A Privacy Vulnerability in Smart Home IoT Devices
by

Michael W. Denko

A thesis submitted in partial fulfillment
of the requirements for the degree of
Master of Science in Engineering
(Computer Engineering)
in the University of Michigan-Dearborn
2017

Master’s Thesis Committee:

Associate Professor Hafiz Malik, Chair
Professor Paul Richardson
Professor Weidong Xiang

Table of Contents

List of Tables
List of Figures
Abstract
Chapter 1 Introduction
Chapter 2 Related Work
Chapter 3 Experimentation
3.1 Experiment Setup
3.2 Smart Light Bulbs
3.3 TP-Link Smart LED Light Bulb
3.4 Philips Hue Smart Light Bulb
3.5 Sengled Element Classic Smart Light Bulb
3.6 Smart Light Bulb Discussion
3.7 Smart Plug — Belkin WeMo
3.8 Smart and WiFi Thermostats
3.9 Vine WiFi Thermostat
3.10 Sensi WiFi Thermostat
3.11 Smart and WiFi Thermostat Discussion
3.12 Amazon Echo Dot
Chapter 4 Privacy Vulnerability Discussion
4.1 Privacy Vulnerability

4.2 Lack of Encryption of Transmitted Data over Local WiFi Network

i

v

Vil

11
13
15
16
17
21
22
24
27
27

28

4.3 WiFi Vulnerabilities
4.4 Vulnerabilities in TLSv1.2 Protocol
Chapter 5 Solutions to the Privacy Vulnerability
Chapter 6 Conclusion
Appendix A: Collected Data from Smart Home IoT Devices
A.1 TP-Link LED Smart Light Bulb Recorded Data
A.2 Philips Hue Smart Light Bulb Recorded Data
A.3 Sengled Element Classic Smart Light Bulb Recorded Data
A.4 Belkin WeMo Smart Plug Recorded Data
A.5 Vine WiFi Thermostat Recorded Data
A.6 Sensi WiFi Thermostat Recorded Data
A.7 Amazon Echo Dot Recorded Data

Bibliography

il

28

30

32

35

36

36

38

42

44

48

52

55

56

List of Tables
Table 3-1 Smart Light Bulb Security and Privacy Analysis Results
Table 4-1 Security and Privacy Analysis Results

v

14
27

List of Figures
Figure 3-1 EAPOL Message Capture in Wireshark
Figure 3-2 TP-Link Smart LED Light Bulb Communication Diagram
Figure 3-3 Data Transmitted From Smartphone to Turn Smart Light Bulb On
Figure 3-4 Philips Hue Communication Diagram
Figure 3-5 Sengled Element Communication Diagram
Figure 3-6 Sengled Communication with Amazon Server
Figure 3-7 Belkin WeMo Communication Diagram
Figure 3-8 Belkin WeMo XML SOAP Format
Figure 3-9 WiFi Thermostat Communication Diagram
Figure 3-10 Vine WiFi Thermostat Schedule Change Data
Figure 3-11 Vine WiFi Thermostat Encrypted Data
Figure 3-12 Comparison Between Vine WiFi Thermostat Encrypted Data Packets
Figure 3-13 Amazon Echo Dot Communication Diagram
Figure 3-14 Data Transmitted By Amazon Echo Dot When Not in Use
Figure A-1: Turn Smart Light Bulb On (From Smartphone)
Figure A-2 Turn Smart Light Bulb On Response (From Light Bulb)
Figure A-3 Turn Smart Light Bulb Off (From Smartphone)
Figure A-4 Turn Smart Light Bulb Off Response (From Light Bulb)
Figure A-5 Turn Smart Light Bulb On Binary Data (From Smartphone)
Figure A-6 Turn Smart Light Bulb On ASCII Data (From Smartphone)
Figure A-7 Turn Smart Light Bulb On Response Binary Data (From Light Bulb)
Figure A-8 Turn Smart Light Bulb On Response ASCII Data (From Light Bulb)
Figure A-9 Turn Smart Light Bulb Off Binary Data (From Smartphone)
Figure A-10 Turn Smart Light Bulb Off ASCII Data (From Smartphone)
Figure A-11 Turn Smart Light Bulb Off Response Binary Data (From Philips Hue Hub)
Figure A-12 Turn Smart Light Bulb Off Response ASCII Data (From Light Bulb)

Figure A-13 Communication between Smartphone and Sengled Server

10
12
13
15
16
18
20
24
24
25
26
36
36
37
37
38
38
39
39
40
40
41
41
42

Figure A-14 Turn Smart Light Bulb On Binary Data (Example 1)
Figure A-15 Turn Smart Light Bulb On Binary Data (Example 2)
Figure A-16 Turn Smart Light Bulb Off Binary Data (Example 1)
Figure A-17 Turn Smart Light Bulb Off Binary Data (Example 2)
Figure A-18 Turn On Smart Plug Binary Data (From Smartphone)
Figure A-19 Turn On Smart Plug ASCII Data (From Smartphone)
Figure A-20 Turn Off Smart Plug Binary Data (From Smartphone)
Figure A-21 Turn Off Smart Plug ASCII Data (From Smartphone)

Figure A-22 Screenshot of Communication Between Smartphone and Vine Server

Figure A-23 Turn WiFi Thermostat On Binary Data (Before Firmware Update)
Figure A-24 Turn WiFi Thermostat On ASCII Data (Before Firmware Update)
Figure A-25 Turn WiFi Thermostat Off Binary Data (Before Firmware Update)
Figure A-26 Turn WiFi Thermostat Off ASCII Data (Before Firmware Update)
Figure A-27 Change Weekly Schedule Binary Data (Before Firmware Update)
Figure A-28 Change Weekly Schedule ASCII Data (Before Firmware Update)
Figure A-29 Turn WiFi Thermostat On ASCII Data (After Firmware Update)
Figure A-30 Turn WiFi Thermostat On ASCII Data (After Firmware Update)
Figure A-31: Change Weekly Schedule ASCII Data (After Firmware Update)
Figure A-32 Communication Between Smartphone and Sensi Server

Figure A-33 Turn WiFi Thermostat to Auto Mode (Example 1)

Figure A-34 Turn WiFi Thermostat to Auto Mode (Example 2)

Figure A-35 Turn WiFi Thermostat to Off Mode (Example 1)

Figure A-36 Turn WiFi Thermostat to Off Mode (Example 2)

Figure A-37 Amazon Echo Dot Receiving Data Example

Figure A-38 Amazon Echo Dot Transmitting Data Example

vi

42
43
43
44
45
46
47
48
48
49
49
49
49
50
51
52
52
52
53
53
53
54
54
55
55

Abstract

Smart home IoT devices are becoming increasingly popular and increasingly prevalent in
people’s homes. These devices create new potential attack surfaces in people’s homes, and
therefore it is important that the manufacturers are taking the appropriate measures to secure
these devices. The motivation for this work was to determine if these measures were being taken
since people could be unknowingly purchasing smart home IoT devices with security or privacy
vulnerabilities.

Smart home IoT devices that are available to consumers were purchased and analyzed for
this paper. Some of these devices were found to contain privacy vulnerabilities. Therefore, some
smart home IoT devices on the market contain a privacy vulnerability, which is they do not
encrypt transmitted data over a local WiFi network, and therefore can be subject to a man in the
middle attack.

The privacy and security of seven different smart home IoT devices were analyzed
including smart light bulbs, WiFi thermostats, a smart plug, and the Amazon Echo. It was found
that four of the seven devices do not encrypt transmitted data over the local WiFi network
connection, which is a privacy vulnerability. For two of these devices, the transmitted data could
be visible in plain text, which can be easily deciphered by an attacker. Three of the four devices
that contain a privacy vulnerability were also vulnerable to replay attacks, meaning replaying
recorded packets causes the device to perform an action such as turn the lights on. It is discussed
how the data obtained due to this privacy vulnerability can be used to track a user’s lifestyle
habits. From this data an attacker can infer if the user is currently home or away. Lastly,
solutions to these vulnerabilities are presented, which includes encrypting the communication
data that is transmitted between the different nodes of the smart home IoT devices. For devices
that use a point-to-point type of architecture, lightweight encryption techniques are needed and

discussed.

vii

Chapter 1 Introduction

Connected technology has started to become increasingly common in people’s homes.
These connected devices, which can be found in what has been dubbed the “smart home,” has
made life more convenient for some people and also made it easier for elderly or disabled people
to live independently. While these are inarguably beneficial aspects of these IoT connected
devices, there are some drawbacks, which include possible threats to privacy and security of
personal data of the users. The smart home has essentially taken devices, such as thermostats and
light bulbs, which were never connected to the Internet, and added the ability to do so. The result
has been that these devices can be controlled remotely by a user, collect and transmit data to a
server, and perform actions automatically based off commands from a server or the collected
data.

Connecting devices to the Internet has also created a new wireless cyber attack surface in
the home that was not present a decade ago. Data is now transmitted between a smartphone or
server and the smart home device, leading to the possibility of a malicious entity stealing or
injecting data that can cause harm to the user. While the user has some responsibility to protect
themselves against these types of threats, by taking actions such as creating strong passwords to
be used with their devices and local WiFi network, the bulk of this responsibility falls on the
manufacturers of these IoT smart home devices. Manufacturers must ensure that they are taking
the appropriate actions when designing a connected smart home device to prevent leakage of
private data or disallow the ability of an attacker to cause any harm.

This research was performed and this paper was written on the basis that some
manufacturers were not designing cyber security into [oT smart home devices. Therefore
consumers have been purchasing smart home IoT devices that contain cyber security and/or
privacy vulnerabilities. Companies attempt to be first to market with their smart home IoT device
in order to gain an initial large share of the market [1]. Often the consequence of this is cyber
security measures are not included in the original design, and it is often difficult to add
retroactively after devices are on the market. In addition, after a smart home IoT device has

become popular, such as the Nest Thermostat, more inexpensive alternatives are soon to follow

and are released to the market. A sound cyber security design and implementation can add cost
to an IoT smart home device, so therefore measures to protect privacy and cyber attacks may not
be taken in these instances [2].

In this paper, several IoT smart home devices are analyzed for security and privacy
vulnerabilities including smart light bulbs, smart thermostats, a smart plug, and the Amazon
Echo. The results of the analysis are several of these devices have a privacy vulnerability, which
is transmitting unencrypted data over a local WiFi network. Since this data is transmitted by
everyday devices in the home, it is argued that attackers can use this data to learn about the
lifestyle of the user, such as when they leave the home. This is obviously a privacy and safety
concern.

This paper is organized as follows: chapter 2 will cover related work, chapter 3 will cover
the analysis and findings on the purchased smart home devices, chapter 4 will discuss the
vulnerabilities that were found, chapter 5 will discuss the solutions to those vulnerabilities, and a
conclusion will be provided in chapter 6. The data obtained from the analysis of the smart home

devices will be shown in more detail in Appendix A.

Chapter 2 Related Work

Research has been done recently in the area of smart home IoT cyber security. Similar
studies have been performed where researchers analyzed smart home devices for security and
privacy vulnerabilities. In one such study, authors examined the Nest Thermostat and Nest
Protect, which is a smart smoke alarm. In this study, the authors analyzed the network traffic of
the Nest devices to see if they were able to determine if the user was home or away. From the
network traffic, the authors could determine when a transition between “Home” and “Auto
Away” modes occurred 67% of the time, and when a transition between “Auto Away” and
“Home” occurred 88% of the time. It was also concluded that there is no efficient method to
protect against this type of side channel attack. The authors explained that it has been
documented in the past that the Nest Thermostat encrypts all data over the local WiFi network,
which is the attack surface analyzed in this paper [3]. No analysis was performed on side
channels for this paper.

In reference [4], authors also analyzed the Nest Thermostat for existing vulnerabilities in
order to find out how simple it would be for an attacker with limited technical knowledge to
exploit. These vulnerabilities included packet analysis, credential attacks, and downloading
malicious software onto the Nest device. Both downloading malicious software and analyzing
the packets failed to deliver any results, since the device would not allow the authors to gain root
access and all communication data from the device was encrypted. However, using the Python
script that the authors obtained online, they were able to request the current schedule mode of a
thermostat from the Nest servers. The authors determined that if they ran this script at scheduled
intervals, they could get an accurate picture of when the user was home or away. Since this script
is available publicly and does not take much expert knowledge to run, it becomes quite simple
for an attacker to learn the habits of someone with a Nest thermostat.

The authors in [5] analyzed similar devices as this paper including the Philips Hue smart
light bulb and the Belkin WeMo smart plug. The Nest smoke alarm was also analyzed, but that is
not covered in this paper. Some of the same vulnerabilities were found, including the lack of

encryption on data transmitted from the device over WiFi, which was discovered to be in the

Philips Hue smart light bulb and Belkin WeMo smart plug. The authors also demonstrated that a
replay attack was possible with the Philips Hue device by showing that the light bulbs could be
turned on and off using the data that was collected. It was not known at the time of performing
the data collection and analysis for this paper that these vulnerabilities had already been
discovered as stated by reference [5]. The authors also did not analyze multiple brands of a type
of smart device (for example they did not look at any other smart light bulbs outside of the
Philips Hue).

After performing the experiments for this paper, research was done to find additional
evidence of analysis of the Philips Hue for security and privacy vulnerabilities. It was
documented on a blog in reference [6] that the Philips Hue did not encrypt communication of
data over local WiFi. This vulnerability has been documented since 2013, where the author in
reference [7] initially discovered it.

Because the Philips Hue is one of the most popular smart light bulbs on the market, it has
received a lot of attention in the security community. Researchers also analyzed the
communication interface between the Philips Hue hub and the smart light bulbs in reference [8],
which use the Zigbee protocol. The authors were able to control the smart light bulbs from 350
meters away by exploiting a vulnerability in the Zigbee interface. This attack surface is not

considered in this paper, however, as only communication over local WiFi is analyzed.

Chapter 3 Experimentation
For this study, 5 different devices were analyzed for cyber security and privacy
vulnerabilities. This section is organized by the category of smart home IoT device, such as
smart light bulbs, and will provide the individual analysis for each device. A discussion on the

findings for each category of device will follow the analysis.

3.1 Experiment Setup

Prior to discussing the analysis of each smart home IoT device, the process used to
capture and analyze data should be covered. The main tool used to do so is Wireshark, which is a
tool that can be used to capture data packets that are transmitted over Ethernet or Wi-Fi. Version
2.2.7 of the Wireshark tool was used on a MacBook Pro for this investigation. The local WiFi
network was setup to use WPA2-PSK with AES encryption.

Because the devices that were analyzed for this paper communicate over WiFi, the
802.11 radio on the laptop was utilized to capture transmitted packets. Wireshark is setup to
capture data in “Monitor” mode, meaning it monitors all 802.11 (WiFi protocol) traffic that can
be captured by the laptop’s radio. Since these experiments were performed in an apartment
setting, this meant that there was a lot of unneeded wireless traffic that had to be filtered out.
Monitor mode was needed in order to capture the data transmitted between two different devices
outside of the laptop, which for these experiments was typically a smartphone and an [oT smart
home device.

Since Wireshark was setup in Monitor mode, it would only capture the encrypted data
transmitted over the local WiFi networks in the near proximity. Wireshark had to be configured
to decrypt the data transmitted over the local WiFi network that the smartphone and smart home
IoT devices were connected to. To do so, the SSID and password of the local network were
entered into Wireshark. During a data capture, Wireshark has to capture the 4-way handshake
that is used in WPA2-PSK (AES), which is transmitted using the EAPOL protocol. With all four
EAPOL packets, the SSID, and network password, Wireshark can start decrypting the data

transmitted by a device over the local WiFi network. Wireshark will show the IP address of the

transmitting device as the source of the data. The decrypted version of the data will then become
available.

