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Abstract 

 Smart home IoT devices are becoming increasingly popular and increasingly prevalent in 

people’s homes. These devices create new potential attack surfaces in people’s homes, and 

therefore it is important that the manufacturers are taking the appropriate measures to secure 

these devices. The motivation for this work was to determine if these measures were being taken 

since people could be unknowingly purchasing smart home IoT devices with security or privacy 

vulnerabilities. 

 Smart home IoT devices that are available to consumers were purchased and analyzed for 

this paper. Some of these devices were found to contain privacy vulnerabilities. Therefore, some 

smart home IoT devices on the market contain a privacy vulnerability, which is they do not 

encrypt transmitted data over a local WiFi network, and therefore can be subject to a man in the 

middle attack. 

 The privacy and security of seven different smart home IoT devices were analyzed 

including smart light bulbs, WiFi thermostats, a smart plug, and the Amazon Echo. It was found 

that four of the seven devices do not encrypt transmitted data over the local WiFi network 

connection, which is a privacy vulnerability. For two of these devices, the transmitted data could 

be visible in plain text, which can be easily deciphered by an attacker. Three of the four devices 

that contain a privacy vulnerability were also vulnerable to replay attacks, meaning replaying 

recorded packets causes the device to perform an action such as turn the lights on. It is discussed 

how the data obtained due to this privacy vulnerability can be used to track a user’s lifestyle 

habits. From this data an attacker can infer if the user is currently home or away. Lastly, 

solutions to these vulnerabilities are presented, which includes encrypting the communication 

data that is transmitted between the different nodes of the smart home IoT devices. For devices 

that use a point-to-point type of architecture, lightweight encryption techniques are needed and 

discussed. 
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Chapter 1 Introduction 

 Connected technology has started to become increasingly common in people’s homes. 

These connected devices, which can be found in what has been dubbed the “smart home,” has 

made life more convenient for some people and also made it easier for elderly or disabled people 

to live independently. While these are inarguably beneficial aspects of these IoT connected 

devices, there are some drawbacks, which include possible threats to privacy and security of 

personal data of the users. The smart home has essentially taken devices, such as thermostats and 

light bulbs, which were never connected to the Internet, and added the ability to do so. The result 

has been that these devices can be controlled remotely by a user, collect and transmit data to a 

server, and perform actions automatically based off commands from a server or the collected 

data. 

 Connecting devices to the Internet has also created a new wireless cyber attack surface in 

the home that was not present a decade ago. Data is now transmitted between a smartphone or 

server and the smart home device, leading to the possibility of a malicious entity stealing or 

injecting data that can cause harm to the user. While the user has some responsibility to protect 

themselves against these types of threats, by taking actions such as creating strong passwords to 

be used with their devices and local WiFi network, the bulk of this responsibility falls on the 

manufacturers of these IoT smart home devices. Manufacturers must ensure that they are taking 

the appropriate actions when designing a connected smart home device to prevent leakage of 

private data or disallow the ability of an attacker to cause any harm. 

 This research was performed and this paper was written on the basis that some 

manufacturers were not designing cyber security into IoT smart home devices. Therefore 

consumers have been purchasing smart home IoT devices that contain cyber security and/or 

privacy vulnerabilities. Companies attempt to be first to market with their smart home IoT device 

in order to gain an initial large share of the market [1]. Often the consequence of this is cyber 

security measures are not included in the original design, and it is often difficult to add 

retroactively after devices are on the market. In addition, after a smart home IoT device has 

become popular, such as the Nest Thermostat, more inexpensive alternatives are soon to follow 
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and are released to the market. A sound cyber security design and implementation can add cost 

to an IoT smart home device, so therefore measures to protect privacy and cyber attacks may not 

be taken in these instances [2]. 

 In this paper, several IoT smart home devices are analyzed for security and privacy 

vulnerabilities including smart light bulbs, smart thermostats, a smart plug, and the Amazon 

Echo. The results of the analysis are several of these devices have a privacy vulnerability, which 

is transmitting unencrypted data over a local WiFi network. Since this data is transmitted by 

everyday devices in the home, it is argued that attackers can use this data to learn about the 

lifestyle of the user, such as when they leave the home. This is obviously a privacy and safety 

concern. 

 This paper is organized as follows: chapter 2 will cover related work, chapter 3 will cover 

the analysis and findings on the purchased smart home devices, chapter 4 will discuss the 

vulnerabilities that were found, chapter 5 will discuss the solutions to those vulnerabilities, and a 

conclusion will be provided in chapter 6. The data obtained from the analysis of the smart home 

devices will be shown in more detail in Appendix A.  
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Chapter 2 Related Work 

 Research has been done recently in the area of smart home IoT cyber security. Similar 

studies have been performed where researchers analyzed smart home devices for security and 

privacy vulnerabilities. In one such study, authors examined the Nest Thermostat and Nest 

Protect, which is a smart smoke alarm. In this study, the authors analyzed the network traffic of 

the Nest devices to see if they were able to determine if the user was home or away. From the 

network traffic, the authors could determine when a transition between “Home” and “Auto 

Away” modes occurred 67% of the time, and when a transition between “Auto Away” and 

“Home” occurred 88% of the time. It was also concluded that there is no efficient method to 

protect against this type of side channel attack. The authors explained that it has been 

documented in the past that the Nest Thermostat encrypts all data over the local WiFi network, 

which is the attack surface analyzed in this paper [3]. No analysis was performed on side 

channels for this paper. 

 In reference [4], authors also analyzed the Nest Thermostat for existing vulnerabilities in 

order to find out how simple it would be for an attacker with limited technical knowledge to 

exploit. These vulnerabilities included packet analysis, credential attacks, and downloading 

malicious software onto the Nest device. Both downloading malicious software and analyzing 

the packets failed to deliver any results, since the device would not allow the authors to gain root 

access and all communication data from the device was encrypted. However, using the Python 

script that the authors obtained online, they were able to request the current schedule mode of a 

thermostat from the Nest servers. The authors determined that if they ran this script at scheduled 

intervals, they could get an accurate picture of when the user was home or away. Since this script 

is available publicly and does not take much expert knowledge to run, it becomes quite simple 

for an attacker to learn the habits of someone with a Nest thermostat. 

 The authors in [5] analyzed similar devices as this paper including the Philips Hue smart 

light bulb and the Belkin WeMo smart plug. The Nest smoke alarm was also analyzed, but that is 

not covered in this paper. Some of the same vulnerabilities were found, including the lack of 

encryption on data transmitted from the device over WiFi, which was discovered to be in the 
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Philips Hue smart light bulb and Belkin WeMo smart plug. The authors also demonstrated that a 

replay attack was possible with the Philips Hue device by showing that the light bulbs could be 

turned on and off using the data that was collected. It was not known at the time of performing 

the data collection and analysis for this paper that these vulnerabilities had already been 

discovered as stated by reference [5]. The authors also did not analyze multiple brands of a type 

of smart device (for example they did not look at any other smart light bulbs outside of the 

Philips Hue). 

 After performing the experiments for this paper, research was done to find additional 

evidence of analysis of the Philips Hue for security and privacy vulnerabilities. It was 

documented on a blog in reference [6] that the Philips Hue did not encrypt communication of 

data over local WiFi. This vulnerability has been documented since 2013, where the author in 

reference [7] initially discovered it.  

 Because the Philips Hue is one of the most popular smart light bulbs on the market, it has 

received a lot of attention in the security community. Researchers also analyzed the 

communication interface between the Philips Hue hub and the smart light bulbs in reference [8], 

which use the Zigbee protocol. The authors were able to control the smart light bulbs from 350 

meters away by exploiting a vulnerability in the Zigbee interface. This attack surface is not 

considered in this paper, however, as only communication over local WiFi is analyzed. 
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Chapter 3 Experimentation 

 For this study, 5 different devices were analyzed for cyber security and privacy 

vulnerabilities. This section is organized by the category of smart home IoT device, such as 

smart light bulbs, and will provide the individual analysis for each device. A discussion on the 

findings for each category of device will follow the analysis. 

3.1 Experiment Setup 

 Prior to discussing the analysis of each smart home IoT device, the process used to 

capture and analyze data should be covered. The main tool used to do so is Wireshark, which is a 

tool that can be used to capture data packets that are transmitted over Ethernet or Wi-Fi. Version 

2.2.7 of the Wireshark tool was used on a MacBook Pro for this investigation. The local WiFi 

network was setup to use WPA2-PSK with AES encryption. 

 Because the devices that were analyzed for this paper communicate over WiFi, the 

802.11 radio on the laptop was utilized to capture transmitted packets. Wireshark is setup to 

capture data in “Monitor” mode, meaning it monitors all 802.11 (WiFi protocol) traffic that can 

be captured by the laptop’s radio. Since these experiments were performed in an apartment 

setting, this meant that there was a lot of unneeded wireless traffic that had to be filtered out. 

Monitor mode was needed in order to capture the data transmitted between two different devices 

outside of the laptop, which for these experiments was typically a smartphone and an IoT smart 

home device. 

 Since Wireshark was setup in Monitor mode, it would only capture the encrypted data 

transmitted over the local WiFi networks in the near proximity. Wireshark had to be configured 

to decrypt the data transmitted over the local WiFi network that the smartphone and smart home 

IoT devices were connected to. To do so, the SSID and password of the local network were 

entered into Wireshark. During a data capture, Wireshark has to capture the 4-way handshake 

that is used in WPA2-PSK (AES), which is transmitted using the EAPOL protocol. With all four 

EAPOL packets, the SSID, and network password, Wireshark can start decrypting the data 

transmitted by a device over the local WiFi network. Wireshark will show the IP address of the 
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transmitting device as the source of the data. The decrypted version of the data will then become 

available. 

