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ABSTRACT
The accuracy of genotype imputation depends upon two factors: the sample size of the

reference panel and the genetic similarity between the reference panel and the target

samples. When multiple reference panels are not consented to combine together, it is

unclear how to combine the imputation results to optimize the power of genetic associ-

ation studies. We compared the accuracy of 9,265 Norwegian genomes imputed from

three reference panels—1000 Genomes phase 3 (1000G), Haplotype Reference Con-

sortium (HRC), and a reference panel containing 2,201 Norwegian participants from

the population-based Nord Trøndelag Health Study (HUNT) from low-pass genome

sequencing. We observed that the population-matched reference panel allowed for

imputation of more population-specific variants with lower frequency (minor allele

frequency (MAF) between 0.05% and 0.5%). The overall imputation accuracy from

the population-specific panel was substantially higher than 1000G and was compara-

ble with HRC, despite HRC being 15-fold larger. These results recapitulate the value

of population-specific reference panels for genotype imputation. We also evaluated

different strategies to utilize multiple sets of imputed genotypes to increase the power

of association studies. We observed that testing association for all variants imputed

from any panel results in higher power to detect association than the alternative strat-

egy of including only one version of each genetic variant, selected for having the high-

est imputation quality metric. This was particularly true for lower frequency variants

(MAF < 1%), even after adjusting for the additional multiple testing burden.
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1 INTRODUCTION

Many novel disease-associated signals for a wide vari-

ety of diseases and traits have been successfully identified

using imputation-based meta-analyses (Cheng et al., 2016;

Cooper et al., 2008; De Jager et al., 2009; Ge et al., 2016;

Horikoshi et al., 2015; Houlston et al., 2008; Jin et al.,

2016; Loos et al., 2008; Ruth et al., 2015; Zeggini et al.,

2007, 2008). Genotype imputation is the process of infer-

ring missing genotypes in study samples using a refer-

ence panel of high-density haplotypes (Li, Willer, Sanna, &

Abecasis, 2009). Imputation allows variants that are not

directly genotyped to be studied without other costs than com-

putation. Previous simulations showed that imputation sub-

stantially increases the power of association studies to detect

causal loci (Marchini & Howie, 2010; Spencer, Su, Donnelly,

& Marchini, 2009). Imputation-based genome-wide associa-

tion studies (GWAS) have successfully identified novel sig-

nals that were undetected in chip-based studies. For example,

two disease-associated signals were detected in the 1000G-

based imputation (Auton et al., 2015) for the Wellcome Trust

Case Control Consortium phase 1 Data (WTCCC), which

were missed in the original WTCCC GWAS study that was

performed 4 years before (Burton et al., 2007; Huang, Elling-

haus, Franke, Howie, & Li, 2012). Imputation also facilitates

fine-mapping studies by allowing most polymorphic vari-

ants, including causative ones, to be tested in known disease-

associated loci. For example, the strongest association signal,

observed at the imputed variant rs7903146 of the TCF7L2
locus in the WTCCC type 2 diabetes scan, is suggested to be

the (causal association) in the locus (Mahajan et al., 2014;

Marchini, Howie, Myers, McVean, & Donnelly, 2007). Fur-

thermore, imputation allows for meta-analysis between sam-

ples that have been genotyped using different arrays, increas-

ing power.

For studies that have access to population-matched genome

sequenced individuals, there is uncertainty in deciding

between a smaller, ancestry-matched reference panel and a

larger publicly available cosmopolitan reference panel. An

ideal reference panel is expected to have closely matched

ancestry to study samples because the genetic similarity

increases the accuracy of imputation (Deelen et al., 2014;

Huang et al., 2015; Huang & Tseng, 2014; Low-Kam et al.,

2016; Mitt et al., 2017; Okada, Momozawa, Ashikawa, Kanai,

& Matsuda, 2015; Pistis et al., 2015; Roshyara & Scholz,

2015; Walter et al., 2015). On the other hand, the impu-

tation accuracy increases when larger reference panels are

used, especially for lower frequency variants (Browning

& Browning, 2009; Howie, Donnelly, & Marchini, 2009;

Huang et al., 2009; Li et al., 2009; Roshyara & Scholz,

2015).

