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1 Introduction 
The parable of the boiled frog is an old warning story describing how frogs react 

differently to different living environments. Typically, if a frog is put directly into 

boiling water, it will immediately sense the heat and jump out, but if it is placed into 

cold water and boiled slowly, it will not sense the danger and will stay in the water 

until death [1].  

 

    This theory has many real-world applications. For instance, global warming has 

become a hot topic ever since NASA announced that 2009 was tied for the second 

warmest year in the modern record [2]. Prior to that announcement, the problem with 

a gradual increase in the average temperature of the earth’s atmosphere did not grab 

enough public attention, mainly because the average variation of land-ocean 

temperature over a five-year period is normally less than 0.2 degrees Celsius [3]. Not 

many people would notice this change. However, when the public was told that, in 

total, average global temperatures have increased by about 0.8 degrees Celsius (1.4 

degrees Fahrenheit) since the late nineteenth century [2], which is a significantly 

dangerous number viewed on a historical timeline, people noticed this change 

instantly and the rate of increase of the global temperature slowed down due to 

governments’ and the public’s immediate efforts. 

 

    The same effect may happen to the auto sales market. When considering the 

prediction of auto sales, a small change in one of the contributing predictors is similar 

to putting a frog into cold water and heating it gradually: the response variable will 

react slowly to the little change and balance itself to follow the general trend. 

Conversely, a significant change in a predictor is more likely to draw public attention, 

and the auto sales volume will demonstrate an immediate subsequent change to 

comply with this variation. Previous research has shown that auto sales volumes can 

be predicted effectively and precisely through Support Vector Regression combined 

with the Particles Swarm Optimization algorithm (PSO-SVR), which optimizes the 
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regression parameter with a small mean absolute percentage error [4].  

 

    Instead of pursuing precision in estimation, this project focuses on identifying 

potential predictors that contribute to auto sales predictions, as well as the sensitivity 

of significant predictors that lead to an accurate and reasonable predictive model. This 

project uses quarterly data from the first quarter of 1990 to the fourth quarter of 2013 

in the United States of America. The data is processed through functional data 

analysis methods in R and the resulting multiple linear regression model will be 

validated by an autoregressive integrated moving average model based on different 

auto sales time series. 

 

2 Functional Data Analysis 
Functional data analysis is a technique that can be used to find rates of changes or 

derivatives of the curve by fitting data points to functional models [5]. A typical way 

to start is by constructing basis functions with parameters that are easy to estimate and 

can accommodate curve features properly. A set of functional blocks , 1,...θ =k k K

within a linear combination are called basis functions. A function ( )x t expressed in this 

way will have a linear basis function expansion: 

                           
1

( ) ( ) ( ),θ θ
=

′= =∑
K

k k
k

x t c t c t                           (1)                         

where parameters kc are the coefficients of the expansion. Since polynomials 

consisting of monomial and constant basis systems are less useful when complex 

functional shapes are required [6], this study considers two other types of basis 

functions systems that are widely used: Fourier and B-splines basis systems.  

 

    Fourier system is typically used for periodic datasets, while Splines and 

B-splines are commonly used when the data are non-periodic [7]. Splines are 

piecewise polynomials with domain segmented by knots with matching derivatives to 
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some order of the knots, and B-splines are convenient basis functions for splines with 

desirable numerical properties. Particularly for data such as civilian unemployment 

rates (RUG), consumer sentiment, and S&P 500’s index (SP500), which are 

apparently non-periodically distributed, the B-spline basis system is commonly used 

for generating spline functions. 

 

    To examine the auto sales data, this study converted quarterly observations to 

time series with frequency four. The curve looks like: 

 

The graph above shows that this curve is a non-stationary time series with many 

random fluctuations. To better capture the rate of changes of the curve, the raw data 

needs to be smoothed. A proper smoothing parameterλ that penalizes the derivatives 

of spline functions should be selected at first. In other words,λ controls the extent of 

smoothing, which aims to impose a penalty on the roughness of functions so that 

issues such as overfitting can be avoided. Givenλ , the fitting function x(t) is chosen 

to minimize the following equation: 

                                          (2)                          

where jy is the observed data, ( )jx t  is the fitting function, and 2 2[ ( )]D x t is the 

curvature at time t [8]. Asλ increases from 0, the curvature becomes increasingly 

penalized, leading to a smoother fit with smaller variance. However, a smoothing 



5 
 

parameter closer to 0 will better keep the initial shape of the raw data and tend to 

reduce bias. 

