OPTIMUM AMBULANCE LOCATION IN SEMI-RURAL AREAS

File copy

14904

Richard A. Volz

,

Highway Safety Research Institute University of Michigan Huron Parkway and Baxter Road Ann Arbor, Michigan 48105

OPTIMUM AMBULANCE LOCATION IN SEMI-RURAL AREAS

by

Richard A. Volz*

Abstract

As large medical centers become ever more capable, the existence of well equipped, well staffed, and rapid emergency ambulance service becomes increasingly important. This paper presents a method for determining the optimum location of ambulance stations to minimize the average response time to emergency calls. A new point-to-point driving time model is introduced, and a computer optimization algorithm is used to determine optimum locations. A constraint that the average response time to any point in the service area be less than some specified minimum is also considered. The method is applied to Washtenaw County, Michigan.

*The author is with the Department of Electrical Engineering and the Highway Safety Research Institute, The University of Michigan, Ann Arbor, Michigan.

i

OPTIMUM AMBULANCE LOCATION IN SEMI-RURAL AREAS

By Richard A. Volz

Introduction

Emergency ambulance service is vital in any community, large The availability of an ambulance, or even a few minutes or small. difference in the time of its arrival, may make the difference between life and death for a patient. It is important, therefore, that adequate service be provided and that the facilities available be utilized so as to derive maximum public benefit from them. To achieve this, three basic subsystems of the emergency ambulance service must be considered; they are communication, transportation, and medical treatment. Fortunately, for most purposes these may be considered separately. In this report the second subsystem, transportation, is studied. In particular, the locations at which a given number of ambulances should be stationed to minimize the response time to a call is determined. By noting the results for varying numbers of ambulances one can determine the benefit to be derived from purchasing additional vehicles. These are important considerations, for in many emergency situations one of the most critical factors is how rapidly aid can arrive.

The technical problems which arise in the determination of ambulance locations are similar to those which occur in conjunction with many service- and business-location studies. Banks have considered location determination for branch offices, religious organizations for church sites, governmental agencies for a variety of services, etc. (See [1], [2], and [3] for a few examples.) The list could be very long, since the problem has been considered in many different contexts. In most cases, however, the work was primarily that of analysis. Only recently have people begun to utilize simulation and optimization techniques. Notable examples of this are the studies on fire station location currently being conducted by the Fels Institute at the University of Pennsylvania, and Dartmouth College, and the investigations into ambulance location by Savas [4], and by Gordon and Zelin [5].

Savas studied the allocation and location of ambulances for a hospital district in New York City. The primary results obtained there were: the number of ambulances should be sufficient to prevent the formation of significant queues, the ambulances should be dispersed throughout the service area, and large service areas with no district restrictions on ambulance travel were most efficient.

The study described in this report differs from that conducted in New York City in several ways. It was conducted for Washtenaw County, a semi-rural area in southeastern lower Michigan (see fig. 1), whose basic characteristics differ from those of a district or section of a large city. The population density is much lower. Consequently, a requirement that there be enough vehicles to prevent significant queues from forming is inadequate. With the smaller total population, the number of ambulances necessary to prevent this is quite small. The larger geographical area, on the other hand, poses an additional problem. Enough ambulances must be available to keep the driving time to various points in the county acceptably small. In semi-rural Washtenaw County this number is larger than that required to prevent significant queues.

Also, there is a basic difference in approach in this investigation. In the Savas study, the locations of the dispersed ambulances were determined through trial and error by a human operator using Monte Carlo techniques with a relatively straight-forward simulation model. In this effort, a more complex driving time model is used with explicit equations for the average response time, and the ambulance locations are determined by an iterative optimization algorithm. The purpose of the study is twofold: to obtain explicit usable results for Washtenaw County, and to investigate the feasibilities of the model and of the optimization procedures used for semi-rural areas.

This report is organized so the nonmathematically-oriented reader may study it without being encumbered with detailed equations. Chapter 2 discusses the problem formulation and the basic assumptions and approximations made; it also describes the data base used for the study. Chapter 3 presents the results. All of the detailed derivations of the equations are contained in the appendices.

Chapter 2

Problem Formulation

Problem Statement and Assumptions

One of the important characteristics of an ambulance service is its ability to respond rapidly to emergency calls. There are many important factors which influence this; they include the number of ambulances assigned, the locations at which they are stationed, road conditions, time of day, day of week, etc. Over many of these factors the ambulance service has little or no control, e.g. time of call. Consequently, we examined two factors over which control can be exercized - the number of ambulances and their station locations - and treated all other factors as uncontrolled random inputs. As a means of evaluating the system performance, the response time - defined as the time difference between the receipt of a call requesting ambulance service and the arrival of an ambulance at the scene - is useful. However, it is not only the response to a single call that is important, but the overall performance of the system. Consequently, the average response time with respect to all emergency calls in the county was used. The problem may be stated very simply as follows:

Problem 1. Given that there are N ambulances to provide service to the county, determine the station locations for these ambulances which minimize the expected (or average) value of the response time.

The effect the number of ambulances has on the response time can be determined by solving problem 1 for varying values of N.

An expression for the average response time, denoted \overline{T}_r , is developed in Appendix A. Using the driving time model described in Appendix B and the minimization procedures in Appendix C, a set of ambulance locations was determined which minimized \overline{T}_r . In these developments, several simplifying assumptions and approximations were made. Reasonable operating procedure dictates that when a call is received, the nearest (in the sense of driving time) ambulance should be dispatched. It was assumed that if K ambulances are in service, the remaining, N-K, ambulances are optimally located. That is, we assumed that every time an ambulance goes into service, the remaining vehicles are instantaneously relocated in an optimal manner.* The fact that transition from one station location to another is not instantaneous would be a problem only if a vehicle received a call during a transition. Since the transition time is small, the probability of this occurring is also small. Even if this did occur, the ambulance would be on the way to the new station and the time difference in many cases would be small. Consequently it was felt that this assumption is justified.

A second important consideration is route selection. With known techniques it is not possible to specify the optimum route for the ambulance in a short enough time to allow the solution to problem 1 to be carried out. Therefore it was assumed that the driver would make a reasonable choice of route and that his route would be close to the optimal; it was further assumed that if a reasonable route were picked from the map it would be close (in the sense of driving time) to that actually selected by the driver. It was recognized that this introduces a margin for error. However, more accurate methods do not appear feasible at this time, and it was believed that if care is taken the errors can be held to acceptable limits. The details of the route selection from the map are discussed in Appendix C.

To simplify the calculation of $\overline{T}_{r'}$ the county, which is 30 miles by 24 miles, was divided into squares one mile on a side. All calls within a one mile square were considered to come from a single representative point within that square and all distances from that square were measured relative to that point. This simplified the arithmetic because each location could then be represented by a pair of integer coordinates. If desired, smaller squares could be used; the procedures would be the same. The only difference is that greater computation time would be required.

*The idea of dynamically relocating the remaining vehicles is reasonable since the existing ambulance service utilizes a relocation scheme.

To achieve simplification it was assumed that the source of a call and the number of vehicles in service when it is received are statistically independent of all the variables in the system. In a strict sense this need not be true. For example, poor road conditions would lead to a greater number of highway accidents, and thus it would change somewhat the distribution on source of calls. However, the errors should be relatively small, and if desired, the problem could be segmented to achieve an even better approximation. One could solve the problem under different fixed conditions; e.g., 4-6 p.m. on weekdays when traffic is heavier, or times for which roads are covered with snow. For each of these a different solution may be obtained, and for each the assumption is valid. While this segmentation is theoretically possible, neither the data to make many segmented solutions meaningful nor the funds to support the necessary computer work were available. Consequently, no such segmentation was done.

Finally, it was assumed that there is always an ambulance available when a call is received. That is, a user would never need to wait for an ambulance to be released from a previous call. This is reasonable since only twice during a 12-month period were all of the ambulances in the present service simultaneously in use.

The response time, then, was evaluated under these assumptions and approximations using the procedures described in Appendices A and B. Using the method in Appendix C, a digital computer solved for the ambulance locations that minimize \overline{T}_{μ} .

Although the average response time is a significant measure of the ambulance system performance, one might also want to specify that no response be longer than some predetermined maximum, T_m . In an absolute sense this cannot be guaranteed. However, one could include a constraint which would require that the average response time to any point in the county be less than T_m if at least r ambulances are available at the time a call is received. This latter condition on the number of ambulances available is necessary because if the number were too low there might be no set of locations from which one could reach any point within T_m minutes.

Thus, one can state:

Problem 2: Given that there are N ambulances to provide service to the county and that the average response time to any call is required to be less than T_m if at least r ambulances are available at the time the call is received, determine the ambulance station locations which minimize the expected (or average) value of the response time.

This problem will be called the constrained problem and problem 1 will be referred to as the unconstrained problem.

Data

The data used in this study were made available through the Washtenaw County Health Department and the Superior Ambulance Company. Superior maintains a thorough record on each call received. Among the pertinent information recorded are the location from which an ambulance left, the location to which it went, the time of the call, the time of departure, the time of arrival at the scene, the time the ambulance left the scene, and the time it arrived at the hospital (or other secondary destination). The times are recorded by a radio dispatcher using a time clock whose scale is in minutes.

The information obtained from these data include the density of emergency calls* in the county, an estimate of ambulance speeds on different types of roads, and the probability that a given number of ambulances will be in use when a call is received. Because response time is most important in emergency cases, only those calls were used in the first two computations. For the period October 1, 1967 to September 30, 1968 emergency calls totaled 1523. For the last computation all calls during the year were included.