Furthermore, different whole-genome reference panels

may generate discordant imputed genotypes for the same

variants in the same study samples. This brings in chal-

lenges for the follow-up association tests. The optimal strat-

egy to perform association tests using genotypes imputed by

different reference panels remains unclear. IMPUTE2 pro-

vides one possible approach to merge all reference panels

to a single larger panel for genotype imputation when mul-

tiple reference panels are available (Howie et al., 2009),

which may avoid the problem that different versions of geno-

types are imputed for the same variants. The Genome of

the Netherlands Consortium and the UK10K study has fur-

ther shown that the combined reference panel of 1000G and

the population-specific reference resulted in better imputa-

tion results compared to the two individual panels for rare

variants (Deelen et al., 2014; Huang et al., 2015). However,

this approach is not feasible when individual-level haplotypes

within the reference panel are not accessible, as is the case

with the Haplotype Reference Consortium (HRC) (McCarthy

et al., 2016), primarily due to ethical issues surrounding

sharing of individual-level genetic data (McCarthy et al.,

2016).

Here, we genotyped 9,265 Norwegian participants from the

HUNT study (Krokstad et al., 2013) for 350,270 polymorphic

autosomal variants using the Illumina Human CoreExome

array with approximately 240,000 GWAS tagging mark-

ers. We created a population-matched reference panel by

whole-genome sequencing (WGS) 2,021 individuals from

the HUNT study to a mean depth of 5×. We imputed variants

from the HUNT WGS reference panel as our ethnically

matched panel. We also performed imputation with two

additional imputation reference panels: the HRC (McCarthy

et al., 2016) and 1000G phase 3 (Auton et al., 2015). First,

we systematically evaluated and compared the imputation

results from the three reference panels, including the number

of successfully imputed variants as well as the imputation

accuracy. Next, we evaluated and compared the power of

association tests between two approaches to incorporate mul-

tiple versions of imputed genotypes. First is the “best Rsq”

approach, which retains imputed genotypes only from the

panel with highest imputation quality metrics for each variant.

Second is the “best P-value” approach that tests association

with all imputed genotypes and uses the most significant

association P value, adjusting for the additional variants

tested.
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2 MATERIALS AND METHODS

2.1 Array-based genotyping
9,265 samples from the HUNT Biobank in Norway were

genotyped at 350,270 polymorphic autosomal variants using

an Exome + GWAS chip array (HumanCoreExome-12

v1.0, Illumina, Inc., San Diego, CA). Genotype calling was

performed using GenTrain version 2.0 in GenomeStudio

V2011.1 (Illumina, Inc., San Diego, CA). Samples with<98%

genotype calls (N = 37), evidence of gender discrepancy

(N = 21), duplicates (N = 66) as well as individuals with

non-Norwegian ancestry identified by plotting the first 10

genotype-driven principal components (Jolliffe, 1986) (N= 7)

were excluded from further analysis (N = 131, 1.19%). As

Supporting Information Fig. S1 shows, the HUNT GWAS

samples have similar ancestry to the samples in the HUNT

WGS reference panel. All HUNT research subjects provided

informed written consent and IRB approval was obtained for

genetic studies.

Relatedness was evaluated based on the estimation of the

proportion of identity by descent (IBD) by PLINK (Purcell

et al., 2007). We excluded 1,644 samples from the HUNT

GWAS sample due to first- or second-degree relatedness

to samples in HUNT WGS, defined as IBD ≥ 0.25. We

excluded samples that were related to samples within the ref-

erence panel to avoid inflating imputation statistics for regions

inherited IBD. We performed variant-level quality control

by excluding 19,872 variants that met any of the follow-

ing criteria; variants with a cluster separation score < 0.3

reported by GenomeStudio V2011.1 (Illumina, Inc., San

Diego, CA), <95% genotype call rate, or deviation from

Hardy-Weinberg equilibrium (P < 1 × 10−5).

2.2 Genotype imputation
Genotype imputation with the 1000G phase 3 (Auton et al.,

2015) and the HRC (McCarthy et al., 2016) reference panels

was conducted using the Michigan Imputation Server (Das

et al., 2016) and imputation with the HUNT WGS reference

panel was conducted using a local server. The study sam-

ples were phased using SHAPEIT2 (v2.r790) (Delaneau,

Zagury, & Marchini, 2013) followed by imputation using

minimac3 (v2.0.1) (Fuchsberger, Abecasis, & Hinds, 2015;

Howie, Fuchsberger, Stephens, Marchini, & Abecasis,

2012). Two imputation metrics output by minimac3 were

used for evaluating the imputation quality: ImpRsq and

EmpRsq. ImpRsq is previously known as r̂2 in different

versions of MaCH/minimac (Fuchsberger et al., 2015; Howie

et al., 2012; Li, Willer, Ding, Scheet, & Abecasis, 2010).