Because the 4-way handshake must be captured to decrypt data, it is required that
Wireshark is running and monitoring traffic when the smart home IoT device joins the local
WiFi network. The easiest way to do this is to power off the device, start the Wireshark data
capture, and then power on the device. If the 4-way handshake is captured, then the encrypted
data will start appearing in the tool’s interface. If not, then this process needs to be repeated until
the decrypted data is being captured. It can take several trials in order to capture all four EAPOL
packets. It appeared to be more likely for Wireshark to miss one of the EAPOL packets at times
of increased wireless traffic, such as in the late evening.

To verify that Wireshark has captured all four EAPOL packets and has started to decrypt
the wireless data, it is useful to filter out the rest of the wireless traffic on both the local network
and the other WiFi networks in the vicinity. In order to do so, Wireshark was configured to filter
on data transmitted or received by the MAC address of the IoT smart home device. The MAC
address is often written on the device itself or included in the documentation. It can also be easily
found from the IP address currently assigned to the IoT smart home device.

4 ® KRG Qe=EF I < |

[1 eapol

¥

| &

No. Time Source Destination Protocol Lengt Info
4110 29.886733 Tp-LinkT_29:8.. Shenzhen_50:d7:d4 EAPOL 162 Key (Message 1 of 4)
4112 29.895813 Shenzhen_50:d.. Tp-LinkT_29:81:c5 EAPOL 184 Key (Message 2 of 4)
4114 29.898838 Tp-LinkT_29:8.. Shenzhen_50:d7:d4 EAPOL 242 Key (Message 3 of 4)
29.901538 Shenzhen_50:d.. Tp-LinkT_29:81:c5 162 Key (Message 4 of 4)

Figure 3-1 EAPOL Message Capture in Wireshark

Once Wireshark has started capturing and decrypting data, the reverse engineering
process can begin. The process followed for this paper was to perform specific actions with the
device, write down the timestamp that is recorded in Wireshark, and repeat several times to
ensure the recorded data is correlated with the action. Once the data is recorded, Wireshark will
show the data captured at the IP address of the smart home IoT device. The data can then be
viewed in several forms from the raw hex bytes to the ASCII version of the data.

The tool that was used to view the binary data is Hex Fiend on the MacBook Pro. Hex

Fiend shows the hex version of the binary data and can also perform a binary comparison of two

different files. The binary comparison was used to verify that data transmitted at two different

occurrences was identical in some scenarios.

3.2 Smart Light Bulbs

The first category of devices that were analyzed was smart light bulbs. These devices are
starting to become increasingly popular in the home as it makes it easier to control lights. Smart
light bulbs are fairly simple relative to other connected IoT smart home devices. They essentially
allow a user to control a light bulb via their smartphone. The light bulbs can be turned on or off,
and usually offer a dimming feature as well. Some smart light bulbs can also change color,
though none of the products analyzed for this paper offered this feature. For this paper, three
different smart light bulbs were analyzed including the TP-Link Smart LED Light Bulb, Philips
Hue Smart Light Bulb, and Sengled Element Classic Smart Light Bulb.

3.3 TP-Link Smart LED Light Bulb

The TP-Link Smart LED Light Bulb was the first device that was analyzed. The TP-Link
Smart LED Light Bulb does not require a hub to be used, as is the case with many smart light
bulbs, which can be an attractive reason for consumers to purchase this device. Instead this
device can be controlled directly from the “Kasa” app that can be installed on iOS or Android
devices. The Kasa app allows the user to turn the light bulbs on or off, and can also dim the light
bulbs to a preferred lighting. Whenever the user changes the lighting using the smartphone app,
the app transmits data directly from the smartphone to the smart light bulb. This is shown in

figure 3-2.

Figure 3-2 TP-Link Smart LED Light Bulb Communication Diagram

To reverse engineer the TP-Link Smart LED Light Bulb, Wireshark was setup to listen to
the packets as they were transmitted from the smartphone to the light bulb. The smartphone app
was used to turn the light bulb on and off and the timestamp in Wireshark was recorded to ensure
packets could be correlated to the action that was performed on the smart device. This was
repeated several times so that a pattern of the transmitted data could be obtained.

After taking a look at the resulting data, it became immediately apparent that it was not
transmitted in plain text and was either encoded for the application or encrypted. However, the
data that was transmitted to turn the light bulb on was identical for each recorded timestamp. The
same was true for turning the light bulb off. A binary comparison over the transmitted data
between different timestamps was performed in order to prove this. In addition, this same
experiment was run with a different smartphone and smart light bulb. The same results were
obtained, meaning the data was identical and was independent of the smartphone or smart light
bulb used to transmit or receive the commands. Figure 3-3 shows the data transmitted to turn the

smart light bulb on.

[] o Wireshark - Packet 8446 - Packets_captured_from_smart_bulb

Frame 8446: 229 bytes on wire (1832 bits), 229 bytes captured (1832 bits) on interface @

Radiotap Header v@, Length 48

802.11 radio information

IEEE 802.11 QoS Data, Flags: .p....F.C

Logical-Link Control

Internet Protocol Version 4, Src: 192.168.0.101 (192.168.0.101), Dst: 192.168.0.104 (192.168.0.104)
Transmission Control Protocol, Src Port: 62102, Dst Port: 9999, Seq: 1, Ack: 1, Len: 87

Data (87 bytes)

VVVVYVYYVYYVYY

03 00 00 00 08 00 45 00 00 7T 27 e7 40 00 E...'.@.
90 74 c@ a8 00 65 @ a8 0@ 68 f2 96 27 Of @..t...e ...h..'.
67 98 @0 44 7e bc 50 18 ff ff 25 65 @0 0@ ..g..D~. P...%e..
0 00 53 do f2 81 ec_8d ff 8b e7 8e e8 8d a3 ...S..iu siuuninn
dl ff 8c el 80 f2 86 e4 91 fd 9f bl dd bd| vuuuuunn
cf a6 c8 af dc b9 cb bd d4 b7 d2 f@ ca blvvve viuuiann
95 f4 92 e9 80 f4 9d f2 9c c3 af c6 @l €| .vvvvvvn vivunnns
91 e5 84 f@ 95 b7 8d 6 d4 bb d5 Ba €5 83|ivviv viuuninn
fdccblccbl | L.

T R e —

No.: 8446 - Time: 40.1024517 - Source: 192.168.0.101 - Destination: 192...., ACK] Seq=1 Ack=1 Win=65535 Len=87 - Src Port: 62102 « Dest Port: 9999

[Help | Close

Figure 3-3 Data Transmitted From Smartphone to Turn Smart Light Bulb On
The next step was to determine if a replay attack of the transmitted data was possible. To
do so, the recorded transmitted data was replayed from a MacBook Pro by using the terminal to

pipe the data to the IP address of the smart light bulb and the port that it was listening on. The

replay attack was successful, meaning the laptop could be used to turn the smart light bulb on
and off.

The experiment run on the TP-Link Smart LED Light Bulb proved that there are two
vulnerabilities: data transmitted over the local network is not encrypted using temporal data and
there is no authentication of the device sending the data. It is known that the data is not
encrypted using temporal data since the same data is transmitted every time. If the transmitted
data were a ciphertext then it would be the result of encrypting the same plain text every time.
Therefore it cannot be concluded that no encryption is used, however it is still possible to
determine the commands that have been sent to the smart light bulb. Because a replay attack was
possible from a laptop, there is no authentication of the device that is currently sending the
command. In addition, there are no security measures in place to prevent a replay attack, such as
a packet counter.

Lastly, the original experiment was run on firmware version 1.1.2, which is the version
the smart light bulbs were shipped with. The firmware was updated to the latest at the time,
which is version 1.4.3, and these vulnerabilities were confirmed to still exist in the product.
Therefore these vulnerabilities were still present in the TP-Link Smart LED Light Bulbs at the

time this paper was written.

3.4 Philips Hue Smart Light Bulb
The Philips Hue Smart Light Bulb operates differently than the TP-Link Smart LED

Light Bulb. The Philips Hue system uses a hub, so there is no direct communication between the
smart phone and the smart light bulbs. Instead, the smartphone app sends commands to the hub
via WiFi and the hub in turn communicates with the smart light bulbs via the Zigbee protocol.
For the purpose of this paper, only the WiFi attack surface was considered, though there have
been known vulnerabilities in the Zigbee attack surface as shown in reference [8]. Figure 3-4,
below shows a diagram of the Philips Hue system and the attack surface that was monitored for

this paper.

- — -

-
-
Se-

Hub @

Figure 3-4 Philips Hue Communication Diagram

The same experiment was performed with the Philips Hue Smart Light Bulb. Wireshark
was used to collect data while the Philips Hue was turned on and off using the smart phone app.
From recording the timestamps and then examining the data, it became clear which data packets
were transmitted to control the Philips Hue smart light bulb. For this experiment, the data
transmitted from the smartphone to the Philips Hue hub and vice versa was captured.

The results of the experiment showed that the data transmitted by the smartphone to the
Philips Hue hub was not encrypted and furthermore was sent in plain text. The response from the
hub was transmitted in plain text as well. The Philips Hue uses the JSON format for transmitting
data and is always listening on port 80 for commands sent from the smartphone. Further analysis
of the data shows that in order to turn a smart light bulb on or off, the smartphone sends a
command to a “group.” The Philips Hue hub then broadcasts that command to all smart light
bulbs that are in that group. Data was collected using two different smart light bulbs on different
days, and the only observed difference between the two was the IP address of the Philips Hue
bridge had changed.

The next step was to see if a replay attack was successful using the data that was recorded
by Wireshark. Similar to the TP-Link Smart LED Light Bulb, the data was piped to the IP
address of the Philips Hue hub, which could be found easily since the MAC address was known.

10

The result was the replay attack was successful and therefore the smart light bulbs could be
controlled from the terminal on a laptop. Because the data transmitted between the smartphone
app and Philips Hue bridge is in plain text and therefore visible to an attacker, it can be
manipulated to find and control groups of light bulbs that may be used in a home or small
business.

The firmware of the Philips Hue was updated from 1705121051 to the latest at the time
of the analysis, which is 1707040932, and the same vulnerabilities could be observed. With both
the firmware version the Philips Hue was shipped with and the updated firmware version, plain
text data could be recorded and replay attacks were successful. The lack of encryption on the
Philips Hue has been discovered by other sources and well documented at this point in references
[5], [6], and [7]. This was not known prior to purchasing the Philips Hue for this paper and

running this experiment.

3.5 Sengled Element Classic Smart Light Bulb

The last smart light bulb that was analyzed for this paper was the Sengled Element
Classic. With the Sengled Element Classic Smart Light Bulb, the smartphone app titled
“ElementHome” can be used to control the light bulbs. Similar to the Philips Hue topology, the
Sengled Element Classic Smart Light Bulb uses a hub, which communicates with the smart light
bulbs via the Zigbee protocol. Where the Element Classic differs, however, is the smartphone
app does not communicate directly with any other Sengled Element device over the local
network. Instead the ElementHome app sends commands to a server, which then communicates
with the Sengled Element Classic hub. The hub then relays those commands to the smart light
bulbs. For the sake of this paper, only the communication between the smartphone and the
server, and the sever and the hub were considered. The communication between the hub and the
smart light bulbs was not analyzed. Figure 3-5 shows the communication in order to control the

smart light bulbs in the Sengled Element Classic system.

11

TLS1.2 >

TCP 3
(Encrypted Data)

) Outside
Server(s)

Figure 3-5 Sengled Element Communication Diagram

Data was captured using Wireshark and analyzed to determine if any security or privacy
vulnerabilities exist in the Sengled Element Classic Smart Light Bulbs. The data transmitted by
the smartphone and received by the Sengled Element Classic server were isolated. It was
determined that the communication between the smartphone and the Sengled server is encrypted
using the TLSv1.2 protocol. Anytime the ElementHome app on the smartphone was used to send
a command to the smart light bulbs, a TLSv1.2 communication session could be seen in
Wireshark. The communication from the server to the Sengled Element hub used the TCP
protocol. TCP packets of data were transmitted from the server to the Sengled Element hub in
order to turn the smart light bulbs on and off. Each time the smart light bulb was turned on and
off, different data was transmitted from the server. Therefore, it appears that the data in the TCP

packets transmitted from the server are all encrypted via an unknown protocol. The vulnerability

12

that exists in both the TP-Link Smart LED Light Bulbs and Philips Hue Smart Light Bulbs is not
present in the Sengled Element Classic Smart Light Bulbs.

One observation that was made during this analysis is that the Sengled Element Classic
appears to use an Amazon Web Services (AWS) server (see figure 3-6) for some
communication. AWS offers secure communication through protocols like TLSv1.2. Using an
AWS server may make it easier to setup the infrastructure for encrypted communication between
the different entities in the system. To include an AWS server, however, Sengled chose a
different system architecture than Philips and TP-Link by designing their system to have all
communication go through an external server. This makes it easier to encrypt data, however it
also makes the product reliant on the AWS service. It can also degrade the performance since

communication is now occurring outside of the local network, which can cause an increased

latency.
No. Time Source Destination Protocol
10143 61.904073 192.168.0.105 ec2-34-212-15-42.us-west-2.compute.amazonaws.com TCP
10152 61.959775 ec2-34-212-15-42.us-west-2.compute.amazonaws.com 192.168.0.105 TCP
10154 61.960784 192.168.0.105 ec2-34-212-15-42.us-west-2.compute.amazonaws.com TCP
10168 62.059476 ec2-34-212-15-42.us-west-2.compute.amazonaws.com 192.168.0.105 TCP
10171 62.093995 192.168.0.105 ec2-34-212-15-42.us-west-2.compute.amazonaws.com TCP
10224 62.400023 ec2-34-212-15-42.us-west-2.compute.amazonaws.com 192.168.0.105 TCP
10226 62.400825 192.168.0.105 ec2-34-212-15-42.us-west-2.compute.amazonaws.com TCP
10257 62.434711 192.168.0.105 ec2-34-212-15-42.us-west-2.compute.amazonaws.com TCP

Figure 3-6 Sengled Communication with Amazon Server
Though the TCP packets transmitted by the external server all appear to be encrypted, it
was still possible recorded packets could be used for a replay attack. The packets that were
collected during the experiment were replayed, however the attack was unsuccessful. Therefore

the Sengled Element has measures in place to prevent replay attacks.

3.6 Smart Light Bulb Discussion

As mentioned in the previous sections, three different smart light bulbs were analyzed for
security and privacy vulnerabilities. The results have been summarized in table 3-1 below. A
privacy vulnerability, which is the lack of encryption on the data transmitted over the local WiFi
network, was found in two of the three smart light bulbs that were analyzed. The Sengled
Element Classic did not have this privacy vulnerability so therefore it is considered to be the
most secure out of all three. The Philips Hue was the worst offender since the transmitted data is
visible in plain text, and therefore does not take as much technical expertise to view the data.
Though the TP-Link Smart LED Light Bulb does not transmit data in plain text, it does still

contain this privacy vulnerability and can be subject to a man in the middle (MITM) attack.

13

Smart Light Does Not Data Visible | Replay Attack | Vulnerable to
Bulb Encrypt Data | in Plain Text | Successful MITM Attack
TP-Link Unknown No Yes Yes
Philips Hue Yes Yes Yes Yes
Sengled Element No No No No

Table 3-1 Smart Light Bulb Security and Privacy Analysis Results

One may not think that being able to see the data transmitted by a smart light bulb is a
problem since all one has to do to see the state of the lights is look through a window. However,
the issue with this privacy vulnerability is that it can be used by an attacker to learn about the
lifestyle of the user. With this vulnerability it becomes possible for an attacker to record the data
transmitted by a smartphone to a smart light bulb via a man in the middle attack. If that data were
to be recorded over a longer period of time, an attacker could infer that the user is not home
during the periods when the light bulbs are turned off. Though it is generally known that most
people are not home during the weekday and most businesses are closed at night, recorded smart
light bulb data could show any deviations from the norm. This information could be used for a
break in or just to track the user. Outside of the use case of the malicious attacker, [oT smart
home devices should take as much precautions as possible to not leak user data.

