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Abstract— Refactoring is an extremely important solution to reduce and manage the growing complexity of 

software systems. However, maintaining a high-level code quality can be expensive since time and monetary 

pressures force developers to neglect to improve the quality of their source code. Thus, programmers are 

“opportunistic” when they apply refactorings since most of them are interested in improving the quality of the code 

fragments that they frequently update or those related to the planned activities for the next release (fixing bugs, adding 

new functionalities, etc.). In this work, we describe a search based approach to recommend refactorings based on the 

analysis of the history of changes to maximize the recommended refactorings for 1) recently modified classes, 2) 

classes containing incomplete refactorings detected in previous releases, and 3) buggy classes identified based on bug 

reports. The obtained results on 2 industrial projects shows significant improvements of the relevance of 

recommended refactorings, as evaluated by the original developers of the systems, and much lower execution time 

comparing to existing search-based refactoring techniques.  

Keywords— Search-based software engineering, multi-objective simulated annealing, refactoring, history of 

changes. 

I.  INTRODUCTION  

Several studies show that programmers are postponing software maintenance activities that improve 

software quality, even while seeking high-quality source code for themselves when updating existing 

projects. High-quality source code can be characterized using several quality attributes, but maintaining this 

high level of quality is expensive. One reason is that time and monetary pressures force programmers to 

neglect to enhance the quality of their source code. 
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The challenge that programmers face when trying to improve the software design structure while 

preserving the functionnalities is termed the “software refactoring problem” [1]. Classically, program 

refactoring has been studied in the context of technical debt which is a metaphor introduced by Cunningham 

to point out “not quite right code which we postpone making it right” [2]. An effective strategy in managing 

technical debt has been to identify and fix quality issues using refactoring. A large portion of existing 

refactoring tools suggests refactorings that can be used to improve the overall quality of systems without 

being personalized to the specific needs of programmers. As a result, the number of refactorings to apply is 

huge and developers spent a long time to find relevant refactorings.  

When a high number of refactorings are recommended, manual refactoring becomes error-prone and time-

consuming. Murphy-Hill et al. [3] show that most developers do not use fully automated refactoring 

techniques because they want to mix refactorings with semantic changes, something that is not permitted by 

existing methods. In addition, developers find fully automated refactoring risky because it can introduce bugs 

or undesired changes [4]. Furthermore, the automated extensive applications of refactorings may radically 

change the initial design.  

To increase the relevance of recommended refactorings, we used the history of changes, in our previous 

work [5], to identify similar patterns between existing recommendations and previous ones. We also 

considered several semantic constraints to improve the correctness of recommended refactorings. However, 

the proposed multi-objective approach still generates a high number of refactorings since it is trying to fix 

most of the possible quality issues of the system without considering the current needs of the developers. 

Morales et al. [6] extended our previous work [5] by proposing a search-based approach to consider 

developer’s task to find the best sequence of refactorings that affects only entities modified by the developers 

collected using the Eclipse plug-in Mylyn. The results show that the number of antipatterns is reduced by 

50% with a low number of refactorings. However, the validation was limited to only the consideration of 

quality improvements based on QMOOD [7], number of antipatterns and the execution time. It is not clear 



how much the relevance of the recommended refactorings is improved based the system developers’ 

perspective after manually inspecting the recommendations. In addition, they did not consider the time 

dimension when mining the collected developer’s tasks. In fact, developers are more interested, in general, to 

refactor recently modified entities. Furthermore, the identification of incomplete refactorings in previous 

releases was not considered in [6][41][42][43] to recommend new refactorings.  

In this paper, we propose a personalized search-based approach for refactoring recommendations. We start 

from the following observations that: 

1) programmers prefer to improve mainly the quality of recently modified code before a new release due 

to limited resources and time,  

2) several empirical studies [8][15][44][45][46] identified correlation between bugs and refactoring 

opportunities, and 

3) recent introduced refactorings is an indication of quality issues that should be fixed by the auto-

completion of these applied refactorings.  

To this end, we propose to reduce the search space of possible refactoring solutions by considering the 

above three observations then executing a local search algorithm, based on simulated annealing [9], to find 

the best sequence of refactorings maximizing the quality improvements and minimizing the number of 

refactored classes based on their ranking after the space reduction phase. In fact, the space reduction phase 

ranks the potential classes to refactor, identified using a set of antipatterns detection rules [10], based on a 

measure formalizing the three above observations. Then, the multi-objective simulated annealing algorithm 

[9] is executed to find the best sequence of refactorings optimizing these two objectives. 

We implemented our proposed approach and evaluated it on a set of two industrial systems provided by 

our industrial partner, the Ford Motor Company. We did the evaluation only on these two systems since it is 

critical to evaluate the relevance of recommended refactorings by the original developers of the systems. 