ImpRsq is defined for both genotyped and ungenotyped

variants in the chip array as an estimate of the squared

correlation between imputed dosages and true, unobserved

genotypes, calculated as the observed variance over the

expected variance. EmpRsq is defined only for genotyped

variants in the chip array as the squared correlation between

leave-one-out imputed dosages and the true, observed

genotypes (see “Estimated Imputation Accuracy” section at

https://genome.sph.umich.edu/wiki/Minimac_Diagnostics

for details).

2.3 Reference panels
The HUNT WGS reference panel contains 1,101 earliest

onset cases with myocardial infarction and 1,100 age and sex

matched controls that were selected from the HUNT study

(Krokstad et al., 2013). WGS to ∼5× depth was performed

on either Illumina HiSeq 2000 or 2500. We followed the Got-

Cloud SNP calling pipeline to process the WGS data (Jun,

Wing, Abecasis, & Kang, 2015). The variant sites and geno-

type likelihood were called using SAMtools (Li et al., 2009)

and the genotypes for SNPs were refined and phased using

Beagle v4 (Browning & Browning, 2013). After quality con-

trol, 20.2 million single nucleotide variants were retained in

2,201 samples, of which four million were unique to our

study; not observed in dbSNP 144 (Sherry et al., 2001), 1000

Genomes phase 3 (Auton et al., 2015), UK10K (Walter et al.,

2015), ESP6500 (NHLBI GO Exome Sequencing Project
(ESP), August 2016 accessed), or ExAC.r0.3 (Lek et al.,

2016) (Table 1). The individuals in the HUNT WGS panel

have similar ancestry to the HUNT study samples (Supporting

Information Fig. S1) and are from the same geographic region,

although we excluded in the genotyped samples any first- or

second-degree relatives of the sequenced samples to avoid

biased estimates of the accuracy of imputation. Additionally,

there were no close relatives within the sequenced samples.

The other two reference panels that we used for genotype

imputation are the 1000 Genomes phase 3 (1000G) (Auton

et al., 2015) and the HRC release 1 (McCarthy et al., 2016)

containing 32,488 individuals, both of which are pre-loaded

in the Michigan Imputation Server (Das et al., 2016) (Table 2).

The HUNT cohort contributed an early freeze of WGS data

consisting of 1,023 samples to the HRC consortium. Thus, the

HUNT WGS and the HRC reference panels have 1,023 sam-

ples in common. Variants with minor allele counts (MAC) less

than five were excluded from HRC (McCarthy et al., 2016).

2.4 Permutation test
To determine the genome-wide significance thresholds for

association tests using the two approaches to incorporate

imputed genotypes, we performed permutation tests. The

measurements of the high-density lipoprotein (HDL) choles-

terol for the study samples were permuted 1,000 times. Each

permutation was followed by a genome-wide association test

(GWAS) using the permuted phenotypes. The most significant

https://genome.sph.umich.edu/wiki/Minimac_Diagnostics
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T A B L E 1 Summary of the variants in the HUNT WGS reference panel containing 2,201 individuals with average sequencing depth 5×

Variant type
Total number of
variants

Mean number of
variants per individual
(SD)

Mean number of
unique variants per
individual (SD) 1000 Genomes (%)

Number of novel
variantsa

Splice 1,265 71.5(4.6) 0.2(0.47) 36.6 355

Nonsense 2,432 71.5(6) 0.43(0.74) 36.6 585

Missense 113,576 9,480(113) 13.8(13.6) 56.3 13,927

Synonymous 77,699 10,707(100) 7.1(7.5) 68.5 5,935

Noncoding 20,050,237 3,342,839(15,415) 1531(906) 68.7 4,030,199

Total 20,245,209 3,363,168(15,522) 1,552(919) 68.6 4,051,001

aNovel: not reported in dbSNP 144 (Sherry et al., 2001), 1000 Genomes phase 3 (Auton et al., 2015), UK10K (Walter et al., 2015), ESP6500 (NHLBI GO Exome Sequencing
Project (ESP), August 2016 accessed), or ExAC.r0.3 (Lek et al., 2016). SD, standard deviation

T A B L E 2 Reference panels used for genotype imputation

Reference panels Variants Sample size Population
Haplotype Reference

Consortium (McCarthy

et al., 2016) (HRC)

39 million SNPs (MAC ≥ 5) 32,488a Cosmopolitan (mostly

European)

1000 Genomes phase 3 version

5(Auton et al., 2015) (mean

depth < 8×)

81 million biallelic SNPs,

indels, deletions, complex

short substitutions, and other

structural variant classes

(MAC ≥ 2)

2,504 Cosmopolitan

HUNT whole-genome

sequencing (HUNT WGS)

(mean depth ∼ 5×)

20 million SNPs 2,201a Norwegian

aHRC and HUNT WGS data set have 1,023 samples in overlap.