The limitation of the argument in the previous paragraph is that an attacker needs access
to the local WiFi network in order to record data from the TP-Link or Philips Hue smart light
bulbs. This is an obstacle that could stop novice attackers, however, attackers with more
advanced technical knowledge could overcome this by exploiting some of the known
vulnerabilities in the WiFi encryption protocols. This is discussed more in detail later in this
paper, as it is relevant to the other IoT smart home devices that are also analyzed. There is also
the use case where people either have weak passwords that can be easily guessed (such as
“password” or the letters on the home row of the keyboard) or places where guests are given the
password to a network, such as an AirBnb. In these scenarios, smart light bulbs cannot rely on
the WiFi protocol to encrypt the data to keep it private. In addition, the fact that one of the smart
light bulbs analyzed, the Sengled Element Classic, did encrypt all communication gives credence

to the argument that user data transmitted by a smart light bulb application should be protected.

14

3.7 Smart Plug — Belkin WeMo
One smart plug was analyzed for this paper, which is the Belkin WeMo. The Belkin
WeMo allows the user to control the power input to any device that plugs into the wall. This can
be quite useful to a user since they can turn a “dumb” device into a smart one that can be
controlled from their smartphone, such as a window air conditioning unit. The Belkin WeMo
device works similarly to the TP-Link Smart LED Light Bulb since it essentially uses point-to-
point communication over local WiFi as shown in figure 3-7. When the user turns the power on

or off from the plug using the “WeMo” smartphone app, data is sent directly to the smart plug.

Figure 3-7 Belkin WeMo Communication Diagram

The data collection and analysis process was applied to the Belkin WeMo smart plug.
The resulting data showed that data transmitted by the smartphone, and the response data from
the smart plug, is in plain text and therefore is not encrypted. The Belkin WeMo uses an XML
SOAP format for communication over the local WiFi network (see figure 3-8). In addition, a
replay attack of the recorded data was successful, so therefore by piping data from a laptop the
Belkin WeMo device could be controlled.

15

O @ Wireshark - Follow TCP Stream (tcp.stream eq 1086) - belkin_wemo_smart_plug_capture_2017_09_21

POST /upnp/control/basiceventl HTTP/1.1

Content-Type: text/xml; charset="utf-8"

SOAPACTION: "urn:Belkin:service:basicevent:1#SetBinaryState"
Content-Length: 383

HOST: 192.168.0.105:49153

User-Agent: CyberGarage-HTTP/1.0

<?xml version="1.0" encoding="utf-8"?>
<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/" s:encodingStyle="http://
schemas.xmlsoap.org/soap/encoding/">
<s:Body>
<u:SetBinaryState xmlns:u="urn:Belkin:service:basicevent:1">
<BinaryState>@</BinaryState>
<Duration></Duration>
<EndAction></EndAction>
<UDN></UDN>
</u:SetBinaryState>
</s:Body>
</s:Envelope>

5 client pkts, 0 server pkts, O turns.

192.168.0.101:63909 — 192.168.0.105:49153 (611 B Show and save dataas ASCII u Stream 106 2
Find: | Find Next |
Help Filter Out This Stream Print Save as... Back Close

Figure 3-8 Belkin WeMo XML SOAP Format

The Belkin WeMo contains two vulnerabilities: Communication over the local WiFi
network is not encrypted and there is no authentication of the user or device making a request.
From the plain text data in the SOAP container it can be seen that there is no data used to
describe the originator of the request. The information leaked by the device contains the
transmitted command and an attacker would know the time the smart plug is used based on when
the data was recorded. While this vulnerability is still a privacy concern, this is less of a safety
concern for the user. The reason is an attacker from outside of the home would have no
knowledge of what the plug is connected to or how often it is used. Turning on and off a plug
without knowing what it is connected to may not give much information on user habits or
lifestyle. However, from a privacy standpoint it is still user information that is essentially being

broadcasted on a local network, which is a privacy vulnerability.

3.8 Smart and WiFi Thermostats
One of the original and more popular smart home IoT devices is the smart thermostat.

Many people are interested in these devices because they can make their lives easier, help them

16

save money on energy costs over the long term, and also help to reduce the environmental
footprint of homeownership. Not every single person who owns a smart thermostat purchased
one for all of these reasons, however most certainly did so for at least one of them. Because
smart or connected thermostats are designed to either learn the behavior of the user or run on a
schedule that can be updated from a smartphone app, there is a large amount of personal
information that is stored on these devices or servers, and possibly communicated on a daily
basis.

For this paper two smart thermostats were analyzed: the Vine WiFi Thermostat and the
Sensi WiFi Thermostat. In this section both thermostats will be analyzed to determine if either
contain the privacy vulnerability that was discovered to be in some of the smart light bulbs and
the Belkin WeMo smart plug. Arguably the most popular smart thermostat currently on the
market is the Nest thermostat. It has been stated in reference [4] that the Nest thermostat encrypts
data. Though other vulnerabilities have been discovered in the past such as the ability to

determine the current mode from running a python script as described in reference [4].

3.9 Vine WiFi Thermostat

The Vine WiFi Thermostat essentially works in the same manner as a normal thermostat,
but can be controlled via a smartphone app called “Vine Control.” The actual thermostat has a
touchscreen interface. From the smartphone app the user can set the current temperature, turn on
and off the AC or heat, and also set a schedule for the thermostat to run on. The ability to toggle
the heat or AC from a smartphone is incredibly convenient as one often forgets to manually set
the temperature as they are leaving the house. To communicate with the WiFi thermostat, the
smartphone app first sends commands to the Vine server. The Vine server then processes the
commands and communicates with the Vine WiFi thermostat. Because a WiFi thermostat just
controls the heating and cooling of a house, it does not require as much of a real time response as
a smart light bulb. Therefore the latency that comes with funneling all communication through a

server does not have a severe negative impact on the user experience.

17

vpee
r:--

B

.

~

(Y <=

Outside
Server(s)

Figure 3-9 WiFi Thermostat Communication Diagram

For this paper the communication between the smartphone and the server, as well as the
server and the Vine WiFi Thermostat were analyzed. From the recorded data, it was found that
the communication between the smartphone and the server was encrypted via the TLSv1.2
protocol. This means that all data transmitted by the smartphone was found to not have the
previously mentioned privacy vulnerability. However, after the analyzing the data that is
transmitted by the server to the WiFi thermostat, it became apparent that some of the
communication did not only lack encryption, but was also in plain text. This data included
commands used to turn the thermostat on and off and to set the current temperature. The most
concerning part of this, however, was even the command used to set the weekly schedule could
be viewed in plain text by an attacker as shown in figure 3-10 (see Appendix A on more details
on how to read the information in this data structure). From the weekly schedule, it would be
quite simple for an attacker to infer that if the temperature is set to a higher value in the summer
or to a lower value in the winter that those would be times when no one is home. This is a huge
privacy concern as the server that communicates with the WiFi thermostat is essentially

broadcasting information about the user in plain text. The limitation of this attack, however, is

18

this data is transmitted by the server and not the WiFi thermostat, meaning this private data can
only be recorded when the user is making a change to their schedule. If the user changes their
schedule once and leaves it for the entire season, then the attacker would have only one chance to

record that communication to learn the user’s lifestyle.

19

{"count":"181",
"t count":"0",
"cmd":"device/set model info",
"device id":"845dd750d7d4",

"timestamp":1508608716104,

"mode":"1","1limit":"60-85",
"name" : "Summer-01",
"state":1,

"model id":195592,

"data":

{

llunitll : IIFII ,
"itemsl":

{"c":
{ne"
{ren
{ne"
{ne"

"items2":

"eMaMo", "
"eMaMo", "
"eMaMo", e
"eMaMo", "
"eMaMo", "

-

5

o)

3

]
e

"eMaMo", "
"eMaMo", "
"eMaMo", "
"eMaMo", "
"eMamo", "

"items4": [

{"c '
{"c"mom", """
{"c"mo", """
{"c"mom", """
{"c"mom", """
"items5": [
{"c"mo", """
{"c"mo", """
{"c"mo", """
{"c"mo", """
{"c"mo", """
"items6": [
{"c"
{"c"
{"c"
{"c"
{"c"
{"c"

:"o",
I"O", "t
:"o",
"o",

:IIOII

:"o",
"o",
"o",
I"O", "t
"o",
:"o",

IIOII nen

LAl

:IIOII’ L GALI
:IIOII’ L GALI
:IIOII’ L GALI

L GALI
L GALI

:ll85ll

:"85",
:"78",
"g5", "h":
:"78",
:"85",

L GALI
L GALI
:"60"

L GALI
L GALI

:ll85ll’ npn

"g5", "h":
"78", "h":
"g5", "h":
"78", "h":
"g5", "h":

ll85ll
ll78ll

npn
npn

ll78ll npn

npn

"g5", "h":
"78", "h":
"g5", "h":
"78", "h":
"g5", "h"

ll85ll
ll78ll

npn

4

4

’llhll
ll78ll’ npn
ll61ll’ npn
ll85ll’

ll85ll’ "hU
ll78ll’ "hU
ll85ll’ "hU

"hU
"hU

thony,
:"78", "h":
"g5", "h":
"78", "h":
"g5", "h":

"360"},
"480"},
"1020"},
"1320"}],

"0},
"360"},
"480"},
"1020"},
"1320"}],

, :non}’
, 1"360"},
"85", npv.

"480"},

:"1020"},
nhv.

||1320n}]’

:IIOII}’
"hU

"360"},
"480"},
"1020"},
"1320"}],

"o},
"360"},
"480"},
"1020"},

:"1320"} 7,

:IIOII}’
"hU

"480"},

:"840"},
:"855"},
:"870"},
"h

"1320"}] ,

non}’
"480"},
"1320"}]

Figure 3-10 Vine WiFi Thermostat Schedule Change Data

20

A replay attack was attempted on the Vine WiFi thermostat and was unsuccessful. From
the data transmitted by the server, a packet counter appears to be used to prevent this. An attempt
was made to manipulate this packet counter in order to control the Vine WiFi thermostat from a
terminal on a laptop, however this was still unsuccessful.

The last step when analyzing the Vine WiFi Thermostat was to update the firmware and
see if the privacy vulnerability still exists. The Vine WiFi thermostat was shipped with firmware
version 1.2.3 and was updated to version 1.3.1 for this experiment. After doing so, it could be
seen that all communication between the server and the WiFi thermostat was now encrypted. The
privacy vulnerability that was found when first analyzing this device was fixed in a firmware
update. This was a very interesting finding as it shows that Vine is aware of the privacy
vulnerability that exists in their devices as shipped from the manufacturer and was able to
resolve the issue retroactively, which can be difficult to do with cyber security solutions. The
problem with this implementation is that the Vine WiFi Thermostat did not force the user to
update the firmware in order to keep operating the device. The Vine WiFi thermostat was used
for several days operating at firmware version 1.2.3 with the security vulnerability without the
application ever forcing an update. Since a privacy vulnerability is present in firmware version
1.2.3 and is something that would not be easily noticeable by the user, there should be a
mechanism that requires the user to update to a more secure version. Many users either would
not bother to perform a firmware update, or may not have the technical capability of doing so.
This would leave users operating the Vine WiFi Thermostat in a state where data containing
information about their lifestyle could be broadcasted by the server. After updating the firmware,
replay attacks were still not successful. Assuming that a packet counter was still being used but
was now encrypted, it would make replay attacks increasingly more difficult to be carried out by

an attacker.

3.10 Sensi WiFi Thermostat
The Sensi WiFi Thermostat works in a similar manner to the Vine WiFi Thermostat. The
user can control the heat, AC, or temperature settings with the physical buttons on the thermostat
or with the “Sensi” smartphone app. The communication model of the Sensi WiFi Thermostat is
also the same in the fact that the smartphone communicates with a server, which then in turn
communicates with the WiFi thermostat itself (see figure 3-9). Therefore all communication

between the smartphone app and the thermostat is routed through a server. The attack surfaces

21

that were analyzed for this paper included the communication between the smartphone and the
server, as well as the communication between the server and the WiFi thermostat.

Data was recorded using Wireshark and analyzed to determine if a privacy vulnerability
exists. It was found that TLSv1.2 is used to encrypt communication between the smartphone app
and the sever, meaning this attack surface did not contain the privacy vulnerability. It was also
found that the data transmitted by the server to the Sensi WiFi Thermostat was encrypted as well.
A replay attack was attempted on the Sensi WiFi thermostat, by replaying the encrypted TCP
packets transmitted by the server, however this was found to have no effect. Therefore it was
found that the Sensi WiFi thermostat encrypted all communication and does not contain the

privacy vulnerability previously described in this paper.

3.11 Smart and WiFi Thermostat Discussion

Because a thermostat typically changes the environment based on the times that people
are present or away, it is crucial that the transmitted data is protected and not available for an
attacker to intercept via a man in the middle attack. Two WiFi thermostats were analyzed for this
paper, one of which, the Vine WiFi thermostat, was found to have a privacy vulnerability in an
older firmware version. Though this vulnerability was fixed in a later firmware version, this is
still a flaw since the user is not required to update the firmware of the device. This is also an
example of how cyber security was not included in the original design, but rather was added
retroactively. Because the Vine WiFi thermostat system design routed all communication
between the smartphone and thermostat through a server, it makes it easier to secure this
communication channel via a firmware update. Response time was not measured before and after
the firmware update, however encryption typically will degrade performance. Therefore it is
quite possible additional latency was added to the response time of the WiFi thermostat. In the
case of a thermostat, this should not cause the user experience to suffer since the response time to
turn on the AC or furnace does not need to be immediate. However, for other types of smart [oT
devices, adding cyber security retroactively could degrade performance enough to cause the user
experience to suffer. This is especially true in cases where the microcontroller performance
requirements did not take encryption or decryption into account during the initial design.

Instead of adding measures to protect the user’s privacy retroactively, it is a better
practice to include these measures into the device’s initial design itself. This will eliminate the

need for the user to update the firmware in order to protect their own private data, which is

22

beneficial since the user cannot always be trusted to perform firmware updates. Designing cyber
security into the product ensures all the required sub-systems are in place for the solution. For
example, there is often much that is needed on the backend for a cyber security solution
including encryption services. This must be designed in such a way that keys used for encryption
and decryption do not get re-used, and user experience does not suffer from degraded
performance.

In the case of the Vine WiFi Thermostat, after the firmware update to version 1.3.1 was
performed, encryption was added to protect the data of the user. However, instead of encrypting
the entire packet of transmitted data, the Vine WiFi Thermostat instead encrypts the data within
the actual packet. This is shown in figure 3-11. In the data packet there are two values, “k” and
“v,” which can be read by an attacker. The “k” value always contains a number and the “v” value
always contains encrypted data that cannot be easily read. However, one observation that was
made during this experiment is that sometimes packets are transmitted with the same “k” value.
This occurred for a “k” value of 77 and there was a match between the beginning portions of the
“v” variable data. This suggests that the “k” value is referring to a key that is used to encrypt and
decrypt the data, and that keys are also reused to send data securely. The match between the

binary data can be seen in figure 3-12.