 Because the 4-way handshake must be captured to decrypt data, it is required that 

Wireshark is running and monitoring traffic when the smart home IoT device joins the local 

WiFi network. The easiest way to do this is to power off the device, start the Wireshark data 

capture, and then power on the device. If the 4-way handshake is captured, then the encrypted 

data will start appearing in the tool’s interface. If not, then this process needs to be repeated until 

the decrypted data is being captured. It can take several trials in order to capture all four EAPOL 

packets. It appeared to be more likely for Wireshark to miss one of the EAPOL packets at times 

of increased wireless traffic, such as in the late evening. 

 To verify that Wireshark has captured all four EAPOL packets and has started to decrypt 

the wireless data, it is useful to filter out the rest of the wireless traffic on both the local network 

and the other WiFi networks in the vicinity. In order to do so, Wireshark was configured to filter 

on data transmitted or received by the MAC address of the IoT smart home device. The MAC 

address is often written on the device itself or included in the documentation. It can also be easily 

found from the IP address currently assigned to the IoT smart home device. 

 
Figure 3-1 EAPOL Message Capture in Wireshark 

 Once Wireshark has started capturing and decrypting data, the reverse engineering 

process can begin. The process followed for this paper was to perform specific actions with the 

device, write down the timestamp that is recorded in Wireshark, and repeat several times to 

ensure the recorded data is correlated with the action. Once the data is recorded, Wireshark will 

show the data captured at the IP address of the smart home IoT device. The data can then be 

viewed in several forms from the raw hex bytes to the ASCII version of the data. 

 The tool that was used to view the binary data is Hex Fiend on the MacBook Pro. Hex 

Fiend shows the hex version of the binary data and can also perform a binary comparison of two 
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different files. The binary comparison was used to verify that data transmitted at two different 

occurrences was identical in some scenarios. 

3.2 Smart Light Bulbs 

 The first category of devices that were analyzed was smart light bulbs. These devices are 

starting to become increasingly popular in the home as it makes it easier to control lights. Smart 

light bulbs are fairly simple relative to other connected IoT smart home devices. They essentially 

allow a user to control a light bulb via their smartphone. The light bulbs can be turned on or off, 

and usually offer a dimming feature as well. Some smart light bulbs can also change color, 

though none of the products analyzed for this paper offered this feature. For this paper, three 

different smart light bulbs were analyzed including the TP-Link Smart LED Light Bulb, Philips 

Hue Smart Light Bulb, and Sengled Element Classic Smart Light Bulb. 

3.3 TP-Link Smart LED Light Bulb 

 The TP-Link Smart LED Light Bulb was the first device that was analyzed. The TP-Link 

Smart LED Light Bulb does not require a hub to be used, as is the case with many smart light 

bulbs, which can be an attractive reason for consumers to purchase this device. Instead this 

device can be controlled directly from the “Kasa” app that can be installed on iOS or Android 

devices. The Kasa app allows the user to turn the light bulbs on or off, and can also dim the light 

bulbs to a preferred lighting. Whenever the user changes the lighting using the smartphone app, 

the app transmits data directly from the smartphone to the smart light bulb. This is shown in 

figure 3-2. 

 
Figure 3-2 TP-Link Smart LED Light Bulb Communication Diagram 
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 To reverse engineer the TP-Link Smart LED Light Bulb, Wireshark was setup to listen to 

the packets as they were transmitted from the smartphone to the light bulb. The smartphone app 

was used to turn the light bulb on and off and the timestamp in Wireshark was recorded to ensure 

packets could be correlated to the action that was performed on the smart device. This was 

repeated several times so that a pattern of the transmitted data could be obtained. 

 After taking a look at the resulting data, it became immediately apparent that it was not 

transmitted in plain text and was either encoded for the application or encrypted. However, the 

data that was transmitted to turn the light bulb on was identical for each recorded timestamp. The 

same was true for turning the light bulb off. A binary comparison over the transmitted data 

between different timestamps was performed in order to prove this. In addition, this same 

experiment was run with a different smartphone and smart light bulb. The same results were 

obtained, meaning the data was identical and was independent of the smartphone or smart light 

bulb used to transmit or receive the commands. Figure 3-3 shows the data transmitted to turn the 

smart light bulb on. 

 
Figure 3-3 Data Transmitted From Smartphone to Turn Smart Light Bulb On 

 The next step was to determine if a replay attack of the transmitted data was possible. To 

do so, the recorded transmitted data was replayed from a MacBook Pro by using the terminal to 

pipe the data to the IP address of the smart light bulb and the port that it was listening on. The 
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replay attack was successful, meaning the laptop could be used to turn the smart light bulb on 

and off. 

 The experiment run on the TP-Link Smart LED Light Bulb proved that there are two 

vulnerabilities: data transmitted over the local network is not encrypted using temporal data and 

there is no authentication of the device sending the data. It is known that the data is not 

encrypted using temporal data since the same data is transmitted every time. If the transmitted 

data were a ciphertext then it would be the result of encrypting the same plain text every time. 

Therefore it cannot be concluded that no encryption is used, however it is still possible to 

determine the commands that have been sent to the smart light bulb. Because a replay attack was 

possible from a laptop, there is no authentication of the device that is currently sending the 

command. In addition, there are no security measures in place to prevent a replay attack, such as 

a packet counter.  

 Lastly, the original experiment was run on firmware version 1.1.2, which is the version 

the smart light bulbs were shipped with. The firmware was updated to the latest at the time, 

which is version 1.4.3, and these vulnerabilities were confirmed to still exist in the product. 

Therefore these vulnerabilities were still present in the TP-Link Smart LED Light Bulbs at the 

time this paper was written. 

3.4 Philips Hue Smart Light Bulb 

 The Philips Hue Smart Light Bulb operates differently than the TP-Link Smart LED 

Light Bulb. The Philips Hue system uses a hub, so there is no direct communication between the 

smart phone and the smart light bulbs. Instead, the smartphone app sends commands to the hub 

via WiFi and the hub in turn communicates with the smart light bulbs via the Zigbee protocol. 

For the purpose of this paper, only the WiFi attack surface was considered, though there have 

been known vulnerabilities in the Zigbee attack surface as shown in reference [8]. Figure 3-4, 

below shows a diagram of the Philips Hue system and the attack surface that was monitored for 

this paper.  
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Figure 3-4 Philips Hue Communication Diagram 

 The same experiment was performed with the Philips Hue Smart Light Bulb. Wireshark 

was used to collect data while the Philips Hue was turned on and off using the smart phone app. 

From recording the timestamps and then examining the data, it became clear which data packets 

were transmitted to control the Philips Hue smart light bulb. For this experiment, the data 

transmitted from the smartphone to the Philips Hue hub and vice versa was captured. 

 The results of the experiment showed that the data transmitted by the smartphone to the 

Philips Hue hub was not encrypted and furthermore was sent in plain text. The response from the 

hub was transmitted in plain text as well. The Philips Hue uses the JSON format for transmitting 

data and is always listening on port 80 for commands sent from the smartphone. Further analysis 

of the data shows that in order to turn a smart light bulb on or off, the smartphone sends a 

command to a “group.” The Philips Hue hub then broadcasts that command to all smart light 

bulbs that are in that group. Data was collected using two different smart light bulbs on different 

days, and the only observed difference between the two was the IP address of the Philips Hue 

bridge had changed. 

 The next step was to see if a replay attack was successful using the data that was recorded 

by Wireshark. Similar to the TP-Link Smart LED Light Bulb, the data was piped to the IP 

address of the Philips Hue hub, which could be found easily since the MAC address was known. 
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The result was the replay attack was successful and therefore the smart light bulbs could be 

controlled from the terminal on a laptop. Because the data transmitted between the smartphone 

app and Philips Hue bridge is in plain text and therefore visible to an attacker, it can be 

manipulated to find and control groups of light bulbs that may be used in a home or small 

business. 

 The firmware of the Philips Hue was updated from 1705121051 to the latest at the time 

of the analysis, which is 1707040932, and the same vulnerabilities could be observed. With both 

the firmware version the Philips Hue was shipped with and the updated firmware version, plain 

text data could be recorded and replay attacks were successful. The lack of encryption on the 

Philips Hue has been discovered by other sources and well documented at this point in references 

[5], [6], and [7]. This was not known prior to purchasing the Philips Hue for this paper and 

running this experiment. 