Statistical analysis of our experiments showed that our proposal performed significantly better than existing 

search-based refactoring approaches [11] [12] and an existing refactoring tool not based on heuristic search, 

JDeodorant [13] in terms of the relevance and importance of recommended refactorings. In our qualitative 

analysis, we conducted a survey with the software developers who participated in our experiments to evaluate 

the relevance of fixed quality issues in their daily development activities. 

The primary contributions of this paper can be summarized as follows:  

• The paper introduces a new way to refactor software systems by reducing the search space to identify 

the most relevant refactoring recommendations. The proposed technique supports the adaptation of 

refactoring solutions based on the recent code changes that the developer performed, recent bugs and 

identified incomplete refactorings. 

• The paper presents an evaluation of the proposed personalized multi-objective approach based on two 

industrial systems.  The obtained results confirm the outperformance of the proposed technique 

comparing to existing search-based refactoring approaches [11] [12] and an existing refactoring tool 

not based on heuristic search, JDeodorant [13] in terms of the relevance and correctness of 

recommended refactorings. 

The remainder of this paper is structured as follows. Section 2 provides an account of the related work. 

Section 3 describes our personalized refactoring approach while the results obtained from our experiments 

are presented and discussed in Section 4. Finally, in Section 5, we summarize our conclusions and present 

some ideas for future work. 

II. RELATED WORK 

Refactoring is the process of improving the code quality of an existing system while preserving its 

external behavior [14][41][42][43][44][45][46][47][48][49][50][51][52][53][54][55]. The refactoring 

procedure includes several steps but the most important ones are the detection of refactoring opportunities 



and the recommendation of relevant refactorings to fix those detected quality issues. To identify refactoring 

opportunities, the majority of existing studies are based on the concept of code smells [14]. These code 

smells correspond to design practices that have a negative impact on the maintainability, understandability  

and performance of the software [15]. The study of determining refactoring opportunities has been initially 

correlated mainly with the improvement of the software architecture. These proposals vary from manual to 

semi- and fully-automated. 

The manual investigation of refactorings can be seen in the early work of Fowler [14] in whish, a broad 

description of smell symptoms has been given along with a set of suggested operations to apply as remedy 

for each code smell. Similarly, Wake [16] coupled the detection of code smells to a Refactoring Workbook 

that details their removal. Later on, studies has emphasized on deploying several metrics to better 

characterize code smells and thus facilitate their detection, in this context, Mäntylä [17] refined Fowler’s 

definitions of structural anomalies at the source code level in terms of metrics in order to automate their 

detection and proposed their refactoring based on developers’ opinions.  

Another interesting and recent study on refactoring has been proposed by Piveta el al. [18] who conducted 

a study on when refactoring operations are eventually needed when detecting bad smells in the context of 

aspect-oriented software. Also, Counsell et al. [19] defined smells’ refactoring in terms of fan in and fan out-

degrees on a dependency graph. The emphasis of using structural metrics instead has given more maturity in 

better understanding smells taxonomy [20] and so, it has orientated studies towards automating their 

detection and then correction.  

In this context, Meananeatra [21] proposed a semi-automated graph-based algorithm to reduce the 

refactoring effort. The proposed algorithm is based on three objectives to reduce the number of detected code 

smells, number of applied changes and number of refactored code fragments. Another tool is proposed, called 

JDeodorant [13], and implemented as an Eclipse plug-in based on the use of quality metrics to detect design 



quality violations. Several templates are proposed to cover different possible standard strategies to fix the 

detected code smells. Kessentini et al. [10] proposed a mono-objective genetic algorithm to identify the 

optimal sequence of refactorings that reduce the number of code smells using a set of detection rules. 

Nevertheless, Refactoring studies were not only limited to the elimination of design defects, but also 

driven by the optimization of the software physical design through increasing software quality attributes. For 

example, Du Bois et al. [23] has intended to find an optimal distribution of features within software modules 

through moving existing methods and classes while decreasing coupling and increasing cohesion. Seng et al. 

[24] used a genetic algorithm the generate refactoring sequences that optimize class level properties based on 

several quality metrics.  

In contrast with combining metrics into one fitness function, Harman and Tratt [25] suggested a multi-

objective optimization approach to generate refactoring operations that find the best tradeoff among two 

conflicting measures namely, the coupling and the standard deviation of methods per class. Mkaouer et al. 

[26] extended the range of used metrics to 15 by considering the code refactoring as a many-objective 

optimization problem. They extended their work to also preserve the domain semantics along with 

optimizing the software architectural quality through the optimization of QMOOD quality attributes [27]. 