 

    A typical procedure employed to generate a smoothing parameter that gives 

small mean squared error (MSE) for the target model chooses to minimize the 

generalized cross-validation method (GCV):  

( ) ( )( )
( ) ( )

λ
λ λ

=
− −

n SSEGCV
n df n df

                    (3) 

Where ,  is a smoothing matrix as a function of , and 

SSE is the sum of squared errors predicting each observation from the rest. The 

designers of this method, Peter Craven and Grace Wahba [9], simulated a Monte 

Carlo experiment with several smoothed functions to estimate the average squared 

errors of λ . Their results demonstrated that the minimized value of average squared 

errors with simulated smoothed functions was close to the minimum of the true error 

value, showing that the estimator λ̂ from GCV is a good smoothing parameter. 

 

    For this project, six splines were selected to carefully control the curvature of the 

second derivative. Thus, the derivative of the fourth order polynomial was penalized 

and the quarterly auto sales data from 1990 to 2013 was smoothed. The GCV returns 

estimated 0.0000316λ ≈ , which is close to . The resulting smoothed curve with 

a smoothing parameter equals , as shown in the graphs below: 
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The smoothed spline functions fit the data well. Based on the same smoothing 

parameter, the derivative of functions can be calculated easily to support the future 

analysis. 

 

3 Regression Analysis 

3.1 Model Selection 

Ordinary least squares (OLS) is a popular tool used to estimate the unknown 

parameters in linear models [10]. Considering the complex nature of this project’s 

dataset, a multiple linear regression model predicting a single response variable with a 

linear function of more than two predictor variables was chosen. The key idea is to 

determine a linear combination of potential contributing variables that form a 

regression model that fits well. 

 

There are two major types of variables selection approaches: the testing-based 

and criterion-based methods. For testing-based approaches such as backward 

elimination and forward selection, the idea is to test the significance of predictors and 

eliminate or add them based on individual p-values. The main problem with these 

methods is that variables not selected can still be correlated with the response, even 

though they do not improve the fit enough to be included. Smaller models therefore 

tend to be selected more often than would be desirable for prediction purposes. For 
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criterion-based approaches, however, models are chosen to optimize a criterion which 

balances goodness-of-fit and model size, with no p-values involved. To optimize the 

fit in this project, the second type of variable selection approach was employed and in, 

particular, the Akaike Information Criterion (AIC) was used with the equation: 

                                            (4) 

where (2 1)+p  stands for the number of estimated parameters and ( / )RSS n  is the 

likelihood function for the model [10]. The combination of contributing variables with 

minimum AIC value is desired. 

    Through background research, this project considered the civilian unemployment 

rate (RUG), two-year interest rates for car loans (RVEH48), the consumer price index 

for all items (PCPI), the producer price index for finished goods (PPI), the federal 

funds rate (RFF), disposable yearly income (YD), regular retail gasoline prices (Gas), 

and lagged auto sales within one quarter (AUTOS_Lagged) as the potential 

contributing variables. The aim of including lagged auto sales as a predictor into the 

model was to investigate the application of the parable of the boiled frog on auto sales 

predictions. A linear model based on these predictors was created. The result shows a 

model with the smallest AIC equal to -172.54, including the variables lagged auto 

sales, unemployment rates, two-year interest rates, gasoline prices, and consumer 

price index: 

0 1 2 3 4 5( _ ) ( ) ( 48) ( ) ( )β β β β β β= + + + + + + tAUTOS AUTOS Lagged RUG RVEH PCPI Gas   

To further refine the model, another criterion-based approach, the adjusted 2R method, 

was employed to implement the selection again. The definition of adjusted 2R is: 

                          2 211 (1 )
( 1)
−

= − −
− +a
nR R

n p
                          (5) 

where 2R stands for the coefficient of the determination of regression, which is the 

proportion of the variance of response variables that can be explained effectively by 

predictor variables. Equation (5) shows that adjusted 2R will decrease as more 

predictors are added if the loss of degrees of freedom covers the increase in model fit. 