MAC, minor allele count.

P-values from each of the 1,000 GWAS were ranked. The

significance threshold with family-wise error rate (FWER)

n/1000 equals to the nth smallest P-value. Because the “best

P-value” approach tests more variants, it will have a more

stringent significance threshold than the “best Rsq” approach.

2.5 Power estimation
In order to estimate the power to detect association under

the two approaches to incorporate imputed genotypes from

multiple reference panels, we considered directly genotyped

variants as causal variants, and used multiple sets of imputed

genotypes to evaluate the power. First, we obtained the leave-

one-variant-out imputed dosages for those directly genotyped

variants. The official release of minimac3 performs leave-one-

out hidden Markov model (HMM) calculation internally to

calculate leave-one-out Rsq summary statistics, but does not

output individual dosages (Fuchsberger et al., 2015; Howie

et al., 2012). We modified minimac3 to include the individ-

ual leave-out-out dosages in the output VCF for the genotyped

variants. Second, we simulated phenotypes based on the geno-

types obtained by the chip array. Finally, we evaluated the

power of the two approaches by performing association tests

between the simulated phenotypes and the imputed dosages

based on either “best Rsq” or “best P-value” approaches.

The details of simulation follow the steps described

below:

1. Select the noncentrality parameter corresponding to the

association test P-value 𝑝𝑡. We calculate the noncentral-

ity parameter N𝑟2 as a chi-square statistics corresponding

to the upper-tail probability 𝑝𝑡, where N is the total num-

ber of study subjects. This ensures that the median P-value

is 𝑝𝑡 when the true phenotypic variance explained by the

genotype is 𝑟2.

2. For each variant, we randomly draw 𝜀 from the normal dis-

tribution with mean 0 and standard deviation
√
1 − 𝑟2. We

calculate the effect size 𝛽 as

√
𝑟2∕2𝑓 (1 − 𝑓 ), where 𝑓 is

the minor allele frequency (MAF) estimated using the chip

genotypes of the variant. The phenotype value y is then cal-

culated as 𝐺𝛽 + 𝜀, where the chip genotypes 𝐺 is 0, 1, or

2. The phenotypic variance explained by G and 𝜀 will be

𝑟2 and 1 − 𝑟2, respectively.

3. We perform the linear regression using the leave-one-

variant-out dosages for this variant, which were imputed

using the three different reference panels, respectively, and

the phenotype y.
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4. For the “best P-value” approach, the final association

P value equals to the most significant one among the three

P values associated with the three different versions of

imputed dosages. With the “best Rsq” approach, the final

P value equals to the one corresponding to the reference

panel with the highest imputation quality (ImpRsq), an

estimated value for the correlation between imputed geno-

types and true, unobserved genotypes.

5. The power to detect association signals equals to the per-

centage of final P values exceeding the genome-wide sig-

nificance threshold determined for each approach by the

permutation tests described above.

We performed linkage disequilibrium (LD) based variant

pruning for the 289,376 directly genotyped variants that were

found by all three reference panels using PLINK (Purcell

et al., 2007) and obtained 132,183 variants with LD 𝑟2 < 0.2

among each other. Then, we randomly selected 3,000 variants

for each of the MAF categories: MAF ≤ 0.001, MAF > 0.001

and ≤0.01, MAF > 0.01 and ≤0.05, and MAF > 0.05. We

applied ImpRsq > 0.3, 0.5, and 0.8 to remove poorly imputed

genotypes. Variants that were successfully imputed from at

least two references were used for this simulation study. All

five steps above were repeated given different pts ranging

from 5 × 10−8 to 1 × 10−13. Additionally, the entire process

was repeated five times across the selected variants to average

power.

