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Abstract
Background: Liver biopsy is the gold standard to assess pathological features (eg in-
flammation grades) for hepatitis B virus-infected patients although it is invasive and 
traumatic; meanwhile, several gene profiles of chronic hepatitis B (CHB) have been 
separately described in relatively small hepatitis B virus (HBV)-infected samples. We 
aimed to analyse correlations among inflammation grades, gene expressions and clini-
cal parameters (serum alanine amino transaminase, aspartate amino transaminase and 
HBV-DNA) in large-scale CHB samples and to predict inflammation grades by using 
clinical parameters and/or gene expressions.
Methods: We analysed gene expressions with three clinical parameters in 122 CHB 
samples by an improved regression model. Principal component analysis and machine-
learning methods including Random Forest, K-nearest neighbour and support vector 
machine were used for analysis and further diagnosis models. Six normal samples were 
conducted to validate the predictive model.
Results: Significant genes related to clinical parameters were found enriching in the 
immune system, interferon-stimulated, regulation of cytokine production, anti-
apoptosis, and etc. A panel of these genes with clinical parameters can effectively 
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1  | INTRODUCTION

In clinic, liver biopsy is a gold standard to directly assess pathological 
features (eg the inflammation level G) and determine prognosis for hep-
atitis B virus (HBV)-infected patients.1 But it is invasive and traumatic. 
Serum parameters (eg alanine amino transaminase [ALT] and aspartate 
amino transaminase [AST]) are utilized to access the damage of liver 
and HBV viral infection.1,2 In certain cases, these three clinical parame-
ters are necessities for the decision of following appropriate therapy.1,3

Microarray is a well-established and widely used technology, which 
can effectively provide an image of gene expressions.4 Researchers 
have only identified several gene profiles in relative small number of 
HBV-infected patients,5,6 some of which have investigated gene ex-
pressions with single clinical parameter, eg ALT or HBV expression.7 
There are few studies systematically combining clinical parameters, 
gene expressions and pathological inflammation levels to acquire a 
comprehensive view of chronic hepatitis B (CHB), not to mention in 
a large-scale sample size. Other researchers began to explore a liquid 
biopsy method to assess liver function based on single clinical pa-
rameter or in other liver disease (eg chronic hepatitis C).8-10 There is 
barely any effective predictive model for inflammation grades of CHB 
right now, and liquid biopsy method is even more elusive.

In this article, we carried out the first study combining three clini-
cal parameters (serum ALT, AST and HBV-DNA), gene microarray data 
and inflammation grades of CHB. We determined a batch of gene 
expressions significantly correlated with these clinical continuous pa-
rameters and uncovered pathways and networks related to CHB by 
comprehensive bioinformatics analyses. More importantly, it is the 
first time to construct an effective model to diagnose and predict in-
flammation grades in HBV-infected patients by using these significant 
gene expressions and/or three clinical parameters, which can help to 
develop liquid biopsy method for detecting the pathology of CHB.

2  | MATERIALS AND METHODS

2.1 | Collection of samples and clinical data

This study was approved by the ethics committees of Fudan University 
(Shanghai, China). All subjects provided written informed consents 

according to institutional guidelines. A standardized procedure was 
established for preservation of liver biopsy sample and RNA extract 
method. Briefly, after the biopsy was taken, it was quickly submerged 
in RNAlater, which is an effective stabilizer of tissue RNA, and stored at 
4°. The sample was later shipped to a biobank and stored at −80° for 
long-term storage. The workflow of microarray analysis requires rigor-
ous quality control in RNA integrity. Only RNA samples extracted with 
RIN>=7.0 and 28S/18S>0.7 were processed further. Four sampling sites 
must completely follow this standardized procedure, and patients must 
have same CHB diagnostic criteria, including HBV persistent infection 
and HBsAg positive. Liver biopsy showed varying degrees of inflamma-
tory necrosis, and there is no distribution bias of liver disease grades 
among these sites. Normal samples were obtained and validated by liver 
biopsy with non-HBV-infected. Hepatitis samples were obtained by 
liver biopsy and blood sampling was conducted. The samples with HCV 
infection or metabolic liver injury (eg fatty liver and chronic alcoholic 