One major observation extracted from existing studies, is the extensive use of structural code measures in 

to either defining design defects or describing quality attributes, and so the refactoring process was 

essentially piloted by enhancing the software architecture without respect to other important factors such as 

prioritizing buggy source code, suspect of future investigation and conformance with the history of code 

changes previously done by developers in software previous releases.  

To cope with this limitation, recent studies were no longer only limited to structural metrics, but also work 

on the auto-completion of refactoring activities based on knowledge extracted from target languages, as in 

[28], Spinellis et al. developed a refactoring browser that restructures classes by tagging their identifiers 



along with their location and then clustering them into equivalence classes with respect to C language’s 

namespace and scope extents. Murphy-Hill et al. suggested various studies [29] [30] [31] to assess engineers 

in their refactoring sessions. In [29] they provided a tool that provides visual support and structural analysis 

to software engineers in order to help them in better locating refactoring opportunities. Then as well, the 

authors proposed BeneFactor [30] that can be called during a refactoring session to safely complete a 

refactoring change for the Java language. They also proposed GhostFactor that helps developers in 

automatically checking the correctness of any executed code refactoring [31].  

In [32], the authors considered software remodularization as an interactive multi-objective optimization 

problem. In their approach, each remodularization solution is a sequence of clustering operations that present 

a potential decomposition of entities into modules/packages. The set of best solutions, extracted from the 

Pareto front, are suggested to developers for evaluation. Then the developer’s feedback is used in the next 

phase of the remodularization process to prune the search space through penalizing solutions that do not 

satisfy the feedback. Furthermore, the history of code changes, gathered from developers, was mined in [33] 

to identify code fragments infected with bad smells. 

III. PERSONALIZED SEARCH-BASED REFACTORING  

In this section, we start first by describing the general process of the proposed algorithm then we discuss 

the formulation and adaptation of our search algorithm. 

A. Approach Overview 

The main objective of the proposed technique is to search for the best set of refactorings that may fix most 

of the design violations for programmers and based on their recent update/changes of the system. Figure 1 

describes an overview of the proposed framework.  



 

Fig. 1. Approach overview 

Our technique comprises two main components. The first component is the pre-processing phase to rank 

the list of possible classes to refactor. During this phase, three different parsers are executed to extract classes 

that are recently modified from previous releases or those mentioned in previous bug reports or the classes 

recently refactored. The classes mentioned in recent commits, are maybe important to refactor since they 

have a higher probability to include bugs or to be updated in the future comparing to stable classes that were 

not modified for many releases. Several empirical studies show that correlation exists between buggy classes 

and poor quality symptoms.  

Developers, for example, may introduce bugs because the complexity of the system and its poor design 

and extendibility. Furthermore, the classes that are refactored recently by the developers but still contains 

quality issues can be automatically refactored since already programmers expressed an interest in fixing them 

but did not finish the work due to the time constraints before a new commit or release. The list of applied 

refactorings in previous releases are detected using our previous work [34]. The outcome of this first phased 

is a list of ranked classes that could be refactored. The ranking function is based on the three different 

measures of recently modified classes, recent classes mentioned in bug reports and recent incomplete 

refactoring activities. The formalization of these measures will be described in the next section. 



The outcome of the first phase is used to reduce the search space to find the best refactoring sequence to 

recommend for developers. Instead of exploring a large search space of fixing most of the identified quality 

issues on the system, a multi-objective search algorithm is used to focus mainly on refactoring the ranked 

classes of the first phase. To this end, a multi-objective simulated annealing algorithm is executed for a 

number of iterations to find the solutions balancing the two objectives of improving the quality, which 

corresponds to improving the QMOOD (Quality Model for Object-Oriented Design) quality metrics [7] and 

minimizing the number of refactored classes.  

A multi-objective simulated annealing algorithm is selected due to the small search space to explore after 

the pre-processing phase. A set of semantic constraints is used to check the correctness and feasibility of 

recommended refactorings based on textual similarities, call graphs and pre/post-conditions. These 

constraints are described in more details in [27]. 

The next section will discuss the formalization of our approach and the adaptation of the multi-objective 

simulated annealing algorithm to our problem. 

B. Problem Formulation and Solution Approach 

We describe in the following subsections the details of the two main components of our framework. 

1) Pre-processing: search space reduction 

The main goal of the pre-processing phase is to rank potential classes for refactoring based on their 

relevance to the developers. Formally, the ranking function is defined as follows: 
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where c is the class to rank and commitf(c), bugreportsf(c) and refactoringf(c) are respectively the 

functions to estimate the relevance of the class based on previous recent commits, bug reports and incomplete 

applied refactorings.  



