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1 Introduction

Over 100 years ago the French physicist Henri Bénard was inspired by the accidental discov-
ery of cellular convection, and so for his doctoral dissertation he performed experiments on thin
differentially heated layers of fluid. He observed many phenomena that we now recognize as char-
acteristic of the convection that partially bears his name, including that it only occurred after a
critical temperature had been reached and that the convection occurred in a cellular pattern with
heat rising in the middle of the cell and falling at the edges. Sixteen years later, Lord Rayleigh used
the Boussinesq equations — a modification of the incompressible Navier—Stokes equations that ac-
count for buoyancy — to create a theoretical framework for Bénard’s obervations, and so the theory
of Rayleigh—Bénard convection was born. His model relied on differential buoyancy forces created
by temperature gradients in the fluid, and it predicted that sufficiently destabilizing temperature
gradients would drive fluid motion.

Rayleigh’s work was a seminal development in the theory of convection, but it turned out to
not be the explanation of Bénard’s observations. Rayleigh’s model relies on the existence of a tem-
perature gradient in the fluid to cause buoyancy forces, which is indeed the mechanism that typically
drives convection in nature, but was not what caused the convection cells seen in Bénard’s exper-
iments. In 1958, J. R. A. Pearson, a researcher employed by a paint company, showed that under
the conditions of Bénard’s original experiments, convection was primarily driven by temperature-
dependent surface tension rather than temperature-dependent buoyancy [5]. Pearson developed his
theory of surface tension-driven instability after observing circulation in paint regardless of the ori-
entation of its free surface, while Rayleigh’s model required the free surface to be oriented opposite
the direction of gravity.

Even though Rayleigh’s model does not explain Bénard’s observations, Rayleigh—Bénard con-
vection and the Boussinesq equations have found widespread application in fields such as oceanogra-
phy, atmospheric science, astrophysics, and engineering. Furthermore, in modern nonlinear science,
the Rayleigh—Bénard model has become one of the most popular systems for studying pattern for-
mation, spatiotemporal chaos, and turbulence.

In the present work, we investigate the heat transport ability of Rayleigh-Bénard convection
in two dimensions with free-slip boundaries when optimizing the aspect ratio of the convection
cells. This heat transport is typically quantified by the dimensionless Nusselt number Nu, which
is the ratio of total heat transport to conductive heat transport. Of particular interest is the
dependence of Nu on the Rayleigh number, Ra, which is a dimensionless parameter proportional
to the temperature difference between the top and bottom of the domain. In the 2D free-slip
configuration, it has been proven mathematically that Nu can grow no faster than Ra®'2? as
Ra — oo [6]. However, for steady convection cells in a fixed domain, Nu grows at the slower rate



of Ral/? [3]. The object of the present work is to determine whether steady convection cells can
produce faster growth of Nu if the geometry of the convection cells is chosen to maximize Nu.
The optimal choice of geometry will generally depend on Ra and on another dimensionless control
parameter, the Prandtl number Pr. In the case of steady 2D convection with no-slip boundaries,
it has been reported that optimizing the geometry of the convection cells indeed raises the rate at
which Nu grows with Ra, raising the scaling exponent from 0.28 in the nonoptimized case to 0.31
in the optimized case [2].

2 The Boussinesq equations

We consider a two-dimensional domain of height 0 < z < h and length 0 < xz < L. We
nondimensionalize lengths using the height h, which gives a domain [0,T") x [0, 1], where I' = £ is
the aspect ratio of the domain. We nondimensionalize time using the timescale of thermal diffusion.
In dimensionless form, the Boussinesq equations governing Rayleigh—Bénard convection consist of

the continuity equation

V-u=0, (1)
the momentum equation
ou+ (u-V)u=—Vp+ Prv?u+ PrRaTk, (2)
and the temperature equation
OT + (u- V)T = VT, (3)

where T is the temperature and u = u i + w k is the fluid velocity. The Rayleigh and Prandtl
numbers are defined as
3A
Ra = 9912 pr=" (4)
K

RV

where g is the acceleration due to gravity, a is the coefficient of thermal expansion, A is the
temperature difference from the bottom to top layers of fluid, v is the kinematic viscosity, and & is
the thermal diffusivity.