3.5 Sengled Element Classic Smart Light Bulb 

 The last smart light bulb that was analyzed for this paper was the Sengled Element 

Classic. With the Sengled Element Classic Smart Light Bulb, the smartphone app titled 

“ElementHome” can be used to control the light bulbs. Similar to the Philips Hue topology, the 

Sengled Element Classic Smart Light Bulb uses a hub, which communicates with the smart light 

bulbs via the Zigbee protocol. Where the Element Classic differs, however, is the smartphone 

app does not communicate directly with any other Sengled Element device over the local 

network. Instead the ElementHome app sends commands to a server, which then communicates 

with the Sengled Element Classic hub. The hub then relays those commands to the smart light 

bulbs. For the sake of this paper, only the communication between the smartphone and the 

server, and the sever and the hub were considered. The communication between the hub and the 

smart light bulbs was not analyzed. Figure 3-5 shows the communication in order to control the 

smart light bulbs in the Sengled Element Classic system. 
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Figure 3-5 Sengled Element Communication Diagram 

 Data was captured using Wireshark and analyzed to determine if any security or privacy 

vulnerabilities exist in the Sengled Element Classic Smart Light Bulbs. The data transmitted by 

the smartphone and received by the Sengled Element Classic server were isolated. It was 

determined that the communication between the smartphone and the Sengled server is encrypted 

using the TLSv1.2 protocol. Anytime the ElementHome app on the smartphone was used to send 

a command to the smart light bulbs, a TLSv1.2 communication session could be seen in 

Wireshark. The communication from the server to the Sengled Element hub used the TCP 

protocol. TCP packets of data were transmitted from the server to the Sengled Element hub in 

order to turn the smart light bulbs on and off. Each time the smart light bulb was turned on and 

off, different data was transmitted from the server. Therefore, it appears that the data in the TCP 

packets transmitted from the server are all encrypted via an unknown protocol. The vulnerability 
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that exists in both the TP-Link Smart LED Light Bulbs and Philips Hue Smart Light Bulbs is not 

present in the Sengled Element Classic Smart Light Bulbs. 

 One observation that was made during this analysis is that the Sengled Element Classic 

appears to use an Amazon Web Services (AWS) server (see figure 3-6) for some 

communication. AWS offers secure communication through protocols like TLSv1.2. Using an 

AWS server may make it easier to setup the infrastructure for encrypted communication between 

the different entities in the system. To include an AWS server, however, Sengled chose a 

different system architecture than Philips and TP-Link by designing their system to have all 

communication go through an external server. This makes it easier to encrypt data, however it 

also makes the product reliant on the AWS service. It can also degrade the performance since 

communication is now occurring outside of the local network, which can cause an increased 

latency. 

 
Figure 3-6 Sengled Communication with Amazon Server 

 Though the TCP packets transmitted by the external server all appear to be encrypted, it 

was still possible recorded packets could be used for a replay attack. The packets that were 

collected during the experiment were replayed, however the attack was unsuccessful. Therefore 

the Sengled Element has measures in place to prevent replay attacks. 

3.6 Smart Light Bulb Discussion 

 As mentioned in the previous sections, three different smart light bulbs were analyzed for 

security and privacy vulnerabilities. The results have been summarized in table 3-1 below. A 

privacy vulnerability, which is the lack of encryption on the data transmitted over the local WiFi 

network, was found in two of the three smart light bulbs that were analyzed. The Sengled 

Element Classic did not have this privacy vulnerability so therefore it is considered to be the 

most secure out of all three. The Philips Hue was the worst offender since the transmitted data is 

visible in plain text, and therefore does not take as much technical expertise to view the data. 

Though the TP-Link Smart LED Light Bulb does not transmit data in plain text, it does still 

contain this privacy vulnerability and can be subject to a man in the middle (MITM) attack. 
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Smart Light 
Bulb 

Does Not 
Encrypt Data 

Data Visible 
in Plain Text 

Replay Attack 
Successful 

Vulnerable to 
MITM Attack 

TP-Link Unknown No Yes Yes 

Philips Hue Yes Yes Yes Yes 

Sengled Element No No No No 

Table 3-1 Smart Light Bulb Security and Privacy Analysis Results 

 One may not think that being able to see the data transmitted by a smart light bulb is a 

problem since all one has to do to see the state of the lights is look through a window. However, 

the issue with this privacy vulnerability is that it can be used by an attacker to learn about the 

lifestyle of the user. With this vulnerability it becomes possible for an attacker to record the data 

transmitted by a smartphone to a smart light bulb via a man in the middle attack. If that data were 

to be recorded over a longer period of time, an attacker could infer that the user is not home 

during the periods when the light bulbs are turned off. Though it is generally known that most 

people are not home during the weekday and most businesses are closed at night, recorded smart 

light bulb data could show any deviations from the norm. This information could be used for a 

break in or just to track the user. Outside of the use case of the malicious attacker, IoT smart 

home devices should take as much precautions as possible to not leak user data. 

 The limitation of the argument in the previous paragraph is that an attacker needs access 

to the local WiFi network in order to record data from the TP-Link or Philips Hue smart light 

bulbs. This is an obstacle that could stop novice attackers, however, attackers with more 

advanced technical knowledge could overcome this by exploiting some of the known 

vulnerabilities in the WiFi encryption protocols. This is discussed more in detail later in this 

paper, as it is relevant to the other IoT smart home devices that are also analyzed. There is also 

the use case where people either have weak passwords that can be easily guessed (such as 

“password” or the letters on the home row of the keyboard) or places where guests are given the 

password to a network, such as an AirBnb. In these scenarios, smart light bulbs cannot rely on 

the WiFi protocol to encrypt the data to keep it private. In addition, the fact that one of the smart 

light bulbs analyzed, the Sengled Element Classic, did encrypt all communication gives credence 

to the argument that user data transmitted by a smart light bulb application should be protected. 
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3.7 Smart Plug – Belkin WeMo 

 One smart plug was analyzed for this paper, which is the Belkin WeMo. The Belkin 

WeMo allows the user to control the power input to any device that plugs into the wall. This can 

be quite useful to a user since they can turn a “dumb” device into a smart one that can be 

controlled from their smartphone, such as a window air conditioning unit. The Belkin WeMo 

device works similarly to the TP-Link Smart LED Light Bulb since it essentially uses point-to-

point communication over local WiFi as shown in figure 3-7. When the user turns the power on 

or off from the plug using the “WeMo” smartphone app, data is sent directly to the smart plug. 

 
Figure 3-7 Belkin WeMo Communication Diagram 

 The data collection and analysis process was applied to the Belkin WeMo smart plug. 

The resulting data showed that data transmitted by the smartphone, and the response data from 

the smart plug, is in plain text and therefore is not encrypted. The Belkin WeMo uses an XML 

SOAP format for communication over the local WiFi network (see figure 3-8). In addition, a 

replay attack of the recorded data was successful, so therefore by piping data from a laptop the 

Belkin WeMo device could be controlled. 
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Figure 3-8 Belkin WeMo XML SOAP Format 

 The Belkin WeMo contains two vulnerabilities: Communication over the local WiFi 

network is not encrypted and there is no authentication of the user or device making a request. 

From the plain text data in the SOAP container it can be seen that there is no data used to 

describe the originator of the request. The information leaked by the device contains the 

transmitted command and an attacker would know the time the smart plug is used based on when 

the data was recorded. While this vulnerability is still a privacy concern, this is less of a safety 

concern for the user. The reason is an attacker from outside of the home would have no 

knowledge of what the plug is connected to or how often it is used. Turning on and off a plug 

without knowing what it is connected to may not give much information on user habits or 

lifestyle. However, from a privacy standpoint it is still user information that is essentially being 

broadcasted on a local network, which is a privacy vulnerability. 

3.8 Smart and WiFi Thermostats 

 One of the original and more popular smart home IoT devices is the smart thermostat. 

Many people are interested in these devices because they can make their lives easier, help them 
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save money on energy costs over the long term, and also help to reduce the environmental 

footprint of homeownership. Not every single person who owns a smart thermostat purchased 

one for all of these reasons, however most certainly did so for at least one of them. Because 

smart or connected thermostats are designed to either learn the behavior of the user or run on a 

schedule that can be updated from a smartphone app, there is a large amount of personal 

information that is stored on these devices or servers, and possibly communicated on a daily 

basis.  

 For this paper two smart thermostats were analyzed: the Vine WiFi Thermostat and the 

Sensi WiFi Thermostat. In this section both thermostats will be analyzed to determine if either 

contain the privacy vulnerability that was discovered to be in some of the smart light bulbs and 

the Belkin WeMo smart plug. Arguably the most popular smart thermostat currently on the 

market is the Nest thermostat. It has been stated in reference [4] that the Nest thermostat encrypts 

data. Though other vulnerabilities have been discovered in the past such as the ability to 

determine the current mode from running a python script as described in reference [4]. 