The first function commitf(c) checks if a class was recently changed. In fact, a class that was modified 

recently has a higher probability to be refactored comparing to stable classes. Thus, the function compares 

between the date of the last commit and the last date where the class was modified in the previous commit. If 

a suggested class was modified in the last commit then the value of this function is 1. We define this 

normalized function, normalized in the range of [0, 1] as following: 
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The second function bugreportsf(c) counts the number of times that a class was fixed to eliminate bugs 

based on the history of bug reports divided by the maximum number of times that a class in the system was 

fixed in previous bug reports. In fact, a class that was fixed several times has a high probability of being a 

buggy class and thus need to be refactored. Furthermore, we prioritized the classes fixed in recent bug 

reports. Formally, this function, normalized between [0,1] is defined as: 
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The third function refactoring (c) counts the number of antipatterns in the class c, refactored in the past, 

divided by the maximum number of antipatterns per class in the system S. The classes that are refactored in 

the past by developers but still contain antipatterns have a high probability of being relevant refactoring 

opportunities for developers. The classes that were not refactored in the past by developers will take the value 

of 0. We used our previous work of refactorings detection [34] to identify the list of classes refactored in 

previous releases. The third function is formalized and normalized as follows: 
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The outcome of this phase is a list of ranked classes based on their relevance for programmers as 

refactoring opportunities. This outcome is used as input to the multi-objective simulated annealing algorithm 

that will be described in the next section. 

2) Simulated Annealing Adaptation 

Due to the reduce search space after the pre-processing phase of filtering refactoring opportunities based 

on recent changes, we used a local search algorithm based on multi-objective simulated annealing (MOSA) . 

In the next sections, we described the three main steps of adaptation of MOSA [42] to our problem. 

a) Solution representation 

A solution of our problem is defined as a sequence of a number of refactorings involving one or multiple 

source code fragments of the software to refactor. As described in Table I, The vector-based representation is 

used to define the refactoring sequence. Each dimension of the vector has a refactoring and its index in the 

vector indicates the order in which it will be applied. For every refactoring, pre- and post-conditions are 

specified to guarantee the correctness of the operation. 

The initial population is created by randomly selecting a sequence of operations to a randomly chosen set 

of code elements, or actors identified in the first phase of search space reduction. The type of actor usually 

depends on the type of the refactoring it is assigned to and also depends on its role in the refactoring 

operation. In our experiments, we used the following list of refactorings: Extract class, Extract interface, 

Inline class, Move field, Move method, Push down field, Push down method, Pull up field, Pull up method, 

Move class, Extract method. More details about these refactorings can be found in [43]. 

The size of a solution, i.e. the vector’s length is randomly chosen between upper and lower bound values. 

The determination of these two bounds is similar to the problem of bloat control in genetic programming 

where the goal is to identify the tree size limits. Since the number of required refactorings depends mainly on 

the size of the target system, we performed, for each target project, several trial and error experiments using 



the HyperVolume (HP) performance indicator [35] to determine the upper bound after which, the indicator 

remains invariant. For the lower bound, it is arbitrarily chosen. The size of the solution will depend on the list 

of classes identified by the pre-processing step to reduce the search space. The experiments section will 

specify the upper and lower bounds used in this study. 

TABLE I.  EXAMPLE OF FIRST RANDOMLY GENERATED OPERATIONS. 

Ref Refactoring operation 

RO001 
MoveMethod(org.apache.xerces.xinclude.XIncludeTextReader, 

org.apache.xerces.xinclude.XIncludeTextReader, close()) 

RO002 MergePackage(org.apache.xerces.xpointer, org.apache.xerces.xs) 

RO003 
PullUpMethod(org.apache.html.dom.HTMLTableCaptionElementImpl,org.apache.html.dom.HTMLElementIm

pl, addEventListener()) 

RO004 ExtractInterface(org\apache.xml.serialize.SerializerFactory,apache.xml.serialize.SerializerFactoryInterface) 

b) Fitness functions 

The generated solutions are evaluated using two fitness functions as detailed in the following paragraphs. 

Minimize the number of refactored classes: Due to the limited time frame dedicated to refactoring 

software systems by programmers, it is important to find the most critical and relevant refactorings to apply 

rather than trying to fix every detected refactoring opportunity. To this end, we formulated the fitness 

function as the number of modified actors/code elements (packages, classes, methods, attributes) by the 

generated refactorings solution. 
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where x is the solution to evaluate, n is the number of refactorings in the solution x and #code_elements is 

a function that counts the number of modified code elements in a refactoring. Any solution with refactorings 

being performed on the same code elements will have better (lower) fitness value for this objective. Such 



definition of the objective is in favor of code locality since it encourages refactoring the same code fragment, 

as developers prefer to refactor the specific elements with which they are most familiar instead of applying 

scattered changes throughout the whole system.  

