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Purpose: To evaluate the feasibility of using an objective computer-aided system to assess bladder
cancer stage in CT Urography (CTU).
Materials and methods: A dataset consisting of 84 bladder cancer lesions from 76 CTU cases was
used to develop the computerized system for bladder cancer staging based on machine learning
approaches. The cases were grouped into two classes based on pathological stage ≥ T2 or below T2,
which is the decision threshold for neoadjuvant chemotherapy treatment clinically. There were 43
cancers below stage T2 and 41 cancers at stage T2 or above. All 84 lesions were automatically seg-
mented using our previously developed auto-initialized cascaded level sets (AI-CALS) method. Mor-
phological and texture features were extracted. The features were divided into subspaces of
morphological features only, texture features only, and a combined set of both morphological and
texture features. The dataset was split into Set 1 and Set 2 for two-fold cross-validation. Stepwise fea-
ture selection was used to select the most effective features. A linear discriminant analysis (LDA), a
neural network (NN), a support vector machine (SVM), and a random forest (RAF) classifier were
used to combine the features into a single score. The classification accuracy of the four classifiers
was compared using the area under the receiver operating characteristic (ROC) curve (Az).
Results: Based on the texture features only, the LDA classifier achieved a test Az of 0.91 on Set 1
and a test Az of 0.88 on Set 2. The test Az of the NN classifier for Set 1 and Set 2 were 0.89 and
0.92, respectively. The SVM classifier achieved test Az of 0.91 on Set 1 and test Az of 0.89 on Set 2.
The test Az of the RAF classifier for Set 1 and Set 2 was 0.89 and 0.97, respectively. The morpholog-
ical features alone, the texture features alone, and the combined feature set achieved comparable clas-
sification performance.
Conclusion: The predictive model developed in this study shows promise as a classification tool for
stratifying bladder cancer into two staging categories: greater than or equal to stage T2 and below
stage T2. © 2017 American Association of Physicists in Medicine [https://doi.org/10.1002/mp.12510]
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1. INTRODUCTION

Bladder cancer is one of the most common cancers affecting
both men and women.1 It can cause substantial morbidity and
mortality among the patients with the disease. In 2017, it is
estimated that there will be 79,030 new cases and 16,870
deaths from bladder cancer.1 One in 42 Americans will be
diagnosed with bladder cancer in their lifetime and 9 of 10
patients with this cancer are over the age of 55.1,2 The average
age of diagnosis is 73.1 Approximately half of all bladder
cancer cases are first found while the cancer is still confined
to the inner wall of the bladder and has not invaded into dee-
per layers or distant parts of the body.1 Bladder cancer has a
recurrence rate of 50–80% and requires constant surveillance.

This makes it the most expensive cancer to treat, requiring a
total of $4.1 billion yearly, on a per patient basis in the United
States.2 Bladder cancer can be divided into three categories
that include noninvasive, superficial, and invasive. The initial
treatment for bladder cancer is transurethral resection of the
bladder tumor (TURBT), which removes the tumor from
the bladder and also helps provide information regarding the
stage of the cancer.3–5 Bladder cancer is staged in order to
determine treatment options and estimate a prognosis for the
patient. Accurate staging provides the physician with infor-
mation about the extent of the cancer. The tumor stages T
refer to the depth of the penetration of the tumor into the lay-
ers of the bladder. T0 indicates no primary tumor, T1 indi-
cates that the tumor has invaded the connective tissue under
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the epithelium, T2 indicates that the tumor has invaded the
bladder muscle, T3 indicates that the tumor has invaded
the fatty tissue around the bladder, and T4 indicates that the
tumor has spread beyond the fatty tissue into other areas such
as the pelvic wall, uterus, prostate or abdominal wall6

(Fig. 1). An example of bladder cancer stage T2 is presented
in Fig. 2.

