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Abstract:  
Acoustic signalling in many species is critical for the communication of information. A call may 
encode multiple layers of information, informing the receiver on a range of stable and labile 
traits in the signaller. This paper explores stable and labile information communicated in the 
rattle, the territorial vocalization of the North American red squirrel (Tamiasciurus hudsonicus), 
specifically exploring their capacity to communicate quality and physiological state, in terms of 
acute stress, energetic state, chronic stress, and age. These acoustic effects are tested for in 
several experiments and one post-hoc test. Our results provide evidence that all four traits alter 
rattle acoustic parameters in a manner that presents a notable acoustic signature; the most robust 
signature among these traits is that of acute stress. We conclude that rattles have the capacity to 
communicate information on quality and acute physiological state, and suggestions are made for 
examining the ability of conspecifics to discern this information.  
  
Introduction:  

Vocalizations, across animal taxa, communicate a significant amount of information 

about the signaller. Calls can be individually distinct (Beer 1970, Beecher 1989, Blumstein and 

Munos 2004), and often carry stable information about body weight and size (Fitch 1997, Bee et 

al. 1999, Reby and McComb 2001, Blumstein and Munos 2004, Koren and Geffen 2008), sex 

(Ey et al. 2007, Blumstein and Munos 2004), and social rank (Koren and Geffen 2008, Briefer et 

al. 2010, Terleph 2016, Muller et al. 2003). This information communicated in a signal--in this 

case, a vocalization--is important for receivers to decipher, informing them of the signaler’s 

quality and viability as a potential mate or competitor (Zahavi 1975, Grafen 1990, Bradbury 

1998). Clutton Brock and Albon (1979) demonstrated this principle in a now-classic case study 

on red deer, Cervus elaphus, finding that certain characteristics of the male “roar” correlate 

tightly with fighting ability, making them honest indicators of quality. The capacity to discern 

information encoded in calls, and thus information on signaller quality, then, is selectively 

advantageous (Seyfarth and Cheney 2003). In asocial animals, such as North American red 

squirrels, Tamiasciurus hudsonicus, acoustic signaling is critical for the transfer of information.  
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Red squirrels are solitary, diurnal rodents, and defend individual territories throughout 

the year, interacting physically only during mating, and for females, pup rearing (Smith 1968). 

They advertise their defense of these territories through vocalizations called rattles (Smith 1978). 

Rattles are known to be individually distinct (Digweed et al. 2012), and though some research 

indicates that individuals can discriminate between kin and non-kin and neighbors and non-

neighbors, this discrimination ability may be context-dependent (Wilson et al. 2015, Shonfield et 

al. 2016).  

Research in recent decades has illuminated the physiological mechanisms that produce 

vocalizations. In mammals, implicated in production are the lungs, which generate airflow, the 

larynx, which converts the airflow into acoustic energy, and the various morphological features 

that make up the rest of the vocal tract, which serve to enhance certain frequencies and cause 

others to attenuate, altering the structure of the sound produced (Fitch and Hauser 2001). This 

general paradigm for vocal production was first articulated by Fant (1960), which later came to 

be known as source-filter theory. These morphological features impose constraints upon the 

production of vocalizations; this is the physiological basis for understanding calls as honest 

indicators of quality. For example, larger animals, which are expected to be stronger competitors 

and better mates, have larger lungs and longer vocal tracts, and tend to produce louder 

vocalizations with decreased fundamental frequencies or formant dispersion (meaning spacing 

between successive resonances) (Hinds and Calder 1971, Martin 1972, Fitch 1997, Reby and 

McComb 2003).  

Along with the stable traits discussed, current physiological state can also be reflected in 

animal vocalizations. Thus, calls can encode information about both an animal’s long term and 

labile traits. Among these labile states reflected is stress, defined most cohesively by Romero 
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(2009) as the combination of disruptions to predictive and reactive homeostasis, termed reactive 

scope. This definition encompasses physiological reactions to acute and chronic stressors in the 

environment. When encountering a stressor, the hypothalamic-pituitary-adrenal axis activates 

and releases a steroid hormone (cortisol or corticosterone) to evoke a metabolic response 

allowing the animal to react to the stressor. The HPA axis then acts to restore homeostasis, 

allowing stress hormones to decline back to baseline levels once the acute stressor is no longer 

present. Chronic stress, caused by repeated exposure to stressors, and thus high levels of GCs, 

can cause long term damage to the HPA axis, eventually diminishing its functionality. This can 

have significant deleterious effects on long term body condition (Boonstra 1998, Romero 2004).     