3.9 Vine WiFi Thermostat 

 The Vine WiFi Thermostat essentially works in the same manner as a normal thermostat, 

but can be controlled via a smartphone app called “Vine Control.” The actual thermostat has a 

touchscreen interface. From the smartphone app the user can set the current temperature, turn on 

and off the AC or heat, and also set a schedule for the thermostat to run on. The ability to toggle 

the heat or AC from a smartphone is incredibly convenient as one often forgets to manually set 

the temperature as they are leaving the house. To communicate with the WiFi thermostat, the 

smartphone app first sends commands to the Vine server. The Vine server then processes the 

commands and communicates with the Vine WiFi thermostat. Because a WiFi thermostat just 

controls the heating and cooling of a house, it does not require as much of a real time response as 

a smart light bulb. Therefore the latency that comes with funneling all communication through a 

server does not have a severe negative impact on the user experience. 
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Figure 3-9 WiFi Thermostat Communication Diagram 

  For this paper the communication between the smartphone and the server, as well as the 

server and the Vine WiFi Thermostat were analyzed. From the recorded data, it was found that 

the communication between the smartphone and the server was encrypted via the TLSv1.2 

protocol. This means that all data transmitted by the smartphone was found to not have the 

previously mentioned privacy vulnerability. However, after the analyzing the data that is 

transmitted by the server to the WiFi thermostat, it became apparent that some of the 

communication did not only lack encryption, but was also in plain text. This data included 

commands used to turn the thermostat on and off and to set the current temperature. The most 

concerning part of this, however, was even the command used to set the weekly schedule could 

be viewed in plain text by an attacker as shown in figure 3-10 (see Appendix A on more details 

on how to read the information in this data structure). From the weekly schedule, it would be 

quite simple for an attacker to infer that if the temperature is set to a higher value in the summer 

or to a lower value in the winter that those would be times when no one is home. This is a huge 

privacy concern as the server that communicates with the WiFi thermostat is essentially 

broadcasting information about the user in plain text. The limitation of this attack, however, is 
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this data is transmitted by the server and not the WiFi thermostat, meaning this private data can 

only be recorded when the user is making a change to their schedule. If the user changes their 

schedule once and leaves it for the entire season, then the attacker would have only one chance to 

record that communication to learn the user’s lifestyle. 
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Figure 3-10 Vine WiFi Thermostat Schedule Change Data 

{"count":"181", 
 "t_count":"0", 
 "cmd":"device/set_model_info", 
 "device_id":"845dd750d7d4", 
 "timestamp":1508608716104, 
 "mode":"1","limit":"60-85", 
 "name":"Summer-01", 
 "state":1, 
 "model_id":195592, 
 "data": 
 { 
  "unit":"F", 
  "items1":[  
   {"c":"0","t":"85","h":"0"}, 
   {"c":"0","t":"78","h":"360"}, 
   {"c":"0","t":"85","h":"480"}, 
   {"c":"0","t":"78","h":"1020"}, 
   {"c":"0","t":"85","h":"1320"}], 
  "items2":[   
   {"c":"0","t":"85","h":"0"}, 
   {"c":"0","t":"78","h":"360"}, 
   {"c":"0","t":"85","h":"480"}, 
   {"c":"0","t":"78","h":"1020"}, 
   {"c":"0","t":"85","h":"1320"}], 
  "items3":[ 
   {"c":"0","t":"85","h":"0"}, 
   {"c":"0","t":"78","h":"360"}, 
   {"c":"0","t":"85","h":"480"}, 
   {"c":"0","t":"78","h":"1020"}, 
   {"c":"0","t":"85","h":"1320"}], 
  "items4":[ 
   {"c":"0","t":"85","h":"0"}, 
   {"c":"0","t":"78","h":"360"}, 
   {"c":"0","t":"85","h":"480"}, 
   {"c":"0","t":"78","h":"1020"}, 
   {"c":"0","t":"85","h":"1320"}], 
  "items5":[ 
   {"c":"0","t":"85","h":"0"}, 
   {"c":"0","t":"78","h":"360"}, 
   {"c":"0","t":"85","h":"480"}, 
   {"c":"0","t":"78","h":"1020"}, 
   {"c":"0","t":"85","h":"1320"}], 
  "items6":[ 
   {"c":"0","t":"85","h":"0"}, 
   {"c":"0","t":"78","h":"480"}, 
   {"c":"0","t":"60","h":"840"}, 
   {"c":"0","t":"78","h":"855"}, 
   {"c":"0","t":"61","h":"870"}, 
   {"c":"0","t":"85","h":"1320"}], 
  "items7":[ 
   {"c":"0","t":"85","h":"0"}, 
   {"c":"0","t":"78","h":"480"}, 
   {"c":"0","t":"85","h":"1320"}] 
 } 
} 
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 A replay attack was attempted on the Vine WiFi thermostat and was unsuccessful. From 

the data transmitted by the server, a packet counter appears to be used to prevent this. An attempt 

was made to manipulate this packet counter in order to control the Vine WiFi thermostat from a 

terminal on a laptop, however this was still unsuccessful.  

 The last step when analyzing the Vine WiFi Thermostat was to update the firmware and 

see if the privacy vulnerability still exists. The Vine WiFi thermostat was shipped with firmware 

version 1.2.3 and was updated to version 1.3.1 for this experiment. After doing so, it could be 

seen that all communication between the server and the WiFi thermostat was now encrypted. The 

privacy vulnerability that was found when first analyzing this device was fixed in a firmware 

update. This was a very interesting finding as it shows that Vine is aware of the privacy 

vulnerability that exists in their devices as shipped from the manufacturer and was able to 

resolve the issue retroactively, which can be difficult to do with cyber security solutions. The 

problem with this implementation is that the Vine WiFi Thermostat did not force the user to 

update the firmware in order to keep operating the device. The Vine WiFi thermostat was used 

for several days operating at firmware version 1.2.3 with the security vulnerability without the 

application ever forcing an update. Since a privacy vulnerability is present in firmware version 

1.2.3 and is something that would not be easily noticeable by the user, there should be a 

mechanism that requires the user to update to a more secure version. Many users either would 

not bother to perform a firmware update, or may not have the technical capability of doing so. 

This would leave users operating the Vine WiFi Thermostat in a state where data containing 

information about their lifestyle could be broadcasted by the server. After updating the firmware, 

replay attacks were still not successful. Assuming that a packet counter was still being used but 

was now encrypted, it would make replay attacks increasingly more difficult to be carried out by 

an attacker. 

3.10 Sensi WiFi Thermostat 

 The Sensi WiFi Thermostat works in a similar manner to the Vine WiFi Thermostat. The 

user can control the heat, AC, or temperature settings with the physical buttons on the thermostat 

or with the “Sensi” smartphone app. The communication model of the Sensi WiFi Thermostat is 

also the same in the fact that the smartphone communicates with a server, which then in turn 

communicates with the WiFi thermostat itself (see figure 3-9). Therefore all communication 

between the smartphone app and the thermostat is routed through a server. The attack surfaces 
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that were analyzed for this paper included the communication between the smartphone and the 

server, as well as the communication between the server and the WiFi thermostat. 

 Data was recorded using Wireshark and analyzed to determine if a privacy vulnerability 

exists. It was found that TLSv1.2 is used to encrypt communication between the smartphone app 

and the sever, meaning this attack surface did not contain the privacy vulnerability. It was also 

found that the data transmitted by the server to the Sensi WiFi Thermostat was encrypted as well. 

A replay attack was attempted on the Sensi WiFi thermostat, by replaying the encrypted TCP 

packets transmitted by the server, however this was found to have no effect. Therefore it was 

found that the Sensi WiFi thermostat encrypted all communication and does not contain the 

privacy vulnerability previously described in this paper. 

3.11 Smart and WiFi Thermostat Discussion 

 Because a thermostat typically changes the environment based on the times that people 

are present or away, it is crucial that the transmitted data is protected and not available for an 

attacker to intercept via a man in the middle attack. Two WiFi thermostats were analyzed for this 

paper, one of which, the Vine WiFi thermostat, was found to have a privacy vulnerability in an 

older firmware version. Though this vulnerability was fixed in a later firmware version, this is 

still a flaw since the user is not required to update the firmware of the device. This is also an 

example of how cyber security was not included in the original design, but rather was added 

retroactively. Because the Vine WiFi thermostat system design routed all communication 

between the smartphone and thermostat through a server, it makes it easier to secure this 

communication channel via a firmware update. Response time was not measured before and after 

the firmware update, however encryption typically will degrade performance. Therefore it is 

quite possible additional latency was added to the response time of the WiFi thermostat. In the 

case of a thermostat, this should not cause the user experience to suffer since the response time to 

turn on the AC or furnace does not need to be immediate. However, for other types of smart IoT 

devices, adding cyber security retroactively could degrade performance enough to cause the user 

experience to suffer. This is especially true in cases where the microcontroller performance 

requirements did not take encryption or decryption into account during the initial design. 

 Instead of adding measures to protect the user’s privacy retroactively, it is a better 

practice to include these measures into the device’s initial design itself. This will eliminate the 

need for the user to update the firmware in order to protect their own private data, which is 
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beneficial since the user cannot always be trusted to perform firmware updates. Designing cyber 

security into the product ensures all the required sub-systems are in place for the solution. For 

example, there is often much that is needed on the backend for a cyber security solution 

including encryption services. This must be designed in such a way that keys used for encryption 

and decryption do not get re-used, and user experience does not suffer from degraded 

performance.  

 In the case of the Vine WiFi Thermostat, after the firmware update to version 1.3.1 was 

performed, encryption was added to protect the data of the user. However, instead of encrypting 

the entire packet of transmitted data, the Vine WiFi Thermostat instead encrypts the data within 

the actual packet. This is shown in figure 3-11. In the data packet there are two values, “k” and 

“v,” which can be read by an attacker. The “k” value always contains a number and the “v” value 

always contains encrypted data that cannot be easily read. However, one observation that was 

made during this experiment is that sometimes packets are transmitted with the same “k” value. 

This occurred for a “k” value of 77 and there was a match between the beginning portions of the 

“v” variable data. This suggests that the “k” value is referring to a key that is used to encrypt and 

decrypt the data, and that keys are also reused to send data securely. The match between the 

binary data can be seen in figure 3-12. 
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Figure 3-11 Vine WiFi Thermostat Encrypted Data 

 
Figure 3-12 Comparison Between Vine WiFi Thermostat Encrypted Data Packets 

3.12 Amazon Echo Dot 

 The last device analyzed for this paper is the Amazon Echo Dot. The Amazon Echo Dot 

is a voice assistant and is becoming an increasingly popular device with consumers. It can be 

used to control smart home devices via voice control and can interact with the user. “Alexa” is 
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the name of the voice personality on the Amazon Echo Dot that interacts with the user. The user 

can then ask or command Alexa to perform a task and the Amazon Echo Dot follows through on 

the action. The Amazon Echo Dot connects to external Amazon servers to retrieve data or 

determine which action should be taken. 