Since maximizing 2
aR  is equivalent to minimizing σ̂RSE [11], the model with 
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maximized 2
aR  was selected as the prediction model. Building upon the result from 

AIC method shows: 

 

presenting the same model with the largest adjusted 2R at subset 5. Based on the table, 

the linear combination containing five variables listed is identified as the combination 

that best captures the general pattern of the dataset. 

 

3.2 Diagnostics 

Diagnostics is a crucial procedure that helps to test the validity of a model. 

Diagnostics always involves checking the assumption of normality, collinearity of 

predictors, and correlated errors. The fundamental assumption of ordinary least 

squares is that errors are independent and identically normal distributed with a mean 

of zero and variance 2σ I . To confirm homoscedasticity (constant variance) of error 

terms, the residuals versus the fitted value of the model can be plotted: 
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The resulting graph shows no apparent sign that the residuals tend to converge to or 

diverge from zero, and there is no indication that points move toward value -1. The 

concern for heteroscedasticity (non-constant variance) and non-linearity was thus 

reduced. 

 

    The next step was to detect if collinearity existed among predictors. In statistics, 

collinearity (or multicollinearity) often refers to the situation where two or more 

predicting variables are correlated in a multiple regression model [12]. Although 

collinearity will not affect the general predicting power of a regression model, it may 

lead to an imprecise estimate of regression coefficients βi , so that significant 

predictors may be missed due to a non-accurate t-test. One way to test collinearity is 

by checking the variance inflation factor (VIF) of predictors, which is formulated 

from the following equation: 

                        

2

2
1( )

1 ( 1) ( )
σβ =
− −j

j j

Var
R n Var X

                       (6) 

where ( )β jVar is the estimated variance of each estimated coefficient, n is the sample 

size, σ is the rooted mean square error, and 21− jR is the variance inflation factor. 

Running function vif from R-package “car” [13], the factor index for each predictor 

was calculated: 
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Of note is that the consumer price index (PCPI) and regular retail gasoline price (Gas) 

have large VIF values that may be problematic. The correlation table also shows that 

PCPI and Gas are highly correlated, with covariance 0.9276: 

 

 

To deal with this collinearity, this project considered dropping one of the predictors 

between PCPI and Gas, as well as finalizing the prediction model with the updated 

variable choice. After several trials of manipulations, the producer price index was 

found to be more significant than gas price to auto sales in terms of p-values. The 

individual inflation factor of each coefficient dropped substantially for the new model 

without Gas. The function VIF from R-package “fmsb” [14] was also employed to 

evaluate the generalized variance inflation factor of two multiple regression models. 

The result demonstrates that the new one has a smaller VIF value, which indicates 

that the overall level of collinearity decreases. 

 

Thus, the refined linear regression model is as follows: 

0 1 2 3 4( _ ) ( ) ( 48) ( )β β β β β= + + + + + tAUTOS AUTOS Lagged RUG RVEH PCPI   

with the summary table: 
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The 0.8566 multiple R-squared indicates a general good fit of the model, with all 

predictor variables being significant on a 95% confidence interval. These selected 

variables make sense not only due to model selection and diagnostics, but also 

because of their influence on car sales in reality. The lagged auto sales is the most 

significant predictor with the largest coefficient of estimate, which matches with this 

project’s expectation for the parable of the boiled frog’s application in the car sales 

market. When people notice that overall car sales increase, they are more likely to be 

optimistic about the market. The consumer price index is a measure that examines the 

average price changes associated with the change of the cost of living [15]. This 

measure is lagged in nature because the government usually adopts future 

macroeconomic policies based on consumers’ costs and average price levels of past 

markets. Similar to the two-year interest rates, PCPI has a negative relation to auto 

sales since people noticing higher interest rates and greater inflation are less likely to 

purchase new cars for a period of time. However, to explain the sensitivity of 

unemployment rates on prediction, an indicator variable needs to be set and the cut 

points where the rate of change has the largest impact on auto sales needs to be found. 