The proposed fitness function is different from that employed in our previous work [27] where only the 

number of applied refactorings are counted. In fact, each refactoring type may have a different impact on the 

system in terms of number of code changes it engenders, something that can be identified using our new 

formulation.  

Maximize software quality and refactorings relevance: The second fitness function is defined as follows:  
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The first component of the function maximizes the ranking score of the selected classes to be refactored 

based on the pre-processing phase. The rank function was already described in the previous section. The 

second component of the function is based on the use of QMOOD [7] where QAi is the quality attribute 

number i being calculated based on the returned structural metrics from the system S. Several work have used 

structural measures to evaluate the quality of software projects [36]. One of the widely used models is 

proposed by Bansiya et al. [7] , called QMOOD, which is based on six different quality attributes such as 

reusability, felexibility, understandability, functionality, extendibility and effectiveness. These quality 

attributes are defined using a set of strucutal quality metrics. More details about the QMOOD model can be 

found in [43].  

Since it may not be sufficient to consider structural metrics, we used the design coherence measures of our 

previous work to ensure that every refactoring solution preserves the semantics of the design. More details 

can be found in [27]. 



c) Change operators 

MOSA is using a mutation operator to generate new solutions. For mutation, we use the bit-string 

mutation operator that selects one or more refactoring operations (or their controlling parameters) from the 

solution and replaces them by other ones from the list of possible operations to apply. 

When applying the change operators, the different pre- and post-conditions are checked to ensure the 

applicability of the newly generated solutions. For example, to apply the refactoring operation move method a 

number of necessary pre-conditions should be satisfied such as the method and the source and target classes 

should exists. A post-condition example is to check that the method exists and was moved to the target class 

and did not exist anymore in the source class. More details about the adapted pre- and post-conditions for 

refactorings can be found in [37]. We also apply a repair operator to randomly select new refactorings to 

replace those creating conflicts. 

IV. EVALUATION 

This section describes the experimental results of our approach to find relevant and correct set of 

refactorings.  

We performed several experiments on two industrial projects provided by the IT department at the Ford 

Motor Company. We compared the results of our approach on these systems with several exisiting 

refactoring techniques based on a set of 30 different runs. 

A. Research Questions and Evaluation Metrics 

To evaluate and compare the performance and relevance of the recommended refactoring by our 

personalized multi-objective simulated annealing algorithm, we defined the following three research 

questions : 

RQ1: To what extent can our approach recommends relevant refactorings to developers? 



RQ2: To what extent can our approach reduces the number of refactorings and the execution time while 

improving the quality and recommending relevant refactorings compared to existing refactoring techniques? 

RQ3: Can our approach be relevant for programmers in practice? 

To address the first research question RQ1, we used both qualitative and quantitative evaluations of the 

recommended refactorings by our approach and existing studies.  

For the quantitative validation, we asked a group of developers from our industrial partner to manually 

suggest a list of possible refactorings to apply based on the latest release source code of the system to 

refactor. Then, we used the precision (PR) and recall (RC) measures to evaluate the similarity between the 

recommended refactorings by our approach and those manually found by the original programmers of the 

industrial projects: 

gs)refactorin (expectedset 
gs)refactorin (expectedset  gs)refactorin ed(recommendset ∩

=RC  
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  Another metric that we considered for the quantitative evaluation is the percentage of fixed antipatterns 

(NF) by the refactoring solution. The code smells are detected on the new source code after refactoring based 

on the detection rules provided by [10]. Formally, NF is defined as  

]1,0[
smells code# 

 smells code fixed#
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The detection of antipatterns is very subjective and some developers prefer not to fix some smells because 

the code is stable or some of them are not important to fix. To this end, we considered another metrics the 

total gain in quality G for each of the considered QMOOD quality attributes qi before and after refactoring 

can be easily estimated as: 
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where q’i and qi represents the value of the quality attribute i respectively after and before refactoring. 

Since several good solutions can be relevant, it is important to check the relevance and correctness of 

recommended refactorings not only by comparing them with one expected solution (quantitative validation). 

Thus, we performed a qualitative evaluation where we asked the original programmers of the industrial 

projects to review, manually, if the recommended refactorings are relevant and correct or not from their 

perspectives. We define the metric Refactoring Relevance (RR) to mean the number of relevant refactorings 

divided by the total number of suggested refactorings. RR is given by the following equation:  

gsrefactorin proposed#
gsrefactorinrelevant #

=RR  

To answer RQ2, we compared our approach to random search (RS), mono-objective simulated annealing 

(SA) aggregating both objectives, another multi-objective evolutionary algorithm (NSGA-II) and an existing 

work based on search algorithms to fully-atuomate the refactoring recommendation process: O’Keeffe and Ó 

Cinnéide [11] and Ouni et al. [12].  