  Acute stress is known to present an acoustic signature in birds (Perez et al. 2012) and 

mammals (Esch et al. 2016), both when stress is induced by environmental stimuli, such as 

isolation, and when it is induced by exogenous stress hormones. Perez et al. (2012) present a 

study that examines the effects of both isolation and GCs: zebra finches Taeniopygia guttata, 

were fed exogenous stress hormones, and their calls were significantly altered in both patterns of 

the vocalizations and the fine scale structure of the vocalizations themselves. The same stress 

induced variations in call traits also arose as a result of isolation.  

The relationship between vocal characteristics and affect, or acute emotional arousal, 

which encompasses stress along with all other heightened emotional states, has been more 

thoroughly studied, across mammalian taxa (Briefer et al. 2015, Lemasson et al. 2012, Bastian 

and Schmidt 2008, Rendall 2003). Bastian and Schmidt (2008) found that in bats, arousal 

produced numerous changes in call patterns, and in fine scale acoustic structure. The literature 

concerning affect related changes in vocalizations in primates is robust. The changes tend to 

manifest in source related features, such as fundamental and peak frequencies, generally 
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increasing with affect (Rendall 2003). On the subject of the influence of chronic stress on 

vocalization structure, the literature is almost entirely silent; the results on chronic stress 

presented here are thus unique. Overall, the role of stress in influencing the acoustic structure of 

vocalizations, and thus, the capacity for vocalizations to communicate stress, is understudied, as 

is the potential perception and response to that information.   

Though also understudied (in species besides humans), literature suggests that 

vocalizations are also significantly impacted by age across animal taxa (Kipper 2010, Verburgt 

2011, Terleph et al. 2016). Repertoire size and complexity tends to stay constant, and in many 

bird species, increases throughout ontogeny (Kilper and Kiefer 2010). Senescence instead 

generally manifests in changes in temporal characteristics, most often a decline in time, and thus, 

energy spent calling (Verburgt 2010, Fitzsimmons and Bertram 2011), and changes in motor 

performance traits, such as altered dominant frequencies--in some taxa a positive correlation is 

seen, in some taxa negative (Terleph et al. 2016, Verburgt and Ferguson 2011) --and decreased 

call rates (Cooper et al. 2012). These age-related changes in vocalization structure are interpreted 

as a result of degradation in the anatomy and physiology of vocalization apparatus, and thus a 

decline in body condition (Terleph et al. 2016, Torre and Barlow 2009). Descamps et al. (2008) 

found evidence for senescence in red squirrels, manifesting as age related declines in fitness.  

Lastly, energetic state can also be reflected robustly in calls- energy in the form of stored 

food can have a significant impact on the capacity for production of vocalizations. When given 

supplementary food, the silvereye, Zosterops lateralis, a songbird, performed dawn choruses the 

following morning of extended length and increased complexity (Barnett et al. 2007).  This is but 

one among many studies that found increased song output in fed birds (Cuthill and McDonald 

1990, Berg et al. 2005). Other studies, also in songbirds, show that low overnight temperatures, 
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which eat up fat stores, can temper song output the next morning (Gottlander 1987, Reid 1987). 

Significantly less research has been conducted on the relationship between energetic state and 

vocalization structure in mammals. 

To assess whether red squirrel vocalizations communicate more than just individual 

identity and relatedness, we explored the relationships between various stable and labile traits 

and acoustic structure of the rattle, analyzing multiple acoustic parameters for signatures of: 

acute stress, chronic stress, age, and energetic state. We hypothesized that if rattles have the 

capacity to communicate information on physiological state, then acute trap-induced stress and 

experimental elevations in circulating glucocorticoids would be reflected in a rattle’s acoustic 

parameters. If rattles also communicate body condition, age, and chronic, density induced stress 

will be reflected in rattle characteristics as well. Thematically, this research aims to provide 

evidence that red squirrel rattles have the capacity to communicate information on physiological 

state and body condition. 

Methods:  

Study Site and Subjects 

We conducted research on a population of red squirrels in the Kluane region of the 

Yukon (61° N, 138° W) that has been studied continuously since 1989, a region of northern 

boreal forest that is dominated by white spruce trees. All study squirrels are tagged at birth with 

ear tags with distinct letter-number combinations unique to the individual. We also attached short 

segments of pipe cleaner or wire to the ear tags in unique combinations to make individual 

identification possible from afar. We live trap the squirrels periodically throughout their lives to 

track female reproductive state and territorial ownership, using tomahawk traps baited with 

peanut butter (McAdam et al. 2007). Both male and female squirrels own territories individually; 
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female squirrels only share their territories with her offspring while they remain in the natal nest, 

and with males on the one day of the year that she is receptive to matings (Smith 1968). These 

territories serve as caches for spruce cones, which comprise 50-80% of a red squirrel’s annual 

caloric intake (Donald and Boutin 2011). The spruce trees that dominate the forest follow a 

masting life history pattern, producing cones en masse only once every few years synchronously 

across a region (Lamontagne and Boutin 2007). Each squirrel’s territory centers on a midden, an 

underground food storage stache that can contain thousands of cones, accumulated over the 

course of years, and overwinter survivorship without ownership of a midden is near zero (Larsen 

and Boutin 1994).   