The stream function W is defined so that it is related to the vorticity w by

w= -V = d.u — d,w. (5)

The velocity components are related to the stream function by v = —9,¥ and w = 0, ¥. We can
rewrite the temperature equation in terms of the stream function using the identities

(u- V)T =ud, T + w0, T, (6)

T — 9,99, T + 9,90,T = VT, (7)
0,V 9,0

—0.Y9,T + 9,90.T = ‘ azT aiT ‘ ={v,T}. (8)

Using this, the temperature equation can be written as

0T + {V,T} = V*T. 9)



The momentum equation (2) is a vector equation. Writing the equations for u and w separately
gives

O+ (u-V)u = —dup + Prviu, (10)
ow + (u-V)w = —0,p + PrVv?w + PrRaT. (11)

To find an equation for w = —V2W¥, we take 9,(10) — 9,(11) to find
Orw + 0. ((udzu) + wdu) — O (udpw + wd,w) = Prv>w — PrRad,T. (12)

Expanding all derivatives gives
0, u0u+ U0y, u+0, WO, u+ WO, , u— (Op U WH Uy W+ Oy W, WH WDy, w = Prv2w—PrRad,T. (13)
Since v = —0,¥ and w = 0,V, d,u = —0,w, we can rewrite the left side of (13) as
w(Oprtt — Ozpw) + W(0ztt — Oppw) = w0y (0u — Opw) + WO, (Ou — Opw). (14)

Recalling that u = —0,¥ and w = 9, ¥, we find that this is equivalent to —0,V0,w + 0, VY0, w =
{\Il, w}. So, the momentum equation can be written in terms of ¥ and w as

ow + {¥,w} = Prv:w — PrRad,T. (15)
In summary, the stream function formulation of the 2D Boussinesq equations is

T +{V,T} =V°T, (16)

Ow + {¥,w} = Prv*w — PrRad,T. (17)

When solving the Boussinesq equations numerically, it is convenient to rescale the domain
from0<z<Tto0<z <2rand from0<z<1to—-1<2 <1, sowe use the transformation

2
= lx, 2 =221 (18)
T
The derivatives 0, and 0, then transform as
r 1
3x/ — %aw, azl — 582 (19)
With this transformation, the Boussinesq equations become
4
T + T {¥.T} = V"T, (20)
4 2
B + %{\IJ, w) = Prvw — PrRa%&xT, (21)

where V2 = 92 + 02 = (3£)20%, + 402,.
In order to make computations simpler, we write T'(x, z) = To(z) + O(x, z), where the base
linear temperature profile Ty(z) is given by

To(z) = —=. (22)

Noting that 0,Tu(z) = 0 and 9,Tp(2) = —1 and substituting for T'(z, z), we can rewrite (20)—(21)
as

9,0 + 4?”({\1/,@} _0,7) = V70, (23)

4T 9 2m
Oww + ?{\I',w} = PrvV"”w — PTRCL?&EG. (24)

with all fields being periodic in the x direction and having 0 boundary conditions at z = +1. The
0 boundary conditions on ¥ are what makes this a free-slip problem.



3 Stability of solutions

3.1 Linearization about the static state

In order to simplify computation and avoid convergence to a trivial solution, it is often useful
to consider perturbations to background fields instead of the entire field. Here, we introduce the
background and perturbed fields and then linearize the Boussinesq equations to determine where
stable and unstable solutions lie and find the transition between them.