Figure 2 shows the density of calls throughout the county. Each number in the figure is the number of emergency calls received

*A call was considered to be an emergency if both siren and lights were used by the ambulance.

0	0	0	0	0	0		0		0	r=1	-	16	9	16	F F	14	2		teres	0	0	0	0
0	0	0	o	2	0	Q	2		0	0	11	26	30	10	0	-	0	2	0	0	0		0
0	o		_ 0	0	0	e	0	4	e No No No		4	22	37	10	I I I	0	7	٥	o	с Ч Д	0	0	5
0	prest	0	A LEN 0	-	0	0		~0	SUPERIOR 1 0	ŝ	2	21	107	34	3 1	0			0	0.3 ATICHSTA	5	rmi	с.
-	-	1	л О	0	0	0	0	o	្តខ	0	2	22	36 1	11	5 KI	4	0	0	o	0	0		1
-1	0	0			0	F	2	~	U	2	0	ω	ŝ	10	0	0	0	,	2	0	1	0	0
0	0	0	0	, mail	0		0	4	0	13	ω	17	2	2	5		.0	0	ŝ	0	1	4	2
	0	o	ο	0	0		0	6	2	(n)	4	32	6	۲ ח	م س	0	5	5	0	0	0	0	16
0	o	o	ELD 0	0	0	н	Ч	5	ARBOR	ъ	23	17	6	1		5	0	0	0	0	0	N	S
5	F -1	0	NORTHFIELD	0	0		4	ŝ	ANN AI	36	38	13	10	2	PITTSFIELD	2	0		1	0.000		ŝ	
6	5		NOF 5	o	. ==4		5	2	26 AN	105	20	4	ŝ	2	<u>д</u> О	0	0		0	5	0	0	0
8	5	••••	ò	0	0	ò	2		22	20 1	15	m	0	0		0	4	0	0	ò	0	0	0
0	0	0	0	0	0	0	0	2	10	21	2	2	0	m		0	0	41	0	0		0	0
1	0	0	2	0	0	0	ю	0	12	5	-	m	2		0	5	0	0	0		0		0
o.	Ч	0	H O	0	υ	0	 1	4	o∞			0	0	C	_ 0		0			0	O R	,	Ö
0	0	r=4	WEBSTER 0 0	- 0		1		m	SCI0 4	o	2	0	o	0	I CODI	0	0	0		0	SALL.	0	o
0	0	,	1 WE	-	5	0	0		-	7	0	c	0	0	C	0	0	0	0	0	0	0	0
1	0		0	0	2	31	0		5	-1	ы		ċ	0	0	0	.0	0	0	0	0	0	0
ľ,	2	4		m		2	0	0	0	0	0	c	o	ο	2	0	0	5	0	0		1	o
· 0	0	0	0	0	0	1	o	o	0	0	ں ر	0	с	0	2	U	· 0	2	F	0	0	0	. o
o	i io	-	rER 0	0	0	0	0		MA 3	0	0	0	0	0	MO	0	c	. 0	0	0		0	0
j	0	0	DEXTER 0 0	0	0	0	0	6	$\frac{\text{LIMA}}{4}$	0	0	0	0	0	FREEDOM 3 0	0	0,	0	0	0	DGEW 0	0	0
0	0	ч	0	0	0	O	0		0	· •	0	0	0	0	도 	c	0	. 0	0	0	BRI	0	o
0		m	0	0		0	. 0	0	0	0	0	0	0	0	0	0	0	1	0	c	0	0	0
0	0	0			Ń		48	m	1	0	0		0	0	0	0	0	d	0	0	0	C	0
0	o	0		0	0	0	0	0	0	0	0	်ဝ		0	0	0	o	4	0	0	о Н	o	0
0	U U	0	NO	0	0	1	-	0	AN 2	ုပ	0	Ö	0	o	NO	0	o	0		0	ESTE	0	0
0	0	0	0 0 TANDON	0	0	c c	2	0	SYLVAN 0 2	0	0	0	0	0	SHARON 0 0	0	0	0	c	0	IANCH	်င	0
0	c	0		0	c	1	~		0	0	0	υ	0	0	c	0	0	C	0	c	N O	-	0
0	0	0	0	0	0	0	0	2	0	U	0	0	0	0	0	0	0	. 0	C	0	0	c	C

Figure 2. Density of emergency ambulance calls: Oct. 1, 1967 through Sept. 30, 1968.

Figure 3. HSRI 3-D plot: density of emergency ambulance calls.

in the one-mile square indicated (compare with figure 1). As expected, there are high peaks in the major cities of the county and very few calls from the remote rural areas. While one can see some evidence of calls originating along the major expressways, this effect is certainly minimal. Figure 3 provides a perspective view of this density; the density pattern is viewed from the eastern direction.

The velocity coefficients were determined by selecting a sample of 273 cases, determining typical routes from county maps, and doing a least square fit of the data. The resultant velocities are shown in table I.

TABLE I

Average Ambulance Speed by	Road Type
Type of Road	Average Speed
Expressway	73.2 mph
Other paved highway	58.1 mph
City streets	25.6 mph
Unpaved county roads	29.6 mph

To estimate the predictive capability of this choice a different set of 142 cases was used, and the predicted and measured times were compared. The average error in this was 10^{-4} minute. A similar test run was performed on the original 273-case sample, and an average error of 4.2 seconds was obtained.

The probability of K ambulances being in service when a call is received is computed using equation (A-5) and is shown in table II. From this it can be seen that the assumption that all N ambulances are not in service when a call is received is valid for N>4.

Solutions	to Equation	(A-5) for	Washtenaw County
	K	р(К	<u>)</u>
	0	0.6	7031
	1	0.2	6815
	2	0.0	5362
	3	0.0	0715
	4	0.0	0071
	5	0.0	0005

TABLE II

Chapter 3 Results

In order to provide a check on the validity of the entire model it was used to compute the average response for the ambulance system as it presently operates. This could not be done exactly, however, because a slightly variable relocation scheme is currently employed and the model assumes a fixed relocation scheme. What was done was to assume an average relocation scheme for present operation. The result was a predicted response time of 8.81 minutes. The measured average response time for emergency calls over a year's operation was 8.94 minutes.

The measured response time may itself be considered a random variable dependent upon the calls used in the sample. Using the standard deviation of the sample's sum together with its mean gives a better idea of the accuracy of the model. The standard deviation was estimated to be 0.15 minutes. Thus, it was seen that the model is a reasonable approximation of this system.

Table III shows the results of the unconstrained optimization runs for varying number of ambulances. The coordinates given are the x,y coordinates of the one-mile squares in which the ambulances would be located.

TABLE III

Solutions to Unconstrained Problem

		Average
Number of		Response
Ambulances	Ambulance Location	Time
1	(23,9)	
2	(19,14), (27,11)	******
3	(9,17), (20,14), (27,11)	9.48 min
4	(9,17), (20,14), (27,11), (23,9)	8.64 min
5	(6,17), (13,18), (20,14), (27,11), (23,9)	8.03 min
6	(6,17), (13,18), (20,14), (27,11), (18,6), (22,13)	7.52 min

Average

It should be pointed out that the times obtained in these runs will be approximated if the ambulances are placed at the representative points for each of the one-mile squares. Location of any ambulance at some other point in the square would result in a slightly different predicted response time. By looking at the response time for placing the vehicle at representative points in neighboring squares one can interpolate to estimate the response time for the location within a square.

It can be seen that for N=5 (which is the number of ambulances presently in use) an improvement of about 10% over present operation could be obtained by employing a different location scheme. The major differences in location involve moving some of the ambulances closer to the point of highest density of calls, and moving some of the outlying vehicles to points that would provide them with easy entry to the portions of the cross-country highway network they are likely to use. By purchasing a sixth ambulance an improvement of about an additional half minute could be obtained.

In order to determine how the average response times to individual locations varied throughout the county the optimal locations were used with the driving time model and an array of driving times to each of the one-mile squares was computed. This was done for N=4,5,6. The results are shown in figures 4, 5, and 6, in which the times are given in tenths of a minute and the ambulance locations are circled. In addition to giving information on how the response times vary, these results provide insight into which ambulance should be dispatched to which location. By looking at the ridges of peak response times between ambulance locations, one can divide the county into the regions to be covered by each vehicle.

It can be seen from figures 4, 5, and 6 that the response time to some of the remote corners of the county is nearly 34 minutes. Even though the population density in these areas is low, the maintenance of some minimum level of service may be desired. To try to reduce these long response times the constrained optimization procedure was used. A T_{max} of 20 minutes was chosen and it was decided that r should be four; with less than four vehicles available,