predict binary classifications of inflammation grade (area under the ROC curve [AUC]: 
0.88, 95% confidence interval [CI]: 0.77-0.93), validated by normal samples. A panel 
with only clinical parameters was also valuable (AUC: 0.78, 95% CI: 0.65-0.86), indicat-
ing that liquid biopsy method for detecting the pathology of CHB is possible.
Conclusions: This is the first study to systematically elucidate the relationships among 
gene expressions, clinical parameters and pathological inflammation grades in CHB, 
and to build models predicting inflammation grades by gene expressions and/or clinical 
parameters as well.

K E Y W O R D S

clinical predictive model, gene expressions, HBV infection, inflammation grades

Key points
•	 Correlations among inflammation grades, clinical param-

eters and gene expressions in chronic hepatitis B (CHB) 
patients are only partially enclosed; meanwhile, liquid 
biopsy prediction of inflammation grades is still 
unexplored.

•	 A list of significant genes correlated with clinical parame-
ters was revealed in several functions and pathways from 
large-scale samples.

•	 A panel of genes and clinical parameters can effectively 
predict binary classifications of inflammation grade (area 
under the ROC curve [AUC]: 0.88, 95% confidence inter-
val [CI]: 0.77-0.93).

•	 A panel with only clinical parameters also has a power 
(AUC: 0.78, 95% CI: 0.65-0.86) to predict inflammation, 
which can be further used in the liquid biopsy method for 
detecting the pathology of CHB.
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hepatitis) were excluded. After extraction of cRNA, liver tissues were 
processed by GeneChip Human Genome U133 Plus 2.0 Arrays.

Three clinical parameters were measured in blood. The samples 
with inexact values (>5 × 107 or <500) of HBV-DNA were excluded. 
The activity of inflammation was measured and confirmed by patho-
logical examination of liver biopsies from two experienced pathol-
ogists separately. They were characterized into five grades (G0-4) 
following the pathological analysis of the biopsies.1,11,12

2.2 | Data processing and bioinformatics analysis

CEL files were performed by Affymetrix Expression Console. Probe 
set signals were normalized and summarized by the robust multi-array 
average algorithm13 to adjust different batch effects. All samples 
passed quality control. The data discussed in this publication have 
been deposited in NCBI’s Gene Expression Omnibus and are acces-
sible through accession number GSE83148.

We normalized the values of parameters, by log10 transformation 
of HBV-DNA values and min-max normalization of values of ALT and 
AST. Subsequently, the least angle regression (LARS) algorithm (pack-
age Lars14) was performed to obtain significant probes that correlated 
with ALT, AST and HBV-DNA, respectively. We only used the ex-
pression data of the samples with valid information. Later, significant 
probe-level sets were converted to gene-level by using annotation file.

Pathway and gene ontology (GO) enrichment were performed 
by using the Database for Annotation, Visualization and Integrated 
Discovery (DAVID, http://david.abcc.ncifcrf.gov/). Cytoscape was 
applied to build gene networks with geneMANIA plugin.15

2.3 | Principal component analysis and 
linear regression

PAST (http://folk.uio.no/ohammer/past) was used to carry out prin-
cipal component analysis (PCA) and linear regression to investigate 
expressions of significant genes correlated with ALT and AST. The 
loading coefficients of significant genes were obtained according to 
different PCs. The scatter values of HBV-infected samples in each PC 
were transformed from the expression values of each sample by load-
ing coefficients. In the linear regression (Figure 4D) for PC3, inflam-
mation grades were considered as numerical variables 0-4 and PC3 
scatter values were considered as dependent variables, with box plots 
and fitted lines plotted.