 Using Wireshark, data was recorded and analyzed when various voice commands, such 

as having the Amazon Echo Dot read through the news, were performed. When voice commands 

were used with the Amazon Echo Dot, spikes of transmitted and received data could be seen in 

Wireshark. It was found that all transmitted and received data from the Amazon Echo dot was 

encrypted using TLSv1.2. Therefore the data in the communication from the Amazon Echo Dot 

is protected from any prying eyes. This experiment did not find the previously mentioned 

privacy vulnerability in the Amazon Echo Dot since all data is encrypted. The communication 

system used by the Amazon Echo Dot can be viewed in figure 3-13. The user issues voice 

commands to Alexa on the Amazon Echo Dot and then all data communication occurs with 

Amazon servers via the TLSv1.2 protocol. 

 
Figure 3-13 Amazon Echo Dot Communication Diagram 

 Given the size and technical expertise of Amazon, it is not surprising that Amazon would 

encrypt data transmitted by their IoT devices. It has also been documented in reference [9] that 

the TLSv1.2 protocol is used for secure communication, though this was not known at the time 

the experiment was performed. 

 As mentioned in a previous paragraph, when the Amazon Echo Dot is in use, a spike of 

communication data between the Amazon Echo Dot and the Amazon servers can be seen with 
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Wireshark. In addition, Wireshark was used to record the transmitted data when the Amazon 

Echo Dot is not in use. The data was graphed (see figure 3-14) and shows that about every five 

minutes, a spike of just less than seven kilobytes of data is transmitted by the Amazon Echo Dot. 

It is unknown what the exact content is of this data and it may be just a simple heartbeat message 

transmitted by the Echo Dot to the servers. However, this was an interesting finding as a lot of 

information can be contained in seven kilobytes of data. 

 
Figure 3-14 Data Transmitted By Amazon Echo Dot When Not in Use 
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Chapter 4  Privacy Vulnerability Discussion 

4.1 Privacy Vulnerability 

 Seven smart home IoT devices were analyzed for this paper and four of the devices were 

found to have a privacy vulnerability. As shown in table 4-1, The TP-Link Smart LED light bulb, 

Philips Hue Smart light bulb, Belkin WeMo smart plug, and the Vine WiFi thermostat all had a 

lack of encryption on transmitted data over a local WiFi network. Instead, these devices relied on 

the local WiFi network to encrypt and protect their data. This chapter will discuss why not 

encrypting data transmitted over a local WiFi network is a privacy vulnerability. It will also 

discuss the reason the encryption provided by a WiFi network cannot reliably be counted on to 

protect user data and whether the TLSv1.2 protocol, which is used in several of the analyzed 

devices communication scheme, contains any vulnerabilities. 

Smart Home IoT Device Does Not 
Encrypt Data 

Data Visible 
in Plain Text 

Replay 
Attack 
Successful 

Vulnerable 
to MITM 
Attack 

TP-Link Smart Light Bulb Unknown No Yes Yes 

Philips Hue Smart Light Bulb Yes Yes Yes Yes 

Sengled Element Smart Light 

Bulb 

No No No No 

Belkin WeMo Smart Plug Yes Yes Yes Yes 

Vine WiFi Thermostat (v1.2.3) Yes Yes No Yes 

Vine WiFi Thermostat (v1.3.1) No No No No 

Sensi WiFi Thermostat No No No No 

Amazon Echo Dot No No No No 

Table 4-1 Security and Privacy Analysis Results 
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4.2 Lack of Encryption of Transmitted Data over Local WiFi Network 

 One concern that many individuals have over smart home IoT devices is privacy. 

Consumers have to trust the manufacturers and developers of these devices that they are 

protecting their data, only storing data that is absolutely required for the use of the device, and 

not exposing them to any cyber or physical threats. In the case of four of the analyzed devices, 

the privacy of the user’s data was not being protected. Anyone who knows the credentials to the 

WiFi network that these devices are connected to can listen to the transmitted data and observe 

from the data when these devices are used. An attacker can also infer from the data transmitted 

by a smart home IoT device if anyone is home. If this data is tracked over a longer period of 

time, an attacker can determine that when the lights are turned off that the user is either asleep or 

has left the home. The thermostat optimizes the climate of the home to save money when the 

user is away and to keep the building at ideal temperatures when the user is home. This data 

conveys the lifestyle of the user to an attacker. An attacker could then use this information to 

decide when to break into a home, knowing that no one will be there at specific times. Homes 

that contain smart IoT devices that broadcast this information could become a target. This 

scenario may seem unlikely, however the privacy vulnerability discovered in four of the seven 

devices analyzed for this paper certainly makes this possible. 

 There are many more smart home IoT devices on the market that were not analyzed for 

this paper. Given that over half of the analyzed devices for this paper were found to have a 

privacy vulnerability, it is likely that this same privacy vulnerability exists in additional smart 

home IoT devices. Manufacturers are either overlooking this vulnerability, or are not making 

cyber security enough of a priority when designing these devices. 

4.3 WiFi Vulnerabilities 

 Devices that do not encrypt the transmitted data over a WiFi network are essentially 

relying on the WiFi network encryption to protect the data. The problem with this is that some of 

the encryption protocols used for WiFi networks have known security vulnerabilities. In some 

cases, an attacker can gain authorized access to a network or can retrieve the key to read the 

transmitted data over the network. One of the most obvious security flaws in WiFi networks is 

the use of weak passwords. This can include passwords that are easy to guess such as 

“password” or the address of the home. However, according to reference [10] even passwords 

that are less than twenty characters can be broken. The issue with twenty characters is it can be 
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much tougher to remember, so people often choose a shorter and easy to remember password, 

which can be subject to a dictionary attack. Nowadays, the default password on many WiFi 

networks uses a long string of alphanumeric characters, which provides a sufficient level of 

security as long as the user does not change it. 

 The security protocols that are available for use on most home routers include WPA2-

PSK and WEP. It has been well documented that the WEP protocol contains security flaws and 

therefore should not be used to protect a WiFi network. According to reference [11], in the WEP 

protocol packets can be both forged and replayed. Packets can also be modified in a manner 

where it cannot be detected. Lastly there is available software that can be used to brute force the 

key to the network, which would allow an attacker to gain access. Once the attacker has access to 

the WiFi network they would have the ability to take advantage of the privacy vulnerability 

found in four of the devices analyzed for this paper. In addition, many wireless routers still 

support the WEP protocol. 

 The WPA2-PSK protocol has largely been seen as more secure in comparison with the 

WEP protocol as long as the Advanced Encryption Standard (AES) protocol is used. WPA2-

TKIP, which uses the Temporal Key Integrity Protocol (TKIP) has known vulnerabilities, but 

according to [12] was never meant to be a long term solution, but rather to overcome the 

vulnerabilities in WEP. WPA2-PSK using AES did not have any known vulnerabilities until it 

was recently discovered that some devices were vulnerable to a key re-installation attack. In the 

key re-installation attack, the attacker replays the third message in the four-way handshake used 

to authenticate a node onto a WPA2 network. This forces the node to re-install itself onto the 

network using an already used session key. When this occurs, the packet counter is reset back to 

the default value of zero, thus making the node vulnerable to replay attacks. In addition, packets 

can be decrypted meaning data transmitted from devices such as those analyzed for this paper 

can be seen by an attacker [12]. The devices analyzed for this paper were not analyzed by the 

authors of the referenced paper. Therefore it is not conclusive that these devices would be 

vulnerable to a key re-installation attack. Though the authors mentioned that any device that uses 

WiFi is vulnerable to some form of a key re-installation attack. Manufacturers of some WiFi 

devices have since released an update that provides a patch to this vulnerability, however this 

would require the user to perform a firmware update. 
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 Because there are known security vulnerabilities in WiFi protocols, they cannot be 

completely relied on to protect the data transmitted by smart home IoT devices. When the 

vulnerability in the WiFi network is stacked on the vulnerability of a smart home IoT devices as 

seen in four of the seven analyzed, it gives an attacker the ability to read the data transmitted by 

the device without even knowing the network password. The result of this is the attacker can 

learn the lifestyle habits of the user. 

4.4 Vulnerabilities in TLSv1.2 Protocol 

 The Transport Layer Security (TLS) protocol is used by many different types of 

applications for secure communication. As shown in earlier sections, the TLSv1.2 protocol is 

used in several of the IoT smart home devices that were analyzed for this paper including the 

Sengled Element smart light bulb, the Vine WiFi thermostat, the Sensi WiFi thermostat, and the 

Amazon Echo. In order to verify the security and privacy of the data for these devices, it was 

explored whether there were any known vulnerabilities in the TLSv1.2 protocol. 

 One vulnerability was discovered with the TLSv1.2 protocol and it only exists on servers 

that also support SSLv2 and 40-bit export cipher suites. This attack is referred to as Decrypting 

RSA using Obsolete and Weakened eNcryption (DROWN). It relies on the fact that servers that 

use the same certificates for different protocols and therefore the certificates used with the 

SSLv2 protocol, which is known to have a vulnerability, are also used with TLSv1.2. In the case 

of SSLv2 the 40-bit export cipher suite means that only 40 bits out of the 128 bits used for a key 

are encrypted, the remaining 88 bits are transmitted in plain text. The DROWN attack is able to 

exploit the weak 40-bit cipher to decrypt one in a thousand TLSv1.2 ClientKeyExchange 

messages, revealing the session key. An attacker can then use the session key to decrypt TLSv1.2 

messages in that specific session. The authors of reference [13] estimate that about 33% of 

HTTPS servers are vulnerable to the DROWN attack. It is unknown whether any of the smart 

home IoT devices analyzed for this paper are vulnerable to the DROWN attack. Though SSLv2 

is known to be obsolete so it is unlikely any of the analyzed devices are vulnerable to this attack. 