23

Wireshark - Packet 25386 - 2017_10_24_Vine_Smart_Thermostat_Data_Capture

Radiotap Header v@, Length 48

802.11 radio information

IEEE 802.11 QoS Data, Flags: .p....F.C
Logical-Link Control

vyvyvywyyy

» Hypertext Transfer Protocol

Frame 25386: 319 bytes on wire (2552 bits), 319 bytes captured (2552 bits) on interface @

Internet Protocol Version 4, Src: 47.88.101.246 (47.88.101.246), Dst: 192.168.0.103 (192.168.0.103)
» Transmission Control Protocol, Src Port: 8@, Dst Port: 49317, Seq: 1933, Ack: 2388, Len: 177

0000
0010
0020
0030
0040
0050
0060
0070
0080
0090
0020
00b0
00co
00do
00e0

aa aa 03 00 00 00 08 00
2f 86 b2 6f 2f 58 65 f6
7d 28 61 59 @0 42 93 11
81 7e 00 ad 7b 22 6b 22
22 3a 22 74 45 45 65 5a
33 55 4d 2f 32 2b 4a 6d
35 50 4b 62 58 47 65 57
38 67 57 63 68 4a 63 63
39 2b 54 76 6a 47 5a 4d
4c 62 59 63 63 48 6¢ 51
4f 74 74 47 47 73 73 4a
66 30 4f 63 67 2f 37 32
4f 62 55 4d 5a 68 78 69
5a 33 51 66 44 72 70 46
7d

45 20 00 d9 42 32 40 00
cd a8 00 67 00 50 c@ a5
50 18 64 @0 44 3b 00 00
3a 22 36 30 22 2c 22 76
41 73 5a 31 73 34 45 79
78 45 6a 6a 55 43 6¢c 34
44 39 75 37 44 69 6d 41
78 36 35 4d 2f 32 74 4b
74 64 65 73 52 38 4c 35
46 6c 52 45 7a 42 49 53
51 71 75 51 67 67 58 4a
30 51 3@ 66 41 59 6d 33
56 50 35 4d 66 66 6C 76
45 4d 74 41 77 3d 3d 22

No.: 25386 - Time: 194.785060 - Source: 47.88.101.246 - Destination: 192.168.0....ocol: HTTP - Length: 318 - info: Continuation « Src Port: 80 - Dest Port: 49317

-

N U
":"tEEeZ AsZ1s4Ey
3UM/2+Im xEjjuCL4
5PKbXGeW D9u7DimA
8gWchlcc x65M/2tK|
9+TvjGZM tdesR8L5
LbYccH1Q F1REzBIS
0ttGGss] QquQggXxJ
f@0cg/72 @Q@fAYm3
ObUMZhxi VP5Mfflv

Close

Figure 3-11 Vine WiFi Thermostat Encrypted Data

Take2 158s _Turn_Off vs Take2 1 863_Turni0ff

7B226B223A223737222(2276223A2251

1 4DSA556669696257636F 7646764E48
6(33346(55426655367A416154524F4F
456E6(537577514E795259484E686E66
483756335A3639645758765A53612F56
78496D792B6F4566476963654F625A74
784F70436234755730382B635A573130
4(63344844765A5644575979626E7564
35665647635242685134717A424E6659

112
128
144

160 | 6F4F2B6278674(C52413D3D227D

0
16
321

48

64

80

96
112
128
144

160

7B226B223A223737222(2276223A2251

6B6F2B476445436D4277386834303774
766E536(373162423464757048564476
57775474397779677569425142416776
4E435A556B373850574(54496B447376
3545757955454A5A41682B7A4F6B4870
6B7773314656436E7169644B646E6(36
6D635553515459704554305A33322839
695237794F643169673D3D227D

Figure 3-12 Comparison Between Vine WiFi Thermostat Encrypted Data Packets

3.12 Amazon Echo Dot

The last device analyzed for this paper is the Amazon Echo Dot. The Amazon Echo Dot

is a voice assistant and is becoming an increasingly popular device with consumers. It can be

used to control smart home devices via voice control and can interact with the user. “Alexa” is

24

the name of the voice personality on the Amazon Echo Dot that interacts with the user. The user
can then ask or command Alexa to perform a task and the Amazon Echo Dot follows through on
the action. The Amazon Echo Dot connects to external Amazon servers to retrieve data or
determine which action should be taken.

Using Wireshark, data was recorded and analyzed when various voice commands, such
as having the Amazon Echo Dot read through the news, were performed. When voice commands
were used with the Amazon Echo Dot, spikes of transmitted and received data could be seen in
Wireshark. It was found that all transmitted and received data from the Amazon Echo dot was
encrypted using TLSv1.2. Therefore the data in the communication from the Amazon Echo Dot
is protected from any prying eyes. This experiment did not find the previously mentioned
privacy vulnerability in the Amazon Echo Dot since all data is encrypted. The communication
system used by the Amazon Echo Dot can be viewed in figure 3-13. The user issues voice
commands to Alexa on the Amazon Echo Dot and then all data communication occurs with

Amazon servers via the TLSv1.2 protocol.

TLSv1.2
4>

Outside
Server(s)

Figure 3-13 Amazon Echo Dot Communication Diagram
Given the size and technical expertise of Amazon, it is not surprising that Amazon would
encrypt data transmitted by their IoT devices. It has also been documented in reference [9] that
the TLSv1.2 protocol is used for secure communication, though this was not known at the time
the experiment was performed.
As mentioned in a previous paragraph, when the Amazon Echo Dot is in use, a spike of

communication data between the Amazon Echo Dot and the Amazon servers can be seen with

25

Wireshark. In addition, Wireshark was used to record the transmitted data when the Amazon
Echo Dot is not in use. The data was graphed (see figure 3-14) and shows that about every five
minutes, a spike of just less than seven kilobytes of data is transmitted by the Amazon Echo Dot.
It is unknown what the exact content is of this data and it may be just a simple heartbeat message
transmitted by the Echo Dot to the servers. However, this was an interesting finding as a lot of
information can be contained in seven kilobytes of data.

Wireshark 10 Graphs: wireshark_en0_20170829205621_Rw1zKf

21000 -

17500

14000

T

Bytes/1 sec

10500

T

7000

T

3500 ‘

JJ]J‘I'JI.IM (A e | I 1. 1}. |||.“.1I“1.||Ilul WEEPTRN AN N R

350 700 1050 1400 1750 2100
Time (s)

Figure 3-14 Data Transmitted By Amazon Echo Dot When Not in Use

26

Chapter 4 Privacy Vulnerability Discussion

4.1 Privacy Vulnerability

Seven smart home IoT devices were analyzed for this paper and four of the devices were

found to have a privacy vulnerability. As shown in table 4-1, The TP-Link Smart LED light bulb,

Philips Hue Smart light bulb, Belkin WeMo smart plug, and the Vine WiFi thermostat all had a

lack of encryption on transmitted data over a local WiFi network. Instead, these devices relied on

the local WiFi network to encrypt and protect their data. This chapter will discuss why not

encrypting data transmitted over a local WiFi network is a privacy vulnerability. It will also

discuss the reason the encryption provided by a WiFi network cannot reliably be counted on to

protect user data and whether the TLSv1.2 protocol, which is used in several of the analyzed

devices communication scheme, contains any vulnerabilities.

Smart Home IoT Device Does Not Data Visible | Replay Vulnerable
Encrypt Data | in Plain Text | Attack to MITM
Successful | Attack
TP-Link Smart Light Bulb Unknown No Yes Yes
Philips Hue Smart Light Bulb Yes Yes Yes Yes
Sengled Element Smart Light No No No No
Bulb
Belkin WeMo Smart Plug Yes Yes Yes Yes
Vine WiFi Thermostat (v1.2.3) Yes Yes No Yes
Vine WiFi Thermostat (v1.3.1) No No No No
Sensi WiFi Thermostat No No No No
Amazon Echo Dot No No No No

Table 4-1 Security and Privacy Analysis Results

27

4.2 Lack of Encryption of Transmitted Data over Local WiFi Network

One concern that many individuals have over smart home [oT devices is privacy.
Consumers have to trust the manufacturers and developers of these devices that they are
protecting their data, only storing data that is absolutely required for the use of the device, and
not exposing them to any cyber or physical threats. In the case of four of the analyzed devices,
the privacy of the user’s data was not being protected. Anyone who knows the credentials to the
WiFi network that these devices are connected to can listen to the transmitted data and observe
from the data when these devices are used. An attacker can also infer from the data transmitted
by a smart home IoT device if anyone is home. If this data is tracked over a longer period of
time, an attacker can determine that when the lights are turned off that the user is either asleep or
has left the home. The thermostat optimizes the climate of the home to save money when the
user is away and to keep the building at ideal temperatures when the user is home. This data
conveys the lifestyle of the user to an attacker. An attacker could then use this information to
decide when to break into a home, knowing that no one will be there at specific times. Homes
that contain smart [oT devices that broadcast this information could become a target. This
scenario may seem unlikely, however the privacy vulnerability discovered in four of the seven
devices analyzed for this paper certainly makes this possible.

There are many more smart home IoT devices on the market that were not analyzed for
this paper. Given that over half of the analyzed devices for this paper were found to have a
privacy vulnerability, it is likely that this same privacy vulnerability exists in additional smart
home IoT devices. Manufacturers are either overlooking this vulnerability, or are not making

cyber security enough of a priority when designing these devices.

4.3 WiFi Vulnerabilities

Devices that do not encrypt the transmitted data over a WiFi network are essentially
relying on the WiFi network encryption to protect the data. The problem with this is that some of
the encryption protocols used for WiFi networks have known security vulnerabilities. In some
cases, an attacker can gain authorized access to a network or can retrieve the key to read the
transmitted data over the network. One of the most obvious security flaws in WiFi networks is
the use of weak passwords. This can include passwords that are easy to guess such as
“password” or the address of the home. However, according to reference [10] even passwords

that are less than twenty characters can be broken. The issue with twenty characters is it can be

28

much tougher to remember, so people often choose a shorter and easy to remember password,
which can be subject to a dictionary attack. Nowadays, the default password on many WiFi
networks uses a long string of alphanumeric characters, which provides a sufficient level of
security as long as the user does not change it.

The security protocols that are available for use on most home routers include WPA2-
PSK and WEP. It has been well documented that the WEP protocol contains security flaws and
therefore should not be used to protect a WiFi network. According to reference [11], in the WEP
protocol packets can be both forged and replayed. Packets can also be modified in a manner
where it cannot be detected. Lastly there is available software that can be used to brute force the
key to the network, which would allow an attacker to gain access. Once the attacker has access to
the WiFi network they would have the ability to take advantage of the privacy vulnerability
found in four of the devices analyzed for this paper. In addition, many wireless routers still
support the WEP protocol.

The WPA2-PSK protocol has largely been seen as more secure in comparison with the
WEP protocol as long as the Advanced Encryption Standard (AES) protocol is used. WPA2-
TKIP, which uses the Temporal Key Integrity Protocol (TKIP) has known vulnerabilities, but
according to [12] was never meant to be a long term solution, but rather to overcome the
vulnerabilities in WEP. WPA2-PSK using AES did not have any known vulnerabilities until it
was recently discovered that some devices were vulnerable to a key re-installation attack. In the
key re-installation attack, the attacker replays the third message in the four-way handshake used
to authenticate a node onto a WPA2 network. This forces the node to re-install itself onto the
network using an already used session key. When this occurs, the packet counter is reset back to
the default value of zero, thus making the node vulnerable to replay attacks. In addition, packets
can be decrypted meaning data transmitted from devices such as those analyzed for this paper
can be seen by an attacker [12]. The devices analyzed for this paper were not analyzed by the
authors of the referenced paper. Therefore it is not conclusive that these devices would be
vulnerable to a key re-installation attack. Though the authors mentioned that any device that uses
WiFi is vulnerable to some form of a key re-installation attack. Manufacturers of some WiFi
devices have since released an update that provides a patch to this vulnerability, however this

would require the user to perform a firmware update.

29

Because there are known security vulnerabilities in WiFi protocols, they cannot be
completely relied on to protect the data transmitted by smart home IoT devices. When the
vulnerability in the WiFi network is stacked on the vulnerability of a smart home IoT devices as
seen in four of the seven analyzed, it gives an attacker the ability to read the data transmitted by
the device without even knowing the network password. The result of this is the attacker can

learn the lifestyle habits of the user.

4.4 Vulnerabilities in TLSv1.2 Protocol

The Transport Layer Security (TLS) protocol is used by many different types of
applications for secure communication. As shown in earlier sections, the TLSv1.2 protocol is
used in several of the IoT smart home devices that were analyzed for this paper including the
Sengled Element smart light bulb, the Vine WiFi thermostat, the Sensi WiFi thermostat, and the
Amazon Echo. In order to verify the security and privacy of the data for these devices, it was
explored whether there were any known vulnerabilities in the TLSv1.2 protocol.

One vulnerability was discovered with the TLSv1.2 protocol and it only exists on servers
that also support SSLv2 and 40-bit export cipher suites. This attack is referred to as Decrypting
RSA using Obsolete and Weakened eNcryption (DROWN). It relies on the fact that servers that
use the same certificates for different protocols and therefore the certificates used with the
SSLv2 protocol, which is known to have a vulnerability, are also used with TLSv1.2. In the case
of SSLv2 the 40-bit export cipher suite means that only 40 bits out of the 128 bits used for a key
are encrypted, the remaining 88 bits are transmitted in plain text. The DROWN attack is able to
exploit the weak 40-bit cipher to decrypt one in a thousand TLSv1.2 ClientKeyExchange
messages, revealing the session key. An attacker can then use the session key to decrypt TLSv1.2
messages in that specific session. The authors of reference [13] estimate that about 33% of
HTTPS servers are vulnerable to the DROWN attack. It is unknown whether any of the smart
home IoT devices analyzed for this paper are vulnerable to the DROWN attack. Though SSLv2
is known to be obsolete so it is unlikely any of the analyzed devices are vulnerable to this attack.

There are other vulnerabilities that have been discovered to exist in TLS in the past and
have been patched on some servers. In reference [14], each of the vulnerabilities are listed as
well as the percentage of sites that contain those vulnerabilities. It was found that 37.1% of sites
do not have adequate security when using the TLS protocol. However this does take into account

the configuration of sites as well as sites that run different versions of TLS. It is unknown if any

30

of the servers used with the smart home [oT devices that were analyzed for this paper were
scanned or if they would be in this group. Because the analyzed devices are all somewhat newer
products, it would be unlikely they are communicating with servers that have not been patched

for the latest vulnerabilities.

31

Chapter 5 Solutions to the Privacy Vulnerability

The problem that needs to be solved is a lack of encryption on the communication data
used with smart home IoT devices. The simple answer to this problem is just to add encryption.
While on the surface, this will solve the problem, the solution is more complicated because of the
resource constrained nature of these devices. This chapter will discuss the challenges of
encrypting communication with IoT smart home devices, methods that can be used to solve this
problem, and finally a recommendation will be given.

Smart home IoT devices have limited processing power and can also have limited battery
power. In the case of smart light bulbs, smart thermostats, and smart plugs, they all draw their
power from the 120 V AC available in the home so battery power is not a concern. However, in
order to manufacture smart home IoT devices at a competitive price, the devices were most
likely designed with limited processors. In terms of cyber security, this adds a challenge to
securing these systems with functionality such as encryption and decryption. For smart
thermostats, light bulbs, and plugs, adding encryption to communication can potentially result in
a delayed response time. The software used to control the device has to decrypt transmitted data
from a server or smartphone and then encrypt the response, which can take a considerable
amount of time depending on the encryption algorithm. Therefore, processing power is one of
the main factors that needs to be considered when deciding how to secure smart home [oT
devices.

