted from the sharpened punch.  

 
59x22mm (300 x 300 DPI)  

 

 

Page 20 of 23

John Wiley & Sons, Inc.

Journal of Biomedical Materials Research: Part A

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
  

 

 

Fig. 2. Agarose microchannel scaffold and PCL conduit characterization. (a) Cross-section of the agarose 
scaffold shows an array of 300 µm inner diameter channels and 85 µm thick walls. The solid arrow points to 
the PCL conduit around the agarose scaffold and the dashed arrow points the interstitial channels created by 

the conduit around the scaffold. (b) The longitudinal view of an agarose scaffold consisted of 10 mm-long 
linear channels. (c) The longitudinal view of the PCL conduit. (d) The stress-strain behavior of non-porous 

and porous PCL. The dashed line is the stress-strain curve for 100% non-porous PCL and the solid line is the 
curve for 70 vol% porosity PCL. (e) The stress-strain behavior of 70 vol% porosity PCL. (f) The SEM image 
of the PCL fracture surface. (g) The SEM image of a PCL conduit after a simulated in vitro suturing. (h) PCL 
tube bent around fingertips. The scale bars are as following: (a) is 0.3 mm, (b) and (c) are 10 mm, (f) is 

0.02 mm, (g) is 1 mm and (h) is 10 mm.  
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Fig. 3. In vivo testing and efficacy of conduit/scaffold construct. (a) Orientation and location of the 
implantation. (b, c) The scaffold/conduit 8 weeks post-implantation was integrated with host tissue and 

remained intact: (b) in the nerve tissue and (c) dissected from the nerve tissue. The conduit was sutured to 

the host nerve using two sutures at each end as shown with solid arrows. Some capillary formation was 
observed at the distal end as indicated by the dashed arrow. The penetration of axons and Schwann cells 
into the proximal site of a scaffold channel in shown in figures (d) through (f) using NF200 (red) for axons 
and S100 (green) with (d) as the superimposed image, (e) showing axon penetration and (f) showing 

Schwann cell presence. The arrows demonstrate the direction of axon and Schwann cell penetration. Images 
of the proximal site are representative of all the seven tested animals. Figures (g) through (i) show the 

distal end of the scaffold with (g) axons and Schwann cells superimposed, (h) axons and (i) Schwann cells. 
The arrows demonstrate the direction of cell egress. Images of the distal end are representative of three out 

of the seven tested animals. The scale bars in (b) and (c) are 10 mm. All other scale bars are 0.1 mm.  
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Fig. 4. In vivo performance of a hollow PCL tube. Axon immunoreactivity with NF200 (red) in an implanted 
hollow 12 mm-long PCL conduit demonstrate (a) the penetration of axons into the scaffold at the proximal 
site and their growth at random orientations. (b) Relative to the proximal end, limited number of axons is 
present at the distal end of the conduit. Images are representative of all the three animals. The scale bars 

are 0.5 mm.  
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