O’Keeffe and Ó Cinnéide proposed a mono-objective formulation to automate the refactoring process by 

optimizing a set of quality metrics. Ouni et al. [41] proposed a multi-objective refactoring formulation that 

generates solutions to fix code smells. Both techniques are fully-automated and did not consider the 

personalization of refactoring recommendations. We have also compared our results with an existing tool, 

called JDeodorant, not based on heuristic search to fix quality issues by recommending refactorings. 

JDeodorant implements a set of templates to fix different design violations by providing a generic list of 

refactorings to apply. Since JDeodorant just recommends a few types of refactoring with respect to the ones 

considered by our tool. We restricted, in this case, the comparison to the same refactoring types supported by 

JDeodorant.  



All these existing techniques are fully-automated and do not consider the different heuristics used in our 

approach for the relevance of recommended refactorings. We did not consider the recent work of Morales et 

al. [6] in our experiments since the tool is not available. We used the metrics PR, RC, NF, RC and G to 

perform the comparisons and two new metrics related to the computational time (CT) and the number of 

refactorings (NR). 

To answer RQ3, we asked the programmers to answer to a post-study questionnaire to get their opinions 

and feedback about our personalized refactoring recommendations. 

B. Studied Projects 

In order to get feedback from the original developers of a system, we considered in our experiments two 

large industrial projects provided by our industrial partner, the Ford Motor Company.  

The first project is a marketing return on investment tool, called MROI, used by the marketing department 

of Ford to predict the sales of cars based on the demand, dealers’ information, advertisements, etc. The tool 

can collect, analyze and synthesize a variety of data types and sources related to customers and dealers. It 

was implemented over a period of more than eight years and frequently changed to include and remove 

new/redundant features.  

The second project is a Java-based software system, JDI, which helps the Ford Motor Company to create 

the best schedule of orders from the dealers based on many business constraints. This system is also used by 

the Ford Motor Company to find the best configurations of cars based on the requirements of dealers and 

customers. Software developers have developed several releases of this system at Ford over the past 10 years. 

Due to the high number of changes introduced to this system over the years and its importance, it is critical to 

ensure that they remain of high quality and minimize the effort required by developers to fix bugs and extend 

the system in the future. Table IV described the statistics related to the two studied systems. 



TABLE II.  THE EVLUATED INDUSTRIAL PROJECTS 

Systems Release Avg. 
#classes 

Avg. 
KLOC 

Avg. 
#antipatterns 

#manual 
Refactorings 

JDI-Ford 
V1.0 -V5.8 
(26 
releases) 

694 252 88 94 

MROI-Ford 
V1.0-V6.4 
(31 
releases) 

827 269 116 119 

C. Scenarios 

Our study involved 19 software developers from the Ford Motor Company. Participants include 9 original 

developers of the MROI system and 10 original developers of the JDI one. All the developers who 

participated in the experiments are expert in Java, quality assurance and testing. The experience of these 

participants on these areas ranged from 7 to 18 years.  

The questionnaire includes five main questions to be answered by the participants. Some of the questions 

are related to the background of the participants to evaluate their experience and ability to evaluate the results 

of our technique. Furthermore, we organized a lecture for all the participants about different concepts and 

examples related to software refactoring then they took six tests about evaluating the relevance of 

recommended refactorings on code fragments extracted from open source systems. 

We formed two groups. Each of the two groups (A and B) is composed of the original developers of each 

system. We selected the participants of each group based on the collected background information to make 

sure that both groups have, in average, the same level of expertise with software refactoring and quality 

assurance. We provided to all the participants the questionnaire, the guidelines about the different steps to 

perform the experiments, the different used tools and source code of the systems to evaluate. After the first 

step of the quantitative evaluation, we provided to the participants the list of recommended refactorings by 

the different tools and asked them to evaluate their relevance and correctness. The participants are not aware 

about the tools used to get the different results. We counted the votes of the programmers for every of the 



recommended refactorings then we considered the highest number of votes to evaluate the 

correctness/relevance of the evaluated operations.  

In the first scenario, we asked every participant to manually apply refactorings after reviewing the code of 

their systems. As an outcome of the first scenario, we estimated the similatiry between the suggested 

refactorings and the expected ones as defined by the programmers.  

In the second scenario, we asked the developers to manually evaluate the relevance of every 

recommended refactoring by our approach. In the third scenario, we collected the opinions of the developers 

about our tool based on a post-study questionnaire that will be detailed later. The programmers commented 

on the different evaluated refactorings and these comments/justifications were discussed later with the 

organizers of the study. 

D. Experimental Setting and Statistical Test Methods 

The parameters tuning is one of the important steps when comparing and evaluating different 

computational search algorithms [38]. To this end we used different population sizes of the used algorithms 

to evaluate their performance ranging from 100, 200, 300 and 500 indviduals per population.  