The analyzed smart home [oT devices can be split into two different categories: devices
that communicate with an external server and devices that do not have any communication with
an external server. For devices where an external server is involved it is easier to solve the lack
of encryption problem since the server is able to provide the backend solution for more complex
encryption protocols. For this reason, the analyzed devices that used a server, which were the
Sengled Element, Vine WiFi thermostat, the Sensi WiFi thermostat, and the Amazon Echo all
used the TLSv1.2 protocol for communication between a smartphone and the server. Recent
smartphones all have increased processing power as well and can support using the TLSv1.2

protocol without any noticeable degradation in performance. Communication between the server

32

and the smart device then encrypts TCP packets that are transmitted from the server to the IoT
smart device. This is a secure solution, which is already being used by the Sengled Element,
Sensi WiFi Thermostat, and the Amazon Echo. The Vine WiFi thermostat had a privacy
vulnerability in an older version of firmware, however added encryption to the data inside of the
actual TCP packet. The difference is the data is still visible within the packet, but the contents
are encrypted. It is unknown what encryption protocol is used, and it is possible this is a secure
solution. However, for smart home IoT devices that use a backend server for communication
between a smartphone and the actual device, it is recommended to use TLSv1.2 for secure
communication between the smartphone and the server and then to encrypt the entire TCP packet
transmitted from the server to the smart IoT device.

For IoT smart home devices that use a point-to-point architecture, meaning a smartphone
communicates directly with a device over a WiFi network, it is important that a lightweight
encryption protocol is used. Encryption protocols used with PCs, such as RSA, are too resource
intensive for applications such as a smart light bulb. This would especially be true for the TP-
Link smart light bulb, where all processing power is contained in the actual light bulb. In
addition, a packet counter should be used to prevent replay attacks. For devices such as a smart
light bulb, or smart plug, the actual data transmitted is quite simple, and without a packet counter
the contents may not vary by much. The packet counter ensures the plain text data changes and
therefore the cipher text data will change as well, which adds a level of difficulty in determining
the plain text.

Lightweight encryption typically refers to protocols that can be run on devices with fewer
resources. This includes battery-powered devices and devices with constrained processors.
Reference [15] analyzed several different lightweight encryption protocols and decided upon a
few general rules. Overall, their conclusion was that specialized or configurable hardware, such
as an FPGA, could be used to increase the processing time of the encryption protocols. The
authors also conclude that stream ciphers are faster than block ciphers. However, for the point-
to-point applications that were analyzed for this paper, which includes smart light bulbs and
smart plugs, block cipher protocols are a better option than stream ciphers. The reason for this is
the commands transmitted to the device are quite simple and just need to turn the device on, off,
or set the dimming value in the case of a smart light bulb. A block cipher would create more

variation in the ciphertext since it would provide encryption over the entire block of data. In

33

addition, the amount of data transmitted between the smartphone and the device is always
known. According to reference [16], lightweight block ciphers include protocols with smaller
block sizes, smaller key sizes, and less computationally complex operations. These devices only
need to transmit a small amount of data so therefore large block sizes are not needed as well.
While a standard protocol such as AES-128 may give sufficient security for IoT applications,
there are even more “lightweight” protocols available that may provide better performance. If the
performance is degraded on a smart light bulb or a smart plug to the point that it takes several
extra seconds to turn on or off, the user experience will suffer. DESL and PRESENT are
lightweight encryption protocols that have a 64-bit block size and would be sufficient for these
applications. SIMON and SPECK are other options as well.

In general symmetric cryptographic algorithms require less resources than asymmetric
cryptographic algorithms, which is why the suggested algorithms listed above are symmetric.
However, reference [17] points out that the invention of Elliptic Curve Cryptography (ECC) has
brought asymmetric cryptography to embedded devices. ECC requires less memory and
computations than other asymmetric algorithms, such as RSA. The authors of [17] also suggest a
scheme that uses identity strings for the public keys instead of certificates for asymmetric
encryption. A base station is then used to generate the private keys. Stateful encryption is used,
which means some of the computation for public key encryption can be re-used improving the
efficiency of the process. The issue with this scheme is that it requires a base station, which is
not always available for smart home loT devices. For example, the TP-Link smart light bulbs do

not use any hub or base station.

34

Chapter 6 Conclusion

The premise that some of the smart home IoT devices currently on the market are not
secure and contain cyber security and/or privacy vulnerabilities was explored. Seven different
devices were analyzed and it was discovered that four out of the seven devices did not encrypt
communication over the WiFi network and could be subject to a man in the middle attack. This
is a privacy vulnerability as it can leak data that can be used by an attacker when the user is
home or away. Since only four devices were analyzed, definitive proof that this is an industry
wide problem cannot be obtained from this analysis, however more than likely there are
additional smart home IoT devices available for purchase that contain this same privacy
vulnerability. A solution for two different types of smart home loT architectures were discussed
and recommended as a solution to this vulnerability. Both solutions include encrypting
communication data so that the contents are not visible to an attacker in order to protect the
privacy of the user. This will prevent the leakage of user data from the loT smart home devices

that have otherwise improved the lives of many people.

35

Appendix A: Collected Data from Smart Home IoT Devices
This appendix contains recorded data that was collected from the smart home IoT devices

that were analyzed for this paper. This appendix is organized by device.

A.1 TP-Link LED Smart Light Bulb Recorded Data
The screenshots below contain the recorded data for the TP-Link smart light bulb. Figure
A-1 contains the binary data that is transmitted from the smartphone to the TP-Link LED smart
light bulb in order to turn it on. Figure A-2 contains the binary data that is transmitted from the

smart light bulb to the smartphone after the light has been turned on. This is the response from

the smart light bulb.

O

0
16
32
48
64
80

O
00000053DOF281ECSDFF8BE78EE88DA3
CAASD1FF8CE180F286E491FDOFB1DDB4
D3BBCFA6C8AFDCBOCBBDD4B7D2FOCABL
93E795F49AE980F49DF29CC3AFC6A1CY
BDE291E584F@95B78DF6D4BBDS8AESS3
ESC7FDCCB1CCB1

0 out of 87 bytes

bulb1_on_smartphone_only

S-UAI¢ aAéEcE

o "a-AUU%E "lt>Y¥

?p»@<mAQ‘ T “e +

1ATUSEAUGUGY@BA°..

0,&AN&iYc" 2’ GAE
A« A+A+

Figure A-1: Turn Smart Light Bulb On (From Smartphone)

O
0
16
32
48
64
80
96
112
128
144
160

Figure A-2 Turn Smart Light Bulb On Response (From Light Bulb)

O
|000000AADOF281EC80FF88E78EE880A3
CAASD1FF8CE180F286E491FDOFB1DDB4
D3BBCFAGC8AFDCBICBBDD4B7D2FOCABL
93E795F49AE980F49DF29CC3AFCEA1(CY
BDE291E584F0@95B78DF6D4BBDS8AESS3
ESC7FDCCE@C2AFCOA4C1E3DOFBISFA8S
ES84E8CAE6C4ACDIBCOEA494B89AEO88
FC89FBOAEES7E886A49EAE82AOC3ACCO
AFDD82F693FESEAC96A493A393BFODFF
8DE483EBIFF194E794B68CBD8DBDO18B3
D6A4D68OEASSE184A69CACDIACDL

0 out of 174 bytes

36

M bulb1_on_response

™-0AI¢"GAéEcE
o-"a.-AlU%e "Ut>¥
"pqr@nAQ Y “e +
1AiUGEAUGUGYBA® ..
0,eAN&iYc" ¢ 9’ GAE
A«"Ai“gi§inv.i.a
ANE Ef-Yeus§ifioEa
6" 60aEUSGACTY " ;
@>C"1, é"n§ifigu”
ckEiu0iAtoancne
+§+aI0-NJG~-"-

Figure A-3 contains the binary data transmitted from the smartphone to the TP-Link LED
smart light bulb in order to turn it off. The response binary data from the TP-Link LED smart

light bulb after it has been turned off is shown in Figure A-4.

0| 00000053DOF281ECSDFF8BE78EES8DA3

16
32
48
64
80

CAASD1FF8CE180F286E491FDOFB1DDB4
D3BBCFA6C8AFDCBOCBBDD4B7D2FACABL
93E795F49AE980F49DF29CC3AFCEA1CO
BDE291E584F@95B78DF6D4BBDS8AESS3
ESC7FDCDBOCDBO

87 out of 87 bytes

bulb1_off_smartphone_only

S-UAI¢ aAéEcE

o "a-AUU%eé "tt>¥

"pqn@cmAN‘ T “e +

1ATUSEAUGUGY@A®...

0,&AN&iYc" ¢ 2’ GAE
A« Dol

Figure A-3 Turn Smart Light Bulb Off (From Smartphone)

0]
0
16
32
48
64
80
96
112
128
144
160
176

Figure A-4 Turn Smart Light Bulb Off Response (From Light Bulb)

@
000000BBDOF281ECSDFF8BE78EE88DA3
CAASD1FF8CE180F286E491FDOFB1DDB4
D3BBCFA6C8AFDCBICBBDD4B7D2F@CABL
93E795F49AE980F49DF29CC3AFCEALCO
BDE291E584F@95B78DF6D4BBDS8AESS3
ESC7FDCDE1C3A7C1BSEA8SEBB4C7B3D2
A6C3E1DBAGS2EF80OE481A399BBDSBACS
ASC4A88AA684ECOOFCDEE4D4F8DAASCS
BCCOBBDAAEC7A8C6E4DEEEC2E@83EC80
EFODC2B6D3BECEECDGE4D3E3D3FFDDBF
CDA4(C3ABDFB1D4A7D4F6CCFDCDFD8OAC
8EEB99EBB4D7B8DCBI9BA191ECI1EC

0 out of 181 bytes

37

M bulb1_off_response

°_UAI¢ aAéEcE
o "a.-AUU%e "Ut>¥
Popqn@cmAQ T “e +
i1ATUSEAUGUGY@A° ..
0,eAN&iYc" 2’ GAE
A 0-yRjuI0I¥«®
W -€tCOA%BAL6°’ [»
of@aINIo A% ~/O»
°.%/k«®A%R0-FEIA
0u-0"eCi+%",” >p
0§y A+R*"A"0"A"
éioivoqemoceiel

A.2 Philips Hue Smart Light Bulb Recorded Data
This section contains the data that was recorded when analyzing the Philips Hue smart
light bulb. Since it was found that data is transmitted in plain text with the Philips Hue
application, both the binary data and ASCII version of the data is shown. Figure A-5 contains the
binary data that is transmitted from a smartphone to the Philips Hue hub to turn the light bulbs in
the group on. The ASCII version of that same data is then shown in Figure A-6.

O @ turn_light_on_bin_1

0
16
32
48
64
80
96

112
128
144

505554202F6170692F4854657A6F504A
6B743936334(4266736(68674870447A
6C665A6172764D76574E536477426755
7A2F67726F7570732F312F616374696F
6E20485454502F312E310DOA486F 7374
3A203139322E3136382E302E3130380D
0A4163636570743A202A2F 2AODOA436F
6E74656E742D547970653A206170706C
69636174696F6E2F6A736F6EODOA436F
6E74656E742D4C656E6774683A203131

PUT /api/HTezoP]
kt963LBfslhgKpDz
1fZarvMvWNSdwBgU
z/groups/1/actio
n HTTP/1.1 Host
: 192.168.0.108
Accept: */* (o
ntent-Type: appl
ication/json (o
ntent-Length: 11

160 | ODOAGDOA7B226F6E223A747275657D

0 out of 175 bytes

{"on":true}

Figure A-5 Turn Smart Light Bulb On Binary Data (From Smartphone)

PUT /api/HTezoPJkt963LBfslhgKpDzlfZarvMviWNSdwBgUz/groups/1l/action HTTP/1.1
Host: 192.168.0.108

Accept: */*
Content-Type:
Content-Length:

application/json
11

{"on":true}:true}
Figure A-6 Turn Smart Light Bulb On ASCII Data (From Smartphone)
Once the smart light bulb has received the command from the smartphone to turn on, it

issues a response. The binary data for the response can be seen in Figure A-7. Figure A-8 shows

the ASCII version of the response data in plain text.

38

[J
0
16
32
48
64
80
96
112
128
144
160
176
192
208
224
240
256
272
288
304
320
336
352
368
384
400
416
432
448

[J
H854S4502F312E3120323030204F480D
0A43616368652D436F6E74726F6C3A20
6E6F2D73746F72652C206E6F2D636163
68652(206D7573742D726576616(6964
6174652C20706F73742D63686563683D
302(C207072652D63686563683D300D0A
507261676D613A206E6F2D6361636865
ODOA457870697265733A204D6FEE2(20
312041756720323031312030393A3030
3A303020474D540D0A436F6EGEES6374
696F6E3A20636C6F 73650D0A41636365
73732D436F6E74726F6(2D4D61782D41
67653A20333630300D0A416363657373
2D436F6E74726F6C2D416C6C6F772D4F
726967696E3A202A0DOA416363657373
2D436F6E74726F6C2D416C6C6F772D43
726564656E7469616(C733A2074727565
0ODOA4163636573732D436F6E74726F6C
2D416C6C6F772D4D6574686F64733A20
504F53542(204745542C204F5054494F
4E532(C205055542(C2044454(4554452C
20484541440D0A4163636573732D436F
6E74726F6(2D416C6C6F772D48656164
6572733A20436F6E74656E742D547970
650D0A436F6E74656E742D747970653A
206170706(69636174696F6E2F6A736F
6EODOAGDOASB7B227375636365737322
3A7B222F67726F7570732F312F616374
696F6E2F6F6E223A747275657D7D5D

0 out of 463 bytes

M turn_light_on_response_bin_1

HTTP/1.1 200 OK
Cache-Control:
no-store, no-cac
he, must-revalid
ate, post-check=

@, pre-check=0
Pragma: no-cache
Expires: Mon,

1 Aug 2011 ©09:00
:00 GMT Connect
ion: close Acce
ss-Control-Max-A
ge: 3600 Access
-Control-Allow-0
rigin: * Access
-Control-Allow-C
redentials: true
Access-Control
-Allow-Methods:
POST, GET, OPTIO
NS, PUT, DELETE,
HEAD Access-Co
ntrol-Allow-Head
ers: Content-Typ
e Content-type:
application/jso
n [{"success"
:{"/groups/1/act
ion/on":truet}}]

Figure A-7 Turn Smart Light Bulb On Response Binary Data (From Light Bulb)

HTTP/1.1 200 OK
Cache-Control:
check=0

Pragma: no-cache
Expires: Mon, 1
Connection: clos

Access-Control-Max-Age:

no-store, no-cache, must-revalidate,

Aug 2011 09:00:00 GMT
e
3600

post-check=0,

pre-

Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true
Access-Control-Allow-Methods: POST, GET, OPTIONS,
Access-Control-Allow-Headers: Content-Type
Content-type: application/json

PUT, DELETE, HEAD

[{"success":{"/groups/l/action/on":true}}]

Figure A-8 Turn Smart Light Bulb On Response ASCII Data (From Light Bulb)

39

Figure A-9 contains the data transmitted from the smartphone to the Philips Hue hub to
turn the smart light bulbs off. The ASCII version of the data is then shown in Figure A-10.

Variable “on” is set to false, which communicates to the lights to turn off.

O
1)
16
| 32
48
64
80
9%
112
1128
[144
160

O turn_light_off_bin_1

505554202F6170692F4854657A6F 504A
6B743936334(4266736(68674B70447A
6C665A6172764D76574E536477426755
7A2F67726F7570732F312F616374696F
6E20485454502F312E310D0A486F 7374
3A203139322E3136382E302E3130380D
0A4163636570743A202A2F2A0DOA436F
6E74656E742D547970653A206170706C
69636174696F6E2F6A736F6EODOA436F
6E74656E742D4C656E6774683A203132
@DOAGDOA7B226F6E223A66616C73657D

PUT /api/HTezoPl]
kt963LBfslhgKpDz
1fZarvMvWNSdwBgU
z/groups/1/actio
n HTTP/1.1 Host
: 192.168.0.108
Accept: */* (o
ntent-Type: appl
ication/json Co
ntent-Length: 12
{"on":false}

176

0 out of 176 bytes

Figure A-9 Turn Smart Light Bulb Off Binary Data (From Smartphone)

PUT /api/HTezoPJkt963LBfslhgKpDzlfZarvMviWNSdwBgUz/groups/1l/action HTTP/1.1
Host: 192.168.0.108

Accept: */*
Content-Type:
Content-Length:

application/json
12

{"on":false}
Figure A-10 Turn Smart Light Bulb Off ASCII Data (From Smartphone)
Figure A-11 contains the binary response data from the Philips Hue hub after the smart

light bulbs have been turned off. Figure A-12 shows the ASCII version of the same data in plain

text. It shows the action that was performed on group 1 and communicates that it was successful.