Experimental Design 

Rattles were collected in five separate years between 2005 and 2016, all between April 

and August, across four study grids (Table 1). Though I drew rattles from a database compiling 

rattles from every year collected, I contributed to this database as well, collecting 49 rattles in the 

summer of 2016 as a field tech for the Kluane Red Squirrel Project. To examine the effect of trap 

induced stress on rattle structure, rattles collected opportunistically were compared to rattles 

collected immediately after the squirrel had exited a trap, henceforth “trap rattles.” Opportunistic 

rattles were collected by standing on a squirrel’s midden at a distance of no greater than 5 meters 

from the squirrel until it produced a rattle. Rattles were recorded with a Marantz digital recorder 

(model PMD 660; 44.1 kHz sampling rate; 16 bit accuracy; WAVE format) and a shotgun 

microphone (Senheiser, model ME66 with K6 power supply; 40-20,000 Hz frequency response 

(± 2.5 dB); super-cardioid polar pattern). 

 To validate this method of inducing acute stress, we trapped a subset of squirrels and 

took blood cortisol measurements, which showed increased cortisol levels after 3 minutes (the 
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amount of time it takes cortisol to enter the bloodstream) when compared to a baseline sample 

(van Kesteren et al., unpublished data). These rattles were also compared to rattles induced by 

playback. Playback induced rattles were elicited by playing the rattle of another squirrel to a 

focal squirrel using a stereo (GPX, model BCDW9815CNP) approximately 10 meters away from 

the center of the midden. Response rattles from the focal squirrel were then recorded (Wilson et 

al. 2015).  

The effect of chronic stress was tested in two ways: in the first, chronic stress was 

induced by exogenous glucocorticoids (GCs). Dantzer et al (2012) found that squirrels living in 

higher densities have high fecal cortisol metabolites (FCMs), so this experiment was intended to 

simulate density induced stress. The effects of GCs were measured by comparing rattles of 

squirrels split into two treatment groups: in the experimental group, squirrels were fed 8 grams of 

peanut butter mixed with 2 grams of wheat germ and 12 mg GCs per day for ten days, and in the 

control group, squirrels were fed control peanut butter with no GCs. To treat the squirrels, peanut 

butter doses were placed in buckets hanging from from a central tree on their midden.  Each day 

of treatment, buckets were checked to verify consumption of the previous dose and individuals 

that were found to not be consuming peanut butter were dropped from the experiment. In both 

treatment groups, rattles were collected opportunistically between 1 and 15 days prior to the 

initiation of treatment, during the course of treatment (between days 1 and 25), and between 9 

and 35 days after cessation of treatment.  

For the second test for the effects of chronic stress, we directly tested the effects of 

density on rattle structure by comparing rattles collected from squirrels living in varying 

densities. Squirrel density varies for a number of reasons, mostly due to food availability, and 

fluctuates between years (Dantzer et al. 2013). Because squirrels are so territorial, higher density 
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confers higher stress levels. This density-stress relationship has been validated with FCMs: 

squirrels on the high density grids present as appreciably higher levels than those on the lower 

density grids (Dantzer et al. 2013).  To analyze the effects of density on rattle acoustic structure, 

we examined the effect of local squirrel density, defined as the number of occupied middens 

within one hundred and thirty meters of the focal squirrel (Dantzer et al. 2012), on the acoustic 

parameters measured in the other experiments. Twice a year, a midden census is conducted, in 

which the ownership and exact location of each midden on every grid is determined and 

recorded; from these records we were able to extract the immediate density around each midden 

from which a rattle was collected.  

Longitudinal data on rattles were not available for this experiment because in very few 

squirrels did we have rattles from more than one year, so in order to assess the effects of 

senescence on vocalization characteristics, a cross sectional analysis was conducted. 423 rattles 

from 280 unique individuals were collected and analyzed from squirrels ranging in age from 

several months and eight years old. All squirrels below one year old appear as “0” years old on 

graphs.    

 The influence of energetic state on rattle structure was examined in a post-hoc analysis 

conducted with squirrels that had been part of the GC experiment that were fed 8 grams of 

control peanut butter with 2 grams of wheat germ (with no GCs) per day for 25 days. Rattles of 

these squirrels were compared to opportunistically collected rattles of squirrels outside of this 

experiment that had not been given supplementary food. Thus, the control squirrels in the GC 

experiment became the experimental squirrels in this post hoc analysis-- the experimental 

variable being supplementary food provided to one group, theoretically providing them with a 

boost in energy.  
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Table 1: Number of rattles collected by year, grid, date range, and collector. In parentheses, rattles are 
split up by sex: (male, female). Rattles from 2015 were fed exogenous GCs and were thus excluded from 
analysis of long term data.  