	1					·												- Char.							and the first of the second					
	220	200	206	232	186	197	198	190	179	190	172	168	205	164	182	215	227	197	163	165	176	215	246	235	174	174	192	221	241	241
	193	184	186	212	179	185	196	179	158	178	187	164	193	154	181	191	205	183	175	152	189	204	225	214	163	171	181	188	221	221
	206		163 LYNE		188	163	158	159				144	164				190	174	142	149				185	152			176	212	222
	204				171	146	160	140		EXTE 139		140	148		BSTE 168		162	151	137	131	150	<u>THF1</u> 171	ELD 171	164	136	<u>SA</u> 168	LEM 167	167	222	218
+	179	179	162	141	160	135	140	119	99	118	137	125	144	128	162	173	181	194	154	139	156	155	144	133	128	139	149	161	188	202
	165	156	143	132	120	123	121	101	81	98	117	121	124	118	145	150	172	175	155	119	139	177	147	135	146	153	163	168	201	200
	182	151	163	157	126	108	100	79	60	80	99	117	102	122	122	138	153	155	123	110	116	156	142	142	142	161	154	161	171	183
						100	79		(39)	59											•								149	
			SYLV		_	77		LI		65		108	-	_	SC	10			94		ANN	ARBO	R			SU	PERI	OR	149	
				92			71			77					108					35		96 75	98						154	
						90				115					132			74 91	54 74	55	75		89						115	
F						112			(68)								11-132	92	85	75		116	93	84	88	75	54	75		103
						130													89			106	86	73	74	54	34)	54	68	87
	250	218	196	173	141	141	153	178	179	197	149	138	164	183	142	129	118	105	117	116	97	89	69	72	64	74	54	55	61	76
	252		SHAR 218		183	151	194		FREE 197		172	162	172	152	LO 141		118	130	125			IELD 72		62	86	Y 79	PSIL 74	<u>ANTI</u> 95		75
-	234	213	213	204	183	182	218	224	218	214	191	191	199	203	180	161	137	126	138	102	76	66	60	78	78	94	95	115	104	89
. .	239	239	245	223	193	208	222	255	238	257	227	206	209	210	192	165	143	120	99	88	98	90	71	100	111	122	106	124	135	111
	274	261	247	239	207	228	252	237	228	206	194	180	186	174	160	150	139	116	131	125	117	99	86	100	105	123	121	140	140	130
	273	253	252	242	230	235	235	230	230	219	225	208	219	206	168	153	153	138	139	120	113	94	88	102	104	121	115	123	148	136
			MAN	CHES	TER	250			BR	IDGEV	ATE	R		S	ALIN	Е					v	ORK				A	UGUS	ТΑ	163	
														184	207	194					147	121				166	166	170	186	
																													178	
ļ	339	325	319	298	291	284	282	262	269	226	214	225	249	224	218	188	184	184	167	159	168	153	153	131	161	161	182	180	201	212

Figure 4. Average time from receipt of call to arrival at scene: unconstrained optimal solution for four ambulances in Washtenaw County. (Times are given in tenths of a minute.)