 

3.3 Indicator 

The first derivative of a predictor demonstrates the changing rate of the variable to 
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response. To find the derivative values, one needs to implement smoothed functional 

data with well-defined roughness. The linear model with the indicator of this rate of 

change is: 

 

where I denotes the indicator variable. The purpose is to find the appropriate cut 

points  and  for unemployment rates, which leads to great change in auto sales. 

This project used z-scores of the first derivative of unemployment rates. If at time t the 

z-score lies below the specific cut point , then the first indicator is 1. Otherwise, 

the indicator equals 0. The second indicator is 1 when the z-score exceeds  and 0 

otherwise. The errors are assumed to be independent and identically normal 

distributed here. 

 

Trying with various cut points, this project found 90% (z-score 1.3) and 23% 

(z-score -0.75) gave the best outcome: 

 

 
 

The model is reasonable on both directions of the derivatives. If the changing rate of 

unemployment rate grows increasingly, people tend to avoid purchasing new vehicles 

since they are afraid of losing jobs. In contrast, when the rate of change increases 
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decreasingly, people are less worried about their positions and are willing to enlarge 

their budgets for vehicle purchases.  

 

4 Time Series Forecasting 
The reason to implement time series forecasting is to find an Autoregressive 

Integrated Moving Average model (ARIMA) that validates the previous ordinary least 

squares model in terms of the lagged interval. Auto sales data forms a non-stationary 

time series with no apparent seasonal trend. To deal with this non-seasonal data 

sample, this project decomposed the time series to estimate the trend component and 

irregular component [16]. An order (span) of the simple moving average needed to be 

specified before smoothing the data. As such, this project tried from order two to eight, 

with smoothed curves as shown in the graphs below:  

 
One can see that order four of the simple moving average shows the best balance 

between the extent of roughness and the original shape of the auto sales data. This 

result resembles to the six spline functions that were selected for smoothing in the 

functional data analysis section. Because the time series cannot be explained by 

employing an additive model with always an increasing or decreasing trend, the 

exponential smoothing method is not useful. Accordingly, the ARIMA model was 
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chosen to conduct the predictions.  

 

Since the ARIMA model is defined for stationary time series [17], the series must 

first be differenced until a stationary time series is generated. The order of 

differencing is parameter d of the ARIMA (p,d,q) model. The result of the first 

difference is shown below: 

 

The first difference appears to be stationary in mean since the level of the series stays 

roughly constant over time. Next, parameters p and q must be selected, as these 

specify the order of autoregressive (AR) and moving average (MA). Here, the AR 

model is more important because it regresses current values on previous values in the 

same time series [18], using the following equation: 

                              1
1
β −

=

= + +∑
p

t i t t
i

Y c Y                              (7) 

where βi are parameters of the model, t is noise, and c is some constant. It is crucial 

to detect a proper p that defines the number of lag used for the forecasting model. 

Through the autocorrelation and partial autocorrelation plots shown below: 
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 the following possible ARIMA models can be listed: 

 ARIMA (1,0,0), with an autoregressive parameter p equal to 1, since the partial 

autocorrelation plot approaches zero after lag one and the autocorrelation plot 

tails off to zero. 

 ARIMA (0,3,0), with a moving average parameter q equal to 3, since the 

autocorrelation plot approaches zero after lag three and the partial autocorrelation 

plot tails off to zero. 

The law of parsimony is thus employed, which says that the hypothesis with the 

fewest assumptions should be selected [19]. Consequently, the candidate model with 

ARIMA (1,1,0) was decided upon. The auto.arima function in the R-package 

“forecast” validated the project’s guess by presenting the same model: 

 

 
 

The 0.1 standard error is reasonable given the large fluctuation of data from 2007 to 

2012. Finally, the actual predictions for auto sales in 2014 with 95% prediction 

intervals were conducted, as shown below: 
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5 Conclusion 
When significant predicting variables such as unemployment rates lead a big change 

with large rates (90% and 23%), auto sales in the United States will be substantially 

influenced by this lag effect. The results of this study demonstrates the validity of the 

parable of the boiled frog theory in the car sales market, and the number of quarters 

lagged is justified by finding the parameters of the ARIMA model that have a good fit.  

 

Potential future research may involve studying data over a broader time period. 