40

0]
0
16
32
48
64
80
%6
112
128
144
160
176
192
208
224
240
256
272
288
304
320
336
352
368
384
400
416
432
448
464

Figure A-11 Turn Smart Light Bulb Off Response Binary Data (From Philips Hue Hub)

HTTP/1.1 200 OK
Cache-Control:
check=0

Pragma: no-cache
Expires: Mon,
Connection:

@
485454502F312E3120323030204F480D
0A43616368652D436F6E74726F6C3A20
6E6F2D73746F72652C206E6F2D636163
68652(206D7573742D726576616(6964
6174652C20706F73742D63686563683D
302C207072652D63686563683D300DOA
507261676D613A206E6F2D6361636865
0ODOA457870697265733A204D6F6E2C20
312041756720323031312030393A3030
3A303020474D540DOA436F6EGEES6374
696F6E3A20636C6F73650D0A41636365
73732D436F6E74726F6C2D4D61782D41
67653A20333630300D0A416363657373
2D436F6E74726F6C2D416C6C6F772D4F
726967696E3A202A0D0A416363657373
2D436F6E74726F6C2D416C6C6F772D43
726564656E7469616(C733A2074727565
0ODOA4163636573732D436F6E74726F6C
2D416C6C6F772D4D6574686F64733A20
504F53542(204745542(204F5054494F
4E532(C205055542(C2044454(4554452C
20484541440D0A4163636573732D436F
6E74726F6C2D416C6CE6F772D48656164
6572733A20436F6E74656E742D547970
650D0A436F6E74656E742D747970653A
206170706(69636174696F6E2F6A736F
6EODOAGDOASB7B227375636365737322
3A7B222F67726F7570732F312F616374
696F6E2F6F6E223A66616C73657D7D5D

0 out of 464 bytes

no-store, no-cache, must-revalidate,

1 Aug 2011 09:00:00 GMT
close
Access-Control-Max-Age:

3600

M turn_light_off_response_bin_1

HTTP/1.1 200 OK
Cache-Control:
no-store, no-cac
he, must-revalid
ate, post-check=

@, pre-check=0
Pragma: no-cache
Expires: Mon,

1 Aug 2011 ©09:00
:00 GMT Connect
ion: close Acce
ss-Control-Max-A
ge: 3600 Access
-Control-Allow-0
rigin: * Access
-Control-Allow-C
redentials: true
Access-Control
-Allow-Methods:
POST, GET, OPTIO
NS, PUT, DELETE,
HEAD Access-Co
ntrol-Allow-Head
ers: Content-Typ
e Content-type:
application/jso
n [{"success"
:{"/groups/1/act
ion/on":false}}]

post-check=0,

pre-

Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true
Access-Control-Allow-Methods: POST, GET, OPTIONS,
Access-Control-Allow-Headers: Content-Type
Content-type: application/json

PUT, DELETE, HEAD

[{"success":{"/groups/l/action/on":false}}]

Figure A-12 Turn Smart Light Bulb Off Response ASCII Data (From Light Bulb)

41

A.3 Sengled Element Classic Smart Light Bulb Recorded Data
This section contains recorded data from the analysis of the Sengled Element Classic
smart light bulbs. Since the Sengled Element Classic encrypts transmitted data, only examples of
the binary data are shown.
Figure A-13 shows an example of the data transmitted between a smartphone and the
Sengled server. As is shown in the screenshot from Wireshark, the detected protocol is TLSv1.2,

meaning that all transmitted data is encrypted.

Destination Protocol
192.168.0.100

192.168.0.100

Source
us.cloud.sengled.com

Time
92.542265
92.562884

Length

48 94, 343009 .108.9. us.cloud.seng led.com v1. :
14804 94.343826 192.168.0.100 us.cloud.sengled.com TLSv1.2 293
14819 94.429810 us.cloud.sengled.com 192.168.0.100 TCP 170

Figure A-13 Communication between Smartphone and Sengled Server
The next two screenshots (figure A-14 and figure A-15) contain binary data transmitted
from the server to the Sengled Element Classic hub to turn the smart light bulbs off. Though the
commands were the same, different binary data was transmitted each time suggesting that the
TCP packets are encrypted. It can be seen that the binary data in figure A-14 and figure A-15 are
different.

O O M turn_lights_on_196s

0| 17030300BA000000000000001A1DEA9L 1) is
16 | C9C65390298CDCFO848E6F83223560AA | | ..ASEé)a<aNéoE"S ™™
32| 71488F529AB6A86AS4AD7A199ACF54C7 | [qHERGOB T2z OeT«
48 | FF65BF2A2A09(C0622B32B5322C5A3953 | | "eg** ;b+2u2,Z9S
64 | 83A492571B10AB7462816DF6EFE925DC | |[ESIW “tbAm~01i%<
80 |4115E3D13CD2EDOA2BSEFCOE2S611E7D | (A ,,—<“I +A (%a }
96| 1FBF7E4ADEES2E3D8E21AC49AA154B195 || o~MOR,,y, fo°T+i

112
128
144
160
176

Figure A-14 Turn Smart Light Bulb On Binary Data (Example 1)

D193455B3A646B9E77B846003544AECCL
2A9629E404F21B407D43FAD3ADCO7CD9
7C7E753COB12EDIFEAARS5857E450BB5
CA7232F1D06OFA88057685F55AEA19CC
8ASCF782069931815CEEQ72437EBAD

0 out of 191 bytes

42

-1E[:dkaw¥" TJI;
*i1)% U @3C 7=; 1Y
l~u< IGItUO~E p
r20-""a vO1zi A
a\"C 61A\0 $71

[J
0
16
32
48
64
80
96
112
128
144
160
176

@ M turn_lights_on_234s
|170303008A%0000m23364(3€

FODZ2E7FCS88EGEQFF7F683050C72EQ88
04DF(61008477C6D6045DDD260278ACE
BEBCA8D(4833CFES66E14429F3DFADA4
EBD369(431E1E060BD484A6ADBE3B75A
SF66EEDSOESBBI7AC3AGDECOFOFS6F77
DE8OF45B41C409E032A71E75432A5A34
28(C6262DCEBSOAAFDEF1BOAA114BCEZB
4BBB4D1E538AC66213B23F921257EA69
822FBDOAS1ESA2AF818D66(C98CA89878
6B74DF8F81D03182EASE856D06C8FC47
47DF7EQAD7528B9229868862DF8492

0 out of 181 bytes

) #6L<
““A Xén ""E rta
A GIm E>“'aC
@°®<H3eAf-D)Uf=§
I7if1-1 0Hlje,¥Z
_fE’ [mzyt:;er10w
RAULAF $2B uC*Z4
(A&-Cp B+0e™ KE+
K°M SaAb <?1 Wit
C/N6QA¢PACT...aRdX
ktfleA-1CIA0m » .G
GA~ Rai)UabfINi

Figure A-15 Turn Smart Light Bulb On Binary Data (Example 2)
The next two figures contain screenshots of the transmitted binary data from the Sengled
server to turn the smart light bulbs off. Once again, the transmitted data is different each time,

which is consistent with the Sengled Element Classic encrypting transmitted data.

O [] M turn_lights_off_137s

0
16
32
48
64
80
96

112
128
144
160
176

Figure A-16 Turn Smart Light Bulb Off Binary Data (Example 1)

17030300BA0000000000000010BEDESA
25D7628(68(67365CF2CECS25E58301E
62E62BAD5BC701274782A49F9CF328D9
0C4F821DC0420A274CE2CAE79DCO3E30
C4616DAA9C87F75BB4ES535A70E3DBSAF
3A103FC206EA4C90ECB14243B8908AD2
46968F078CES623659659F F1ED4@BAGA
6DD1723E4683496DE4F7A8A8EQES1B69
26A6B7D91D51255B9B3AA1AA2C4CARGE4
38DE391567B@DCACD8FBF41BBA973AD9
8042B813(826E838D30D265402C1A37E
EAF722DE8D9936999734553CF8F498

0 out of 181 bytes

43

i) efio
%obahAsee, IRAXO
bE+=[« 'G<§uaU+Y

0C ;B 'L, Au;>0
fam™aa~ [¥YASR =p@
: ?7- ILel+BCéa“
Fiié aAb6YeulOle[j
m-r>FEIm&~@REA i
&YIY Q¥[6:°™,Lt%
8fi9 ge< y°U [6:Y
ABJ] »&E8” &T £~
1" "fc6606064U< Ud

[
0
16
32
48
64
80
96
112
128
144
160
176

Figure A-17 Turn Smart Light Bulb Off Binary Data (Example 2)

This section contains the recorded data that was captured when analyzing the Belkin
WeMo smart plug. As mentioned in the main text, transmitted data in the Belkin WeMo system
can be viewed in plain text so both the binary data and the ASCII version of the data shown.

Figure A-18 shows an example of the binary data that is transmitted by a smartphone in order to

O M turn_lights_off_182s
|170303008A0000000000000017B82FDl

CFOE98EACBO329544BF599EGAES150BC
57DOF24E2E82A63B95CC388BAF163E1A
FAASBA723820531368619D6F0D20282E
0767D066FO7B359DCOSFEBFE68E2181C
034BD6B42275DF584ED42619190373C1
415233128F617F70DAC1217E9C892389
89F37AF54AFOF40F4774F55306DASB65
C949E4AA9B0O2C3C053A822F56872BE7D
2CAD370E242373FD289647899906EE18
F@54D64FFE867FFOSB1OEECDBS7FC23C
617ED5518F79D@D7FIDC15B8ABDFBE

0 out of 181 bytes

g -
@ 60IA)TK16EAAP®
W-UN.CY;1A8G0 >
‘efr8 S hauo (.
g-fe{50;_k"h,
K+¥"ufIXN‘& sj
AR3 éa p/;!~Uua#a
alz1)eU Gt1S /[e
LI8™0 ;S@"1hre}
,27 $#s"(AGas 0
«T=0. U «[O0p -<
a~’Qéy-¢"¢< [fle

A.4 Belkin WeMo Smart Plug Recorded Data

turn the Belkin WeMo smart plug on.

44

O
0
16
32
48
64
80
96
112
128
144
160
176
192
208
224
240
256
272
288
304
320
336
352
368
384

416
432
448
464
480
496
512
528
544
560
576
592
608

[] turn_plug_on_req_bin_117

|504F5354202F75706E702F636F6E?472

6F6C2F62617369636576656E74312048
5454502F312E310D0A436F6E74656E74
2D547970653A20746578742F786D6(C3B
20636861727365743D227574662D3822
ODOA534F4150414354494F4E3A202275
726E3A42656C6B696E3A736572766963
653A62617369636576656E743A312353
657442696E6172795374617465220D0A
436F6E74656E742D4C656E6774683A20
3338330D0A484F53543A203139322E31
36382E302E3130353A34393135330D0A
557365722D4167656E743A2043796265
724761726167652D485454502F312E30
@DOAGDOA3C3F786D6C2076657273696F
6E3D22312E302220656E636F64696E67
3D227574662D38223F3EGA3C733A456E
76656C6F706520786D6C6E733A733D22
687474703A2F2F736368656D61732E78
6D6C736F61702E6F72672F736F61702F
656E76656(6F70652F2220733A656E63
6F64696E675374796(653D2268747470
3A2F2F736368656D61732E786D6C736F
61702E6F72672F736F61702F656E636F
64696E672F223E0A203C733A426F6479
3EQA20203C753A53657442696E617279
537461746520786D6C6E733A753D2275
726E3A42656(C6B696E3A736572766963
653A62617369636576656E743A31223E
0A2020203(C42696E6172795374617465
3E313C2F42696E61727953746174653E
0A2020203C4475726174696F6E3E3C2F
4475726174696F6E3EQA2020203C456E
64416374696F6E3E3C2F456E64416374
696F6E3EQA2020203C55444E3E3C2F55
444E3E0A20203C2F753A53657442696E
61727953746174653E0A203C2F733A42
6F64793EQA3C2F733A456E76656C6F70
653E0A

0 out of 611 bytes

POST /upnp/contr
ol/basiceventl H
TTP/1.1 Content
-Type: text/xml;
charset="utf-8"
SOAPACTION: "u
rn:Belkin:servic
e:basicevent:1#S
etBinaryState"
Content-Length:
383 HOST: 192.1
68.0.105:49153
User-Agent: Cybe
rGarage-HTTP/1.0
<?xml versio
n="1.0" encoding
="utf-8"?> <s:En
velope xmlns:s="
http://schemas.x
mlsoap.org/soap/
envelope/" s:enc
odingStyle="http
://schemas.xmlso
ap.org/soap/enco
ding/"> <s:Body
> <u:SetBinary
State xmlns:u="u
rn:Belkin:servic
e:basicevent:1">
<BinaryState
>1</BinaryState>
<Duration></
Duration> <En
dAction></EndAct
ion> <UDN></U
DN> </u:SetBin
aryState> </s:B
ody> </s:Envelop
e>

Figure A-18 Turn On Smart Plug Binary Data (From Smartphone)
The following screenshot, figure A-19, contains the ASCII version of the data from
figure A-18. It can be seen in figure A-19 that the data transmitted from the smartphone is in an
XML SOAP format and has set the “BinaryState” variable to “1” in order to turn the smart plug

on.

45

POST /upnp/control/basiceventl HTTP/1.1

Content-Type: text/xml; charset="utf-8"

SOAPACTION: "urn:Belkin:service:basicevent:l#SetBinaryState"
Content-Length: 383

HOST: 192.168.0.105:49153

User-Agent: CyberGarage-HTTP/1.0

<?xml version="1.0" encoding="utf-8"?>
<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<s:Body>
<u:SetBinaryState xmlns:u="urn:Belkin:service:basicevent:1">
<BinaryState>1</BinaryState>
<Duration></Duration>
<EndAction></EndAction>
<UDN></UDN>
</u:SetBinaryState>
</s:Body>
</s:Envelope>

Figure A-19 Turn On Smart Plug ASCII Data (From Smartphone)

46

Figure A-20 contains the binary data transmitted from a smartphone in order to turn the

smart plug off. The ASCII version of this data is then shown in figure A-21, which is in the

XML SOAP format and sets the “BinaryState” variable to “0.”