191 171 176 202 155 166 169 161 156 151 133 129 166 125 143 176 194 196 162 164 175 215 246 235 174 174 191 220 241 241 163 154 156 182 148 154 167 151 136 166 149 125 151 115 142 153 172 168 174 151 188 203 224 213 163 176 174 191 220 241 241 163 154 156 182 148 154 167 151 136 166 149 125 151 115 142 153 172 168 174 151 188 203 224 213 163 175 175 212 222 177 158 134 160 157 132 128 135 124 117 115 145 126 132 101 101 109 98 129 132 129 134 156 130 149 170 170 130 165 151 156 166 162 222 18 149 149 132 112 127 165 121 122 103 104 103 86 94 89 123 136 149 172 154 138 155 154 143 132 173 18 148 160 188 202 136 127 113 103 91 101 110 115 86 84 82 73 79 107 113 140 158 156 118 139 176 146 134 143 152 163 166 196 195 162 139 128 111 88 68 81 90 92 90 81 71 3 73 85 102 122 141 123 109 115 156 136 136 137 155 154 149 162 116 113 103 91 75 71 81 90 92 90 81 71 3 73 85 102 122 141 123 109 115 156 136 137 155 154 149 162 116 112 102 97 83 66 73 83 85 96 102 96 83 88 99 95 106 113 95 75 95 115 98 105 119 150 135 146 149 162 118 112 102 97 83 66 73 83 85 96 102 96 83 88 99 95 106 113 95 75 95 115 98 105 119 150 135 146 149 162 118 112 102 97 83 66 73 83 85 96 102 96 83 88 99 95 106 113 95 75 95 115 98 105 119 150 135 146 149 162 118 112 102 97 83 66 73 83 85 96 102 96 83 88 99 95 106 113 95 75 95 31 03 119 125 115 123 154 154 126 121 103 87 75 71 81 90 101 95 86 83 79 78 89 92 105 61 74 54 75 95 93 103 119 125 115 123 154 154 126 121 103 87 75 71 81 90 101 95 86 83 79 78 89 92 105 115 127 102 92 74 54 75 95 93 103 119 125 115 123 154 154 126 126 126 127 125 147 140 154 150 136 102 115 128 126 123 102 92 74 54 75 95 93 103 119 125 115 123 154 154 124 141 141 96 166 142 127 125 147 140 154 150 136 102 115 128 126 123 102 92 74 54 75 95 93 77 86 74 95 74 95 115 102 241 291 186 135 135 149 144 141 141 96 165 127 140 154 150 136 102 115 128 126 123 110 178 188 75 75 63 74 95 74 95 115 102 244 242 248 242 242 242 242 242 242 242	,																			,											
177 138 134 160 157 132 128 135 124 121 110 105 126 104 121 133 153 150 141 148 171 191 191 185 151 151 157 175 122 222 Network LYNON LYNON 174 173 134 132 141 117 135 145 126 132 101 101 100 98 129 132 120 134 136 130 149 170 170 163 136 167 166 166 222 218 149 149 132 112 127 105 121 122 103 104 103 86 94 89 123 136 149 172 154 138 155 154 143 132 127 138 148 160 188 202 136 127 113 103 91 87 101 110 115 86 84 82 73 79 107 113 140 158 156 118 139 176 146 134 143 152 163 164 145 154 145 152 163 166 196 195 102 139 128 111 88 68 81 90 92 90 81 71 53 73 85 102 122 141 123 109 115 155 136 136 137 155 154 157 168 180 129 116 103 89 72 5 160 69 78 88 78 80 69 79 68 107 119 127 115 93 66 135 107 120 130 140 145 154 149 162 118 112 103 87 75 71 81 90 101 95 86 63 79 78 85 09 95 106 115 95 74 95 115 98 105 119 150 135 148 149 162 124 121 103 87 75 71 81 90 101 95 86 63 79 78 80 92 105 95 74 54 54 74 87 87 94 610 29 115 122 111 142 148 141 141 56 166 127 140 154 150 136 102 115 128 126 114 106 95 74 54 475 87 95 93 103 119 125 115 122 151 123 154 154 156 136 102 115 128 126 114 102 92 155 54 74 87 87 94 60 29 51 052 122 111 142 148 141 141 54 56 166 127 140 154 150 136 102 115 128 126 114 102 92 185 74 95 15 93 77 86 74 54 74 95 103 241 191 166 142 127 125 147 184 200 187 177 126 143 164 163 139 115 107 89 84 88 96 76 65 74 54 74 95 105 122 252 208 208 199 177 177 125 128 127 204 181 189 128 154 117 146 139 117 126 130 117 97 77 57 63 55 76 76 74 95 95 75 229 208 208 199 177 177 125 218 217 204 181 189 126 154 139 135 122 130 117 118 130 117 97 77 57 63 55 76 76 74 95 95 75 229 208 208 199 177 177 125 218 217 204 181 181 181 89 201 178 159 135 124 130 117 97 77 57 63 55 76 76 74 95 95 75 229 208 208 199 177 177 125 218 217 204 181 181 168 173 161 148 137 126 103 119 114 106 88 75 89 95 116 116 139 139 130		191	171	176	202	155	166	169	161	158	151	133	129	166	125	143	176	194	196	162	164	175	215	246	235	174	174	191	220	241	241
LYRDON DEXTER WEBSTER NORTHFYELD SALEM SALEM 114 173 134 132 141 117 155 145 126 121 122 101 101 9 81 29 132 129 134 171 155 156 164 162 121 122 103 104 103 86 94 89 123 156 118 157 154 132 127 138 166 168 222 218 136 127 113 103 91 87 101 115 86 88 273 79 107 113 123 109 155 154 131 123 121 121 121 123 138 167 136 167 136 167 136 167 136 167 148 143 152 151 141 143 152 151 140 143 12		163	154	156	182	148	154	167	151	136	146	149	125	151	115	142	153	172	168	174	151	188	203	224	213	163	170	180	188	220	220
LYRDON DEXTER WEBSTER NORTHFYELD SALEM SALEM 114 173 134 132 141 117 155 145 126 121 122 101 101 9 81 29 132 129 134 171 155 156 164 162 121 122 103 104 103 86 94 89 123 156 118 157 154 132 127 138 166 168 222 218 136 127 113 103 91 87 101 115 86 88 273 79 107 113 123 109 155 154 131 123 121 121 121 123 138 167 136 167 136 167 136 167 136 167 148 143 152 151 141 143 152 151 140 143 12																									- 1						
149 149 121 127 105 121 122 103 104 103 86 94 89 123 136 149 172 154 138 155 154 143 132 127 138 148 160 188 202 136 127 113 103 91 87 101 110 115 86 46 273 79 107 113 140 156 118 139 176 145 156 118 139 175 156 136 136 137 155 154 157 166 167 188 86 69 79 98 107 119 127 115 93 96 135 107 120 130 140 145 154 149 162 129 116 103 87 75 88 85 96 102 96 135 107 120 130 146 162 126 121 138 85 96 102<			Γ	INDON	1				I	EXTE	ER				V	VEBST	TER				NO	ORTHE	FIELI)			SA	LEM			
136 127 113 103 91 87 101 110 115 86 84 82 73 79 107 113 140 158 156 118 139 176 143 152 166 196 195 162 139 128 111 88 68 81 90 92 90 81 71 373 85 102 122 141 123 109 115 156 136 137 155 154 157 168 180 129 116 103 89 72 35 66 69 78 88 79 78 89 95 106 115 95 75 95 119 125 135 148 149 162 126 110 116 166 85 93 117 117 131 139 197 126 114 106 95 74 54 75 95 105 122 111 142 146 143		174	173	134	132	141	117	135	145	126	132	101	101	109																	
162 162 163 164 1		149	149	132	112	127	105	121	122	103	104	103	86	94	89	123	136	149	172	154	138	155	154	143	132	127	138	148	160	188	202
129 116 103 89 72 51 60 69 78 88 78 80 69 79 98 107 119 127 115 93 96 135 107 120 140 145 154 149 162 118 112 102 97 83 60 73 83 85 96 102 96 83 88 99 95 105 95 74 54 75 95 193 103 119 125 115 123 154 140 145 154 154 154 154 154 154 154 154 154 154 154 154 150 135 162 115 128 126 112 10 135 145 154 149 162 154 154 154 154 154 150 135 167 151 133 115 128 126 114 102 92 74 54 154 134 154 139 <t< td=""><th></th><td>136</td><td>127</td><td>113</td><td>103</td><td>91</td><td>87</td><td>101</td><td>110</td><td>115</td><td>86</td><td>84</td><td>82</td><td>73</td><td>79</td><td>107</td><td>113</td><td>140</td><td>158</td><td>156</td><td>118</td><td>139</td><td>176</td><td>146</td><td>134</td><td>143</td><td>152</td><td>163</td><td>166</td><td>196</td><td>195</td></t<>		136	127	113	103	91	87	101	110	115	86	84	82	73	79	107	113	140	158	156	118	139	176	146	134	143	152	163	166	196	195
118 112 102 97 83 60 73 83 85 96 102 96 83 88 99 95 106 115 95 75 95 115 98 105 119 150 135 148 149 162 SUPERTOR 126 121 103 87 75 71 81 90 101 95 86 83 79 78 89 92 105 95 74 54 75 95 93 103 119 125 115 123 154 154 123 110 116 116 85 85 93 117 117 131 113 91 97 126 114 106 95 74 54 39 54 74 87 87 94 102 95 105 122 111 142 148 141 141 96 106 127 140 154 150 136 102 115 128 126 123 102 92 74 54 75 86 82 83 97 95 74 95 115 102 202 179 146 136 118 109 125 164 165 167 151 133 115 128 126 114 102 92 85 74 95 115 93 77 86 74 54 74 95 103 241 191 166 142 127 125 147 184 200 187 177 126 143 164 163 139 115 107 89 84 88 96 76 65 74 54 68 87 SHARON 247 223 213 196 177 146 191 211 191 172 162 152 162 152 161 129 118 105 117 117 97 77 57 63 SHARON 247 223 213 196 177 146 191 211 191 172 162 152 162 152 161 157 136 117 97 77 57 63 247 223 213 196 177 177 215 218 217 204 181 181 189 201 178 159 135 124 130 90 65 54 48 67 71 87 95 115 104 89 244 234 240 218 188 203 215 253 240 247 221 201 204 202 180 157 136 112 86 76 85 78 59 88 107 118 104 123 135 111 269 256 242 234 202 223 249 228 218 195 181 168 173 161 148 137 126 103 119 114 106 88 75 89 95 116 116 139 139 130 268 248 247 237 225 231 233 224 217 207 212 195 206 194 155 141 141 125 127 108 101 83 76 90 93 112 112 122 147 136 276 269 269 257 250 245 276 264 264 280 270 256 277 250 245 255 72 76 260 233 199 183 170 157 143 147 148 163 132 138 94 87 111 19 140 143 146 163 157 SALINE		162	139	128	111	88	68	81	90	92	90	81	71	53	73	85	102	122	141	123	109	115	156	136	136	137	155	154	157	168	180
SYLVAN ANN ARBOR SUPERIOR 126 121 103 87 75 71 81 90 101 95 86 83 79 78 89 92 105 95 74 54 75 95 93 103 119 125 115 123 154 154 123 110 116 116 85 85 93 117 117 131 113 91 97 126 114 106 95 74 54 34 54 74 87 94 102 95 105 122 111 142 148 141 141 96 106 127 140 154 150 136 102 115 128 126 114 102 92 74 54 74 87 94 102 95 103 111 112 128 128 128 121 102 127 123 116 136 117 115 88 74 95	_	129	116	103	89	72	(51)	60	69	78	88	78	80	69	79	98	107	119	127	115	93	96	135	107	120	130	140	145	154	149	162
SYLVAN LIMA SCIO ANN ARBOR SUPERIOR 126 121 103 87 75 71 81 90 101 95 86 83 79 78 89 92 105 95 74 54 75 95 93 103 119 125 115 123 154 154 123 110 116 116 85 85 93 117 117 131 113 91 97 126 114 106 95 74 54 33 54 74 87 94 102 95 105 122 111 142 148 141 141 96 106 127 140 154 150 136 102 115 128 126 114 102 92 74 54 87 95 115 103 115 128 126 114 102 92 85 74 95 115 103 117 115 88 76 65 74		118	112	102	97	83	60	73	83	85	96	102	96	83	88	99	95	106	115	95	75	95	115	98	105	119	150	135	148	149	162