This project conducted regression and time series analyses on 96 observations in 24 

years, which somehow limited the accuracy of the project’s predictions due to greater 

variability of the sample mean and a larger estimated variance. With a larger data set, 

we may employ some resampling methods such as K-fold cross-validation to compare 

multiple models and validate our choice based on out-of-sample errors. Additionally, 

the consideration of potential predictors is still narrow, mainly due to the limitation of 

data. Finally, further research can enlarge the selection scope to multidisciplinary 

applications and test variables such as consumer sentiments, crime rates and so on, if 
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the data is supportive enough. 
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Appendix 
R-studio Codes 

Functional Data Analysis: 

library('splines') 
library('Matrix') 
library('fda') 
data = read.csv("C:/Users/admin/Desktop/STATS RESEARCH/carsalesdata.csv",header=TRUE) 
AUTOS <- data[,1] 
RUG <- data[,2] 
 
AUTOS.ts <- ts(AUTOS, start = c(1990,1),frequency = 4) 
plot.ts(AUTOS.ts, main = "Auto Sales Time Series") 
 
argvalsAUTOS = seq(1990,2013.75,len=nAUTOS) 
nbasis = 99 
AUTOS <-as.matrix(AUTOS) 
xAUTOS = AUTOS 
xAUTOS.factor <- factor(xAUTOS) 
as.numeric(as.character(xAUTOS.factor)) 
basisobj = create.bspline.basis(c(1990,2013.75),nbasis) 
fdParobjAUTOS = smooth.basis(argvalsAUTOS, xAUTOS, basisobj) 
loglamvec = seq(0, 0.001, 0.00001) 
loglamout = matrix(0,length(loglamvec),4) 
m = 0 
for (loglambda in loglamvec) { 
  m = m + 1 
  loglamout[m,1] = loglambda 
  fdParobjAUTOS$lambda = 10^(loglambda) 
  smoothlist = smooth.basis(argvalsAUTOS, xAUTOS,fdParobjAUTOS） 
  xfd = smoothlist$fd  
  loglamout[m,2] = smoothlist$df 
  loglamout[m,3] = sqrt(mean((eval.fd(argvalsAUTOS, xfd) - xAUTOS)^2)) 
  loglamout[m,4] = mean(smoothlist$gcv)  
} 
indx = which.min(loglamout[,4]) 
(loglamout[index,4]) 
 
norder = 6 
nbasisAUTOS = nAUTOS + norder -2 
basisobjAUTOS = create.bspline.basis(c(1990,2013.75),nbasisAUTOS,norder) 
lambdaAUTOS = 10^(-4) 
fdParobjAUTOS = fdPar(fdobj=basisobjAUTOS, Lfdobj=4, lambda=lambdaAUTOS) 



19 
 

smoothlistAUTOS = smooth.basis(argvalsAUTOS, xAUTOS, fdParobjAUTOS)$fd 
 
der.AUTOS <- deriv.fd(smoothlistAUTOS,1) 
dercoeffAUTOS <- der.AUTOS$coefs 
AUTOScoeff <- smoothlistAUTOS$coefs 
plot(AUTOScoeff,lty=1,type = 'l',xlab = 'Years',ylab = 'Smoothed AUTOS',main = "Smoothed Auto 
Sales (with lambda = 1e^-4)") 
plot(AUTOScoeff,lty=1,type = 'l',xlab = 'Years',ylab = 'AUTOS',col = 'red',axes = F) 
par(new = T) 
plot(AUTOS.ts,lty=1, xlab='', ylab='', main = "Raw vs Smoothed Auto Sales") 
 