2.4 | Binary classifications of inflammation 
grades and predictive models by machine-
learning methods

G0 and G1 were considered as mild inflammation and G 2-4 as moder-
ate or severe inflammation.1,12 Based on these, binary classifications 
(mild or exacerbated) of G were introduced. The expressions of signifi-
cant genes, the above three clinical parameters and information of sex 
and age were then utilized to predict these binary classifications of G.

Based on the G classifications, feature selections were conducted 
by random forest (RF) among significant genes that correlate with 

either ALT and HBV-DNA, ALT and AST, or AST and HBV-DNA. A gene 
panel was obtained. In this study, we used K-nearest neighbour (KNN), 
support vector machine (SVM) and RF to build predictive models for 
three modules. In general, these are all machine-learning methods for 
classification and regression.16,17 KNN is a non-parametric algorithm, 
assigning weights to the contributions of neighbours on the basis of 
the basic principle of majority voting; SVM is a non-probabilistic binary 
linear classifier, assigning new examples to one category or the other 
based on a set of training examples; and RF constructs decision trees by 
training sets and outputs the class either by the mode of classification 
or regression of the individual trees. KNN was implemented in Matlab 
(Mathworks, Natick, MA, USA). SVM (Package e1071) and RF (Package 
randomForest) were run by r. Three modules for predictive models were 
separately built: Module 1 (with information of three clinical parameters 
and adjustment of sex and age), Module 2 (with genes panel obtained 
by feature selections) and Module 3 (with all information of selected 
genes panel, clinical parameters, and adjustment of sex and age). All 
modules with three predictive methods were performed by five-fold 
cross-validation to avoid over-fitting. ROC curves were plotted (pack-
age ROCR), and the area under the ROC curve (AUC) was calculated 
(package pROC) with 95% confidence interval (CI). All normal samples 
were conducted as validations by Module 2 with RF. All packages can 
be downloaded from Bioconductor (http://www.bioconductor.org).

3  | RESULTS

3.1 | Distribution of HBV-infected patients by 
clinical parameters

One hundred and twenty-two liver hepatitis tissues infected with HBV 
were obtained. Of these (Figure 1 and Table S1), 90 had exact quanti-
tative HBV-DNA values (ranging from 603 to 1 × 109), and 105 samples 
had valid quantitative ALT (normal values: 7-40, and abnormal values:  
41-1554.3) and AST values (normal values: 10-35, and abnormal values: 
36-706.1). One hundred and nineteen samples were portrayed by G (from 
G0 to G4), with 34 G0 samples, 33 G1 samples, 31 G2 samples, 15 G3 
samples and 6 G4 samples. Six normal samples were all identified as G0.

3.2 | Analysis workflow

We devised a framework for analysing three clinical parameters, gene 
microarray data and inflammation grades of CHB (Figure 2A). After nor-
malization, we manipulated LARS into 90 samples with exact values of 
HBV-DNA to analyse the significances correlated with HBV-DNA and 
105 samples with exact values of ALT or AST to analyse the probes sig-
nificantly correlated with ALT or AST. After annotation, we finally identi-
fied 80 significant genes correlated with serum HBV-DNA, including 48 
positive and 32 negative, 96 significant genes (53 positive and 43 nega-
tive) correlated with serum ALT, and 92 significant ones (45 positive and 
47 negative) correlated with serum AST, respectively (Figure 2B). Two 
genes, IGHA1 and ZNF75A, significantly correlated with both values of 
serum HBV-DNA and ALT. Sixteen others significantly correlated with 
both values of serum ALT and AST (Figure 2B and Table S2).

info:ddbj-embl-genbank/GSE83148
http://david.abcc.ncifcrf.gov/
http://folk.uio.no/ohammer/past
http://www.bioconductor.org
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3.3 | Significant gene pathway, GO and 
gene networks