2.6 Partial correlation estimation
To quantify the net gain of imputation accuracy obtained

by including another reference panel on top of an existing

panel, we estimated the partial correlation between the leave-

one-out imputed dosages from the additional panel and the

chip genotypes, conditioned on the leave-one-out imputed

dosages from the existing panel. The correlation has been

estimated for every pair of reference panels among the three

on each of the 289,376 genotyped variants that were found

in all three panels. For example, to estimate the net gain of

including 1000G panel on top of HUNT panel (PartialRsq

[1000G,Chip | HUNT]), we first obtained the leave-one-out

dosages based on 1000G and HUNT WGS (details described

in Section 2.5). Secondly, for each variant, we performed three

linear regressions on the chip genotypes: the first one has the

imputed dosages from 1000G and HUNT WGS as covari-

ates (model 1), the second one has the imputed dosages from

HUNT WGS only as a covariate (model 2), and the third

one does not have any other covariate except for the inter-

cept (model 3). Lastly, we obtained sum of squared residuals

(SSR) for the three linear regressions and calculated the par-

tial correlation (partial Rsq) as
SSRmodel2−SSRmodel1

SSRmodel3
. In a simi-

lar notation, the EmpRsq is equivalent to
SSRmodel3−SSRmodel2

SSRmodel3
,

F I G U R E 1 Number of variants that were imputed by different ref-

erence panels. The corresponding percentage is the variants number out

of all 23.8 million variants that were successfully imputed by any of the

three reference panels

and their sum should be equivalent to the proportion of

explained variance by both sets of imputed dosages. Our intu-

ition is that the more extra information the additional refer-

ence panel provides, the higher the partial correlation will

be.

3 RESULTS

3.1 Evaluating successfully imputed variants
using different reference panels
In total, ∼23.8 million variants were successfully imputed

using minimac3 (Fuchsberger et al., 2015; Howie et al., 2012)

from at least one of the three reference panels and exceeded

the threshold of estimated imputation quality (ImpRsq) ≥ 0.3

(Figure 1). The three reference panels yielded roughly

equal number of SNPs with MAF more than 1%, but the

1000G uncovered more unique variants; approximately 75.3%

(1,068,228 out of 1,418,417) that were uniquely imputed from

1000G are indels or structural variants, a category of varia-

tion that is not available in the other two reference panels. We

observed that imputation from the HRC panel resulted in more

extremely rare variants (MAF less than 0.05%) than from

HUNT WGS and 1000G. Imputation from the HUNT WGS

panel uncovered more variants with MAF between 0.05% and

0.5% than the other two reference panels (Table 3). Approx-

imately, 3.6 million variants were uniquely imputed by the

HUNT WGS panel (Figure 1) and the majority of them have

MAF less than or equal to 0.05% (Figure 2). A threshold ≥ 0.3

for ImpRsq was applied as recommended to remove most of

poorly imputed variants while retaining the vast majority of
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T A B L E 3 Numbers of imputed variants contributed by each reference panel categorized by MAF

HRC release 1
(39.2 M SNPs, 32,488 samples
including 1,203 HUNT samples)

1000G phase3 v5
(81.2 M markers, 2,504 samples)

HUNT 5 × WGS
(20.2 M SNPs, 2,201 samples)

MAF

Number of
passed
variants

Number
of passed
variants

Number of
uniquely
imputed
variants

Number of
passed
variants

Percent
of passed
variants

Number of
uniquely
imputed
variants

Number of
passed
variants

Percent
of passed
variants

Number of
uniquely
imputed
variants

(0, 0.0005] 4,337,138 23.9% 3,009,729 567,481 2.4% 230,186 2,291,216 50.6 1,570,259

(0.0005, 0.001] 1,339,096 91.1% 373,964 501,248 11.4% 176,252 1,668,837 94.4 901,106
(0.001, 0.005] 2,964,988 97.5% 140,318 2,119,956 33.6% 475,376 3,917,801 98.0 982,320
(0.005, 0.01] 1,125,181 99.2% 7,426 1,074,885 68.9% 126,616 1,279,200 98.6 47,426

(0.01, 0.05] 2,314,490 99.6% 10,525 2,554,206 89.2% 295,991 2,538,140 99.1 55,490

> 0.05 5,158,670 99.8% 10,692 6,547,887 98.1% 1,122,426 5,507,946 99.6 44,866

Total 17,239,563 55.1% 3,552,654 13,365,663 29.5% 2,426,847 17,203,140 87.4 3,601,467

The threshold ImpRsq ≥ to 0.3 was applied. Each reference panel contributed uniquely imputed variants. The greatest number of the uniquely imputed variants among the

three reference panels for variants in each MAF category is highlighted in bold. MAF, minor allele frequency; ImpRsq, imputation quality metric R2.