 

Year Grid: 
AG 

Grid: 
KL 

Grid: SU Grid: 
JO 

Collection Method Date Range 

2005 0 10 
 (7,3) 

15  
(7,8) 

0 Opportunistic: 1 
Trap: 3 
Playback: 21 

6/7/05-7/31/05 

2006 0 126 
(71,55) 

100 
(55,45) 

0 Opportunistic: 205  
Trap: 2 
Playback: 19 

6/13/06-8/14/06 

2009 43 
(24,19) 

66 
(22,34) 

13  
(9,4) 

0 Opportunistic: 54 
Trap: 37 
Playback: 31 

3/26/09-7/26/09 

2015 0 0 0 91 
(37,48) 

All opportunistic 
Treatment:      Control: 
Pre- 12            Pre- 20 
Treat- 13         Treat- 19 
Post- 14          Post- 12 

5/10/15-7/28/15 

2016 24 
(12,12) 

25 
(14,11) 

0 0 Opportunistic: 49 
Trap: 0 
Playback: 0 

6/16/16-8/2/16 

 
 
 
 
Table 2: Total number of rattles collected by age. 

Age (yr) <1 1 2 3 4 5 6 7 8 

Number 
of 

Rattles  

25 155 125 38 45 15 11 5 2 

 
 

Rattle acoustic parameters, listed and briefly described in Table 3, were then extracted 

using AviSoft-SASLab Pro, using the extraction protocol employed in Wilson et al. 2015. 

Because of the broadband and atonal (noisy) nature of rattles, the less acute characteristics of the 

frequency spectrum, such as 1st, 2nd, and 3rd quartile frequencies proved most effective for 

analysis, as opposed to more subtle characteristics such as formants. Statistical analysis was 
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conducted using R package lme4 (Bates et al. 2015) to generate linear mixed effects models, and 

graphed using ggplot2 (Wickham 2009) We combined all analyses into one model, which 

analyzed local density, collection method (trap, playback and opportunistic), sex, age, and Julian 

date with left eartag number and year included as random variables. 

Figure 1:  Spectrogram of a red squirrel rattle  

 
 
 
 
 
 
 
Table 3: Rattle acoustic parameters analyzed. 
Acoustic Parameter Description Acoustic Parameter Description 

Duration Length (s) 1st Quartile 
Frequency 

Frequency below which lies 
25% of the energy of the 

call (Hz) 

Call Rate Pulses per second 2nd Quartile 
Frequency 

Frequency the divides the 
call into intervals each 
containing 50% of the 

energy of the call 
(mean frequency) (Hz) 

Min Frequency Lowest frequency band present 
in call (Hz) 

3rd Quartile 
Frequency 

Frequency below which lies 
75% of the energy of the 

call (Hz) 

Max Frequency Highest frequency band 
present in call (Hz) 

First Frequency Peak Lowest dominant frequency 
band (fundamental 

frequency) (Hz) 

Bandwidth Frequency range (min to max) 
(Hz) 

Entropy Noisiness of call 
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Results:   
Effects of trap-induced acute stress 

A general trend emerges when examining the differences between trap and opportunistic 

rattles: under trap-induced stress, rattles broaden in frequency bandwidth, expanding upward 

toward higher frequencies in the spectrum. Rattles also speed up and lengthen, increasing in not 

just the overall number of pulses, but also the number of pulses per second. Lastly, calls increase 

in entropy, meaning they are noisier, or less tonal. All results are presented in figure 2.  

The call rate was significantly higher in trap rattles than those collected opportunistically 

(p = 0.0056, t = 2.8, df = 169.9). Trap rattles had significantly higher maximum frequency (p = 

0.0182, t = 2.68, df = 225.4), though they did not differ in minimum frequency or first frequency 

peak. The average duration of trap rattles was found to be longer than those collected 

opportunistically (p=0.0182, t = 5.7, df = 166.38). Trap rattles also had significantly broader 

bandwidths (p = 0.0176, t = 2.964, df = 27.78), meaning they contained a broader range of 

frequencies.  

Trap rattles had higher 2nd quartile frequencies, meaning the frequency that divided the 

call into frequency intervals each containing 50% of the energy was higher on average (p = 

0.0082, t = 2.86, df = 271.1) and the same was found with 3rd quartile frequencies (p = 0.0031, t 

= 3.23, df = 29.5), which divide the call into intervals containing 75% and 25% of the energy of 

the call. Entropy, in this context best understood as a measure of a call’s “noisiness”, differed as 

well between trap rattles and opportunistic rattles, with higher entropy found in trap rattles 

(p<0.0001, t = 4.63, df = 123).  