A gene pathway consists of a group of interacting components, act-
ing in concert to perform specific biological tasks.18 Utilizing the 
DAVID, we identified seven significant pathways. For HBV-DNA, 

hTert transcriptional regulation (P-value=2.42 × 10−2), lectin-induced 
complement pathway (P-value=4.11 × 10−2) and classical comple-
ment pathway (P-value=4.11 × 10−2) were identified. For ALT, B 
cell activation (P-value=2.51 × 10−2) was highlighted. For AST, B cell 
activation pathway was also significantly (P-value=4.97 × 10−2) en-
riched, so was pathways in cancer (P-value=7.61 × 10−4) and path-
way of melanoma (P-value=4.69 × 10−2) (Table 1). Significant GO 
terms are listed in Table S2, which are mostly enriched in immune re-
sponse (GO: 0006955), apoptosis (GO: 0042981, GO: 0043066, GO: 
0060548), positive regulation of cytokine production (GO: 0001819) 
and etc.

For gene networks, geneMANIA can search large, publicly avail-
able biological datasets to illuminate interactions.15 Genes were linked 
by different colour lines, referring to different interactions (Figure 3): 
co-expression, co-localization, physical interaction and shared protein 
domains. The number of lines represents the importance of the gene 
in the network. In the ALT-correlated network, 11 significant genes 
had more than three lines, eg FLI1, STK17B and ANK2. In the AST-
correlated network, there are three sub-networks, and DGUOK is an 
important one which is not in the significant gene list but interacts 
closely with others. In the HBV-DNA-correlated network, Sept10 and 
SLC9A3R2 are at the core of two sub-networks.

3.4 | PCA reveals gene expressions correlated with 
three biological categories: clinical parameters, gene 
functions and inflammation grades

Principal component analysis can be used to determine key variables 
in gene expression data by using an orthogonal transformation.19 By 
applying PCA to 16 significant gene expressions that correlated with 
ALT and AST, we obtained three highlighted PCs, each of which can 
explain more than 10% of variance: the first (PC1) explained 19.1% 
of variance (eigenvalue=3.052), the second (PC2) explained 13.8% of 
variance (eigenvalue=2.202), and the third (PC3) explained 10.7% of 
variance (eigenvalue=1.705). The more portion of variance it can ex-
plain, the more important one component is. We thereby were figur-
ing out biological meanings behind these corresponding components.

In Figure 4A, genes with positive loading coefficients in PC1 are 
the same ones that positively correlate with serum ALT and AST, and 
the others with negative loading coefficients have negative correla-
tions. Therefore, PC1 mainly represents the correlative effects of 
serum ALT and AST.

According to loading coefficients in PC2 (Figure 4B), DLX3, PRDX2 
and YBX1 are enriched in the GO term regarding regulation of tran-
scription with positive coefficients (Table S2). TTLL4, TTLL7 and DCTN4 
are enriched in microtubules, and IGF1R and NRXN1 are related to 
axon-genesis, all of which represent significant genes with negative co-
efficients correlated with the function of cell cytoskeleton. Therefore, 
PC2 mainly represents the functional differentiation of genes as serum 
ALT and AST levels are changing in the HBV-infected patients.

For PC3 (Figure 4C), we carried out a linear regression analysis 
between inflammation grades of CHB and scatter values of each sam-
ple generated by loading coefficients in PC3 and found a significant 

F IGURE  1 Value distribution of three clinical parameters. 
The Y-axis is the number of samples, and the X-axis is the value 
of corresponding serum parameters. (A) and (B) the distributions 
of serum alanine amino transaminase (ALT) and aspartate amino 
transaminase (AST) in 105 hepatitis samples, respectively; (C) the 
distribution of serum hepatitis B virus DNA in 90 hepatitis samples 
with transformed by log10
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linear correlation between them (P-value=6.69 × 10−3; Figure 4D). 
Therefore, PC3 mainly explains a linear correlation between inflamma-
tion grades and gene expressions.

3.5 | Random forest model efficiently diagnoses the 
inflammation grades in CHB

According to PCA, there is a correlation between inflammation grades 
of CHB and gene expression in PC3. Inspired from this, we further 
constructed diagnosis models to predict inflammation grades based 

on the 18 sharing significant genes (two correlated with ALT and 
HBV-DNA and 16 correlated with ALT and AST).