Consider the case where the fluid is motionless and the temperature T only depends linearly
on z. This means that ¥y = 0 and gives a differential equation to solve for Ty. Specifying that
To(—1) =1 and Tp(1) = —1 we obtain a boundary value problem to solve for Tj.

d*T
—— =0, To(—1) =1, Tp(1l) = —1. 25
dz2 ) 0( ) ) 0( ) ( )

The form of Tp in (22) satisfies all of these conditions, so we will have Ty(z) = —z. Let O be a
perturbation to Tp(z) and let U be a perturbation to ¥y = 0. Making use of (23) and (24) and
setting time derivatives to zero and dropping the nonlinear terms, we obtain the equations

2
,%893\1; - v"2e, (26)
2
VA = —Ra%@;@. (27)
Taking 220, (26) and V'2(27) and using the fact that these derivatives commute, we find
472 2m
— 92U = ==V, 2
2 03 T V0,0, (28)
2
VO = —Ra%V’ZﬁxQ (29)

These equations can be combined to find a differential equation for W,
16 4r® 2

3.2 Linear instability of the static state

Since we must solve a sixth order equation, we need six boundary conditions in total on ¥
and its derivatives. We want the vertical fluid velocity to be zero at the boundaries. Since the
vertical fluid velocity w = 0,V we can find the first two boundary conditions by setting w = 0
at the boundaries. The next two arise as a result of (5), and since O is a constantalong z = +1,
0,9 (z = £1) = 0, which gives the last boundary conditions from (27):

0, V(2 =+1) =0, (31)
V20,0 (2 = +1) =0, (32)
V40, (z = +1) =0 (33)

Horizontal periodicity allows us to seek solutions of the form W(z,z) = W(z)sinz. Under this
ansatz, derivatives of ¥ taken with respect to = do not affect its z dependence. Since 92V = —W,



the operator (2£)?92 = —(%£)? and the boundary conditions above can be rewritten as

U(z==41)=0, (34)
92 (z = +1) =0, (35)
(2 =+1)=0. (36)

These boundary conditions are satisfied by W, (z) = cos (n — $)mz for integers n. Since we are

interested in solutions with only one layer of convection cells in the vertical direction, we choose
n = 1. Substituting this in to (30) gives

27 472
2 2\3 _
Rearranging this equation we find an expression for Ra as a function of I'?,
I? 27
2y _ L7 2 4T9\3
Ra(T?) = 5 (e + (). (39)

The critical value I'2, that minimizes the above function gives the minimum Rayleigh number Ra,
where unstable solutions first appear. Basic calculus gives

Fg'r’ =38, (39)
27

Ra = Ra(T?) = T (40)

The stable and unstable regions in the (k, Ra) plane, where k = 2% is the horizontal wavenumber,

are shown in figure 1. The minimum of the curve corresponds to the critical value Rac,.
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Figure 1: Rac, (k) showing a minimum at Ra.,, where unstable solutions are first found.

Given our chosen initial conditions, solutions in this unstable region will be pairs of convecting
rolls which can be seen through a plot of the level sets of ¥(x,z) in figure 2. The magnitude of
U(z, z) corresponds to the speed of the fluid at that point, and the fluid moves at the same speed
at all points on a given level set of ¥(x, z). Since we are working with periodic boundaries, we can
see in the following plots that the fluid rises at * = (2n 4+ 1)7 and falls at © = 2nm, where n is an
integer.
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Figure 2: ¥(x,z) and T(z, z) at Ra = 103,

4 Numerical computation of steady states

In order to find the steady state temperature field, we need to solve (23)—(24) numerically
with 0,7 = 0, which have done using Newton’s method. Given a system of equations F(x) = 0,
Newton’s method searches for the solution x using the iterative process:

JpAxy + F(xy) =0, Xp41 = Xn + AX, (41)

where x,, is a vector of state variables with components x; and Jp is the Jacobian matrix of the
system defined by J;; = gTF;v where Fj is the i*" component of F. We will look to use Newton’s
Method to solve for ¥ and © simultaneously.