Though no such significant differences were found between rattles collected 

opportunistically and those collected after a playback, a trend of playback-induced rattles falling 

in between opportunistic and trap induced rattles emerged in several acoustic parameters. 
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Figure 2:  Comparison of difference in acoustic parameters between of rattles collected opportunistically, 
collected upon release from a trap, and induced by playback. Most of the acoustic parameters measured 
different by collection method: call rate, duration, maximum frequency, 2nd quartile frequency, 3rd 
quartile frequency, bandwidth and entropy were all significantly higher in trap rattles than in opportunistic 
rattles. Parameters of rattles induced by playback often fell between trap and opportunistic, though no 
differences were significant. P values on graphs indicate difference between trap and opportunistic 
rattles. A red frame indicates significant results. 
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Effects of density-induced chronic stress 

Our findings also support the hypothesis that increases in glucocorticoids induced by 

experimentally increasing population densities are to some degree reflected in rattle acoustic 

characteristics. The only parameter impacted by chronic stress was duration, which decreased 

with density (p=0.0067, t = 5.0, df = 553.6). No other parameters exhibited significant 

relationships with local density. Results are presented in figure 3.  
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Figure 3: Effects of chronic, density induced stress on all rattle parameters. The only significant effects 
were a negative correlation with between local density and call duration (p=0.003, t = 6.3, df = 553.6). A 
red frame indicates significant results. The gap between data points seen in the minimum frequency 
graph is a results of an inconsistency in acoustic parameter extraction by a previous researcher- some of 
the data was sent through a “high pass filter,” filtering out the lowest frequencies, thus raising minimum 
frequency, and some was not. This filtering, however, has no notable effect on other acoustic parameters.  
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Effect of stress induced by exogenous glucocorticoids  

The impacts of exogenous glucocorticoids on acoustic parameters were  not clear cut. We 

expected the rattles of squirrels fed GCs collected during and after treatment to resemble rattles 

of chronic, density induced stressed squirrels; however this was largely not the case- none of the 

parameters that we expected to change between treatment stages changed. The only parameter 

that did present a significant difference was the first quartile frequency. In squirrels treated with 

GCs, the mean first quartile frequency in rattles collected after treatment was significantly higher 

than those taken before treatment (p = 0.005, t = 6.7, df = 3), with the frequency during treatment 

falling between them. Though not significant, similar trend emerges in the graphs of second and 

third quartile frequencies- in treated squirrels, these frequencies step up during treatment and 

step up again after treatment. This trend is also seen in call rate. Results are presented in figure 4. 

  
 
 
 
 
 
 
 
Figure 4:  Rattle acoustic parameter measures before, during and after GC treatment.Treatment squirrels 
were feed PB with exogenous glucocorticoids once a day for twenty five days, and control squirrels 
received normal peanut butter once a day for twenty five days. The only significant difference is found in 
the 1st quartile frequency in treatment squirrels, between rattles collected before and during GC 
treatment (p = 0.005, t = 6.7, df = 3).  
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Effect of energetic state 

  Energetic state was found to have an influence on the rattle structure as well, though 

minor. Squirrels that were fed 10 grams of supplemental food every day for 25 days had, on 

average, higher call rates than control squirrels (p=0.001, t = 3.5, df = 44.35). No other 

significant changes in acoustic structure were found. Results are presented in figure 5.  

Figure 5:  Effects of energetic state on acoustic parameters. Squirrels that were fed 10 grams of peanut 
butter on the day a rattle was collected had significantly higher call rates (p = 0.001, t = -3.577, df = 
44.35). No other rattle parameters were significantly affected by energetic state. A red frame indicates 
significant results. 
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Effect of age  

A squirrel’s aging process also seems to have an impact on the acoustic structure of a 

rattle, though not in exactly the manner predicted. The effect of aging on the acoustic structure 

does not fit the model typically predicted by senescence, in which a given trait improves as an 

organism grows, optimizes at the age at which the organism is maximally fit, and then degrades 

as the organism ages, creating a trend best represented by a quadratic model. However, the 

quadratic model did not fit the data for any of the acoustic parameters. However, a simple linear 
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regression model assessing the relationship between call rate and age did fit the data, finding call 

rate to be negatively correlated with age (p<0.0001). Thus, call rate decreases over the course of 

a squirrel’s life, suggesting a steady degradation of the trait. Frequency of the first peak also 

decreases as a function of age, though neither minimum nor maximum frequency either increases 

or decreases.  