123 110 116 116 85 85 93 117 117 131 113 91 97 126 114 106 95 74 54 3 54 74 87 87 94 102 95 105 122 111 142 148 141 141 96 106 127 140 154 150 136 102 115 128 126 123 102 92 74 54 75 86 82 83 97 95 74 95 115 102 202 179 146 136 118 109 125 164 165 167 151 133 115 128 126 114 102 92 85 74 95 115 93 77 86 74 54 74 95 103 241 191 166 142 127 125 147 184 200 187 177 126 143 164 163 139 115 107 89 84 88 96 76 65 74 54 34 54 74 95 103 245 213 191 168 135 135 149 194 197 188 139 128 154 173 142 129 118 105 117 115 88 77 57 63 63 74 54 55 61 75 FREEDOM 247 223 213 196 177 146 191 211 191 172 162 152 162 152 162 152 141 129 118 130 117 97 77 57 63 63 74 54 55 61 75 795 145 19 191 177 146 191 211 191 172 162 152 162 152 162 152 141 129 118 130 117 97 77 57 55 76 76 74 95 115 104 89 234 246 218 188 203 215 253 240 247 221 201 204 202 180 157 136 112 86 76 85 78 59 88 107 118 104 123 135 111 269 256 242 234 202 223 249 228 218 195 181 168 173 161 148 137 126 103 119 114 106 88 75 89 95 116 116 139 139 130 268 248 247 237 225 231 233 224 217 207 212 195 206 194 155 141 141 125 127 108 101 83 76 90 93 112 112 122 147 136 276 269 269 276 250 245 255 257 267 260 233 199 183 170 157 143 147 148 163 132 138 94 87 111 119 140 143 146 163 157 MMNCHESTER 301 264 264 260 270 256 270 256 270 264 256 234 225 199 168 171 194 182 149 165 176 149 136 110 99 122 136 162 162 162 169 186 186 291 327 323 314 292 268 274 273 267 238 216 185 198 193 196 171 149 161 157 141 127 135 108 120 133 137 148 178 177 179 335 320 312 292 285 278 276 257 257 213 202 213 202 213 236 211 205 175 171 171 156 148 157 142 142 120 150 181 180 120 133 137 148 178 177 179 335 320 312 292 285 278 276 251 257 213 202 213 236 211 205 175 171 171 156 148 157 142 142 120 150 150 181 180 200 211			SY	LVAN	[LI	MA		03	70	70)				54				102	110	125				154
142 148 141 141 96 106 127 140 154 150 136 102 115 128 126 123 102 92 74 54 75 86 82 83 97 95 74 95 115 102 202 179 146 136 118 109 125 164 165 167 151 133 115 128 126 114 102 92 74 54 75 86 82 83 97 95 74 95 115 102 202 179 146 136 165 167 151 133 115 128 126 114 102 92 74 95 115 103 241 191 166 142 127 125 147 146 163 139 115 107 189 84 88 96 76 65 74 95 115 103 245 213 191 168																					\sim										
111 110 111 110 1		123	110	116	116	85	85	93	117	117	131	113	91	97	126	114	106	95	74	54	(34) 54	74	87	87	94	102	95	105	122	111
241 191 166 142 127 125 147 184 200 187 177 126 143 164 163 139 115 107 89 84 88 96 76 65 74 54 34 54 68 87 245 213 191 168 135 135 149 194 197 188 139 128 154 173 142 129 118 105 117 115 88 77 77 63 63 74 54 68 87 247 223 213 196 177 146 191 211 191 172 162 152 162 152 141 129 118 130 117 97 77 57 63 55 76 76 74 95 95 75 229 208 208 199 177 177 215 218 217 201 204 202 180 157 136 112	ł	142	148	141	141	96	106	127	140	154	150	136	102	115	128	126	123	102	92	74	54	75	86	82	83	97	95	74	95	115	102
245 213 191 168 135 135 149 194 197 188 139 128 154 173 142 129 118 105 117 115 88 77 57 63 74 54 55 61 75 247 223 213 196 177 146 191 211 191 172 162 152 162 152 141 129 118 130 117 97 77 57 36 55 76 76 74 95 95 75 229 208 208 199 177 177 215 218 217 204 181 181 189 201 178 159 135 124 130 90 65 54 48 67 71 87 95 115 104 89 234 240 218 188 203 215 253 240 247 221 201 204 202 180 157 136		202	179	146	136	118	109	125	164	165	167	151	133	115	128	126	114	102	92	85	74	95	115	93	77	86	74	54	74	95	103
SHARON FREEDOM FREEDOM LOD I LOD I PITTSFIELD PITTSFIELD 247 223 213 196 177 146 191 211 191 172 162 152 141 129 118 130 117 97 77 57 30 55 76 76 74 95 95 75 229 208 208 199 177 177 215 218 217 204 181 181 189 201 178 159 135 124 130 90 65 54 48 67 71 87 95 115 104 89 234 234 240 218 188 203 215 253 240 247 221 201 204 202 180 157 136 112 86 76 85 78 59 88 107 118 104 123 135 111 269 256 242 234 202 233 194 <t< td=""><th></th><td>241</td><td>191</td><td>166</td><td>142</td><td>127</td><td>125</td><td>147</td><td>184</td><td>200</td><td>187</td><td>177</td><td>126</td><td>143</td><td>164</td><td>163</td><td>139</td><td>115</td><td>107</td><td>89</td><td>84</td><td>88</td><td>96</td><td>76</td><td>65</td><td>74</td><td>54</td><td>34</td><td>54</td><td>68</td><td>87</td></t<>		241	191	166	142	127	125	147	184	200	187	177	126	143	164	163	139	115	107	89	84	88	96	76	65	74	54	34	54	68	87
247 223 213 196 177 146 191 211 191 172 162 152 162 152 141 129 118 130 117 97 77 36 55 76 76 76 74 75 75 36 55 76 76 76 74 75 75 36 55 76 76 74 75 75 36 55 76 76 76 74 75 75 36 55 76 76 76 74 75 164 89 23 23 240 218 188 203 215 253 240 247 221 201 204 202 180 157 136 112 86 76 85 78 59 88 107 118 104 123 135 111 269 256 242 234 202 223 249 228 218 195 181 168 173 161 148 137 127		245				135	135	149				139	128	154	173			118	105	117					63	63	74	54	55	61	75
234 234 240 218 188 203 215 253 240 247 221 201 204 202 180 157 136 112 86 76 85 78 59 88 107 118 104 123 135 111 269 256 242 234 202 223 249 228 218 195 181 168 173 161 148 137 126 103 119 114 106 88 75 89 95 116 116 139 139 130 268 248 247 237 225 231 233 224 217 207 212 195 206 194 155 141 141 125 127 108 101 83 76 90 93 112 112 122 147 136 276 269 257 250 245 255 257 267 260 233 199 183 170 157		247				177	146	191				162	152	162	152			118	130	117					55	76				95	75
234 234 240 218 188 203 215 253 240 247 221 201 204 202 180 157 136 112 86 76 85 78 59 88 107 118 104 123 135 111 269 256 242 234 202 223 249 228 218 195 181 168 173 161 148 137 126 103 119 114 106 88 75 89 95 116 116 139 139 130 268 248 247 237 225 231 233 224 217 207 212 195 206 194 155 141 141 125 127 108 101 83 76 90 93 112 112 122 147 136 276 269 257 250 245 255 257 267 260 233 199 183 170 157		229	208	208	100	177	177	215	218	217	204	181	181	180	201	178	159	125	124	130	90	65	54	4.8	67	71	87	95	115	104	89
269 256 242 234 202 223 249 228 218 195 181 168 173 161 148 137 126 103 119 114 106 88 75 89 95 116 116 139 139 130 268 248 247 237 225 231 233 224 217 207 212 195 206 194 155 141 141 125 127 108 101 83 76 90 93 112 112 122 147 136 276 269 257 250 245 255 257 267 260 233 199 183 170 157 143 147 148 163 132 138 94 87 111 119 140 143 146 163 157 MANCHESTER BRIDGEWATER SALINE SALINE YORK YORK 136 162 162 169 186 186 186 171 <th></th> <td></td>																															
268 248 247 237 225 231 233 224 217 207 212 195 206 194 155 141 141 125 127 108 101 83 76 90 93 112 112 122 147 136 276 269 257 250 245 255 257 267 260 233 199 183 170 157 143 147 148 163 132 138 94 87 111 119 140 143 146 163 157 MANCHESTER BRIDGEWATER SALINE YORK YORK AUGUSTA AUGUSTA 301 264 264 280 270 264 256 234 225 199 168 171 194 182 149 165 176 149 136 110 99 122 136 162 162 169 186 186 291 327 323 314 292 268 274 <td< td=""><th></th><td>·····</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>······</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		·····											······																		
276 269 269 257 250 245 255 257 267 260 233 199 183 170 157 143 147 148 163 132 138 94 87 111 119 140 143 146 163 157 MANCHESTER BRIDGEWATER SALINE YORK YORK AUGUSTA 301 264 264 280 270 256 270 264 256 234 225 199 168 171 194 182 149 165 176 149 136 110 99 122 136 162 162 169 186 186 291 327 323 314 292 268 274 273 267 238 216 185 198 193 196 171 149 161 157 141 127 135 108 120 133 137 148 177 179 335 320 312 292 285 278 <td< td=""><th></th><td>269</td><td>256</td><td>242</td><td>234</td><td>202</td><td>223</td><td>249</td><td>228</td><td>218</td><td>195</td><td>181</td><td>168</td><td>173</td><td>161</td><td>148</td><td>137</td><td>126</td><td>103</td><td>119</td><td>114</td><td>106</td><td>88</td><td>75</td><td>89</td><td>95</td><td>116</td><td>116</td><td>139</td><td>139</td><td>130</td></td<>		269	256	242	234	202	223	249	228	218	195	181	168	173	161	148	137	126	103	119	114	106	88	75	89	95	116	116	139	139	130
MANCHESTER BRIDGEWATER SALINE YORK AUGUSTA 301 264 264 280 270 256 270 264 256 234 225 199 168 171 194 182 149 165 176 149 136 110 99 122 136 162 162 169 186 186 291 327 323 314 292 268 274 273 267 238 216 185 198 193 196 171 149 161 157 141 127 135 108 120 133 137 148 177 179 335 320 312 292 285 278 276 251 257 213 202 213 236 211 205 175 171 171 156 148 157 142 142 120 150 181 180 200 211		268	248	247	237	225	231	233	224	217	207	212	195	206	194	155	141	141	125	127	108	101	83	76	90	93	112	112	122	147	136
301 264 264 280 270 256 270 264 256 234 225 199 168 171 194 182 149 165 176 149 136 110 99 122 136 162 162 169 186 186 291 327 323 314 292 268 274 273 267 238 216 185 198 193 196 171 149 161 157 141 127 135 108 120 133 137 148 178 177 179 335 320 312 292 285 278 276 257 213 202 213 236 211 205 175 171 171 156 148 157 142 142 120 150 181 180 200 211		276					245	255					199	183	170			147	148	163	132			87	111	119				163	157
335 320 312 292 285 278 276 251 257 213 202 213 236 211 205 175 171 171 156 148 157 142 142 120 150 150 181 180 200 211		301					256	270					199	168	171			149	165	176	149	136	0 <u>RK</u> 110	99	122	136				186	186
		291	327	323	314	292	268	274	273	267	238	216	185	198	193	196	171	149	161	157	141	127	135	108	120	133	137	148	178	177	179
		335	320	312	292	285	278	276	251	257	213	202	213	236	211	205	175	171	171	156	148	157	142	142	120	150	150	181	180	200	211
							2,0							1230					- • •	1			- 16								