To calculate the temperature distribution we make use of (23) and enforce the boundary con-
ditions ©(z,+1) =0, (0, z) = ©(27,z). We begin by constructing a discretized N x N domain
with uniform discretization in the x direction and Chebyshev discretization in the z direction. In
order to write (23) in a form that allows us to use Newton’s method, we construct differentiation
matrices for the x and z directions using spectral methods. Since the z direction is treated with
Chebyshev spacing and the boundary conditions in x are periodic, we use a Chebyshev differentia-
tion matrix in z and a Fourier differentiation matrix in x. Let Dz be the Chebyshev differentiation
matrix and Dz be the Fourier differentiation matrix, each with appropriate scaling as described
by (19). In order to ensure that we respect boundary conditions, the differentiation matrices are
stripped of their first and last rows, leaving us with two N x N differentiation matrices.

To solve (23) for ©, we select a stream function ¥(x, z) that respects the boundary conditions
on U(z,z) and create an (N + 2) x N array of values of U on the discretized spatial domain,
which is then stripped of its first and last rows and reshaped in to a vector ¥ with length N2. To
differentiate this, we use the Kronecker product ® to create new N2 x N? differentiation matrices
Dx;, and Dz,

Dx;yp, = Iy ® Dz, (42)
Dz, = Dz ® Iy, (43)

where Iy is the N x N identity matrix. The second derivatives are given by Dz? and Dz2,,
allowing the Laplacian and Poisson bracket to be written as

V2 = Da? + Dz} (44)

m?

{¥,0} = Dz;,¥ 0 Dz;,©® — D20 0 Dz;,, ¥, (45)



where o represents the Hadamard product.

4.1 Reformulating the equations

We can then write (23) and (24) as an algebraic system using the Hadamard product. Since
U and w are related in a simple manner by (5), we can replace any reference to w by —V?¥ and
reduce the system of equations with three variables to a system with two variables. These new
equations take the form

F(®) = Dz;,¥ 0 D2;,® — Dz;,0 0 D2, ¥ — Dz;, ¥ — V?@© = 0, (46)
F(¥) = —Dz;,% 0 D2, V¥ + Dz, W 0 Dz, V2 + Prv*W + PrRaDz;,® = 0 (47)

Now, we can apply the method used in [9], where the system of equations is solved via Newton’s
method with a single Jacobian matrix. To do this, we define a new vector v(®, ¥) and a new
vector function G(v), each with length 2N2. These new vectors will be defined so that the first
N? entries are ©; and F(®), respectively, and the last N? entries are ¥; and F(¥),. Using this,
we can define a Jacobian using G and v, allowing us to solve for both ® and ¥ at the same time.

4.2 Exploiting symmetry

The Fourier differentiation matrices work by assuming only that the functions they are applied
to are 2m—periodic and says nothing about forced symmetry over the interval. However, all three
of ©,¥, and w have some sort of symmetry on the interval [0,27) that we can exploit to make
our differentiation matrices one quarter of the size they would be otherwise, allowing for a huge
increase in computational speed.

Due to our periodic boundary conditions and the basis we’ve chosen for them, the variables
© and VU are even and odd about & = m respectively, and w inherits the same symmetry as ¥
due to how it has been defined. This allows us to halve the set of basis functions for each of
these variables by ignoring those with the opposite symmetry over m, giving us two matrices meant
for differentiation of even and odd functions. Since the derivative of a function has the opposite
symmetry of the function, we also need two different matrices for the second derivatives. A more
complete discussion can be found in [7].

4.3 Changing Ra

Using the methods described in the previous parts of this section, we are able to write code
to solve the Boussinesq equations and calculate Nu at increasing values of Ra, which we have
chosen to be logarithmically spaced. We begin our iteration at Ra = 10® with initial conditions for
VU(z,2) = sinxcos 5z and O(z, z) = cos x cos 5z and combine the values for both of these variables
in to a single vector v as described in section 4.1. Using these, we iterate Newton’s method until
||v||o < €(N) a prescribed tolerance, where the argument is used to indicate that this value of
€ increases as the spatial resolution increases to limit effects from numerical noise which can be
amplified at high resolutions. We then use these converged values of v to find good initial conditions
for use at the next value of Ra.