Figure 6: Effect of age on all acoustic parameters. The only significant effects were a negative correlation 
between age and call rate, and a positive correlation between age and 1st frequency peak. The same 
issue with minimum frequency presents here as well.     
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Discussion 

Our results discern deeper complexity to the information encoded in the rattle, the 

territorial vocalization of the red squirrel, than previously understood. They indicate that the 

rattle has the capacity to communicate physiological state, in terms of acute stress and energetic 

state, along with physiological quality, as determined by chronic stress and age. Thus, a rattle 

contains not only stable information about the caller’s individual identity and potential kin 

relationship to nearby squirrels, but also information about physiological quality, and labile 

information about physiological state. This layering of stable and labile encoded information is 

not uncommon; major strides in bioacoustic research in the past several decades have uncovered 

this capacity across animal taxa (Cheney and Seyfarth 2003, Rendall 2003, Blumstein and 

Munos 2005, Soltis 2005, 2011, Koren and Geffen 2009, Terleph et al. 2016).  

Several bioacoustic theories serve as useful interpretive tools for analyzing the influences 

of various phenomena on acoustic structure presented here. Source-filter theory predicts that 

affective and physiological state alter vocal characteristics in a predictable manner across taxa; 

these traits tend to exact a more significant influence on source related characteristics, such as 

mean frequency and entropy, and indicators of individual identity and semantic information tend 

to arise from alterations to filter related characteristics, such as formant dispersion (Fant 1960, 

Taylor et al. 2010). Motivational theory, which describes a set of rules about how vocalizations 

should change in situations of emotional arousal, also applies: it predicts that in the victim of an 
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antagonistic encounter, the animal experiencing significant distress, call frequency will increase, 

and that overall call entropy, a measure of a call’s noisiness, will increase, are broadly applicable 

to acute stress inducing situations (Morton 1977, Ordonez-Gomez et al. 2014). Our findings fit 

predictive models set forth by both of these theories. The call features altered by physiological 

state and quality are the source-related characteristics predicted to be influenced in these 

contexts, and features that motivational theory predicts will change in such context are altered as 

well. Taken together, these support the assertion that mammalian vocalizations vary with some 

consistency across taxa when influenced by certain internal or external factors (Taylor and Reby 

2009).   

The modifications in rattle characteristic due to acute stress found here, specifically, 

increased frequency related characteristics, call rate, bandwidth, and duration, align with 

expectations drawn from similar stress related alterations in other species, and fit the paradigm 

dictating that affect tends to influence source-related features of calls, described by source-filter 

theory and motivational theory. In the only other study to examine the impact of exogenous 

glucocorticoids on vocalizations, zebra finches that were fed one dose of GCs (thus subjected to 

acute stress) produced vocalizations of higher frequency and longer duration, and both 

characteristics increased in finches subjected to isolation-induced stress as well (Perez et al. 

2012). In stressful contexts, the whistles of bottlenose dolphins increase in both rate and 

frequency (Esch 2009). Low ranking female elephants, when interacting with dominant 

individuals (a state of emotional arousal), generate rumbles with increased fundamental 

frequency and duration (Soltis et al. 2009). In non-human primates, a significant amount of 

research examining affect and vocalizations focuses on infant calls. In both infant rhesus 

macaques and squirrel monkeys in isolation, call duration and pitch increased, and the same 
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acoustic features vary in hunger driven food calls (Masataka et al. 1986, Bayart 1990, Hauser 

and Marler 1993). These trends are present in vocalizations of adult primate as well. For 

example, in baboons, high arousal situations involved in group movement and infant interaction 

produced changes in the same set of source-related call characteristics (Rendall 2003). The trend 

of elevation in dominant frequencies, or pitch, under stress, is conserved in humans (Fairbanks 

and Pronovost 1939, Murray and Arnott 1993, Sondhi et al. 2015).  

 Also notable is the fact that entropy, predicted by motivational theory to increase in 

stressful situations, increases in squirrels experiencing acute stress. An analogous trend is found 

in many non-human primate species: the production of screams, very high entropy vocalizations, 

in high-arousal contexts, is well documented across primate species (Slocombe and Zuberbuhler 

2009, Rendall et al. 2009, Alfaro 2008). Research on screams in rhesus macaques has revealed 

more subtle relationships between entropy and arousal, finding that entropy increases 

proportionately with affect level of the situational context in agonistic encounters (Gouzoules et 

al. 1984, 1998).  

 In this context, the significance of communicating stress in this way lies not in the 

intention of the sender but the discernment of the receiver. Our findings are especially interesting 

in when placed within the context of recent research on kin discrimination in rattles conducted 

by Shonfield (2016). Her work indicates that receivers can indeed discriminate between stressed 

and non-stressed calls: in her playback study, squirrels only discriminated between rattles of kin 

and nonkin (rattling more readily in response to a nonkin rattle) when the playbacks were trap 

rattles (Shonfield 2016); as we have shown, rattles that present a stress signature. Thus, our 

findings corroborate her hypothesis on the presence of a “stress signature” in a rattle; however 

significance of context-dependent kin discrimination requires further research. Because 
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Shonfield’s (2016) findings emerged from a post-hoc analysis, a study designed explicitly to test 

the relationship between stress and kin discrimination, in which focal squirrels are played trap 

and opportunistic rattles of both kin and non-kin, is in order. A similarly useful experiment 

would do this same with neighbor and non-neighbor rattles. These experiments could more 

acutely reveal the interactions between the layers of information in rattles simultaneously 

discerned by squirrels. 