The accurate staging of bladder cancer is crucial for pro-
viding proper treatment to the patient. Superficial diseases
(under stage T2) can be managed with less aggressive treat-
ment than invasive diseases (stage T2 and above).3–5 There

are two types of staging for bladder cancer — clinical and
pathological. The clinical stage is the physicians’ best esti-
mate for the extent of the cancer based on physical exams and
imaging. The pathological stage is determined by analysis of
the tissue collected from the cancer after biopsy, tumor resec-
tion, or bladder cystectomy. The accuracy of the staging
depends on the complete resection of the tumor. Incomplete
resection of the tumor may reduce the reliability of the stag-
ing at the beginning of the tumor management process.7

Bladder cystectomy ensures that the entire bladder tumor is
present for pathological review; therefore, the pathological
staging is based on the histological review of the cystectomy
specimen.6 Adjuvant chemotherapy is used in patients with
locally advanced bladder cancer in order to reduce the
chances of cancer recurrence following radical cystectomy.8

Neoadjuvant chemotherapy is used prior to radical cystec-
tomy in order to reduce the tumor size before surgical
removal; for example, a cisplatin-based regimen has been
shown to decrease the probability of finding extravesical dis-
ease and improve survival when compared to radical cystec-
tomy alone.8–10

Correct staging of bladder cancer is crucial for the deci-
sion of neoadjuvant chemotherapy treatment and minimizing
the risk of undertreatment or overtreatment. Patients with
stage T2 to T4 carcinomas of the bladder are recommended
for treatment with neoadjuvant chemotherapy. Studies found
that up to 50% of the patients who are estimated to have a
T1 disease at clinical staging are understaged and later
upstaged after radical cystectomy.11–14 This inaccuracy in
staging can partly be attributed to the subjectivity and vari-
ability of clinicians in utilizing various diagnostic informa-
tion. The purpose of this study is to develop an objective
decision support system that can potentially reduce the risk
of undertreatment or overtreatment by merging radiomic
information in a predictive model using statistical outcomes
and machine learning.

2. MATERIALS AND METHODS

2.A. Dataset

The data collection protocol was approved by our institu-
tional review board and is HIPAA compliant. Patient
informed consent was waived for this retrospective study.
Our dataset consisted of 84 bladder cancer lesions from 76
bladder cancer CTU cases collected from patient files with-
out additional imaging for research purpose. The CTU scans
in this dataset were acquired at an image slice interval of
0.625–1.25 mm using 120 kVp and 120–280 mA. The data-
set consisted of 22 noncontrast cases (22 lesions), 22 early
phase contrast-enhanced cases (22 lesions), and 32 delayed-
phase contrast-enhanced cases (40 lesions). Per imaging pro-
tocol, the early phase contrast-enhanced images are obtained
60 s following the initiation of a contrast injection. The
delayed-phase contrast-enhanced images are obtained 12 min
after the initiation of contrast injection. The type of scan a
patient receives is determined by the protocol of the hospital
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FIG. 1. Bladder cancer stage grading scale definition.

FIG. 2. Urinary bladder CT. The bladder cancer is marked and clearly visi-
ble. The cancer stage is T2. [Color figure can be viewed at wileyonlinelibrar-
y.com]
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performing the scan. Our dataset includes patients referred to
our hospital for treatment so that some scans were performed
at outside hospitals and followed different scanning proto-
cols, resulting in scans with inconsistent contrast-enhance-
ment phase. A patient may also get a noncontrast scan due to
risk factors, such as allergy to the contrast media, asthma,
renal insufficiency, significant cardiac disease, or anxiety.15

For all cases, clinical and pathological staging were per-
formed during the patient’s clinical care. Cystectomy was per-
formed after completing the course of neoadjuvant
chemotherapy. The primary chemotherapy regimen used for
the patients in our dataset were MVAC, which is a combina-
tion of four medications: Methotrexate, Vinblastine, Doxoru-
bicin, and Cisplatin. Stage T2 is identified to be clinically
important as a decision threshold for neoadjuvant chemother-
apy treatment. The stage at the beginning of the tumor man-
agement process, based on the clinical staging and
pathological staging was used as a reference standard of the
tumor stage for our study.

In addition, for all bladder cancer lesions a radiologist
measured the longest diameter on the pretreatment scans by
using an electronic caliper provided by an in-house developed
graphical user interface.

The 84 bladder cancer lesions were separated into two
classes. The first class consisted of 41 cancers that were stage
T2 or above and the patients were treated with neoadjuvant
chemotherapy. The second class consisted of 43 cancers that
were below stage T2 and patients were not referred to neoad-
juvant chemotherapy treatment. The dataset was then split
randomly by case into two sets with 42 cancers each while
keeping the proportion of cancers between the two classes
similar. The first set (Set 1) consisted of 22 cancers below
stage T2 and 20 cancers stage T2 or above. The second set
(Set 2) consisted of 21 cancers below stage T2 and 21 cancers
stage T2 or above.