In order to accelerate convergence at high values of Ra, we store the previous values of v at
every point in the spatial domain. We can then use these as well as the Rayleigh number they were
generated at to allow for extrapolation of v to the next Rayleigh number via cubic splines. We
can then use this extrapolated value of v as a slightly more accurate initial guess than if we had
just used the value of v at the previous value of Ra. This approach saves valuable time when the
resolution gets finer and calculations become very computationally expensive.



4.4 Changing resolution

As Ra increases, we require finer spatial resolution to give accurate solutions from which we
can calculate Nu. We determine which resolution is sufficient at each value of Ra by comparing
calculations of Nu at several resolutions. Once we are convinced that increasing resolution will not
affect the calculation, we settle on that resolution. In the cases where the values of Nu are close
together, we say that the calculations are well-converged. This dependence on the resolution is
demonstrated in table 1, where for lower values of Ra all pictured resolutions will agree, but their
separation becomes larger as Ra increases.

Dependence of Nu on resolution N
N Ra = 10° Ra = 10* Ra = 10° Ra = 10°
64 1.7385935 5.086978 11.620777 28.645699
80 1.7385935 5.086978 11.618579 26.610504
112 | 1.7385935 5.086942 11.618436 25.778404
128 | 1.7385935 5.086902 11.618335 25.713831
160 | 1.7385935 5.086748 11.618075 25.686192
176 | 1.7385935 5.086748 11.618076 25.684132

Table 1: The dependence of Nu on resolution. Note how increasing Ra creates a need for higher
resolution to get well-converged solutions.

In order to keep solutions well-converged, we update the resolution whenever log;,(Ra) is
an integer or half-integer, or whenever the slope between the last and second to last point in
the (logyg(Ra),log;o(Nu)) plane is larger than that between the third to last and second to last
points. In the event that the resoluton needs to be increased, we can apply Fourier and Chebyshev
transforms to both ¥(z,z) and O(z, z) to give a spectrally accurate interpolation on to the finer
grid by padding the end of the transformed frequencies with an appropriate number of zeros and
then applying the inverse transform. In order to allow for the extrapolation described in section 4.3
to work with updated resolution, we apply the same method to the stored values of ¥ and © at the
previous four values of the Rayleigh number. Once we have done this, we update all differentiation
matrices and continue at the new resolution.

5 Calculating the Nusselt number

Once we have found the steady solution to the Boussinesq equations at a given Ra and Pr, we
can use those solutions to find the Nusselt number, or the ratio of total heat transfer to conductive
heat transfer. There are several equivalent expressions for the Nusselt number (let (.) denote a
volume average and - denote a horizontal average):

Nu=1+ (wT), (48)
Nu = _d%T'Z:l’ (49)
Nu = (|VT[?), (50)
Nu=1+ %qvuy?) (51)



In terms of © and ¥, where T'=Tp + © and w = %\P, we can rewrite (48) as

Nu:1+<(@—z)%‘ll> = 1+<@%\P>—<Z%\P>. (52)

Letting €2 be the spatial domain [0,27) x [—1, 1], the volume average of a function f(z, z) defined
on {) is

1
(o) = 3 | f@.2)an, (53)
Using this, we can rewrite (52) as
v
Nu=1 - / @—dQ / zfi—wdﬁ) (54)

Since z is constant with respect to x and df) = dzdz the second integral can be written as
f f% W iz)dz = f_ll 2(¥(27,2) — ¥(0, 2))dz = 0 since boundary conditions force ¥(0,z) =
\11(27r z). We can now rewrite (54) as

dv
Nu=1 —dQ) =1 .
u=1+ ([ O =1+ (56) (55)
After re-scaling to fit our domain, this is equivalent to
21 ,dV
Nu=1+ —(—
u=1+ T ( . O). (56)
Likewise, we can rewrite (49) as
Nu=—t@8=7) (57)
 dz ==l
Taking the derivative, we find that this is equivalent to
Nu=—(Lo_1) (58)
Mz ==l
Re-scaling to our domain we find that this is equal to
Nu=—@2Lo_1) (59)
B dz ==t
By again letting T'= 0 — z in (50) we find
= (VO — ) = (O 2) + (2(0 — 2))) (60)
dz dz '
Taking the derivatives and rescaling, this becomes
2r d d 9
Nu = <(?d—®) (2%@ —1)%). (61)