[J

0
16
32
48
64
80
96
112
128
144
160
176
192
208
224
240
256
272
288
304
320
336
352
368
384

416
432
448
464
480
496
512
528
544
560
576
592
608

Figure A-20 Turn Off Smart Plug Binary Data (From Smartphone)

[] turn_plug_off_reg_bin_119

504F5354202F75706E702F636F6E7472
6F6C2F62617369636576656E74312048
5454502F312E310D0A436F6E74656E74
2D547970653A20746578742F786D6(3B
20636861727365743D227574662D3822
@ODOAS534F4150414354494F4E3A202275
726E3A42656C6B696E3A736572766963
653A62617369636576656E743A312353
657442696E6172795374617465220D0A
436F6E74656E742D4C656E6774683A20
3338330D0A484F53543A203139322E31
36382E302E3130353A34393135330D0A
557365722D4167656E743A2043796265
724761726167652D485454502F312E30
@ODOAGDOA3C3F786D6C2076657273696F
6E3D22312E302220656E636F64696E67
3D227574662D38223F3EGA3C733A456E
76656(6F706520786D6C6E733A733D22
687474703A2F2F736368656D61732E78
6D6C736F61702E6F72672F736F61702F
656E76656(6F70652F2220733A656E63
6F64696E675374796(653D2268747470
3A2F2F736368656D61732E786D6C736F
61702E6F72672F736F61702F656E636F
64696E672F223E0A203C733A426F6479
3EQA20203(C753A53657442696E617279
537461746520786D6C6E733A753D2275
726E3A42656(C6B696E3A736572766963
653A62617369636576656E743A31223E
0A2020203(42696E6172795374617465
3E303C2F42696E61727953746174653E
0A2020203C4475726174696F6E3E3C2F
4475726174696F6E3E0A2020203C456E
64416374696F6E3E3C2F456E64416374
696F6E3EOA2020203C55444E3E3C2F55
444E3EQA20203C2F753A53657442696E
61727953746174653E0A203C2F733A42
6F64793EGA3C2F733A456E76656C6F 70
653EQA

217 out of 611 bytes

47

POST /upnp/contr
ol/basiceventl H
TTP/1.1 Content
-Type: text/xml;
charset="utf-8"
SOAPACTION: "u
rn:Belkin:servic
e:basicevent:1#S
etBinaryState"
Content-Length:
383 HOST: 192.1
68.0.105:49153
User-Agent: Cybe
rGarage-HTTP/1.0
<?xml versio
n="1.0" encoding
="utf-8"?> <s:En
velope xmlns:s="
http://schemas.x
mlsoap.org/soap/
envelope/" s:enc
odingStyle="http
://schemas.xmlso
ap.org/soap/enco
ding/"> <s:Body
> <u:SetBinary
State xmlns:u="u
rn:Belkin:servic
e:basicevent:1">
<BinaryState
>0</BinaryState>
<Duration></
Duration> <En
dAction></EndAct
ion> <UDN></U
DN> </u:SetBin
aryState> </s:B
ody> </s:Envelop
e>

POST /upnp/control/basiceventl HTTP/1.1
charset="utf-8"

Content-Type:
SOAPACTION:

Content-Length:
192.168.0.105:49153
CyberGarage-HTTP/1.0

HOST:
User—-Agent:

text/xml;
"urn:Belkin:service:basicevent:1l#SetBinaryState"
383

<?xml version="1.0" encoding="utf-8"?>
<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<s:Body>

<u:SetBinaryState xmlns:u="urn:Belkin:service:basicevent:1">
<BinaryState>0</BinaryState>

<Duration></Duration>

<EndAction></EndAction>
<UDN></UDN>
</u:SetBinaryState>

</s:Body>

</s:Envelope>

Figure A-21 Turn Off Smart Plug ASCII Data (From Smartphone)

This section contains the recorded data that was collected after analyzing the Vine WiFi

A.5 Vine WiFi Thermostat Recorded Data

thermostat. The Vine WiFi thermostat system uses a server to route communication from a

smartphone to the thermostat. Communication between the smartphone and the server is

encrypted using the TLSv1.2 protocol. Communication between the smartphone and the

xingconnected.com server is shown in figure A-22.

31105
31109
31110
31119
31135
31139
31143

|
|
|
|
i
|
|
| 31144

Time

254,
254,
254,
254,
254,
254,
254,
254,

269820
271902
272046
308235
403087
404117
406603
406690

Source

xingconnected.

192.168.0.103
192.168.0.103
192.168.0.103

xingconnected.

192.168.0.103
192.168.0.103
192.168.0.103

com

com

Destination
192.168.0.103

xingconnected.
xingconnected.
xingconnected.

192.168.0.103

xingconnected.
xingconnected.
xingconnected.

com
com
com

com
com
com

Protocol Length
TLSv1.2 717
TCP 150
TCP 154
TLSv1.2 345
TLSv1.2 205
TCP 154
TLSv1.2 557
TLSv1.2 361

Figure A-22 Screenshot of Communication Between Smartphone and Vine Server

Prior to performing a firmware update, the Vine server transmitted data in plain text. Data from
before and after the firmware update are shown in this section. Figure A-23 shows the binary

data transmitted from the server to turn the WiFi thermostat on and Figure A-24 shows that same

data in ASCII format. In the transmitted data, it can be seen that the server set the “power”

variable to “1.” There is also a packet counter and timestamp.

48

O O M turn_smart_therm_on_125s

0| 81727B22636F756E74223A223538222C | |Ar{"count" : "58",
16| 22745F636F756E74223A2230222C2263 | | "t_count":"0","c
32| 6D64223A226465766963652F706F7765 | [md" : "device/powe
48| 72222(226465766963655F6964223A22 | | r", "device_id":"
64 | 383435646437353064376434222(2274 | | 845dd750d7d4" , "t
80| 696D657374616D70223A313530383439 | | imestamp" : 150849
96|343139363733382(22706F776572223A || 4196738, "power" :

1122231227D "1"}

0 out of 116 bytes

Figure A-23 Turn WiFi Thermostat On Binary Data (Before Firmware Update)

{"count":"58","t count":"0","cmd":"device/power", "device id":"845dd750d7d4"
,"timestamp":1508494196738, "power":"1"}

Figure A-24 Turn WiFi Thermostat On ASCII Data (Before Firmware Update)
Figure A-25 shows the binary data transmitted from the server to the Vine WiFi
thermostat in order to turn it off. Figure A-26 then shows the ASCII version of that data.

O @ M turn_smart_therm_off_156s

] |81727822636F756E74223A223S39222C Ar{"count":"59",
16| 22745F636F756E74223A2230222(C2263 | | "t_count":"0@","c
32 | 6D64223A226465766963652F706F7765 | |[md" : "device/powe
48| 72222(226465766963655F6964223A22 | | r" , "device_id":"
64| 383435646437353064376434222(2274 | | 845dd750d7d4", "t
80 | 696D657374616D70223A313530383439 | | imestamp" : 150849
96| 343232373534382(22706F776572223A | | 4227548, "power" :

112|2230227D """}

0 out of 116 bytes

Figure A-25 Turn WiFi Thermostat Off Binary Data (Before Firmware Update)

{"count":"59","t count":"0","cmd":"device/power", "device id":"845dd750d7d4"
,"timestamp":1508494227548, "power":"0"}

Figure A-26 Turn WiFi Thermostat Off ASCII Data (Before Firmware Update)

The following two figures contain the data transmitted from the server in order to change
the weekly schedule. This data was recorded prior to updating the firmware on the Vine WiFi
thermostat. Figure A-27 shows the binary data transmitted from the server to the WiFi thermostat
and figure A-28 shows the ASCII version of the same data. As mentioned in the main text (and
shown in figure A-28) the weekly schedule can be viewed in plain text. The variables “item1”
through “item7” contain the days of the week, where item1 is Monday. Variable “t” contains the
temperature in degrees Fahrenheit and “h” contains the time of day in minutes. So for example, if
“t” is equal to 360, then the temperature change would take effect at 6 am. If this data were to be

intercepted, an attacker would know the entire thermostat weekly schedule.

49

S

32
64
96
128
160
192
224
256
288
320
352
384
416
448
480
512
544
576
608
640
672
704
736
768
800
832
864
896
928
960
992
1024
1056
1088
1120
1152
1184
1216
1248

[]

817EQ4F37B22636F756E74223A223138
2(22636D64223A226465766963652F73
6465766963655F6964223A2238343564
74616D70223A31353038363038373136
6C696D6974223A2236302D3835222(22
222(227374617465223A312(C226D6F64
617461223A7B22756E6974223A224622
2230222(2274223A223835222(226822
74223A223738222(2268223A22333630
223835222(2268223A22343830227D2C
222(2268223A2231303230227D2(C7822
2268223A2231333230227D5D2C226974
2274223A223835222(2268223A223022
3738222(2268223A22333630227D2C78
2(2268223A22343830227D2(78226322
223A2231303230227D2C7B2263223A22
2231333230227D5D2C226974656D7333
223835222(2268223A2230227D2C7B22
2268223A22333630227D2C782263223A
3A22343830227D2(7B2263223A223022
303230227D2(782263223A2230222C22
30227D5D2C226974656D7334223A5878
2(2268223A2230227D2(7B2263223A22
22333630227D2(782263223A2230222C
30227D2(7B2263223A2230222(227422
7D2(C78B2263223A2230222C2274223A22
2(226974656D7335223A5B7B2263223A
3A2230227D2(C782263223A2230222C22
227D2C7B2263223A2230222C2274223A
7B2263223A2230222(2274223A223738
63223A2230222(2274223A223835222C
656D7336223A5B7B2263223A2230222C
7D2(78B2263223A2230222C2274223A22
2263223A2230222(2274223A22363022
3A2230222(2274223A223738222(2268
222(2274223A223631222(2268223A22
74223A223835222(2268223A22313332
2263223A2230222(2274223A22383522
30222(2274223A223738222(2268223A
2274223A223835222(2268223A223133

M smart_therm_update_sched_14s
31222(22745F636F756E74223A223022
65745F6D6F64656CSF696E666F222(22
6437353064376434222(2274696D6573
3130342(226D6F6465223A2231222C22
6E616D65223A2253756D6D65722D3031
656C5F6964223A3139353539322(2264
2(226974656D7331223A5B7B2263223A
3A2230227D2C7B2263223A2230222C22
227D2(7B2263223A2230222(2274223A
7B2263223A2230222(2274223A223738
63223A2230222(2274223A223835222C
656D7332223A5B7B2263223A2230222C
7D2(7B2263223A2230222(2274223A22
2263223A2230222(2274223A22383522
3A2230222C2274223A223738222(2268
30222(2274223A223835222(2268223A
223A5B7B2263223A2230222(2274223A
63223A2230222(2274223A223738222C
2230222(2274223A223835222(226822
202274223A223738222(2268223A2231
74223A223835222(2268223A22313332
2263223A2230222(2274223A22383522
30222(2274223A223738222(2268223A
2274223A223835222(2268223A223438
3A223738222(2268223A223130323022
3835222(2268223A2231333230227D5D
2230222(2274223A223835222(226822
74223A223738222(2268223A22333630
223835222(C2268223A22343830227D2C
222(2268223A2231303230227D2(C7B22
2268223A2231333230227D5D2C226974
2274223A223835222(2268223A223022
3738222(2268223A22343830227D2C7B
202268223A22383430227D2C7B226322
223A22383535227D2(7B2263223A2230
383730227D2C7B2263223A2230222C22
30227D5D2(226974656D7337223A5B78
2(2268223A2230227D2(C7B2263223A22
22343830227D2(7B2263223A2230222C
3230227D5D7D7D

Ooutof 1271 bytes

A~ U{"count":"181","t_count":"0"
,"cmd" : "device/set_model_info","
device_id":"845dd750d7d4","times
tamp":1508608716104, "mode":"1","
limit":"60-85","name" :"Summer-01
","state":1,"model_id":195592,"d
ata":{"unit":"F","items1":[{"c":
"0" 5 Iitll : I|85" 5 llh" : "0"} 5 {"cll : "0" , "
t":"78","h":"360"},{"c":"0","t":
"85" 5 llhll : ll480"},{"c" : "0" 5 "t" : ll78
", "h":"1020"},{"c":"0","t":"85",
"h":"1320"}],"items2": [{"c":"0Q",
"t":"85","h":"0"}, {"c":"0", " t" "
78","h":"360"},{"c":"0","t":"85"
,"h":"480"}, {"c":"0","t":"78","h
":"1020"},{"c":"@","t":"85","h":
"1320"}],"items3":[{"c":"0@","t":
"85","h":"0"},{"c":"0","t":"78",
"h":"360"},{"c":"0","t":"85","h"
:"480"}, {"c":"Q","t":"78","h":"1
020"}, {"c":"@","t":"85","h":"132
0"}] 5 llitems4l': [{l'c" : "0" 5 l't" : "85"
,"h "0, {"c":"e","t":"78"," "h":
"360"},{"c":"0@","t":"85","h":"48
0"}, {"c":"0","t":"78","h":"1020"
},{"c":"0","t":"85","h":"1320"}]
,"itemsS": [{"c":"0@","t":"85","h"
"0 Y, {"c":"0","t":"78","h":"360
"}, {"c":"0","t":"85","h":"480"},
{"c":"@","t":"78","h":"1020"}, {"
c":"Q","t":"85","h":"1320"}],"it
ems6":[{"c":"@","t":"85","h":"0Q"
},{"c":"0","t":"78","h":"480"},{
l'c" : "0" 5 l't" : "60" 5 llhll : ll840"},{"c"
"eT,"t":"78","h":"855"},{"c":"0
orEti"e1","h":"870"},{"c":"0","
t":"85","h":"1320"}],"items7": [{
et ,"t":"85","h" "0 "}, {"c":"
Q","t":"78","h":"480"},{"c":"0Q",
"t":"85","h":"1320"}]}}

Figure A-27 Change Weekly Schedule Binary Data (Before Firmware Update)

50

{"count":"181",

"t count":"0",
"cmd":"device/set model info",
"device id":"845dd750d7d4",
"timestamp":1508608716104,
"mode":"1","1limit":"60-85",
"name" : "Summer-01",
"state":1,
"model id":195592,
"data":
{

"unit":"F",

"itemsl":

"o, LT85, "h 0"},
{rcmLmon, e 78", "h":"360"),
{"c"imOM, "L "85, "h" 480"},
{rcmLmon, e 78", "h":"1020"},
{"c"imOm, "L "85", "h":"1320"}],

"items2":

:IIOII’ lltll:ll85ll’ llhll:llOll}’
:IIOII’ lltll:ll78ll’ llhll:ll360ll}’
:IIOII’ lltll:ll85ll’ llhll:ll480ll}’

:IIOII lltll:ll78ll "h":"lOZO"},
:IIOII lltll:ll85ll llhll:lll320"}]’

QQQaaQ

c":"o", """ "85", "h":"0"},
c":"o", """ 78","h":"360"},
et QoMr, """ "85", "h":""480"},
c":"o", "8, "h":"1020"},
c":"o", """ "85","h":"1320"}],
"items4": [

-

5

o)

3

0
e

C 'I"O", "t":"85", "h":"O"},
c"iMO", "t "T8", "h":"360"},
meMimOM, "L :"85", "h": 480"},
c"iTOM, "E":"T8", "h""1020"},
c"imOM, "M "85", "h" 1 "1320"}],

C 'I"O", "t":"85", "h":"O"},
c"iTO", "t "T8", "h":"360"},
meMimOM, "L :"85", "h": 480"},
c"iTOM, "E":"T8", "h""1020"},
c"iTOM, "M "85", "h":"1320"}],

"items6": [
{llcll:llOll’lltll:ll85ll’llhll:lloll}’
{IICII:IIOII’lltll:ll78ll’llhll:ll480ll}’
{"C":"O","t":"60","h":"840"},
{IICII:IIOII’lltll:ll78ll’llhll:ll855ll}’
{IICII:IIOII’lltll:ll61ll’llhll:ll870ll}’
{IICII:IIOII’lltll:ll85ll’llhll:lll320"}]’

c I:IIOII’ lltll:ll85ll’ llhll:llOll}’
IICII:IIOII’ lltll:ll78ll’ llhll:ll480ll}’
CII:IIOII’ lltll:ll85ll’ llhll:lll320"}]

Figure A-28 Change Weekly Schedule ASCII Data (Before Firmware Update)

51

Figures A-29, A-30, and A-31 all contain transmitted data from the server to the Vine
WiFi thermostat after the firmware update had been performed. Figure A-29 contains the data
when the WiFi thermostat is being turned on, figure A-30 contains the data when the WiFi
thermostat is being turned off, and figure A-31 contains the data when the weekly schedule is
being updated. In all three figure it can be seen that there is a “k” variable that contains a number

and then a “v” variable that contains encrypted data.