In Set 1, two patients had two lesions and one patient had
three lesions. In Set 2, three patients had two lesions. In Set 1,
the average tumor sizes (the longest diameters) of stage < T2

and ≥ T2 were 26.4 � 17.3 and 45.6 � 19.1 mm, respectively
[Fig. 3(a)]. In Set 2, the average tumor sizes (the longest diame-
ters) of stage < T2 and ≥ T2 were 27.3 � 10.8 mm and
40.6 � 17.3 mm, respectively [Fig. 3(b)].

2.B. Segmentation of bladder lesions on CT
urography

Our previously developed method for bladder lesion seg-
mentation using an auto-initialized cascaded level set (AI-
CALS) was used.16 Briefly, the system consists of three
stages that include preprocessing, initial segmentation, and
3D level set segmentation (Fig. 4). The segmentation of blad-
der lesions is often difficult as some lesions are located in the
noncontrast-enhanced region of the bladder such that contrast
between the lesion and the surrounding background was low.
Additionally, lesions often have irregular boundaries and can
be very small and subtle. Each lesion in the dataset was
marked by a bounding box as an input volume of interest
(VOI). The lateral dimensions of the box were determined by
an adjustable rectangle within the image slice that contains
the best view of the lesion. The top and bottom slices are
marked to completely enclose the lesion. The AI-CALS seg-
mentation is then automatically performed in the VOI. In the
preprocessing stage, image processing techniques including
smoothing, anisotropic diffusion, gradient filters, and a rank
transform of the gradient magnitude are used to generate sets
of smoothed images, gradient magnitude images, and gradi-
ent vector images. The initial segmentation surface is
obtained by combining information from these images. Three
dimensional (3D) flood fill algorithm, morphological dilation
filter, and morphologic erosion filter are applied to the initial
segmentation surface to connect nearby components, which
is then used to initialize the level set segmentation. The initial
contour is propagated toward the lesion boundary using a
bank of cascaded level sets. The level sets help refine the ini-
tial contour. The details of the AI-CALS method can be
found in our previous paper.16
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FIG. 3. Distribution of tumor sizes (the longest diameters) for Set 1 and Set 2. (a) Set 1: The average tumor sizes of stage < T2 and ≥ T2 were 26.4 � 17.3 mm
and 45.6 � 19.1 mm, respectively. (b) Set 2: The average tumor sizes of stage < T2 and ≥ T2 were 27.3 � 10.8 mm and 40.6 � 17.3 mm, respectively.
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3. CLASSIFICATION

3.A. Feature extraction

Following automated computer segmentation, texture fea-
tures and morphological features were extracted to character-
ize the lesion. The mass size was measured as its 3D volume.
Five morphological features were extracted based on the nor-
malized radial length (NRL). NRL is defined as the radial
length normalized relative to the maximum radial length for
the segmented object.17 The NRL features extracted include
zero crossing count, area ratio, standard deviation, mean, and
entropy. In addition, 10 contrast features and a number of fea-
tures including circularity, rectangularity, perimeter-to-area
ratio, Fourier descriptor, gray level average, standard devia-
tion of gray level, mean density, eccentricity, moment ratio,
and axis ratio were extracted as shape descriptors.

The texture of the tumor margin can provide important
information about its characteristics. We calculated texture
features from the rubber band straightening transform
(RBST) images18 of the tumor margin including those from
the run-length statistics matrices, filtered Dasarathy east-west
direction, and filtered Dasarathy horizontal direction.19,20

The texture feature set also included the gray level radial gra-
dient direction features.

In total, 91 features were extracted to form the feature
space, including 26 morphological features and 65 texture
features.

3.B. Feature selection/classification

A block diagram of the machine learning-based bladder
cancer staging system is shown in Fig. 5. Stepwise feature
selection was used to select the best subset of features to cre-
ate an effective classifier.21 A number of different

classification experiments were performed to determine the
best collection of input features. The classification perfor-
mance was compared in three feature spaces: (a) morphologi-
cal features only, (b) texture features only, and (c)
morphological and texture features combined. A two-fold
cross-validation was conducted by partitioning the dataset
into Set 1 and Set 2. In the first fold, Set 1 was used for fea-
ture selection and classifier training. The trained classifier
was then tested on Set 2. In the second fold, feature selection
and classifier training were performed on Set 2 and then
tested on Set 1.