 There are other vulnerabilities that have been discovered to exist in TLS in the past and 

have been patched on some servers. In reference [14], each of the vulnerabilities are listed as 

well as the percentage of sites that contain those vulnerabilities. It was found that 37.1% of sites 

do not have adequate security when using the TLS protocol. However this does take into account 

the configuration of sites as well as sites that run different versions of TLS. It is unknown if any 
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of the servers used with the smart home IoT devices that were analyzed for this paper were 

scanned or if they would be in this group. Because the analyzed devices are all somewhat newer 

products, it would be unlikely they are communicating with servers that have not been patched 

for the latest vulnerabilities. 



 32 

Chapter 5 Solutions to the Privacy Vulnerability 

 The problem that needs to be solved is a lack of encryption on the communication data 

used with smart home IoT devices. The simple answer to this problem is just to add encryption. 

While on the surface, this will solve the problem, the solution is more complicated because of the 

resource constrained nature of these devices. This chapter will discuss the challenges of 

encrypting communication with IoT smart home devices, methods that can be used to solve this 

problem, and finally a recommendation will be given.  

 Smart home IoT devices have limited processing power and can also have limited battery 

power. In the case of smart light bulbs, smart thermostats, and smart plugs, they all draw their 

power from the 120 V AC available in the home so battery power is not a concern. However, in 

order to manufacture smart home IoT devices at a competitive price, the devices were most 

likely designed with limited processors. In terms of cyber security, this adds a challenge to 

securing these systems with functionality such as encryption and decryption. For smart 

thermostats, light bulbs, and plugs, adding encryption to communication can potentially result in 

a delayed response time. The software used to control the device has to decrypt transmitted data 

from a server or smartphone and then encrypt the response, which can take a considerable 

amount of time depending on the encryption algorithm. Therefore, processing power is one of 

the main factors that needs to be considered when deciding how to secure smart home IoT 

devices. 

 The analyzed smart home IoT devices can be split into two different categories: devices 

that communicate with an external server and devices that do not have any communication with 

an external server. For devices where an external server is involved it is easier to solve the lack 

of encryption problem since the server is able to provide the backend solution for more complex 

encryption protocols. For this reason, the analyzed devices that used a server, which were the 

Sengled Element, Vine WiFi thermostat, the Sensi WiFi thermostat, and the Amazon Echo all 

used the TLSv1.2 protocol for communication between a smartphone and the server. Recent 

smartphones all have increased processing power as well and can support using the TLSv1.2 

protocol without any noticeable degradation in performance. Communication between the server 
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and the smart device then encrypts TCP packets that are transmitted from the server to the IoT 

smart device. This is a secure solution, which is already being used by the Sengled Element, 

Sensi WiFi Thermostat, and the Amazon Echo. The Vine WiFi thermostat had a privacy 

vulnerability in an older version of firmware, however added encryption to the data inside of the 

actual TCP packet. The difference is the data is still visible within the packet, but the contents 

are encrypted. It is unknown what encryption protocol is used, and it is possible this is a secure 

solution. However, for smart home IoT devices that use a backend server for communication 

between a smartphone and the actual device, it is recommended to use TLSv1.2 for secure 

communication between the smartphone and the server and then to encrypt the entire TCP packet 

transmitted from the server to the smart IoT device. 

 For IoT smart home devices that use a point-to-point architecture, meaning a smartphone 

communicates directly with a device over a WiFi network, it is important that a lightweight 

encryption protocol is used. Encryption protocols used with PCs, such as RSA, are too resource 

intensive for applications such as a smart light bulb. This would especially be true for the TP-

Link smart light bulb, where all processing power is contained in the actual light bulb. In 

addition, a packet counter should be used to prevent replay attacks. For devices such as a smart 

light bulb, or smart plug, the actual data transmitted is quite simple, and without a packet counter 

the contents may not vary by much. The packet counter ensures the plain text data changes and 

therefore the cipher text data will change as well, which adds a level of difficulty in determining 

the plain text. 

 Lightweight encryption typically refers to protocols that can be run on devices with fewer 

resources. This includes battery-powered devices and devices with constrained processors. 

Reference [15] analyzed several different lightweight encryption protocols and decided upon a 

few general rules. Overall, their conclusion was that specialized or configurable hardware, such 

as an FPGA, could be used to increase the processing time of the encryption protocols. The 

authors also conclude that stream ciphers are faster than block ciphers. However, for the point-

to-point applications that were analyzed for this paper, which includes smart light bulbs and 

smart plugs, block cipher protocols are a better option than stream ciphers. The reason for this is 

the commands transmitted to the device are quite simple and just need to turn the device on, off, 

or set the dimming value in the case of a smart light bulb. A block cipher would create more 

variation in the ciphertext since it would provide encryption over the entire block of data. In 
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addition, the amount of data transmitted between the smartphone and the device is always 

known. According to reference [16], lightweight block ciphers include protocols with smaller 

block sizes, smaller key sizes, and less computationally complex operations. These devices only 

need to transmit a small amount of data so therefore large block sizes are not needed as well. 

While a standard protocol such as AES-128 may give sufficient security for IoT applications, 

there are even more “lightweight” protocols available that may provide better performance. If the 

performance is degraded on a smart light bulb or a smart plug to the point that it takes several 

extra seconds to turn on or off, the user experience will suffer. DESL and PRESENT are 

lightweight encryption protocols that have a 64-bit block size and would be sufficient for these 

applications. SIMON and SPECK are other options as well. 

 In general symmetric cryptographic algorithms require less resources than asymmetric 

cryptographic algorithms, which is why the suggested algorithms listed above are symmetric. 

However, reference [17] points out that the invention of Elliptic Curve Cryptography (ECC) has 

brought asymmetric cryptography to embedded devices. ECC requires less memory and 

computations than other asymmetric algorithms, such as RSA. The authors of [17] also suggest a 

scheme that uses identity strings for the public keys instead of certificates for asymmetric 

encryption. A base station is then used to generate the private keys. Stateful encryption is used, 

which means some of the computation for public key encryption can be re-used improving the 

efficiency of the process. The issue with this scheme is that it requires a base station, which is 

not always available for smart home IoT devices. For example, the TP-Link smart light bulbs do 

not use any hub or base station.  
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Chapter 6 Conclusion 

 The premise that some of the smart home IoT devices currently on the market are not 

secure and contain cyber security and/or privacy vulnerabilities was explored. Seven different 

devices were analyzed and it was discovered that four out of the seven devices did not encrypt 

communication over the WiFi network and could be subject to a man in the middle attack. This 

is a privacy vulnerability as it can leak data that can be used by an attacker when the user is 

home or away. Since only four devices were analyzed, definitive proof that this is an industry 

wide problem cannot be obtained from this analysis, however more than likely there are 

additional smart home IoT devices available for purchase that contain this same privacy 

vulnerability. A solution for two different types of smart home IoT architectures were discussed 

and recommended as a solution to this vulnerability. Both solutions include encrypting 

communication data so that the contents are not visible to an attacker in order to protect the 

privacy of the user. This will prevent the leakage of user data from the IoT smart home devices 

that have otherwise improved the lives of many people. 
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Appendix A: Collected Data from Smart Home IoT Devices 

 This appendix contains recorded data that was collected from the smart home IoT devices 

that were analyzed for this paper. This appendix is organized by device. 

A.1 TP-Link LED Smart Light Bulb Recorded Data 

 The screenshots below contain the recorded data for the TP-Link smart light bulb. Figure 

A-1 contains the binary data that is transmitted from the smartphone to the TP-Link LED smart 

light bulb in order to turn it on. Figure A-2 contains the binary data that is transmitted from the 

smart light bulb to the smartphone after the light has been turned on. This is the response from 

the smart light bulb. 

 
Figure A-1: Turn Smart Light Bulb On (From Smartphone) 

 

 
Figure A-2 Turn Smart Light Bulb On Response (From Light Bulb) 
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 Figure A-3 contains the binary data transmitted from the smartphone to the TP-Link LED 

smart light bulb in order to turn it off. The response binary data from the TP-Link LED smart 

light bulb after it has been turned off is shown in Figure A-4. 

 
Figure A-3 Turn Smart Light Bulb Off (From Smartphone) 

 

 
Figure A-4 Turn Smart Light Bulb Off Response (From Light Bulb) 

  



 38 

A.2 Philips Hue Smart Light Bulb Recorded Data 

 This section contains the data that was recorded when analyzing the Philips Hue smart 

light bulb. Since it was found that data is transmitted in plain text with the Philips Hue 

application, both the binary data and ASCII version of the data is shown. Figure A-5 contains the 

binary data that is transmitted from a smartphone to the Philips Hue hub to turn the light bulbs in 

the group on. The ASCII version of that same data is then shown in Figure A-6. 