The maximum number of iterations is 100,000 evaluations for all the studied systems. We used the 

Wilcoxon test to compare between the different algorithms considered in our experiments. For each 

algorithm and project, we use the trial and error strategy [38] to find the good parameters setting. For all the 

systems and algorithms, the obtained results in our experiments are statistically significant on 30 independent 

executions using the Wilcoxon rank sum test with a confidence level of 95% (α < 5%). 

To evaluate the difference in magnitude, we used the Vargha-Delaney A measure [39] as a non-parametric 

effect size metric. Based on the different evaluation measures used in our experiments (such as PR, RC, RR, 

etc.), the A statistic estimates the probability that the execution of an algorithm B1 (MOSA) has better 

performance than executing another algorithm B2 (other existing refactoring studies). In the validation of this 



work, we found the following results: a) On the JDI system, the performance of our MOSA algorithm based 

on all the different evaluation metrics is better than existing studies with an A effect size more than 0.91; and 

b) On the MORI system, the performance of our MOSA algorithm based on all the different evaluation 

metrics is better than existing studies with an A effect size more than than 0.88. 

We used in our experiments, eight different types of code smells: Blob, Long Parameter List (LPL), 

Functional Decomposition (FD), Spaghetti Code (SC), Data Class (DC), Feature Envy (FE), Shotgun Surgery 

(SS), and Lazy Class (LC). We selected these code smells because they are the most frequent and hard to fix 

defects based on recent empirical studies [12] [33]. 

The upper and lower bounds on the chromosome length used in this study are set to 10 and 250 

respectively. We performed several trial and error experiments where we assess the average performance of 

our algorithm using the HV (hypervolume) performance indicator while varying the size limits between 10 

and 500 operations. For the starting temperature and alpha value, we used respectively the following values 

0.0003 and 0.999. When randomly generating a mutation, each type of mutation had the same probability of 

being generated; there was a one-third chance of adding a refactoring, modifying a refactoring, or removing a 

refactoring. 

E. Results and Discussions 

Results for RQ1. Figure 2 (RR) summarized the results of our approach of the qualitative evaluation 

when programmers manually evaluated the relevance and correctness of the recommended refactorings. Most 

of the solutions recommended by our personalized approach are relevant and correct from the perceptive of 

the programmers.  

On average, for the two studied projects, around 88% of the proposed refactoring operations are found to 

be useful by the software developers of our experiments. The highest MC score is 89% for the JDI-Ford 

project and the RR score is 87% for the second system MROI-Ford. Thus, it is clear the obtained results are 



not dependent to the size of the systems and the number of recommended refactorings. Most of the 

refactorings that were not manually approved by the developers were found to be either fixing non-relevant 

quality issues or introducing design incoherence. 

                            

               

Fig. 2. Median refactoring relevance (RR) value for 30 executions on all the two systems based on the different studied refactoring 

approaches with a 95% confidence level (α<5%). 

We also compared the proposed refactoring solutions with the ones that are provided manually by the 

programmers of these industrial systems. Figures 3-4 show that the majority of the proposed refactorings, 

with an average of 84% in terms of precision and 87% of recall, are equivalent to those manually found by 

the programmers when trying to refactor the system. The higher score of the recall comparing to the precision 

can be explained by the fact that our approach proposes a more complete list of refactorings comparing to the 

manually recommended operations by the programmers due to the time-consuming process of code 

refactoring. In addition, we found that the slight deviation with the expected refactorings is not related to 



incorrect operations but to the fact that the developers were interested mainly in fixing the severest quality 

issues or those related more to find better ways to extend the current design.  

                 

                          

Fig. 3. Median precision (PR) value for 30 executions on all the two systems based on the different studied refactoring approaches 

with a 95% confidence level (α<5%).          

                             



Fig. 4. Median recall (RC) value for 30 executions on all the two systems based on the different studied refactoring approaches 

with a 95% confidence level (α<5%).          

Figure 6 shows that the refactorings recommended by the approach and applied by developers improved 

the quality metrics value (G) of the two systems. The average quality gain for the two industrial systems was 

the highest among the systems with more than 0.2. The improvements in the quality gain confirm that the 

recommended refactorings helped to optimize different quality metrics by fixing the most severe quality 

issues. Although the average quality gain is lower comparing to existing techniques, it is still comparable to 

them due to the much lower number of refactorings recommended by our technique. 

                                  

          

Fig. 5. Median quality gain (G) value for 30 executions on all the two systems based on the different studied refactoring 

approaches with a 95% confidence level (α<5%).          