Figure 5. Average time from receipt of call to arrival at scene: unconstrained optimal solution for five ambulances in Washtenaw County. (Times are given in tenths of a minute.)

	0	N	5	S	S	0	N	2	4		02	03	87	52	75	68	11	30	36	57	86	82	14
24]	0 22(22	4 Z L (0 16	6 19	9 18	9 16	9 16	4 15	2 11	5 10	5 10	ω		ŝ	4	1 5	2 1	0 1	63 1	86 10	81 1	03 2
241	22	21	21	18	19	7 16	2 14	14	15	5 12	5 11	4 9	4	5 6	<mark>н</mark> С	5 10	7 13	2 14	5 15	6	2 1	8 1	0 2
220	188	17	166	160	167	15	15	148	ERIOR 123	5 105	6	4 7,	€ 54	4	1 LANTI 74 95	5 11	0 12	0 14	2 12	6 14	STA 317	6 17	5 18
191	180	175 SALEM	166	148	163	153	144		SUPER 115 1	6	74	ŝ			YPSII	6	0 11	5 13	5 12		NUGUSTV 3 173	0 16	3 18
174	170	2	167	138	152	158	140	150	119	96	95	74	54	1-	ω	106	13	13	13	-	173	7 16(3 17
174	163	5	136	127	143	136	130	119	113	88	06	77	74	63	104	16	120	118	116	142	159	12	17
235	213	00	163	132	134	136	120	1.04	96	79	73	67	68	76	76	16	119	112	113	134	145	143	143
246	224	161	170	143	146	136	110	98	в 87	78	62	80	76	75	D 71	79	60	98	66	110	122	131	137
215	203	191 IELD	170	154	191	141	121	100	ARBOR 80	60		11	80	89	FIELD 98	78	98	107	104	117	115	121	128
175 2	188 1	171 RTHFJ	149	155	138	115	96	95	ANN 74	54	60	80	93	95	1TTSF 97	74	92	16	105	116	ORK 122	113	143
64	51	_4 ×	130	138	118	109	92	74	54	$\binom{n}{2}$	54	74	85	115	116 P	96	73	85	95	96	125 ^Y	127	134
62 1	74 1	411	36	54	56	23	115	95	74	54	74	85	89	117	113	16	68	72	85	114	132	141	142
96 1	64 1	43 1	29 1	64 1	52 1	36 1	24	115	95	74	92	92	107	16	101	84	70	(E)	74	95	114	119	129
83 1	62 1	40 1	18 1	38 1	30 1	12 1	13 1	1 16	02	35	.02	102	66	95	82	95	16	74	63	105	107	107	129
64 1	411	-	119 1	24 1	01 1	89 1	67 I	86	86 1	03	23 1	14	33	.06	106	118	112	92	66	101	LINE 140	129	133
31 1	30 1	108 1 WFBST1	117 1	101	94 1	73	86	16	scio 83	07 1	26 1	26 1	63 1	119 1	LODI 118	38	33	105	113	115	152	154	163
3 1	03 1	92 1(WF	85 1	77 1	67	57	67	81	72	191	25 1	25 1	61 1	68	29	61 1	54 l	61	51	28	29	51	69
4 11	38 10	б	3 16	77	57 (56 (76 8	73	1 16	11	121	0 1	46 1	52 1	75 1	64 1	31 1	64 1	41 1	26 1	156 1	94 1
7 15	3 13	3 11	88	74 7	70 5	~	5	92	ŝ	89	00 1	30 1	122 14	25 1	147 1	73 1	0 1	25 1	3 1	57 1	157 1	43 1	70 1
1 11	6 11	6 2			73 7	5 5	6 7		908	2 2	8	8		135 12	157 14	166 1	180 16	39 1	170 15	190 1		174 1	59 1
8 12	13	16 6	0 88	0 92	3 7	4 7	6 7	6 109		7 11	8 13	2 14	0 174	1				3 1		218 1	BRIDGEWATER 215 192 182	1961	171 1
13	9 136) 109 ED	E.K.	5 100	7 8	4	2 99	5 106	IA 102	8 13	6 15	6 17	4 190	2 185	FREEDOM 187 167	5 197	4 215	7 15	5 164		IDGE	1	
152	129	119	DEATER 8 129 1	106	12	10	6	3 95	LIMA 112	8 12	16	4 17	4 214	8 202	· 60	5 215	6 204	7 177	3 175	7 247	3	1 226	09 215
152	142	12	14	124	114	94	74	6	101	12	150	17	194	19		21	21	2 187	3 183	9 217	22	0 23	N
160	158	119	127	116	96	75	55	74	85	67	127	124		148		214	211	21	5 193	23	N	7 240	7 235
156		123	108	96	16	56	37	55	71	84	105	109		135		177	202	217	206	241		23	23
146	139	147	131	117	82	77	57	76	74	84	95	117		135		177	187	201	220	246		260	244
193	173	151	N 123	103	94	76	77	95	AN 86	115	140	135	166 141	190 167	SHARON 212 195	198	217	229	232	253	IESTI 275	282	251
168	47	125	YNDO 125	124	104	117	96	102	SYLVAN 10286	115	140	145	166	061	SHAR 212	208	240	241	243	264	IANCE 260	293	271
162	4 20	129	164 125 1	140		136	115	2112	0	110	147	178	190	610	223	208	233		244	264	260 ^M	306	279
182	55	ω	165	140		157	128	1.17	126	122	141	102	241	244	246	228	233	9	267	272	296	286	313

unconstrained optimal solution for six ambulances in Washtenaw County. (Times are given in tenths of a minute.)

Figure 6. Average time from receipt of call to arrival at scene:

it is not possible to provide reasonable service for the areas of high density and rapid service for the remote areas of the county. The results of this study are summarized in table IV, and figures 7, 8, and 9 show how the individual response times changed.

TABLE IV

Solutions to Constrained Problem

		Average
Number of		Response
Ambulances	Ambulance Locations	Time
1	(23,9)	
2	(19,14), (27,11)	****
3	(9,17), (20,14), (27,11)	*****
4	(7,5), (9,17), (23,9), (20,16)	9.97 min
5	(7,5), (9,17), (23,9), (20,14), (27,12)	9.01 min
6	(7,5), (9,17), (23,17), (20,14), (23,9), (27,11)	8.24 min

Response times previously longer than 30 minutes were reduced to approximately 19 minutes. Only in a few locations was the constraint violated, and then only by a small amount; this was deemed acceptable. The main changes involved taking one ambulance away from a higher density area and placing it near Manchester, in the southwestern corner of the county (see fig. 1), and moving some of the vehicles covering Ann Arbor and Ypsilanti slightly north to provide more rapid response to the northeastern portion of the county.

The overall average response time, of course, increased with the incorporation of this constraint. However, it can be seen that if properly distributed, five ambulances could provide nearly the present average level of service and still furnish adequate coverage for the remote parts of the county. With an additional vehicle, remote service could be provided and overall performance improved.

r							,																							
	220	200	206	232	186	197	198	190	179	190	172	168	205	164	182	201	202	172	138	139	150	190	229	226	165	165	183	212	231	231
	193	184	186	212	179	185	196	179	158	178	187	164	193	154	181	177	180	157	149	127	164	179	207	204	154	162	172	179	210	210
	206		163 LYNDC		188	163	158	159	139 DEX1		148	144	164		159 VEBST		167	149	117		147 NORTH			176	142		166 SALEN		203	213
	204		163		171	146	160	140			140	140	148				136	125	112					154	127				203	199
	179	179	162	141	160	135	140	119	99	118	137	125	144	128	162	161	162	166	129	114	131	131	135	124	119	130	140	151	169	184
	165	156	143	132	120	123	121	101	81	98	117	121	124	118	145	147	155	146	126	93	114	148	137	125	143	144	154	158	196	196
	182	151	163	157	126	108	100	79	60	80	99	117	102	122	122	137	140	126	103	85	94	127	142	142	142	147	143	161	167	179
	135	121	126	131	120	100	79	60	39	59	79	97	107	116	130	132	120	105	85	66	72	107	99	126	136	143	133	142	139	151
	124		108		109	77	73	56	55	65	82	108	106	107	125			85	65	46	,			111	125				139	151
-	132		SYLVA 108		80	77	71	60	70	[MA 77	75	84	99	98	108	SCI0	-	94	74	55	75	N ARI 96		109	125		SUPEI 145		170	170
-	128	116	122	122	90	90	83	87	87	115	107	99	117	145	132	125	113	103	83	64	84	95	89	93	100	105	120	123	148	138
	147	154	146	146	102	112	133	115	120	126	130	109	125	136	133	130	109	107	103	84	100	89	89	90	101	106	113	119	143	130
Ť	207	185	151	141	123	115	130	135	135	155	161	143	125	136	133	121	109	107	93	96	107	116	94	84	88	109	108	118	124	130
	238	196	172	147	129	130	152	157	161	178	187	13.6	153	174	170	146	123	123	98	85	93	106	86	73	91	76	74	104	95	114
	210	185	166		123	123	127				149	138	164	183			122	118	117			89		72	64	88	84	82	88	103
	190	171	SHA 162	RON 145	126	117	137		FREEI 159		166	162	172	155	LOD1 144		122	133	125		PITT: 92	SFIE 72	LD (LD)	62	86	79	7 PS1 88	LANT 121	I 115	102
	171	149	149	148	120	119	132	147	160	173	169	176	177	203	180	161	137	126	138	102	76	66	60	78	78	94	97	118	115	116
	161	153	158	139	109	130	117	141	151	170	181	165	167	188	192	165	143	120	99	88	98	90	71	100	111	122	106	124	143	138
	173	153	143	131	108	119	111	127	141	150	152	139	144	150	155	150	139	116	131	125	117	99	86	100	105	123	121	140	140	149
+	168	145	144	134	121	107	(92)	109	129	141	157	166	178	, 185	168	153	153	138	139	120	113	94	88	102	104	121	115	123	148	151
	173	166	166			127	115					182	192				159	161	175	143	149		99	123	130				170	173
+	197	161	MANC 161			144	133		BRIDO 161			197	181		SALII 207		162	177	187	160	YO 147		110	134	148		J GUS ' 166	-	192	196
	187	222	218	203	182	161	148	171	178	193	189	180	200	206	209	184	162	174	169	152	138	146	120	131	145	147	155	183	178	180
	230	229	226	206	199	182	167	170	177	167	172	194	215	224	218	188	184	184	167	159	168	153	153	131	161	161	182	186	201	212

Figure 7. Average time from receipt of call to arrival at scene: constrained optimal solution for four ambulances in Washtenaw County. (Times are given in tenths of a minute.)

constrained optimal solution for five ambulances in Washtenaw County. Figure 8. Average time from receipt of call to arrival at scene: (Times are given in tenths of a minute.)

constrained optimal solution for six ambulances in Washtenaw County. (Times are given in tenths of a minute.)

Figure 9. Average time from receipt of call to arrival at scene:

195	174	176 163	148	157	139			131	109	103	103	95	84 83		120	137	142	163	061	179	211
195	174	166 167	133	157	127	66	66	131	118	112	91	75	E 69	108	138	138	147	166	189	177	200
181	146	136 .EM	121	120	120	102	101	105	16	06	72	62	101	116	123	138	122	146	168	180	182
157	145	136 13 SALEM	114	124	103	63	97 101 SUDERIOR	112	06	72	52	(F)	61 64 YPSILANT 80 101	96	104	115	111	39 143 AliGIISTA	162	147	181
140	136	117	104	118	101	102	110	108	16	06	71	60	80 1 16		117	115	110	139 AUG	162	135	148
140	129	117	- <u>6</u>	110	104	06	86	102	26	64	83	80	62	07	106	63	91	117	134	132	148
196	179	151	6 86	100	92	72	72	87	84	82	76	64	61	0	87	87	88	109	120	118	118
190	174	150	108	94	77	\bigcirc	. 61	75	85	81	63	75	24) [58	73	74	85	16	106	140
190	181	156 136	120	116	96	75	84 A P R O P	1000 1000	75	85	115	95	75 FIELD	1	76	86	81	6 92 VORK	108	133	140
152	166	6 149 156 NORTHFIELD	133	120	66	67	82 Ann 4	-	56	76	95	87	15 87 PITTSF1	63	83	104	66	-136 V(134	125	155
141	129	126 NC	115	100	91	87	73	24	(\mathbf{b})	56	76	84	115 [95	87	73	112	106	130	147	139	146
140	151	119	132	149	122	110		74	56	76	85	89	117	12	84	117	125	161	174	156	154
173	159	151	1	174	154	134	113	95	76	63	63	108	105		111	101	123	146	162	159	169
204	182	170		164	152	136	132	115	96	103	103	116	118 811		134	124	138	145	147	147	169
203	180	160 TER	164	150	139	137	124	112	116	123	711	139	2 129 LODI		156	135	139	55 141 SALINE	180	169	173
180	179	WEBSTER		144	122	135	126	100	133	126	126	163	1#2	178	178	139	153		192	194	203
162	152	141		116	122	116	107	98	145	136	136	174	182	- 7	170	125	162	168	169	191	209
203	191	163		122	101	106	105	66	116	125	125	152	163		147	114	147	176	166	182	187
166	162	142		119	115	95	107	82	16	108	160 142	135	137		143	108	136	156	176	158	167
170	186	147		115	95	74	79	72	105	128	160	186	148		156	122	116	116 136 FEWATER	156	160	140
188	176	156 FER		95	74	54	61	74	112	123	152	176	145 158 180 FREEDOM 136 143 153		136	116	65		116 136	156	130
176	156	135 15 DEXTER		74	54	Ø	1 50	99 99	82	115	131 131	156	145 158 1 FREEDOM	136	116	95	75			135	127
188	176	156	115	95	74	54	2	26	82	111		152			95	75	22	75	96	116	121
195	193	155		115	65	74	68	67	78	128	126	147	113	1	75	55	(E)	55	15	96	116
192	180	183 159 167 1112	130	119	103	95	72	72	86	107	110	125	111	16	95	73	55	75	65	116	136
181	174	1 1		116	122	115	104	75	86	16	118	123	168 150 138 111 111 SHARON 144 136 119 100 100		72	65	75	95 FR	116	136	156
228	208	163 159 185 LYNDON 108 150 157	137	128	153	126	113 103 102 SVI VAN	AIN 88	717	141	180 147 137	143	150 138 SHARON 136 119	120 121	103	85	88) 120 108 Manchester	130	156	163
201	1.81	159 1 LYNDON	174 157	138	159	121	103	121 104	117	141	147	167	5150 SHA	120	120	98	98	120 120 108 MANCHEST	115	174	184
195	179			152	147	117	113			149		192			116	107	66	120	115	178	186
216	88	201	174	161	178	130	119	127	124	143	202	230	191	143	126	130	123	127	151	141	186

Chapter 4 Conclusions

This report has considered the application of modeling and simple optimization techniques to the problem of determining station locations for ambulances in a semi-rural environment. A statistical model for the average response time to emergency calls was developed, and a new model for the driving time between any two points in the county introduced. These were seen to work very well in modeling the behavior of the system. The major disadvantage of the approach is the amount of data that must be determined from maps. Relatively inexpensive student labor was used and this was not considered a problem.

The second feature of this study was the use of a simple optimization algorithm. This removed human participation in the selection of locations by one step: Instead of seeking a solution through trial and error using a simulation of the system, the operator merely selected different starting points for the optimization program so that different local minima were found. At some expense in computer time, this too could have been programmed on the computer. The computer time required for small numbers of ambulances was quite reasonable, being less than 80 seconds for N=2. However, the time required increased rapidly with N. For N=6 nearly 11 minutes were required. Fortunately, solutions were not needed for N>6 and the total computation cost was reasonable.* The computation times were somewhat greater for the constrained case. As a result of this study and the existence of today's highspeed digital computers it is reasonable to consider the use of optimization algorithms for problems of this type.

This work was developed both to study the basic ideas involved and to apply them to ambulance operation in Washtenaw County, Michigan. The model and optimization procedure worked well for both the constrained and unconstrained cases. Examination of the resulting station locations, in terms of the county map, has shown that they are intuitively quite reasonable. In addition

*Approximately \$400 was used for the final optimization runs. About \$1700 additional was used for program development and data reduction.

to providing useful information on where to station ambulances, the study has provided insight on what the county would gain by purchasing a new ambulance. Implementation of these results has not yet taken place, but will be under consideration in the near future.

References

- 1. Harris, Britton. "Some Problems in the Theory of Intro-Urban Location," Penn Jersey Transportation Study. September 30, 1962.
- 2. Isard, Walter. Location and Space-Economy. MIT Press, 1956.
- 3. Stolper, Wolfgang. The Economics of Location. Yale University Press, 1954
- 4. Savas, E.S. "Simulation and Cost-Effectiveness Analysis of New York's Emergency Ambulance Service," Office of the Mayor Report. New York City, March 10, 1968
- 5. Gordon, Geoffrey, and Kenneth Zelin. "A Simulation Study of Emergency Ambulance Service in New York City," IBM New York Scientific Center Report No. 320-2935. March, 1968

Appendix A Response Time

In this appendix an expression is developed for the expected value of the response time, which is defined as the time interval between the time a call is received and the time an ambulance arrives at the scene. It is assumed that when a call is received the nearest ambulance (in the sense of driving time) is dispatched. It is further assumed that if there are N ambulances assigned to provide service to the county of which K are in service, the remaining N-K are optimally located. That is, every time an ambulance goes into service, the remaining vehicles are instantaneously relocated in an optimal manner. Since the driving times for relocation are small relative to the average time between calls the assumption of instantaneous relocation, which greatly simplified the calculation, is reasonable.

From the above it is seen that one needs to determine not only the locations of N ambulances, but also the locations assuming 1, 2, ..., or N-1 ambulances are available. Thus, define $x_j, j=1,...,N$ to be the set containing the j station locations to be used if only j ambulances are available. For convenience let $X_N = \{x_i\}_{1}^{N}$ denote the collection of all of these sets.

Let the driving time between any two points $z=(z_1,z_2)$ and $y=(y_1,y_2)$ be denoted by $\rho(z,y,\phi)$ where ϕ is a vector of all random variables which affect the driving time, e.g. weather condition, traffic condition, and time of day. Given that a call is received from a location y and that K ambulances are in service, the response time to that call will then be given by

$$\rho_{2}(X_{N}, y, K, \phi) = \min \rho_{1}(z, y, \phi)$$

$$z \varepsilon x_{N-K}$$
(A-1)

To get the average response time we simply take the expected value of $\rho_2(X_N, y, K, \phi)$ with respect to the paramaters y, K, and ϕ . Denoting the average response time by \overline{T}_r we obtain

$$\overline{T}_{r} = \int_{\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \rho_{2} (X_{N}, y, K, \phi) f(y, K, \phi) d\phi dK dy$$
(A-2)

where $\int dy$ and $\int d\phi$ denote the appropriate multiple integrals and $f(y, K, \phi)$ is the joint probability density function. It has been tacitly assumed that no more than N-1 ambulances are in service when a call is received (i.e., there is always an available ambulance).

To achieve some simplification of this, several assumptions will be made. First, the county (see fig.1) which is 30 miles by 24 miles, is divided into squares one mile on a side. All calls within a one-mile square will be considered to come from a single representative point within that square and all distances from that square will be measured relative to that point. Next, it will be assumed that the variables y, K, and ϕ are statistically independent. Then, noting that K takes only integer values between 0 and N-1, equation (A-2) can be written

$$\overline{T}_{r} = \sum_{K=0}^{N-1} \sum_{y_{1}=1}^{30} \sum_{y_{2}=1}^{24} \overline{\rho}_{2}(X_{N}, y, K) p(K) p_{1}(y_{1}, y_{2})$$
(A-3)

where $\overline{\rho}_{2}(X_{N}, y, K)$ is the expected value of $\rho_{2}(X_{N}, y, K, \phi)$ w.r.t. ϕ , p(K) is the probability that K ambulances are in service, and $p_{1}(y_{1}, y_{2})$ is the probability of a call occurring in the square with coordinates (y_{1}, y_{2}) .

In this form, the problem of determining the location vector in the set X_N may be decoupled by writing equation (A-3) as

$$\overline{T}_{r} = \sum_{y_{1}=1}^{30} \sum_{y_{2}=1}^{24} \overline{\rho}_{2}(X_{N}, y, 0) p(0) p_{1}(y_{1}, y_{2}) +$$

(A-4)

From equation (A-1) it is seen that the term on the left involves only the location set x_N , while the term on the right involves x_1, \ldots, x_{N-1} but not x_N . Thus, one may successively solve for x, x_2, \ldots, x_N using at each stage the left term in equation (A-4)

To get p(K), let there be Q calls in a year and let the average length of service of an ambulance be \overline{T}_s . Given that a call occurs at time t, p(K) may be approximated by the probability that exactly K calls occur during the previous \overline{T}_s minutes. Since a call either does or does not fall within this time interval, binomial probabilities may be used, and

$$p(K) = {Q-1 \choose K} \sigma^{K} (1-\sigma)^{Q-K-1}$$

(A-5)

where $\sigma = \overline{T}_{s}/1$ yr. Table II(see Ch. 2) shows a few values of p(K) for Washtenaw County. It can be seen that the assumption that not all N ambulances are in service when a call is received is valid for N>4. Although the average response time is a significant measure of the ambulance system performance, it may also be desired that no response be longer than some predetermined maximum, T_m . In an absolute sense, this cannot be guaranteed. However, one can include a constraint which would require that the average response time to any point in the county be less than T_m if at least r ambulances are available at the time a call is received. This latter condition on the number of ambulances available is necessary because if the number is too low, there may be no set of locations from which one can reach any point within T_m minutes. This constraint is incorporated by using a penalty function and modifying the performance measure to:

$$\overline{T}_{r} = \sum_{\substack{y_{1}=1 \\ y_{1}=1}}^{30} \sum_{\substack{y_{2}=1 \\ y_{2}=1}}^{24} \sum_{\substack{K=0 \\ K=0}}^{N-r} \{\overline{\rho}_{2}(X_{N}, y, K) + \frac{1}{\epsilon} \text{Pos} [T_{m} - \overline{\rho}_{2}(X_{N}, y, K)]\} p(K) p_{1}(y_{1}, y_{2})$$

$$+ \sum_{\substack{y_{1}=1 \\ y_{2}=1}}^{30} \sum_{\substack{y_{2}=1 \\ K=N-r+1}}^{24} \overline{\rho}_{2}(X_{N}, y, K) p(K) p_{1}(y_{1}, y_{2})$$
(A-6)

where

 $Pos (w) = \begin{cases} w \text{ if } w > 0 \\ o \text{ if } w \le 0 \end{cases}$

and ε is an arbitrary small positive number.