A binary classification of G was introduced based on the categories 
of all inflammation grades.1,3 By utilizing RF, a gene panel with nine 
genes (DLX3, ALPK1, YBX1, ZNF75A, SPP2, TTLL4, TTLL7, AGAP3 and 
DCTN4) among 18 significant ones for binary classification of G were 
selected. RF, SVM and KNN were further used to construct predictive 
models, with the involvement of three clinical phenotypic parame-
ters and adjustment of sex and age. To remove the impact of missing 
data on results, we only utilized 81 samples with valid information of 

F IGURE  2 Workflow for this study 
and Venn diagram of significant genes for 
three clinical parameters. (A) Workflow for 
analysing three clinical parameters, gene 
microarray data and inflammation grades 
of chronic hepatitis B; (B) the Venn diagram 
of significant genes, including left circle 
representing significant genes (positive 
vs negative) correlated with hepatitis B 
virus (HBV)-DNA, the middle representing 
significant genes correlated with alanine 
amino transaminase (ALT), and the right 
representing significant genes correlated 
with aspartate amino transaminase (AST). 
The intersection sets are significant genes 
shared in the results of HBV-DNA and ALT 
and AST, respectively

TABLE  1 Significant pathways correlated with three clinical parameters (P-values<.05)

Type Database P-value Genes Term

ALT BBID .0251 IGHG3, POU2F2, IGHM B cell activation

AST KEGG .0008 IGF1R, FGF16, SMAD3, MDM2, BRCA2, BIRC5, ITGB1, TRAF4 Pathways in cancer (hsa05200)

KEGG .0469 IGF1R, FGF16, MDM2 Melanoma (hsa05218)

BBID .05 IGHG1, POU2F2 B cell activation

HBV-DNA BIOCARTA .0241 SP1, WT1 Overview of telomerase protein component 
gene hTert transcriptional regulation

BIOCARTA .0411 C4A, C4B Lectin-induced complement pathway

BIOCARTA .0411 C4A, C4B Classical complement pathway

Three databases (BBID, KEGG and BIOCARTA) were subjected to pathway enrichment analysis. ALT, alanine amino transaminase; AST, aspartate amino 
transaminase; HBV, hepatitis B virus.
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HBV-DNA, ALT, AST, sex and age (Table S1). Sensitivity, specificity 
and classification accuracy of each method are shown in Table 2, and 
ROC curves are plotted in Figure 5. All values are averaged in five-fold 
validations and values of AUC are shown with 95% CI, according to 
different predictive modules and models.

Using genes panel, Module 2 generally performed better than 
Module 1 by using clinical parameters, based on the results of SVM 
(0.749 vs 0.734), KNN (0.723 vs 0.729) and RF (0.801 vs 0.784; 
Table 2). Notably, when combining all information (Module 3), the pre-
dictive power of KNN (0.806, 95% CI: 0.711-0.898) and RF (0.880, 

95% CI: 0.771-0.933) increased dramatically. More importantly, 
even though the powers of Module 1 are relatively low (RF: 0.784, 
SVM: 0.734 and KNN: 0.729), it is still an improvable model by only 
using clinical parameters to predict inflammation grades, indicat-
ing that liquid biopsy method for detecting the pathology of CHB is 
possible. Lastly, we carried out validations by conducting Module 2 
of RF method on six normal samples. All six samples were predicted 
as mild inflammation (G0 or G1), with predicting probability up to 
0.827±0.037. In conclusion, RF is the most powerful model for the 
diagnosis of inflammation grades of CHB when combining expressions 
of nine genes, three clinical parameters, sex and age.

4  | DISCUSSION

In this study, we considered clinical parameters as continuous vari-
ables and analysed gene expressions by an advanced regression algo-
rithm (LARS), which is more efficient to obtain significant genes than 
regular linear regression method.14 Besides, in CHB samples, part of 
them have a normal level of ALT, AST or inflammation grade (G0), 
which can be considered as baseline values in LARS analysis, PCA 
and predictive models, as healthy controls in the regular case-control 
study. Moreover, to maximize the utilization of all information and 
eliminate the impact of missing data, we discarded samples with miss-
ing data in separated steps.