{"k":"97","v" :"4ABEOEEWaDiPnoP6gf4YIOU3yUyhxWvxGSO+O1lR8+rhnFoTV1QFevcWKr8K3y
PMtSpPIXC895ja/g+HnbxNp/JdFHX8x2Z6V0O0txvaViUBW4DES5XweQ+uyGEfAmbR4ngvuNgKub4sI
1W2AKXtHcwNaphU30YQ=="}

Figure A-29 Turn WiFi Thermostat On ASCII Data (After Firmware Update)

{"k"e"77","v" i "QERh2U6d+vs6thoKhMMZUf11bWcovEFvNK1341UBfU6zAaTROOEN1 SuwQNyRY
HNhnfH7V3Z269dWXvZSa/VxImy+oEfGiceObZtxOpCb4uW08+cZW10Lc4HDVZVDWYybnud5£fVGeR
BhQ4qzBNfYoO+bxgLRA=="}

Figure A-30 Turn WiFi Thermostat On ASCII Data (After Firmware Update)

A~1{"Kk":"09", "v":"mz1SBIhLbCJ1lg5HHWey3J9D/3pgWBKBc930+M8gFEUaU1TdBlge83E0S5L
RI4uM1kaS1I11sElrjX/5EYVR14x6+bgrXpJap+iotdWdLyvtDDRca7rtYZK6EV15SbkXGxYV09IX
71c8Br522/dvKAGRKXSBkQkFIzgWQBoAouD1PBQiu07Y7Ng3goyfauCTORVNWbbZbsaJQkR4KeX
SOCEM81CoXMjukPelpQpmlsnLtV33YGEfEVMoZvknCTkQHIYyk/Wgf80hrwEwfcveZKREFxVxwnbI
+RWXowIV9d5i0abxn72e8x4RULXTx/fjzQ+1hAHIPtgF6n4azfRiK5RcYGjz6c41iS0YR62zQjmVE
5cWi0sLYLv10OhdaQxciShigfSYNIrEwM4M41gR5UNNGhx5HYybZXFvHIx9zfNuf6tLucmAygICJIX
41ui943PL51TDsnpbBIB72DvEb6DObQyuHbYAJE1X4kKuIleHt 9CMGOxDwulFyspxbu7Sehgtxxub
Ywe+0T60GVv53700XeulwSkphGeCdKbXqWUW10s6wCrEofrawAuQ34sblKbaDvuaTK04A+nuBKS
nRwx2p6331RBTMENO05gs0cOn7vPtO0HXJITIb0zUC611bk+2Pyrwy8hR3440gAmudEvSUihk/+p3E
N1v2ROXQH8rkcwKyahg9duC+0ylnblyV53JWGUW5a4V1CPV+irV8D3ASoeIKTeRTzFJIMjxpaMve
KDZsVbjjBgrvhmsGxJBUYuxeXthb3nzj+X29Tgsehg6Gl4nFh+d8gXouylgAzjvZXdTw56cki06
Za31RBRgOIQCud9BWCpvrE7gqh71RMvagEJRUTsN90/yiqdsCKkr7b3Ufu9AYewglW+E76£8WEOL
v41TuF4cXBDXmjCIJfulVURFL3DyVcUDC79k8sEwp66gqMUEFQAPZLgzz1XTT84K2UYMPYrMn893ne
rIz1T1Yz£fSIJPTMo8Ymw05Q00JTnHNsSmTBT4EGOS5PPk0uz4kCIhOYschbKFFQVEpubA8XtpQQgidJt
/vJaXvvGPNjVeCcal069gdyPEICD1IYQFK66LcvvYyJXbdm2mDjtmIMApz4tvulqwNgkpzzUuYSM6
5EqQIchTdRWI51Ci8+1ix1k18vQtYURgr5mmg4itkIDYDVBnmofMUfMrX+/t21Dr1I4d2FuyMOAzQ
ietw+3xazw94gbdn¥s2g9mpWQgFSanvgjn4ep70gKYjSx9hxfGtxHq7St4IgF88L1rfNhnyC5hP
8LhCEqyf+gvFpUwGObG39hWJIZY31NN2y51T8b/utUz2AZ5uEz/xvitY4rEeCsHIVSTBePdGxknn
W11lr9PrgKtCACTKeUFfF32ggkNVMagTPUWS5JiXKiWkIh83QfSzqLN1 /747t fTHW87VzJE8egbhsS
HCOBo5p4cAhIc/8I6TDuAwyAXK

Figure A-31: Change Weekly Schedule ASCII Data (After Firmware Update)

A.6 Sensi WiFi Thermostat Recorded Data
This section contains the recorded data that was collected when analyzing the Sensi WiFi
thermostat. As discussed in the main text, the communication between the smartphone and the

Sensi server is encrypted using TLSv1.2. This is shown in figure A-32.

52

No. Time Source Destination Protocol Length

13371 104.6777.. 192.168.0.101 rt.sensiapi.io TLSv1.2 266
13442 105.0118.. 192.168.0.101 rt.sensiapi.io TCP 154
13446 105.0122.. 192.168.0.101 rt.sensiapi.io TCP 154
13452 105.0157.. 192.168.0.101 rt.sensiapi.io TLSv1.2 244
13482 105.1213.. 192.168.0.101 rt.sensiapi.io TCP 154
13488 105.1236.. 192.168.0.101 rt.sensiapi.io TCP 154

Figure A-32 Communication Between Smartphone and Sensi Server
Figures A-33 and A-34 show examples of the binary data used to turn the thermostat to
Auto mode, which is transmitted from the server to the Sensi WiFi thermostat. The TCP packets
transmitted from the server are encrypted. It can be seen in the screenshots below that the data
for each example is different.

| NON | M turn_therm_auto_204s

0| 17030300A086CA7B6A6703E8BC547120 tU;{jg E°Tq
16| 5CB12691239F7AFD8A29EQ7ESB3ACC4A4 | | \+&&#(iz "a)E~[: AD
32| 760332BB5412F1A2AF317665D114DDB7 || v 2°T 0¢@lve- > ¥
48| BF9626D07CCB3D8DB82915B98271EE8B | | gii&— | A=¢]) mCqla
64 | S89A73D530A1AC784182382AC1F4E4B3 | | X6s’@° “xAC8* ; Uk>
80 | F2C1B3DE4345E833F8498F8A7ADIFSES | | Uj2ACEE3 TedzY A
96| 6B571B75E4D8C9QE39E2330F85ASFFB2 | | kW u%y.. 9,3 Qe <

112 | ALIEEA@561879A6BBA797ED38EAFISB44 | | ° 0tV yT°R6I81I[D

128 | ABCODBE2E48270DBCC7F87659E9BSC8E | | @...y , %C peﬂ aelio\é

144 | A37596A87CCC68A3347139D481098F97 | | £ui® | Ah£4q9°A &6

160| 3699877991 60)yé
0 out of 165 bytes

Figure A-33 Turn WiFi Thermostat to Auto Mode (Example 1)

O O M turn_therm_auto_278s

0| 17030300A0BDD3AA13A882720CFB3C45 t0"™ @Cr “<E
16| 1097791EA8B17525BCA802DB74D1DDF2 || 6y @+u%°® €t->U
32| 340088A80208872B901BDS89FC17B185 | |4 a®@ J+é ’a, 0
48| (9342B87E15BFBEAE6O33F4764921A74 | | ..4+a- [“jE1?Gd1 t
64| AF6BA88063F3926C241C7D3C1655F26A | | Bk®AcUi1$ }< UU;
80| 2E1B9686BDAE20OABO8BAF3AESSAG43D | | . AUNA 6»a0:EZd=
96 | ACE8BC6C46F989FAS4BO63FSIDO7ESAS || “E°1F"a Twc1 Ae
112 | 9899784CC3E39998C95A316246C280DB | | 06xLy,,60..Z1bF-Ae
128| 3EE12C96F1512C988AC19E89CBBA2CE3 | | > - , ADQ, 0d | GGA=, ,,
144 | BAOCE4372438291D26712E7E358B0D@9 | | [1%7$8) &q.~5d
160 | 716A77EBBS qjwip

0 out of 165 bytes

Figure A-34 Turn WiFi Thermostat to Auto Mode (Example 2)

53

Figure A-35 and figure A-36 contain screenshots of the binary data transmitted from the

server to the Sensi WiFi thermostat to turn it off. In each instance, the binary data is encrypted.

[] @ M turn_therm_off_186s

0| 17030300A0196324FF148498E97C8F39 t c$” NoElé9
16| 155E796D684CD76F4D4175E584211F10 || AymhLooMAUAN!
32 | E7DS6ABO@B4E7F8F8@C293EAFO68F79C | (A’ jn N éA-iieh~u
48| @8F36BF27418C8D7FS4E38CEE84F@I(B || UkUt »0LN8EED A
64 | 71F3968B32AC2C8B2D5E205101086E87 | | qUna2”,a-A Q na
80 | FBEA279EB43B118F382A8946(C070BA25 | | ~1'a¥; é8*aF;pl%

96
112
128
144
160

A142B2767414A3(C388EB84BEC7D8C74D
8980888BA628B9F9445231531346F(91
48BBEQ4ESEC6CAB39D0OBFO85B1AA8AQ
BC4FB62507E9709656F6A6498C52C7(C8
BE2680D31F

0 out of 165 bytes

°Bzvt f£yalNe«y«M
GAaaf(n DR1S F &
HefNéf >0 go[@f
°00% EpiV " JIaR«»
®&A”

Figure A-35 Turn WiFi Thermostat to Off Mode (Example 1)

O
0
16
32
48
64
80
96
112
128
144
160

[J
17030300A01878155898824FCDABAES9
DA94F5BE301D695COFEA6CED53F5D196
1ECSE1BABEC488EEAOF7FF84B475602A
385FBBD93BE15CODBF8ACSB83F80546E
294728C4BA6AAC20CC7FI2FBAGA732DC
7D021530698FAD5A9913(37D577490B1
F2453B81D39791C7924183D3BAC3FFF5
©038ABCCC4(9718639BCA94EE865(7148
E730ADB285F88201B7AA7E65(947BA66
E174927A7A5C802DA6F8940789481F42
582A450140

0 out of 165 bytes

M turn_therm_off_220s

t x X6C00° £Y
/i1e@ i\uIlmSi-h
~- fefa00 " N¥u *
8_°9Y; -\ @d=[[?ATn
)G(FIi™ A 1°9R2¢
} 0ié=Z6 VIWtét
UE; A”68«1AE” =y "1
G°AL6 c6 10U\gH
AQ=<0"C I™~e.G[f
-tizz\A-7°1 nH B
X*E @

Figure A-36 Turn WiFi Thermostat to Off Mode (Example 2)

54

A.7 Amazon Echo Dot Recorded Data
This section contains screenshots of examples of the Amazon Echo Dot communicating
with the servers. Figure A-37 shows the server transmitting data to the Amazon Echo Dot and
figure A-38 shows the Amazon Echo Dot transmitting data to the server. In both cases, TLSv1.2

is used to encrypt the communication session so that it cannot be subject to a man in the middle

attack.

No. Time A Source Destination Protocol Length
. 7574 47.089694 Android.local dp-gw-na.amazon.com TLSv1.2 344

7575 47.089890 Android.local pindorama.amazon.com TCP 1598
1~ 7576 47.090020 Android.local pindorama.amazon.com TLSv1l.2 1080
i 7582 47.146048 dp-gw-na.amazon.com Android.local TLSv1.2 148
. 7584 47.146245 dp-gw-na.amazon.com Android.local TLSv1.2 187

Figure A-37 Amazon Echo Dot Receiving Data Example

No. Time A Source Destination Protocol Length
7642 47.292882 Android.local 224.0.0.22 IGMPv3 142
7645 47.293172 Android.local pindorama.amazon.com TLSv1.2 265
7646 47.293317 Android.local pindorama.amazon.com TLSvl.2 1017
7651 47.311938 Android.local pindorama.amazon.com TLSv1.2 584

Figure A-38 Amazon Echo Dot Transmitting Data Example

55

Bibliography

[1] M. G. Samaila, M. Neto, D. A. B. Fernandes, M. M. Freire, and P. R. M. Inacio, “Security
Challenges of the Internet of Things,” Internet of Things Beyond the Internet of Things, pp. 53—
82,2017.

[2] P. Schaumont, “Security in the Internet of Things: A challenge of scale,” Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2017, 2017.

[3] B. Copos, K. Levitt, M. Bishop, and J. Rowe, “Is Anybody Home? Inferring Activity From
Smart Home Network Traffic,” 2016 IEEE Security and Privacy Workshops (SPW), 2016.

[4] M. Moody and A. Hunter, “Exploiting known vulnerabilities of a smart thermostat,” 2016
14th Annual Conference on Privacy, Security and Trust (PST), 2016.

[5] S. Notra, M. Siddiqi, H. H. Gharakheili, V. Sivaraman, and R. Boreli, “An experimental
study of security and privacy risks with emerging household appliances,” Workshop on Security
and Privacy in Machine-to-Machine Communications (M2MSec'l4), 2014.

[6] M. Morgenstern, “Hue! Let there be light!,” AV-TEST Internet of Things Security Testing
Blog, 12-Jul-2017. [Online]. Available: https://www.iot-tests.org/2017/06/hue-let-there-be-light/.

[7] N. Dhanjani, “Hacking Lightbulbs: Security Evaluation of the Philips Hue Personal Wireless
Lighting System,” Internet of Things Security Evaluation Series, 2013.

[8] T. J. Seppala, “Hackers hijack Philips Hue lights with a drone,” Engadget, 03-Nov-2016.
[Online]. Available: https://www.engadget.com/2016/11/03/hackers-hijack-a-philips-hue-lights-
with-a-drone/.

[9] O. Pursche, “Testing Amazon Echo Dot & Alexa App,” AV-TEST Internet of Things Security
Testing Blog, 31-Mar-2017. [Online]. Available: https://www.iot-tests.org/2017/02/testing-
amazon-echo-dot-alexa-app/.

[10] R. Moskowitz, “Weakness in Passphrase Choice in WPA Interface,” WNN Wi-Fi Net News,
04-Nov-2003. [Online]. Available:

https://wifinetnews.com/archives/2003/11/weakness_in_passphrase choice in wpa interface.ht
ml.

[11] A. H. Lashkari, M. Mansoor, and A. S. Danesh, “Wired Equivalent Privacy (WEP) versus
Wi-Fi Protected Access (WPA),” 2009 International Conference on Signal Processing Systems,
2009.

56

[12] M. Vanhoef and F. Piessens, “Key Reinstallation Attacks: Forcing Nonce Reuse in
WPA2,” Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security - CCS 17,2017.

[13] N. Aviram, S. Schinzel, J. Somorovsky, N. Heninger, M. Dankel, J. Steube, L. Valenta, D.
Adrian, J. A. Halderman, V. Dukhovni, Kisper Emilia, S. Cohney, S. Engels, C. Paar, and Y.
Shavitt, “DROWN: Breaking TLS using SSLv2,” Proceedings of the 25th USENIX Security
Symposium, Aug. 2016.

[14] “SSL Pulse,” Qualys SSL Labs - SSL Pulse. [Online]. Available:
https://www.ssllabs.com/ssl-pulse/.

[15] D. J. Rani and S. E. Roslin, “Light weight cryptographic algorithms for medical internet of
things (IoT) - a review,” 2016 Online International Conference on Green Engineering and
Technologies (IC-GET), 2016.

[16] S. Singh, P. K. Sharma, S. Y. Moon, and J. H. Park, “Advanced lightweight encryption
algorithms for [oT devices: survey, challenges and solutions,” Journal of Ambient Intelligence
and Humanized Computing, May 2017.

[17] S. A. Salami, J. Baek, K. Salah, and E. Damiani, “Lightweight Encryption for Smart
Home,” 2016 11th International Conference on Availability, Reliability and Security (ARES),
2016.

57