RUG_d = read.csv("C:/Users/admin/Desktop/STATS RESEARCH/RUG.csv",header=TRUE) 
nRUG = 95 
argvalsRUG = seq(1990,2013.75,len=nRUG) 
RUG_d <-as.matrix(RUG_d) 
xRUG = RUG_d [1,] 
xRUG.factor <- factor(xRUG) 
as.numeric(as.character(xRUG.factor)) 
norder = 6 
nbasisRUG = nRUG + norder -2 
basisobjRUG = create.bspline.basis(c(1990,2013.75),nbasisRUG,norder) 
lambdaRUG = 10^(-4) 
fdParobjRUG = fdPar(fdobj=basisobjRUG, Lfdobj=4, lambda=lambdaRUG) 
smoothlistRUG = smooth.basis(argvalsRUG, xRUG, fdParobjRUG)$fd 
der.RUG <- deriv.fd(smoothlistRUG,1) 
dercoeffRUG <- der.RUG$coefs 
D_RUG1 <- dercoeffRUG 
 
meanD_RUG1 <- mean(D_RUG1) 
sdD_RUG1 <- sd(D_RUG1) 
zscoreRUG <- (D_RUG1 - meanD_RUG1)/sdD_RUG1 

 

Regression Analysis: 

AUTOS_Lagged <- data[,3] 
RVEH48 <- data[,4] 
PPI <- data[,5] 
PCPI <-data[,6] 
Gas <- data[,7] 
YD <- data[,8] 
RFF <- data[,9] 
zscoreRUG <- data[,10] 
 
library('leaps') 



20 
 

#AIC 
lg<- lm(AUTOS ~ AUTOS_Lagged + RUG + PPI + PCPI + RVEH48 +  Gas + RFF + YD) 
step(lg) 
lg <- lm(AUTOS~AUTOS_Lagged + RUG + PCPI + RVEH48 + Gas) 
summary(lg) 
#adjusted r-squared 
b = regsubsets(AUTOS~AUTOS_Lagged + RUG + PCPI + RVEH48 + Gas, data=data) 
summary(b) 
rs = summary(b) 
which.max(rs$adjr2) 
 
plot(lg$fitted, lg$residual,xlab="Fitted", ylab="Residuals") 
abline(h=0) 
 
library('car') 
vif(lg) 
 
X <- model.matrix(lg) 
cor(X[,2:6]) 
 
library('fmsb') 
lt <- lm(AUTOS~AUTOS_Lagged + RUG + PCPI + RVEH48) 
VIF(lg) 
VIF(lt) 
 
fit <- lm(AUTOS~AUTOS_Lagged + RUG + PCPI + RVEH48 + I(zscoreRUG < (-0.75)) + I(zscoreRUG > 
(1.3))) 
summary(fit) 
 

Time Series Forecasting: 

library("zoo") 
library("forecast") 
library('timeDate') 
library("TTR") 
Forecast = read.csv("C:/Users/admin/Desktop/STATS RESEARCH/AUTOS.csv",header=F) 
AUTOS <- Forecast[,1] 
 
AUTOSSMA2 <- SMA(AUTOS.ts,n=2) 
plot.ts(AUTOSSMA2,main = "Smoothed Auto Sales (Order 2 of the simple moving average)") 
AUTOSSMA4 <- SMA(AUTOS.ts,n=4) 
plot.ts(AUTOSSMA4,main = "Smoothed Auto Sales (Order 4 of the simple moving average)") 
AUTOSSMA6 <- SMA(AUTOS.ts,n=6) 
plot.ts(AUTOSSMA6,main = "Smoothed Auto Sales (Order 6 of the simple moving average)") 
AUTOSSMA8 <- SMA(AUTOS.ts,n=8) 
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plot.ts(AUTOSSMA8,main = "Smoothed Auto Sales (Order 8 of the simple moving average)") 
 
AUTOSdiff1 <- diff(AUTOS.ts,differences = 1) 
plot.ts(AUTOSdiff1, main = "Resulting time series of first difference") 
 
plot.acf <- function(ACFobj) { 
  rr <- ACFobj$acf[-1] 
  kk <- length(rr) 
  nn <- ACFobj$n.used 
  plot(seq(kk),rr,type="h",lwd=2,yaxs="i",xaxs="i", 
       ylim=c(floor(min(rr)),1),xlim=c(0,kk+1), 
       xlab="Lag",ylab="Correlation",las=1) 
  abline(h=-1/nn+c(-2,2)/sqrt(nn),lty="dashed",col="blue") 
  abline(h=0) 
} 
 