Result for RQ2. Figures 3, 4, 5, 6, 7 and 8 confirm the average superior performance of our personalized 

refactoring approach compared to existing refactoring approaches. Figure 3 describes that our approach 



provides better refactoring relevance results (RR) than existing approaches having RR scores between 55% 

and 79%, as RR scores, on average, on the two different systems. The same results are similar for the 

precision and recall as described in Figure 4 and 5. However, the quality gain is slightly lower than most of 

existing techniques as showed in Figure 6. This is can be explained by the reason that the main goal of 

developers is not to fix the maximum number the quality issues detected in the system (which was the goal of 

most of existing studies). In addition, our approach is based on a multi-objective algorithm to find a trade-off 

between improving the quality and reducing the number of refactorings. 

Figure 7 clearly shows that our personalized refactoring approach converge much faster to acceptable 

refactoring solutions comparing to most of existing studies. For example, the work of Ouni et al. required at 

least 20 minutes to converge to good quality of solutions however our approach was able to recommend good 

refactoring opportunities within two minutes. One the reasons of the low execution time of our approach is 

the number of recommended refactorings as described in Figure 9.  

To conclude, our interactive approach provides better results, on average, than existing fully-automated 

refactoring techniques (answer to RQ2). 

                             

                     



Fig. 6. Median execution time (CT) for 30 executions on all the two systems based on the different studied refactoring approaches 

with a 95% confidence level (α<5%).          

                                                      

 

Fig. 7. Median number of refactorings (NR) for 30 executions on all the two systems based on the different studied refactoring 

approaches with a 95% confidence level (α<5%).          

Results for RQ3. In the first component of the post-study questionnaire, the participants were asked to 

rate their agreement on a Likert scale from 1 (complete disagreement) to 5 (complete agreement) with the 

following statements: 1. The proposed personalized refactoring technique is a desirable feature in integrated 

development environments. 2. The reduced number of recommended relevant refactorings may help 

developers performing every-day design, implementation and maintenance activities.  

In the second component of the questionnaire, the subjects were asked to specify the possible usefulness 

of the suggested refactorings to perform some activities such as quality assurance/assessment, regression 

testing, effort prediction, code inspection, and features extension. In the third part, we asked the programmers 

about possible improvements of our personalized refactoring tool.  



As described in Figure 7, the agreement of the participants was 4.6 and 4.3 for the first and second 

statements respectively. This confirms the usefulness of our approach for the software developers. Regarding 

the possible usefulness to perform some activities, the developers agreed that quality assurance/assessment 

and features extension are the three main activities where the personalized refactorings could be very helpful 

with an agreement of more than 4.3.  

The three other activities of effort prediction, regression testing and code inspection are considered less 

relevant for our tool with an agreement of around 3.8. The majority of the programmers we interviewed 

found that the personalized refactorings give interesting quick advices about possible refactoring 

opportunities to improve the quality and mainly facilitate extending the design of the system to update 

recently introduced features. 

            

                             

Fig. 8. Post-study questionnaire results 

The remaining questions of the post-study questionnaire were about the benefits and also limitations 

(possible improvements) of our approach. They found that the personalized refactoring technique is much 



more efficient than the traditional manual and fully-automated techniques. The programmers considered the 

use of most of existing manual refactoring techniques as a time consuming process, and it is more relevant to 

apply refactorings related to their recent development activities. Most of the participants mention that our 

personalized approach to refactor the code is much faster than analyzing the long list of recommended 

refactorings by current techniques. The programmers also highlighted that our personalized approach 

recommended relevant refactorings to continue improving the quality of some code fragments that they 

started refactoring them in the past. 

The participants also suggested some possible improvements to our personalized refactoring approach. 

Several participants found that it will be very interesting and helpful to integrate to the tool a new 

functionality  to visualize the design before and after refactoring. The developers also proposed to explore the 

area of impact changes analysis as a complementary step of our technique after applying the recommended 

refactorings. 

V. CONCLUSION AND FUTURE WORK 

In this work, we described a personalized search based technique for software refactoring to recommend 

refactorings for programmers based on the history of changes of the system. Our personalized approach helps 

programmers to take the advantage of search-based refactoring tools with a reasonable execution time or a 

short list of refactorings to recommend. In fact, the pre-processing phase reduced the search space to explore 

based on analyzing previous commits, bug reports and incomplete refactorings.  

The paper describes an evaluation of the proposed personalized multi-objective approach based on two 

industrial systems.  The obtained results show the outperformance of the proposed technique comparing to 

existing search-based refactoring approaches [11] [12] and an existing refactoring tool not based on heuristic 

search, JDeodorant [13] when evaluating the relevance and correctness of recommended refactorings by 

programmers. 



Future work involves validating our technique with additional refactoring types, programming languages 

and potential users to evaluate the performance of our methodology. Furthermore, we plan to extend the 

approach by automating the test and verification of applied refactorings. 
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