F I G U R E 2 Distribution of numbers of variants that were imputed

from only one reference panel or from multiple reference panels

in different MAF categories. Variants that were imputed by 1000G

only are categorized as SNPs and non-SNP variants, including indels,

deletions, complex short substitutions, and other structural variant

classes. 1000G, 1000 Genomes phase 3; WGS, whole-genome sequenc-

ing; HRC, Haplotype Reference Consortium; MAF, minor allele

frequency

well imputed SNPs (Li et al., 2009). We observed that the

average EmpRsq remained above 0.6 for all MAF categories

from all three reference panels when the ImpRsq ≥ 0.3 thresh-

old was applied (Supporting Information Fig. S2).

3.2 Comparing imputation accuracy from
different reference panels
To compare the imputation accuracy across the three ref-

erence panels, we examined all 289,376 variants that were

directly genotyped by the chip array and available in all three

reference panels. “Leave-one-variant-out” imputation results

were used for these directly genotyped variants, meaning that

one by one, each genotyped variant was masked, imputed, and

then compared to the directly genotyped calls. The EmpRsq

was estimated for each genotyped variant from each panel,

which is the squared Pearson correlation between the imputed

allele dosages and the genotypes called by direct genotyping.

Figure 3A compares the average EmpRsq for all genotyped

variants categorized by MAF among different reference pan-

els. The MAF is estimated using the genotypes called by the

chip array. Imputation from HRC has higher imputation accu-

racy for rare variants with MAF < 0.5% than the other two

reference panels, which is expected because the number of

samples available in HRC is much larger than the other two

panels and the imputation accuracy for extremely rare variants

depends on the number of copies of alternate alleles (Roshyara

& Scholz, 2015). What is unexpected is that for variants with

MAF ≥ 0.5%, HRC and HUNT WGS panels show compara-

ble imputation accuracy, even though the size of the HUNT

WGS panel is 15 times smaller than HRC. Consistent to pre-

vious studies, this result demonstrated the value of WGS for

ancestry-matched samples as a reference panel for genotype

imputation (Deelen et al., 2014; Huang et al., 2015; Huang &

Tseng, 2014; Low-Kam et al., 2016; Okada et al., 2015; Pistis

et al., 2015; Roshyara & Scholz, 2015; Walter et al., 2015). It

is also noticed that imputation from 1000G has lower average

ImpRsq than the other two reference panels (Figure 3B–D),

which is consistent to the lower proportion of variants passing



750 ZHOU ET AL.

F I G U R E 3 HRC and HUNT WGS panels show comparable imputation quality. (A) Comparing the mean empirical R2 (y-axis) reported by

different reference panels for variants that were directly genotyped categorized by the MAF (x-axis) without any ImpRsq threshold applied. (B) Com-

paring the mean Imputation R2 (y-axis) reported by different reference panels for variants that were directly genotyped categorized by the MAF (x-axis)

without any ImpRsq threshold applied. (C) Comparing the mean Imputation R2 (y-axis) reported by different reference panels for all imputed variants

(ImpRsq > 0.3) by the MAF (x-axis). (D) Comparing the mean Imputation R2 (y-axis) reported by different reference panels for all imputed variants

by the MAF (x-axis) without any ImpRsq threshold applied. 1000G, 1000 Genomes phase 3; WGS, whole-genome sequencing; HRC, Haplotype

Reference Consortium; MAF, minor allele frequency; ImpRsq, imputation quality metric R2

the various ImpRsq thresholds in 1000G (Supporting Infor-

mation Fig. S2).

To further evaluate the impact of the sample size of the

HUNT WGS panel on the imputation accuracy, we have ran-

domly drawn 500, 1,000, and 1,500 samples from the original

HUNT reference panel for imputation. Figure S3 shows the

comparison of the average EmpRsq for all genotyped variants

categorized by MAF among the target samples, across all ref-

erence panels. As expected, increases in the sample size of

the HUNT WGS reference panels resulted in higher impu-

tation accuracy, particularly for less frequent variants with

MAF< 0.5%. Interestingly, we observed that the HUNT WGS

with 500 samples outperforms 1000G (Auton et al., 2015)

for variants with MAF > 0.5%. These results are consistent

with other studies with population-specific reference panels

(Mitt et al., 2017; Pistis et al., 2015). The subset of 1,000 sam-

ples provides better imputation accuracy than 1000G (Auton

et al., 2015) even for variants with MAF as low as 0.1% and

comparable imputation accuracy to HRC (McCarthy et al.,

2016) for variants with MAF > 0.5%.