 This study found that chronic, density induced stress confers unique alterations in rattle 

acoustic parameters when compared to acute stress. This signature however is much subtler, 

manifesting primarily as a decrease in call duration. Forthcoming research from David Wilson 

shows evidence that squirrels face an energetic trade-off between rattle duration and pulse rate--

also understood as a performance constraint (Wilson, unpublished data). Performance constraints 

are known to define the limits of vocalizations of other small mammals, and in singing mice, are 

to some degree influenced by hormones (Pasch et al. 2012). A possible interpretation of this 

decline in call duration due to density induced stress is that chronic stress induces physiological 

effects that degrade the musculature implicated in vocal production, pushing the performance 

constraint lower, making it more difficult for squirrels to produce long rattles with high call 

rates. Another possible explanation is ecological, and unrelated to stress or decline in body 

condition--a higher density neighborhood means more squirrels rattling, and thus more 

information to discern. Any time spent rattling is time lost in collecting acoustic information on 

neighboring squirrels; thus rattles duration may plastically decrease in high density regions.  

Sustained stress can also have a deleterious impact on the hypothalamic-pituitary-adrenal 

axis, weakening adrenal function and thus diminishing acute stress responses (Romero 2009), 

potentially including stress related alterations in rattle characteristics. A future study could assess 
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this acute plasticity of rattles by examining opportunistic rattles and trap rattles collected from 

the same squirrel, comparing the magnitude of the changes in rattle characteristics between 

squirrels in high and low density regions.  

The experiment aimed at inducing chronic stress through exogenous GCs produced 

ambiguous results, with almost no significant differences in rattle structure between treated and 

untreated squirrels. This ambiguity is likely attributable to a number of methodological 

inconsistencies. Unpublished data by Freya Van Kesteren shows that the effect of the GC 

treatment on circulating cortisol is not as straightforward as anticipated: consumption of the GC 

laced peanut butter causes a spike in circulating cortisol, and then subsequent steady decline over 

the course of 24 hours. In Van Kesteren’s experiment, the buckets containing the treatment 

peanut butter were checked every two hours to determine a window in which the peanut butter 

was consumed in order to determine time between consumption and taking the blood sample. 

However, in the experiment described in this paper, buckets were checked only once a day, 

leaving a 24-hour window in which the peanut butter could have been consumed. Furthermore, 

recorded rattles were not timestamped, making it very difficult to judge the stress state of the 

individual at the time of rattle collection. Van Kesteren’s findings are unpublished, and should be 

regarded with trepidation, but still may shed light on the inconclusive results here. However, 

because of the significant potential of this experiment (experimentally altering rattle acoustic 

structure by inducing stress through exogenous GCs), an updated study has been designed and 

will be implemented this April by technicians working for the KRSP.   

The GC experiment, though not fine-tuned enough to provide adequate insight on the role 

of exogenous GCs on rattle acoustic structure, did shed light on the influence of another 

physiological state on acoustic structure: energetic state. Rattles collected from squirrels that 
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were fed control peanut butter (the experimental group in the context of this experiment) had 

significantly higher call rates when compared with those not provided supplementary food. This 

finding dovetails with literature in other species on the role of energetic state on vocalizations 

(Gottlander 1987, Reid 1987, Cuthill and McDonald 1990, Berg et al. 2005, Barnett et al. 2007). 

Gillooly and Ophir (2010) present another theory useful for contextualizing these results, which 

attributes much of the heterogeneity in animal vocal signals to the energetic constraints of sound 

production, predicting that for all species, acoustic communication is primarily controlled by 

individual metabolism. Our results reflect that energetic state does have an influence on 

vocalization structure, one of the only studies to find such a relationship in mammals. Others that 

have been conducted focus primarily on fatigue (Pitcher et al. 2014). However, my analysis is 

limited by the nature of it being performed post hoc. A study directed at examining the role of 

energy in rattle production more explicitly could provide a more thorough picture of the 

influence of energetics on rattle structure. 