Noting that (220 — 1)) = (1 — 240 +4(£0)%) = (1) — 2(£0) + ((2£0)?) we can simplify
this further. From (53) we can calculate (20) = [Z7 [! (LO)dzdx = [J™(O(1) — O(—1))dz = 0
because O(+1) = 0 from boundary conditions. We can use this calculation to simplify (61) even

further:

Nu=1+(Z Lop) + (20, (62)

9



Lastly, we can write the vector u in (51) in terms of its components (u,w) = (—=0,¥,0,V),
which turns the equation into one for the average of the squared norm of V(—9,%, 0, ¥), which is
the sum of squared entries of the matrix.

Nu=1+ (2 & )2+ (Cﬁ\p)? + (dixp)% (63)
N Ra " dzdz dz? dx? '
Re-scaling, we see that this is equal to
1 7 d? 1 d? 21 o d?

Nu=1+ —(2(= U+ (=02 + (55)2 =5 0)2). 64
= R Y T G T () g (64)

It can be shown that the first term averages to 0, so this becomes

1 2

Nu=1+ —(V"*U). (65)

Ra

So the new expressions for calculation of Nu are given by (56), (59), (62), and (65). These
values are calculated at each each value of Ra and their average is taken to lessen the effect of small
numerical error in any one of the calculations. This average is what is used in all calculations of
Nu.

3.0

T, 10° < Ra < 10°

20 I I
10° 104 10° 106

Ra

Figure 3: T'opt(Ra)

6 Optimization over I

In order to allow the Nusselt number to increase as quickly as possible, we calculate the optimal
aspect ratio for the domain at each Ra.To calculate I'y,;, we select evenly spaced points from an
interval as test values for I' and run the routine stepping through Ra at each of the pre-selected
I'. Upon completion of the calculation of Nu(Ra;T") at each I', we arrange the results to group the
various calculated values of Nu(Ra;I") together for each fixed Ra. The curves of Nu(I') at fixed
Ra have a single local maximum, which allowed us to use convex optimization routines to calculate
Lopt(Ra) at each Ra and use that information to calculate Nu(Ra;Top). In [10], at Pr = 1 they
find extra curvature in the plot of Nu vs I' beyond a single local maximum, however it occurs at
higher wavenumber than investigated here so there may still be similar behavior to find. A plot

10



of I'opt(Ra) shown in figure 3. These results are similar to what was found in [1], where Iy, was
found to vary little over large changes in Ra. We observe a change from I'y); ~ 2.81 at Ra = 103
to I'gpt = 2.12 at Ra = 109, a small change for such a large change in Ra. We can see this change
in I'yp; for several Ra in figure 4.

- ~ —_ ~
175 Ra=10"3 ‘ 512 ‘ Ra=10"4
L
170 5.10
5.08
1.65
5.06
2160 2
5.04
1.55
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150 5.00
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30 2.2 2.4 2.6 2.8 3.0 80 2.2 2.4 2.6 2.8 3.0
r r
Ra=10"5 Ra=10"6
11.80 26.3
26.2
11.75
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2 2
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11.5 ; . 25. ; i
9% 2.2 2.4 2.6 2.8 3.0 30 2.2 2.4 2.6 2.8 3.0
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Figure 4: Nu(T) at Ra = 103,10%,10%,10° showing single peaks at Top:.