We examined whether our evaluation of imputation accu-

racy is biased in favor of HUNT WGS due to relatedness. Pre-

vious studies have shown that the relatedness between study

samples and reference samples increases genotype imputa-

tion efficiency because related individuals tend to share longer

haplotype stretches than unrelated ones (Huang & Tseng,

2014). To avoid the bias of imputation accuracy due to the

relatedness between our study samples and the samples in the

HUNT WGS reference panel, we excluded 1,644 study sam-

ples who are up to second-degree relatives of HUNT WGS

samples. Relatedness was based on the estimation of the pro-

portion of IBD by PLINK (Purcell et al., 2007). We observed

that excluding these study samples did not affect the imputa-

tion accuracy except causing a slight decrease of the imputa-

tion accuracy for those very rare variants with MAF < 0.05%

(Supporting Information Fig. S4).
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3.3 Evaluating two possible association test
strategies to use multiple sets of imputed
genotypes
As Figure 1 shows, approximately 60% of all successfully

imputed variants were imputed from more than one refer-

ence panel, which makes it unclear how to perform down-

stream association tests. We compared two possible strategies:

the “best P-value” and the “best Rsq” approaches. The “best

P-value” approach uses each version of imputed genotypes

to choose the lowest association P-value, thereby increas-

ing the burden of adjusting for multiple hypothesis testing.

The “best Rsq” approach selects the imputed variant with

the highest estimated imputation quality ImpRsq, which is

expected to be a reasonable approximation of the association

between imputed and true genotypes, especially for common

variants (Supporting Information Fig. S5). We have compared

the power of the two approaches to detect association sig-

nals accounting for the fact that the “best P-value” approach

needs adjusting for the additional variants tested. To deter-

mine the significance thresholds for association tests with a

FWER 0.05, we estimated the number of independent tests

using 1,000 permutations. For the “best Rsq” approach, where

fewer “variants” are analyzed, the significance threshold is

4.69 × 10−9 (2.10 × 10−9 with a Bonferroni correction) and

for the best P-value approach, it is 2.53 × 10−9 (1.05 × 10−9

with a Bonferroni correction).

Using the permutation-derived significance thresholds

above, we evaluated the power of the two approaches for asso-

ciation tests with quantitative traits through a simulation study

(details described in Section 2). Our results indicated that the

“best P-value” approach has more power to detect associa-

tion signals than the “best Rsq” approach, particularly for rare

variants with MAF < 1%, no matter how stringent the ImpRsq

threshold was used for filtering out the poorly imputed geno-

types (Figure 4, Supporting Information Figure S6 and Sup-

porting Information Table S1). This is probably because the

estimated imputation quality ImpRsq does not always agree

with empirical imputation quality EmpRsq especially for rare

variants (Supporting Information Figure S5), resulting in loss

of variants with highest empirical imputation quality when

selecting the “best Rsq” strategy. In addition, the distribu-

tions of the ImpRsq are quite different from different panels.

Notably, from 1000G the ImpRsq and EmpRsq were substan-

tially lower for low-frequency variants (0.5% < MAF < 5%),

and ImpRsq tends to underestimate EmpRsq (Supporting

Information Fig. S5). The two approaches have comparable

association power for variants with MAF ≥ 1%, where esti-

mated and empirical imputation qualities highly agree with

each other (Supporting Information Fig. S5). Our observation

suggests that the inaccurate prediction of imputation quality

have a higher impact than increased burden of multiple testing

in association test with rare variants.

3.4 Evaluating net gain of imputation
accuracy by including an additional reference
panel
Finally, we quantified the net gain of imputation accuracy by

including an additional reference panel as a “partial Rsq” con-

ditioned on the imputed genotypes from an existing reference

panel (see Section 2 for details). Intuitively, this represents the

difference between the “optimal EmpRsq” linearly combined

between two sets of imputed genotypes and the EmpRsq from

the original imputed genotypes. The 289,376 genotyped vari-

ants that were found in all three panels were used to evaluate

the additional information that were gained from one refer-

ence panel given imputed dosages based on another panel. As

Supporting Information Fig. S7 presents, each reference panel

is able to provide additional information to improve imputa-

tion accuracy. However, relatively less information could be

gained by including 1000G on top of HRC across all MAF cat-

egories. This is expected because 1000G samples are included

in the HRC panel, with the caveat that only single nucleotide

variants with MAC ≥ 5 were retained. Note that evaluation of

indels and structural variants absent in HRC were not included

in this experiment. In contrast, given the imputed dosages

from 1000G, both HUNT WGS and HRC provide substan-

tial net gain of imputation accuracy, which is consistent to

our observations. Furthermore, HUNT WGS and HRC pro-

vide additional information conditional on each other. More

specifically, more extra information was obtained from HRC

given HUNT WGS than those were obtained from HUNT

WGS given HRC for these genotyped variants, which is also

consistent to our observations in Figure 3.