 
Figure A-5 Turn Smart Light Bulb On Binary Data (From Smartphone) 

 

 
Figure A-6 Turn Smart Light Bulb On ASCII Data (From Smartphone) 

 Once the smart light bulb has received the command from the smartphone to turn on, it 

issues a response. The binary data for the response can be seen in Figure A-7. Figure A-8 shows 

the ASCII version of the response data in plain text. 

 

 

 

PUT /api/HTezoPJkt963LBfslhgKpDzlfZarvMvWNSdwBgUz/groups/1/action HTTP/1.1 
Host: 192.168.0.108 
Accept: */* 
Content-Type: application/json 
Content-Length: 11 
 
{"on":true}:true} 
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Figure A-7 Turn Smart Light Bulb On Response Binary Data (From Light Bulb) 

 
Figure A-8 Turn Smart Light Bulb On Response ASCII Data (From Light Bulb) 

  

HTTP/1.1 200 OK 
Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-
check=0 
Pragma: no-cache 
Expires: Mon, 1 Aug 2011 09:00:00 GMT 
Connection: close 
Access-Control-Max-Age: 3600 
Access-Control-Allow-Origin: * 
Access-Control-Allow-Credentials: true 
Access-Control-Allow-Methods: POST, GET, OPTIONS, PUT, DELETE, HEAD 
Access-Control-Allow-Headers: Content-Type 
Content-type: application/json 
 
[{"success":{"/groups/1/action/on":true}}] 
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 Figure A-9 contains the data transmitted from the smartphone to the Philips Hue hub to 

turn the smart light bulbs off. The ASCII version of the data is then shown in Figure A-10. 

Variable “on” is set to false, which communicates to the lights to turn off. 

 
 

Figure A-9 Turn Smart Light Bulb Off Binary Data (From Smartphone) 

 

 
Figure A-10 Turn Smart Light Bulb Off ASCII Data (From Smartphone) 

 Figure A-11 contains the binary response data from the Philips Hue hub after the smart 

light bulbs have been turned off. Figure A-12 shows the ASCII version of the same data in plain 

text. It shows the action that was performed on group 1 and communicates that it was successful. 

 

 
  

PUT /api/HTezoPJkt963LBfslhgKpDzlfZarvMvWNSdwBgUz/groups/1/action HTTP/1.1 
Host: 192.168.0.108 
Accept: */* 
Content-Type: application/json 
Content-Length: 12 
 
{"on":false} 
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Figure A-11 Turn Smart Light Bulb Off Response Binary Data (From Philips Hue Hub) 

 
Figure A-12 Turn Smart Light Bulb Off Response ASCII Data (From Light Bulb) 

 

HTTP/1.1 200 OK 
Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-
check=0 
Pragma: no-cache 
Expires: Mon, 1 Aug 2011 09:00:00 GMT 
Connection: close 
Access-Control-Max-Age: 3600 
Access-Control-Allow-Origin: * 
Access-Control-Allow-Credentials: true 
Access-Control-Allow-Methods: POST, GET, OPTIONS, PUT, DELETE, HEAD 
Access-Control-Allow-Headers: Content-Type 
Content-type: application/json 
 
[{"success":{"/groups/1/action/on":false}}] 
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A.3 Sengled Element Classic Smart Light Bulb Recorded Data 

 This section contains recorded data from the analysis of the Sengled Element Classic 

smart light bulbs. Since the Sengled Element Classic encrypts transmitted data, only examples of 

the binary data are shown. 

 Figure A-13 shows an example of the data transmitted between a smartphone and the 

Sengled server. As is shown in the screenshot from Wireshark, the detected protocol is TLSv1.2, 

meaning that all transmitted data is encrypted. 

 
Figure A-13 Communication between Smartphone and Sengled Server 

 The next two screenshots (figure A-14 and figure A-15) contain binary data transmitted 

from the server to the Sengled Element Classic hub to turn the smart light bulbs off. Though the 

commands were the same, different binary data was transmitted each time suggesting that the 

TCP packets are encrypted. It can be seen that the binary data in figure A-14 and figure A-15 are 

different. 

 
Figure A-14 Turn Smart Light Bulb On Binary Data (Example 1) 
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Figure A-15 Turn Smart Light Bulb On Binary Data (Example 2) 

 The next two figures contain screenshots of the transmitted binary data from the Sengled 

server to turn the smart light bulbs off. Once again, the transmitted data is different each time, 

which is consistent with the Sengled Element Classic encrypting transmitted data. 

 
Figure A-16 Turn Smart Light Bulb Off Binary Data (Example 1) 
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Figure A-17 Turn Smart Light Bulb Off Binary Data (Example 2) 

A.4 Belkin WeMo Smart Plug Recorded Data 

 This section contains the recorded data that was captured when analyzing the Belkin 

WeMo smart plug. As mentioned in the main text, transmitted data in the Belkin WeMo system 

can be viewed in plain text so both the binary data and the ASCII version of the data shown. 

Figure A-18 shows an example of the binary data that is transmitted by a smartphone in order to 

turn the Belkin WeMo smart plug on. 
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Figure A-18 Turn On Smart Plug Binary Data (From Smartphone) 

 The following screenshot, figure A-19, contains the ASCII version of the data from 

figure A-18. It can be seen in figure A-19 that the data transmitted from the smartphone is in an 

XML SOAP format and has set the “BinaryState” variable to “1” in order to turn the smart plug 

on. 
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Figure A-19 Turn On Smart Plug ASCII Data (From Smartphone) 

 

  

POST /upnp/control/basicevent1 HTTP/1.1 
Content-Type: text/xml; charset="utf-8" 
SOAPACTION: "urn:Belkin:service:basicevent:1#SetBinaryState" 
Content-Length: 383 
HOST: 192.168.0.105:49153 
User-Agent: CyberGarage-HTTP/1.0 
 
<?xml version="1.0" encoding="utf-8"?> 
<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/" 
s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"> 
 <s:Body> 
  <u:SetBinaryState xmlns:u="urn:Belkin:service:basicevent:1"> 
   <BinaryState>1</BinaryState> 
   <Duration></Duration> 
   <EndAction></EndAction> 
   <UDN></UDN> 
  </u:SetBinaryState> 
 </s:Body> 
</s:Envelope> 
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 Figure A-20 contains the binary data transmitted from a smartphone in order to turn the 

smart plug off. The ASCII version of this data is then shown in figure A-21, which is in the 

XML SOAP format and sets the “BinaryState” variable to “0.” 

 
Figure A-20 Turn Off Smart Plug Binary Data (From Smartphone) 
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Figure A-21 Turn Off Smart Plug ASCII Data (From Smartphone) 

A.5 Vine WiFi Thermostat Recorded Data 

 This section contains the recorded data that was collected after analyzing the Vine WiFi 

thermostat. The Vine WiFi thermostat system uses a server to route communication from a 

smartphone to the thermostat. Communication between the smartphone and the server is 

encrypted using the TLSv1.2 protocol. Communication between the smartphone and the 

xingconnected.com server is shown in figure A-22. 

 
Figure A-22 Screenshot of Communication Between Smartphone and Vine Server 

Prior to performing a firmware update, the Vine server transmitted data in plain text. Data from 

before and after the firmware update are shown in this section. Figure A-23 shows the binary 

data transmitted from the server to turn the WiFi thermostat on and Figure A-24 shows that same 

data in ASCII format. In the transmitted data, it can be seen that the server set the “power” 

variable to “1.” There is also a packet counter and timestamp. 

POST /upnp/control/basicevent1 HTTP/1.1 
Content-Type: text/xml; charset="utf-8" 
SOAPACTION: "urn:Belkin:service:basicevent:1#SetBinaryState" 
Content-Length: 383 
HOST: 192.168.0.105:49153 
User-Agent: CyberGarage-HTTP/1.0 
 
<?xml version="1.0" encoding="utf-8"?> 
<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/" 
s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"> 
 <s:Body> 
  <u:SetBinaryState xmlns:u="urn:Belkin:service:basicevent:1"> 
   <BinaryState>0</BinaryState> 
   <Duration></Duration> 
   <EndAction></EndAction> 
   <UDN></UDN> 
  </u:SetBinaryState> 
 </s:Body> 
</s:Envelope> 
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Figure A-23 Turn WiFi Thermostat On Binary Data (Before Firmware Update) 

 
Figure A-24 Turn WiFi Thermostat On ASCII Data (Before Firmware Update) 

 Figure A-25 shows the binary data transmitted from the server to the Vine WiFi 

thermostat in order to turn it off. Figure A-26 then shows the ASCII version of that data. 

 
Figure A-25 Turn WiFi Thermostat Off Binary Data (Before Firmware Update) 

 
Figure A-26 Turn WiFi Thermostat Off ASCII Data (Before Firmware Update) 

 The following two figures contain the data transmitted from the server in order to change 

the weekly schedule. This data was recorded prior to updating the firmware on the Vine WiFi 

thermostat. Figure A-27 shows the binary data transmitted from the server to the WiFi thermostat 

and figure A-28 shows the ASCII version of the same data. As mentioned in the main text (and 

shown in figure A-28) the weekly schedule can be viewed in plain text. The variables “item1” 

through “item7” contain the days of the week, where item1 is Monday. Variable “t” contains the 

temperature in degrees Fahrenheit and “h” contains the time of day in minutes. So for example, if 

“t” is equal to 360, then the temperature change would take effect at 6 am. If this data were to be 

intercepted, an attacker would know the entire thermostat weekly schedule. 