Several genes and pathways correlated with HBV infection and 
immune response were discovered. TRD, CD84, HLA-DRB4 and B cell 
activation pathway (Table 1) with genes IGHG3, POU2F2 and IGHM 
positively correlated with ALT values, suggesting that a proliferation 
of immune cells and regeneration of liver cells occurs as an increase of 
serum ALT after HBV infection. Intriguingly, though the gene expression 
profiles came from a mix of different types of cells, these inflammation-
related genes and pathway indicate the inflammatory cells mixing with 
hepatic cells may have contributed to the overall gene expression pat-
terns as HBV infection getting worse. In the core of ALT-correlated net-
work (Figure 3A), STK17B with positive correlation was reported to form 
a novel signalling module which controls calcium homeostasis following 
T cell activation.20 Another core gene PRF1 was reported as an important 
role in liver cell injury after HBV infection21 and HBV-DNA cleanup.22 
Additionally, in the HBV-DNA network (Figure 3C), a core significant 
gene SLC9A3R2, co-expressing with ACACB and SP1, is a membrane 
transporter of HBV and HDV entry.23 The AST positive specific-related 
gene CD58 (Figure 3B) was also found related to the microtubule and 
immune response system and significantly increased with the severity 
of HBV infection.24 Intriguingly, by utilizing interferon-stimulated genes 
datasets (Interferome: http://interferome.its.monash.edu.au), we found 
seven interferon-stimulated genes that are significantly correlated with 
serum HBV-DNA. MKX, TSNARE1 and EFR3A are positively and ACSF3, 
H2AFJ, XRN1 and ZNF677 are negatively correlated with the increasing 
value of serum HBV-DNA in infected hepatocytes.

In the AST-related pathway, pathways related to cancer were found 
(Table 1), supported by the fact that an increasing serum AST often indi-
cates a severe progression of liver cell damage. SP1 and WT1, clustered 

F IGURE  3 Networks generated by significant genes correlated 
with three clinical parameters. (A) Networks correlated with alanine 
amino transaminase; (B) and (C) networks correlated with aspartate 
amino transaminase and hepatitis B virus-DNA, respectively. The 
red circles represent positively correlated genes and the green 
represents negative ones. The grey circles represent important genes 
which are not in the significant gene lists but interact closely with 
significances. The lines interlinking two genes represent the type of 
interaction between two genes: orange lines represent co-expression, 
dark blue ones represent co-localization, red ones represent physical 
interaction and purple ones represent protein domain sharing

http://interferome.its.monash.edu.au
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F IGURE  4 Principal component analysis 
of 16 significant genes correlated both with 
alanine amino transaminase and aspartate 
amino transaminase. (A) The plot of genes 
for PC1 with 10 positive and 6 negative 
loading coefficients; (B) the genes for PC2 
with 8 positive and 8 negative coefficients; 
(C) the genes for PC3 with 7 positive and 9 
negative coefficients; (D) boxplot between 
G and PC3 scatter values of 102 hepatitis 
B virus-infected samples. Fitted linear 
regression lines, R value and P-values are 
shown
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in the pathway of hTert transcriptional regulation (Table 1), are reported 
to significantly correlate with HBx expression25 and hepatocellular carci-
noma (HCC) development.26-28 Interestingly, among 80 significant genes 
correlated with HBV-DNA, 8 (10%) of them have been reported to cor-
relate with HCC26-30 or other cancers,22,31,32 indicating that they may also 
play important roles in the progression from HBV-induced inflammation 
to HCC. Gene IGHA1, which shares significant positive correlation with 
HBV-DNA and ALT, is also reported involving in gastric tumorigenesis.33