4 DISCUSSION

Many studies have performed WGS of a subset of sam-

ples followed by imputation into samples with GWAS data

(Gudbjartsson et al., 2015; Lane, Vlasac, & Anderson, 2016;

Nalls et al., 2014; van Leeuwen et al., 2016). However, the

trade-offs between the panel size, imputable variant types,

and population specificity across different reference panels

make it challenging to decide on the optimal strategy for

imputation and downstream association analysis. We evalu-

ated methods for genotype imputation when different refer-

ence panels are available. Our findings have demonstrated

the benefits of uncovering novel variants with low frequency

by using population-specific reference panels as has been

reported by previous studies (Huang et al., 2015). Because

the population-specific HUNT panel shared 1,023 samples

with HRC (McCarthy et al., 2016), we expect to see an even

bigger advantage in the number of novel low-frequency vari-

ants imputed by the population-specific panel if there were no

overlap between the two reference panels.
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F I G U R E 4 Comparison of power to detect true associations between best P-value and best Rsq approaches via simulation studies. For each

MAF category, 3,000 directly genotyped variants were randomly selected based on their MAF estimated with genotypes obtained from the chip array

to estimate the power. The power was calculated as the proportion of significantly associated variants across three imputed panels based on each

strategy given the corresponding significance threshold. ImpRsq ≥ 0.3 was applied to remove poorly imputed genotypes. The numbers of variants that

were successfully imputed from at least two reference panels and used in the simulation studies are: 2,513 with MAF > 0 and ≤0.001; 2,989 with

MAF > 0.001 and ≤0.01; 3,000 with MAF > 0.01 and ≤0.05; and 3,000 with MAF > 0.05. MAF, minor allele frequency; ImpRsq, imputation quality

metric R2

We have also observed that large-scale publicly available

reference panels, as exemplified by HRC (McCarthy et al.,

2016) and 1000G (Auton et al., 2015), contribute a large num-

ber of variants that are not captured by population-specific

reference panels. More specifically, HRC (McCarthy et al.,

2016), which has much larger sample size and contains more

general European populations, contributes 3.5 million vari-

ants that could not be imputed by the other two panels.

Because 1000G (Auton et al., 2015) has additional advan-

tages that indels and structural variants are comprehensively

detected and genotyped, 1.3 million non-SNP variants have

only been imputed by 1000G. Furthermore, each reference

panel may provide additional information to improve impu-

tation accuracy. Therefore, to increase the variant coverage

and imputation accuracy as much as possible, we recommend

using all three reference panels for imputation if available. If a

single panel has to be chosen, each option will have different

advantages and disadvantages. We have shown that imputa-

tion from population-specific reference panels provides com-

parable imputation accuracy for variants with MAF > 0.1%

as using reference panels with 15 times larger sample size

with only broad ancestry matching (i.e., European). Although

panel sizes are similar, the population-specific reference panel

results in higher imputation accuracy than the mixed-ancestry

1000G panel (Auton et al., 2015) for variants with MAF ≥

0.05%. This has also been observed by a recently published

study on Estonians (Mitt et al., 2017).

To address the issue of imputing different versions of the

same variant from different reference panels, we propose the

“best P-value” approach, which analyzes all versions of each

imputed variant and accounts for the multiple testing. Our

simulation study demonstrated that this approach has higher

power for detecting association signals than selecting the

imputed variant with highest imputation quality given the
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distributions of the imputation quality metrics from differ-

ent reference panels may be quite different, even adjusting for

additional variants tested.

The UK10K study and the Genome of the Netherlands

(GoNL) Consortium suggested that merging multiple refer-

ence panels to a larger reference panel would improve imputa-

tion performance, especially for less frequent variants (Deelen

et al., 2014; Huang et al., 2015). Compared to this approach,

our “best P-value” approach does not require access to all ref-

erence panels and is feasible even if not all reference panel

haplotypes are directly accessible. If large imputation refer-

ence panels, such as the HRC (McCarthy et al., 2016), are

not directly accessible, conducting association tests for all

imputed versions of genotype with slightly higher computa-

tional cost will be an effective strategy.

In summary, we recommend creating a small size ancestry-

matched reference panel using WGS to allow for improved

imputation of low-frequency variants that may be enriched in

that ancestral group, performing genotype imputation using

the ancestry-matched reference panel and other large publicly

available databases, and analyzing all versions of imputed

variants in downstream association testing.
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