{"count":"58","t_count":"0","cmd":"device/power","device_id":"845dd750d7d4"
,"timestamp":1508494196738,"power":"1"} 

{"count":"59","t_count":"0","cmd":"device/power","device_id":"845dd750d7d4"
,"timestamp":1508494227548,"power":"0"} 
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Figure A-27 Change Weekly Schedule Binary Data (Before Firmware Update) 
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Figure A-28 Change Weekly Schedule ASCII Data (Before Firmware Update) 

 

{"count":"181", 
 "t_count":"0", 
 "cmd":"device/set_model_info", 
 "device_id":"845dd750d7d4", 
 "timestamp":1508608716104, 
 "mode":"1","limit":"60-85", 
 "name":"Summer-01", 
 "state":1, 
 "model_id":195592, 
 "data": 
 { 
  "unit":"F", 
  "items1":[  
   {"c":"0","t":"85","h":"0"}, 
   {"c":"0","t":"78","h":"360"}, 
   {"c":"0","t":"85","h":"480"}, 
   {"c":"0","t":"78","h":"1020"}, 
   {"c":"0","t":"85","h":"1320"}], 
  "items2":[   
   {"c":"0","t":"85","h":"0"}, 
   {"c":"0","t":"78","h":"360"}, 
   {"c":"0","t":"85","h":"480"}, 
   {"c":"0","t":"78","h":"1020"}, 
   {"c":"0","t":"85","h":"1320"}], 
  "items3":[ 
   {"c":"0","t":"85","h":"0"}, 
   {"c":"0","t":"78","h":"360"}, 
   {"c":"0","t":"85","h":"480"}, 
   {"c":"0","t":"78","h":"1020"}, 
   {"c":"0","t":"85","h":"1320"}], 
  "items4":[ 
   {"c":"0","t":"85","h":"0"}, 
   {"c":"0","t":"78","h":"360"}, 
   {"c":"0","t":"85","h":"480"}, 
   {"c":"0","t":"78","h":"1020"}, 
   {"c":"0","t":"85","h":"1320"}], 
  "items5":[ 
   {"c":"0","t":"85","h":"0"}, 
   {"c":"0","t":"78","h":"360"}, 
   {"c":"0","t":"85","h":"480"}, 
   {"c":"0","t":"78","h":"1020"}, 
   {"c":"0","t":"85","h":"1320"}], 
  "items6":[ 
   {"c":"0","t":"85","h":"0"}, 
   {"c":"0","t":"78","h":"480"}, 
   {"c":"0","t":"60","h":"840"}, 
   {"c":"0","t":"78","h":"855"}, 
   {"c":"0","t":"61","h":"870"}, 
   {"c":"0","t":"85","h":"1320"}], 
  "items7":[ 
   {"c":"0","t":"85","h":"0"}, 
   {"c":"0","t":"78","h":"480"}, 
   {"c":"0","t":"85","h":"1320"}] 
 } 
} 
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 Figures A-29, A-30, and A-31 all contain transmitted data from the server to the Vine 

WiFi thermostat after the firmware update had been performed. Figure A-29 contains the data 

when the WiFi thermostat is being turned on, figure A-30 contains the data when the WiFi 

thermostat is being turned off, and figure A-31 contains the data when the weekly schedule is 

being updated. In all three figure it can be seen that there is a “k” variable that contains a number 

and then a “v” variable that contains encrypted data. 

 
Figure A-29 Turn WiFi Thermostat On ASCII Data (After Firmware Update) 

 
Figure A-30 Turn WiFi Thermostat On ASCII Data (After Firmware Update) 

 
Figure A-31: Change Weekly Schedule ASCII Data (After Firmware Update) 

 

A.6 Sensi WiFi Thermostat Recorded Data 

 This section contains the recorded data that was collected when analyzing the Sensi WiFi 

thermostat. As discussed in the main text, the communication between the smartphone and the 

Sensi server is encrypted using TLSv1.2. This is shown in figure A-32. 

{"k":"97","v":"4BEOEEWaDiPnoP6qf4YI0U3yUyhxWvxGSO+OlR8+rhnFoTVlQFevcWKr8K3y
pMtSpIXC895ja/g+HnbxNp/JdFHX8x2Z6VOOtxvaVfUBW4DE5XweQ+uyGfAmbR4ngvuNqKub4sI
iW2AKXtHcwNaphU30YQ=="} 

{"k":"77","v":"QERh2U6d+vs6thoKhMMZUfiibWcovFvNKl34lUBfU6zAaTROOEnlSuwQNyRY
HNhnfH7V3Z69dWXvZSa/VxImy+oEfGiceObZtxOpCb4uW08+cZW10Lc4HDvZVDWYybnud5fVGcR
BhQ4qzBNfYoO+bxgLRA=="} 

Å~]{"k":"09","v":"mzlSBIhLbCJlg5HHWey3J9D/3pgWBKBc93o+M8gFEUaU1TdBlge83EO5L
RI4uM1kaSlI1lsE1rjX/5EYVRl4x6+bgrXpJap+iotdWdLyvtDDRca7rtYZK6Ev15bkXGxYV09X
7lc8Br522/dvKA6RKXSBkQkF9zqWQBoAouD1PBQiu07Y7Ng3goyfauCTORVNWbbZbsaJQkR4KeX
socEM81CoXMjukPe1pQpmlsnLtV33YGfEvmoZvknCTkQHJYyk/Wqf8OhrwEwfcveZKRFxVxwnbI
+RWXowIV9d5i0abxn72e8x4RULXTx/fjzQ+lhAHIPtqF6n4azfRiK5RcYGjz6c4iS0YR6zQjmV8
5cWi0sLYLvlOhdaQxciShigfSYNlrEwM4M41qR5UnNGhx5HybZXFvHIx9zfNuf6tLucmAygICJX
4ui943PL5lTDsnpbBIB72Dvfb6DObQyuHbYAjElX4kKuIeHt9CMG0xDwu1Fyspxbu7Sehqtxxu5
Ywe+OT6OGVv537oQXeu0wSkphGeCdKbXqWUWlOs6wCrEofrawAuQ34sblKbaDvuaTK04A+nuBKS
nRwx2p633iRBTmEnO5gs0cOn7vPt0HXJTJbOzUC6ilbk+2Pyrwy8hR344ogAmudEvSUihk/+p3E
Nlv2ROXQH8rkcwKyahg9duC+0ylnblyV53JWGUW5a4VlCPV+irV8D3ASoeIKTeRTzFJMjxpaMve
KDZsVbjjBqrvhmsGxJBUYuxeXthb3nzj+X29Tgsehq6Gl4nFh+d8gXouy1gAzjvZXdTw56cki06
Za3lRBRgOIQCud9BWCpvrE7qh7lRMvagEJRUTsN90/yiqJsCKkr7b3Ufu9AYewglW+E76f8Wf01
v41IuF4cXBDXmjCJfulVURFL3DyVcUDC79k8sEwp66qMUFQAPZLgzzlXTT84K2UYMPYrMn893ne
rIzlTlYzfSJPTMo8Ymw05Q0JTnHns5mTBT4EGO5PPk0uz4kCIh9YscbKFFqVFpubA8XtpQQq4Jt
/vJaXvvGPNjVeCca069qdyPElCD1YQFK66LcvvYyJXbdm2mDjtmIMApz4tvuIqwNqkpzzUuYSM6
5EqIchTdRWI51Ci8+ix1kl8vQtYURqr5mmg4itkIDYDVBnmofMUfMrX+/t21Dr1I4d2FuyM0AzQ
ie+w+3xazw94qbdnYs2q9mpWQgF5anvqjn4ep7OgKYjSx9hxfGtxHq7St4IgF88L1rfNhnyC5hP
8LhCEqyf+qvFpUwGObG39hWJZY3lNN2y5lT8b/utUz2AZ5uEz/xvjtY4rEeCsH9VSTBePdGxknn
Wl1r9PrgKtCACTKeUFfF3ZggkNVMagTPUW5JiXKiWkIh8jQfSzqLN1/747tfTHw87VzJE8egbhS
HCOBo5p4cAhIc/8I6TDuAwyAXK 
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Figure A-32 Communication Between Smartphone and Sensi Server 

 Figures A-33 and A-34 show examples of the binary data used to turn the thermostat to 

Auto mode, which is transmitted from the server to the Sensi WiFi thermostat. The TCP packets 

transmitted from the server are encrypted. It can be seen in the screenshots below that the data 

for each example is different. 

 
Figure A-33 Turn WiFi Thermostat to Auto Mode (Example 1) 

 
Figure A-34 Turn WiFi Thermostat to Auto Mode (Example 2) 
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 Figure A-35 and figure A-36 contain screenshots of the binary data transmitted from the 

server to the Sensi WiFi thermostat to turn it off. In each instance, the binary data is encrypted. 

 
Figure A-35 Turn WiFi Thermostat to Off Mode (Example 1) 

 
Figure A-36 Turn WiFi Thermostat to Off Mode (Example 2) 
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A.7 Amazon Echo Dot Recorded Data 

 This section contains screenshots of examples of the Amazon Echo Dot communicating 

with the servers. Figure A-37 shows the server transmitting data to the Amazon Echo Dot and 

figure A-38 shows the Amazon Echo Dot transmitting data to the server. In both cases, TLSv1.2 

is used to encrypt the communication session so that it cannot be subject to a man in the middle 

attack. 

 
Figure A-37 Amazon Echo Dot Receiving Data Example 

 
Figure A-38 Amazon Echo Dot Transmitting Data Example 
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