Our results also found a significant relationship between senescence and changes in 

various acoustic parameters. As squirrels age, the call rate decreases, as does the frequency of the 

first peak. These trends do not cleanly match up with existing literature on the effects of 

senescence on acoustic call rate and peak frequency (comparable to frequency of the first peak in 

terms of tracking such trends); however, the literature is sparse and contradictory. In red deer, 

dominant frequencies increase as males age, but in Norway rats, peak frequency decreases 

(Briefer et al. 2010, Basken et al. 2012).  In humans, age related changes in vocal pitch differ 

between males and females. Males vocal pitch tends to rise after middle age under the end of 

life; in females, vocal pitch tends to lower slightly after menopause (Linville 1996).  
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Decrease in call rate seen here matches with an analogous, though insignificant, trend of 

decreased call rate chronically stressed squirrels (p=0.37, t=-0.9, df=292.4), suggesting a similar 

mechanism of change in acoustic structure relating to decline in body condition. Research 

indicates that these age-related declines in vocalization quality result from deterioration of the 

microstructure of the larynx (Peterson et al. 2012). Oxidative damage likely contributes 

significantly to this decline. Velando et al. (2008) propose that this plays a prominent role in the 

evolution of mate signalling; if secondary sexual characters, such as vocalizations, are honest 

indicators of male quality, then age-induced oxidative damage will cause these traits to 

deteriorate, and the calls of older males with significant oxidative stress damage will be selected 

against by females. This hypothesis was supported by Hoikkala et al. (2008), who found that the 

songs of Drosophila montana males deteriorate with age, as does reproductive success. 

Casagrande et al. (2016) reviewed the literature on the influence of oxidative stress on bird song, 

finding significant evidence that it does mediate song characteristics in many species, and 

recommending more pointed research on the impact of oxidative stress specifically caused by 

senescence. This oxidative stress paradigm could have significant implications in understanding 

rattles as honest indicators of quality. If a future study on oxidative stress in red squirrels found 

that oxidative damage due to senescence does significantly impacts the physiological 

mechanisms implicated in call production at similar rates to the impact seen in other aspects of 

the squirrel’s physiology, this hypothesis would be supported.  

The ability for other squirrels to discern age related differences in rattles structure could 

have significant ramifications in this system. Ownership of a midden, as mentioned earlier, is 

virtually essential for overwinter survival; competition for these middens is thus extremely 

strong, especially in the late summer and fall, as juveniles recruit into the population and attempt 
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to supplant established squirrels from their middens (Boutin 1993). Were squirrels to have the 

capacity to discern the effects of senescence in a rattle, a juvenile could focus its energy on 

taking over the midden of an older squirrel less fit to defend its territory, instead of attempting to 

unseat a younger, fitter squirrel, thus minimizing energy expenditure. 

 In order to cushion their own food stores, squirrels are known to pilfer spruce cones from 

neighboring middens. In more extreme cases, individuals will take control of a neighboring 

midden, securing a significantly larger available store of food; this is referred to as a secondary 

midden. Females with offspring still on their natal midden are the most likely to do this 

successfully; in one study in which vacancies were created experimentally by removing squirrels 

from their middens, females with offspring still on their midden took over twice as many vacant 

middens as juveniles. This allowed their offspring to remain on their natal territory, increasing 

offspring survivorship (Boutin 1993). In the case of both pilfering and acquiring secondary 

middens, squirrels might target squirrels that they know to be older and less fit, using a 

deteriorating rattle as an indicator.  

One weakness to the senescence-related component of this study emerges from the fact 

that it was a cross sectional, rather than a longitudinal study. This could theoretically explain 

why the traits that were altered by senescence did not follow the typical senescence predictive 

quadratic, model, but instead declined linearly with age. Because call rate decreases across age, 

and is elevated in stressed squirrels, it is theoretically possible these stressed squirrels are dying 

younger, and thus the six, seven, and eight-year-old cohorts are more dominated by low-stress 

squirrels who exhibit rattle characteristics typical of individuals not experiencing stress. This 

could be tested by examining the relationship between lifetime FCMs and mortality.  

Conclusion 
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The research presented here contributes to the accumulating body of bioacoustic research 

uncovering an increasingly complex understanding of the multiple layers of information 

communicated in animal vocalizations. The findings that physiological state, in terms of acute 

stress and energetic state, and body condition, in terms of chronic stress and senescence, present 

acoustic signatures in red squirrel territorial vocalizations suggests that these calls encode much 

more information than previously understood. These findings, paired with the knowledge that 

rattles are individually distinct (Digweed et al. 2012) and are used for context based kin 

discrimination (Shonfield et al. 2016), present a thoroughly nuanced picture of the complexity of 

a call initially assumed to serve exclusively for territorial defense. This analysis is a case study, 

illuminating the fact that animal vocalizations, even in an asocial species, are complex 

communicative channels, in which multiple levels of information can be simultaneously 

encoded. Bioacoustics researchers should take this cue to initiate further investigation on two 

fronts: first, the capacity for vocalizations, territorial and otherwise, in other asocial species to 

carry multiple layer of information, and second, the ability for conspecifics to discern these 

complex acoustic cues making up their local acoustic landscape. Following these two exciting 

channels of research should produce a much more thorough understanding of the subtleties of 

animal acoustic communication systems.  
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