Work in [3] shows that, in the case where T' is fixed and Pr is of moderate size, the optimal
wave number k ~ 7, which means that I',,; should approach 2 as Ra — co. The curvature near
Ra = 10° in figure 3 suggests that this may still be possible, but further investigation would be
needed to conclude anything. It is interesting to note that in the no-slip case the optimal aspect
ratio is described by a power law [2], but that may not be the case here.

7 Results

In [4] it was shown that the non-optimized case yields Nu(Ra;I') ~ Ra'/3 in the limit Ra — oo,
and work done in [6] has proven that Nu(Ra;T') cannot scale faster than Ra®'2. By optimizing
over I" we hope to force the power law exponent as high as possible.

Since the difference between the optimized and non-optimized calculations is small, we can
get a better view of the situation if we look at a plot of the percent difference in Nu between the
two cases normalized by the non-optimized case. This is shown in figure 5. The difference between
the calculated values of Nu starts off around 1072, but as Ra — oo the difference increases and
is close to 1 at Ra = 10°. We see that the percent difference is increasing throughout the interval
10® < Ra < 106.

So, while it doesn’t seem that the optimization has changed the scaling exponent, it is possible
that the prefactor in the power law relation has changed, that is, the value of C' in the expression
Nu~ CRa'/3. In [3], Chini and Cox calculate the value of C' to be approximately 0.2629. If, as we

11
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Figure 5: log-linear plot of the difference between the optimized and non-optimized cases

suspect, Nu(Ra; o) is asymptotic to CoptRal/ 3 for some Copt as Ra — oo, then as Ra — oo we
expect that the ratio Nu(Ra; Fopt)/Ra1/3 — Copt. Since Nu(Ra,T'op) < CoptRal/g’ for all values
of Ra, we expect to be able to use this ratio to obtain a lower estimate on Cyp;.

From the data used in figure 6, we see that in the non-optimized case C' > 0.257, which agrees
with the number provided by Chini and Cox. However, in the optimized case the lower estimate
on the value of C has already passed the value given by Chini and Cox, with the data from figure
6 giving a lower estimate of C,,; > 0.263. So it appears that all the difference in scaling is made
by the change in the prefactor. In the nonoptimized case, there is a 2.4% increase from this lower
estimate of 0.257 to Chini and Cox’s value. If we assume that the optimized case scales similarly,
then this gives a value of Cpp =~ 0.270, s0 Nuo(Ra) ~ 0.270Ra'/3.

0.8 Nu/Ra'’ for optimal and fixed T’

Nu/Ra'/?

0.18

— I'=V8

— optimized T’

103 104 10° 10°
Ra

Figure 6: Nu/Ra'/? for optimal and fixed T
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This calculated prefactor makes for a convincing asymptotic limit. The figure below shows the
scaling of the calculated value of Nu(Ra) with the asymptotic limit, showing that it approaches
the limit as Ra increases like we expect it to.

102 Asymptotic vs Calculated Nu, C'=0.270

& 101t

—— Calculated Values

— Asymptotic Limit

10° ‘
103 104 10° 106
Nu(Ra)

Figure 7: Calculated value of Nu(Ra) approaching Nue, = 0.270Ra'/3

For Rayleigh—-Bénard convection between free-slip boundaries with Pr = 1, we have found
that optimizing the aspect ratio of steady convection cells does not change the power-law scaling
of the Nusselt number. At asymptotically large Rayleigh numbers, the Nusselt number grows with
the same Ral/3 scaling reported for a fixed aspect ratio in [3], although the prefactor is larger in the
optimized case. These findings are in contrast to the case of no-slip boundaries, where optimizing
the aspect ratio does raise the exponent of the power-law scaling of Nu(Ra), and the optimal aspect
ratio decreases much more quickly as Ra is raised [2, 10]. More work is needed to understand the
physical mechanism that creates this difference between the free-slip and no-slip cases. In ongoing
computations, we are exploring how the reported results depend on the Prandtl number, which has
a significant effect in the no-slip case [10]. In doing so, we hope to complete the characterization
of steady states in Rayleigh’s model that he began a century ago.
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