Appendix B Driving Time Model

From equation (A-1) it is seen that calculating the response time requires the ability to compute the point-to-point driving time between any pair of points. This can be written

$$\rho_{1}(z, y, \phi) = \int_{\Gamma} \gamma(w, \phi) dw + \gamma_{0}(\phi)$$
(B-1)

where $\gamma(w,\phi)$ is the reciprocal velocity along the path Γ , and $\gamma_0(\phi)$ is the delay in starting, and Γ is the path chosen between z and γ_0 .

As an approximation, let all roads be divided into four categories (1) limited-access expressways, (2) paved county roads, (3) city streets, and (4) unpaved county roads. Then let $\Gamma_i = \{z: z \in \Gamma \text{ and } z \text{ on a road of type } i\}$. In other words, Γ_i is that portion of Γ consisting of roads of type i. Thus $\Gamma = \Gamma_1 \cup \Gamma_2 \cup \Gamma_3 \cup \Gamma_4$ and the integral in equation (B-1) can be written

$$\rho_{1}(z,y,\phi) = \int_{\Gamma} \gamma(w,\phi) dw + \int_{\Gamma} \gamma(w,\phi) dw + \int_{\Gamma} \gamma(w,\phi) dw + \int_{\Gamma} \gamma(w,\phi) dw + \gamma_{0}(\phi)$$

But, $\int_{\Gamma_{i}} \gamma(w,\phi) dw$ is simply the average inverse velocity $\gamma_{i}(\phi)$ over Γ_{i} multiplied by the length of path Γ_{i}, d_{i} . Thus,

$$\rho_1(\mathbf{z},\mathbf{y},\phi) = \gamma_0(\phi) + \gamma_0(\phi)d_1 + \gamma_0(\phi)d_2 + \gamma_0(\phi)d_3 + \gamma_0(\phi)d_4 \qquad (B-2)$$

(B-3)

Letting $\overline{\gamma}_i = E[\gamma_i(\phi)]$ this can be written

 $\overline{\rho}_{1}(z,y) = \overline{\gamma}_{0} + \overline{\gamma}_{1}d_{1} + \overline{\gamma}_{2}d_{2} + \overline{\gamma}_{3}d_{3} + \overline{\gamma}_{4}d_{4}$

where the expectation is carried out relative to the random variables ϕ .

In order to complete the driving time model, the path and, hence, the distances d_1, \ldots, d_n must be specified. It is at this point that the key approximation in the model is made. A set of M (59 for Washtenaw County) "major" intersections were selected from the county map and an array of driving times between them computed using equation (B-3). Denoting this array by A, the driving time from intersection i to intersection j then is A(i,j). In this and subsequent time calculations, the distances d_i were obtained by using typical routes determined from area maps.

For each of the one-mile square subdivisions of the county, three surrounding intersections were selected. These may be viewed as possible entry points to the cross-country travel network. This information is stored in a second array B_0 ; $B_0(j,z_1,z_2)$ contains the index of the j-th (j= 1,2,3) intersection near the coordinate (z_1, z_2) . Similarly a third array B_1 containing the driving time from (z_1, z_2) to intersection $B_0(j, z_1, z_2)$ may be generated. B₁(j,z₁,z₂) is the driving time from B₀(j,z₁,z₂) to (z₁,z₂). To determine an estimate of the driving time from $z=(z_1,z_2)$ to $y=(y_1,y_2)$ one can form

 $\alpha(z,y) = \min \{B_{1}(i,z_{1},z_{2}) + A[B_{0}(i,z_{1},z_{2}), B_{0}(j,y_{1},y_{2})] + B_{1}(j,y_{1},y_{2})\}$ $1 \le i \le 3$ $1 \le j \le 3$ (B-4)

In instances where z and y are close it will be faster for the ambulance to take a more direct route from z to y, which may be approximated by the sum of the coordinate distances. Since this route will generally only involve city streets or unpaved roads and since γ_3 and γ_4 do not differ widely, the inverse speed $\overline{\gamma}_4$ was applied to all such distances. Thus a second quantity

$$\beta (z, y) = (|z_1 - y_1| + |z_2 - y_2|) \cdot \overline{y}_4$$
(B-5)

is computed. Then the driving time from z to y is computed as

 $\overline{\rho}_{1}(z,y) = \min \left[\alpha(z,y),\beta(z,y)\right]$

(B-6)

Finally, to obtain $\overline{\rho}_{2}(X_{N}, z, K)$ we form

 $\overline{\rho}_{2}(X_{N}, y, K) = \min_{z \in X_{N-K}} \overline{\rho}_{1}(z, y)$

(B-7)

Appendix C Optimization Algorithm

In order to minimize \overline{T}_r , the problem is decoupled as in equation (A-4) and iteratively solved for N=1,2,..., Hence we assume that the solutions for x_1, \ldots, x_{N-1} are known. The sum on the right of equation (A-4) depends only on K>1, and hence only on x_1, \ldots, x_{N-1} . Thus, this term is known and the minimization may be carried out with respect to the lefthand sum

$$T_{1}(X_{N}) = p(0) \sum_{y_{1}=1}^{30} \sum_{y_{2}=1}^{24} \overline{\rho}_{2}(X_{N}, y, 0) p_{1}(y_{1}, y_{2})$$
(C-1)

in which the only variable is \mathbf{x}_{N} .

To minimize $T_{1}(x_{N})$ a discrete version of steepest descents is used. For convenience, let x_{N} also denote an ordered vector of the elements of the set x_{N} . Beginning with an initial guess x_{N}^{0} , a sequence of location vectors is generated via the equation

$$\mathbf{x}_{N}^{\mathbf{i}+1} = \mathbf{x}_{N}^{\mathbf{i}} + \alpha^{\mathbf{i}} \Delta \mathbf{T}_{\mathbf{i}} (\mathbf{x}_{N}^{\mathbf{i}})$$

(C-2)

where x_N^i is the i-th element in the sequence, $\Delta T_1(x_N^i)$ is a direction from x_N^i and α^i is chosen to minimize $T_1(x_N^i + \alpha \Delta T_1(x_N^i))$.

Due to the discretization of the county into one mile squares, several simplifications occur. First, only integer values need be considered for the entries in x_N^i . Thus a suitable descent direction may be found by forming the forward and backward differences $\Delta T_1^f(x_N^i)$ and $\Delta T_1^b(x_N^i)$ where j-th components are given by

 $\Delta T_{1j}^{f}(x_{N}^{i}) = T_{1}(x_{N}^{i} + e_{j}) - T_{1}(x_{N}^{i})$ $\Delta T_{1j}^{b}(x_{N}^{i}) = T_{1}(x_{N}^{i}) - T_{1}(x_{N}^{i} - e_{j})$

where the e are the standard basis elements in E^{2N} . Then, one may choose $\Delta T_{i}(x_{N}^{i})$ so that its j-th component is

$$\Delta T_{ij}(\mathbf{x}_{N}^{i}) = \begin{cases} \Delta T_{1j}^{f}(\mathbf{x}_{N}^{i}) \text{ if } 0 \leq -\Delta T_{1j}^{f}(\mathbf{x}_{N}^{i}) \geq T_{1j}^{b}(\mathbf{x}_{N}^{i}) \\ \Delta T_{1j}^{b}(\mathbf{x}_{N}^{i}) \text{ if } 0 \leq T_{1j}^{b}(\mathbf{x}_{N}^{i}) > -\Delta T_{1j}^{f}(\mathbf{x}_{N}^{i}) \\ 0 \text{ otherwise} \end{cases}$$
(C-3)

That is, each component of $\Delta T_1(x_N^i)$ is chosen to bring about the greatest decrease in T_1 .

The sequence of $\{T_{i}(x_{N}^{i})\}$ generated by the above procedure will clearly be nonincreasing. Since the entries of X_{N} may take on only integer values over a finite domain, there are only a finite number of possible values for $T_{i}(x_{N}^{i})$. Hence, the iteration using equations (C-2) and (C-3) must eventually yield $x_{N}^{i+1}=x_{N}^{i}$. This is a natural stopping condition for the iteration. As a final check for a local minimum $T_{i}(x_{N}^{i})$ is evaluated at all points in a neighborhood of x_{N}^{i} (this is reasonable since there are only a finite number of possibilities).

The major difficulty encountered in the implementation of the problem was the existence of local minima. These occur naturally at many points in the county. For example, it is reasonable to expect a local minimum to occur at most expressway entries, for if one moves the station a short distance away from the entry point, the driver would, for many calls, simply have to drive back to the expressway entry. This problem was overcome in the usual way by restarting the procedure from a number of different points.