AUTOSdiff1.acf <- acf(AUTOSdiff1,lag.max = 95, main = "Auto Correlation of AUTOSdiff1", xlab = 
"Lag(Quarter)") #plot a correlogram 
acf(AUTOSdiff1,lag.max = 95, plot = F)#get the autocorrelation values 
plot.acf(AUTOSdiff1.acf) 
 
pacf(AUTOSdiff1,lag.max = 95, main = "Partial Correlation of AUTOSdiff1", xlab = "Lag(Quarter)") 
#plot a correlogram 
pacf(AUTOSdiff1,lag.max = 95, plot = F) 
 
auto.arima(AUTOS.ts)#ARIMA(1,1,0) 
 
(AUTOSarima <- arima(AUTOS.ts,order = c(1,1,0))) 
(AUTOSforecasts <- forecast.Arima(AUTOSarima,h=4,level = c(95))) 
plot.forecast(AUTOSforecasts) 

 

 

 

 

 

 

 

 

 

 



22 
 

References 

[1] “Boiling frog.” Wikipedia. N.p.: Wikimedia Foundation, 18 Aug. 2016. Web. 1 

Dec. 2016. 

[2] “2009: Second Warmest year on record; end of Warmest decade.” Brian 

Dunbar, 28 Jan. 2010. Web. 2 Dec. 2016. 

[3] “Global Land-Ocean Temperature Index (C).” NASA. 2016. Web. 2 Dec. 2016. 

[4] X. Lu and X. Geng, "Car Sales Volume Prediction Based on Particle Swarm 

Optimization Algorithm and Support Vector Regression," 2011 Fourth 

International Conference on Intelligent Computation Technology and Automation, 

Shenzhen, Guangdong, 2011, pp. 71-74. 

[5] “Functional data analysis.” Wikipedia. N.p.: Wikimedia Foundation, 16 Oct. 

2016. Web. 2 Dec. 2016. 

[6] Ramsay, J O, Giles Hooker, and Spencer Graves. Functional Data Analysis 

with R and MATLAB. Dordrecht: Springer-Verlag New York, 2009. Print, pp.30 

[7] Yuko Araki, Yuko. “Functional Data Analysis and Statistical 

Modeling.” Kyushu Univ. n.d. Web. 2 Dec. 2016. 

[8] Ramsay, J O, Giles Hooker, and Spencer Graves. Functional Data Analysis 

with R and MATLAB. Dordrecht: Springer-Verlag New York, 2009. Print, pp.64 

[9] Wahba, Grace, and Peter Craven. “Smoothing Noisy Data with Spline 

Functions.” Numerische Mathematik 24.5 (1975): 383–393. Web. 

[10] “Akaike information criterion.” Wikipedia. N.p.: Wikimedia Foundation, 9 

Nov. 2016. Web. 2 Dec. 2016. 

[11] Nau, Robert. “Mathematics of simple regression.” Fuqua School of Business 

Duke University. 1 May 2016. Web. 3 Dec. 2016. 

[12] “Multicollinearity.” Wikipedia. N.p.: Wikimedia Foundation, 18 Nov. 2016. 

Web. 3 Dec. 2016. 

[13] John Fox and Sanford Weisberg (2011). An {R} Companion to Applied 

Regression, Second Edition. Thousand Oaks CA: Sage. URL: 

http://socserv.socsci.mcmaster.ca/jfox/Books/Companion 



23 
 

[14] Minato Nakazawa (2015). fmsb: Functions for Medical Statistics Book with 

some Demographic Data. R package version0.5.2. 

https://CRAN.R-project.org/package=fmsb 

[15] Investopedia.com. “Consumer Price Index - CPI.” N.p.: Investopedia, 19 Nov. 

2003. Web. 3 Dec. 2016. 

[16] Avril Coghlan, Avril. Using R for time series analysis — time series 0.2 

documentation. n.d. Web. 4 Dec. 2016. 

[17] Nau, Robert. “Introduction to ARIMA models.” Statistical forecasting: notes 

on regression and time series analysis. 1 May 2016. Web. 4 Dec. 2016. 

[18] State, The Pennsylvania. 14.1 - Autoregressive models. 2016. Web. 4 Dec. 2016. 

[19] “Occam’s razor.” Wikipedia. N.p.: Wikimedia Foundation, 28 Nov. 2016. Web. 

4 Dec. 2016. 

 

 