Notably, in PCA of expression data of 16 significant genes, five prin-
cipal components (PCs) had an eigenvalue more than 1 and explained 
58.7% of variance in total. The top three PCs can reveal specific bio-
logical insights and explain 43.5% of variance. In the feature selection 

of predictive model, nine genes were selected based on their mean 
decrease accuracy (MDA): YBX1 (MDA=47.8), ALPK1 (MDA=28.0), 
ZNF75A (MDA=18.2), SPP2 (MDA=13.2), DCTN4 (MDA=12.3), AGAP3 
(MDA=7.95), DLX3 (MDA=6.86), TTLL4 (MDA=4.68) and TTLL7 
(MDA=2.57). All genes above were mainly related to protein phos-
phorylation, transcription functions and the major histocompatibility 
complex. Five of them are related to transcription, indicating the im-
portance between transcription and inflammation grades.

For predictive models, three modules were conducted separately 
to find the most appropriate model. We suggest RF as a machine-
learning black box to aid in prediction and diagnosis for binary classi-
fication of inflammation grade of CHB, which has an effective power 

Specificity Sensitivity Accuracy AUC (95% CI) Module

SVM 0.6053 0.7209 0.6667 0.7339 (0.5832-0.8146) Module 1

0.6579 0.6744 0.6667 0.7489 (0.5832-0.8165) Module 2

0.6579 0.6512 0.6543 0.7093 (0.5849-0.8129) Module 3

KNN 0.5802 0.7971 0.6931 0.7286 (0.6244-0.8407) Module 1

0.6938 0.8150 0.7187 0.7226 (0.6543-0.8604) Module 2

0.6178 0.8857 0.7666 0.8057 (0.7108-0.8982) Module 3

RF 0.6053 0.7674 0.6914 0.7841 (0.6450-0.8562) Module 1

0.6842 0.7209 0.7037 0.8015 (0.6903-0.8874) Module 2

0.6842 0.7674 0.7284 0.8800 (0.7710-0.9328) Module 3

TABLE  2 Specificity, sensitivity, 
accuracy of classification and area under 
the ROC curve (AUC) of predictive 
modules based on three methods with 
five-fold cross-validation

F IGURE  5 ROC curves based on three 
predictive models and three modules with 
five-fold cross-validations. Mean boxplot 
curves for each model are shown with the 
values of area under the ROC curve (AUC) 
and 95% confidence interval, according to 
different predictive modules (using three 
clinical parameters only, nine genes only, 
or clinical parameters and genes). Dotted 
curves represent five-fold validations of 
each experiment
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(0.880) with the help of three indispensable clinical parameters and 
nine genes. In previous studies, there established a predictive model 
by Xu et al.9 using red blood cell distribution width value, ALT and 
other blood parameters (albumin and platelet) from 446 patients to 
predict CHB inflammation with highest AUC of 0.765. However, we 
have had a relative higher power of AUC of 0.784 (RF, AUC: 0.784, 
95% CI: 0.65-0.86) by using the three clinical parameters from 81 sam-
ples to predict inflammation grades in the present study. More sam-
ples and studies are highly required based on our models, which may 
substitute liver biopsy by liquid biopsy method into a practical clinic 
protocol to characterize the pathological inflammation.

In conclusion, we carried out the first analysis of large-scale HBV-
infected samples by combining gene expressions data and three 
clinical parameters (ALT, AST and HBV-DNA). We considered the pa-
rameters as continuous variables and found differentially expressed 
genes related to these parameters. Most of these significant genes are 
enriched in immune response, interferon-stimulated, anti-apoptosis 
and cell proliferation. Some important ones are also reported to 
correlate with HCC or other cancers.

We found that genes correlated with clinical parameters provide 
insights for inflammation grades of CHB. We thereby constructed 
models with novel panels and validated by six normal samples, which 
can effectively predict binary classifications of inflammation and aid 
in the diagnosis of CHB. Notably, the novel panel with only clinical 
parameters was quite valuable, indicating that liquid biopsy method 
for detecting the pathology of CHB is possible.
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