When training on a given fold (for example, Set 1) a leave-
one-case-out resampling scheme with stepwise feature selec-
tion was used to reduce the dimensionality of the feature
space. In stepwise feature selection, one feature is entered or
removed in alternate steps while their effect is analyzed using
the Wilks’ lambda criterion.21 The significance of the change
in the Wilks’ lambda when a feature is included or removed
was estimated by F statistics. Fin, Fout, and tolerance are the
parameters of the stepwise feature selection, which define the
thresholds for inclusion or exclusion of a given feature. A
range of Fin, Fout, and tolerance values is evaluated by using
an automated simplex optimization method. The set of Fin,
Fout, and tolerance values that lead to the highest classifica-
tion result with the lowest number of features based on the
training set are selected. A smaller number of features are
preferred in order to reduce the chance of overfitting. Once
the set of Fin, Fout, and tolerance is selected, the stepwise fea-
ture selection with the selected parameter set is applied to the
entire training fold to select a single set of features and train a
single classifier. After the classifier is fixed it is applied to
the test fold (e.g.,, Set 2) for performance evaluation.

Cascaded Level Set

3D Gradient Magnitude 
and Direction Images

3D Smoothing, Region 
Growing

Auto-Initialization

Automatic Segmentation

Volume of Interest

FIG. 4. Block diagram of the auto-initialized cascaded level sets (AI-CALS)
method. [Color figure can be viewed at wileyonlinelibrary.com]
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Discriminant Score
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FIG. 5. Block diagram of our machine learning based staging system. We
compared the linear discriminant analysis (LDA), back-propagation neural
network (NN), Support vector machine (SVM), and Random forest classifiers
(RAF) in the classification stage for this study.
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Four different classifiers were evaluated in this study. The
same partitioning of Set 1 and Set 2 was used for all classi-
fiers. We compared the four classifiers for this classification
task. The first classifier was linear discriminant analysis
(LDA).22,23 The LDA with the stepwise feature selection was
used to determine the most effective features using the train-
ing set in each fold, as described above. The second classifier
was a back-propagation neural network (NN)24 with a single
hidden layer and a single output node. The selected features
from LDA were used for this classifier and they determined
the number of input nodes to the NN. The parameters for the
NN were adjusted using the training set, and the best per-
forming network was applied to the test set. The third classi-
fier was a support vector machine (SVM)25,26 with a radial
basis kernel. Using training data, a SVM determines a deci-
sion hyperplane to separate the two classes by maximizing
the distance, or the margin, between the training samples of
both classes and the hyperplane. The width of the SVM radial
basis kernels c was varied between 0.02 and 0.14 for the
experiments. The best parameters for the SVM kernels for a
specific experiment were selected using the training set,
which were then applied to the test set. The LDA selected fea-
tures were also used as the input to the SVM. The fourth one
is the Random Forest (RAF) classifier.27 We used the
WEKA28 implementation and selected 50–100 trees and five
to seven features per tree for our classification task using the
training set in each fold. The parameters for the random forest
classifier were determined experimentally using the training
sets. All 91 features were used as an input to the RAF.

3.C. Evaluation methods

Lesion segmentation performance was evaluated using
radiologists’ 3D hand-segmented contours as reference stan-
dards. The hand outlines of all 84 lesions were obtained from
an experienced abdominal radiologist (RAD1). Hand outlines
for a subset of 12 lesions were obtained from a second experi-
enced abdominal radiologist (RAD2). The average distance
and the Jaccard index29 were calculated between the com-
puter outlines and the hand outlines. The average distance,
AVDIST, is defined as the average of the distances between
the closest points of the two contours:

AVDIST G;Uð Þ ¼ 1
2

�P
x2G min d x; yð Þ : y 2 Uf g

NG

þ
P

y2U min d x; yð Þ : x 2 Gf g
NU

�
;

(1)

where G and U are two contours being compared. NG and
NU denote the number of voxels on G and U, respectively.
The function d is the Euclidean distance. For a given voxel
along the contour G, the minimum distance to a point
along the contour U is determined. The minimum distances
obtained for all points along G are averaged. This process
is repeated by switching the roles of G and U. AVDIST is
then calculated as the average of the two average minimum
distances.

The Jaccard index is defined as the ratio of the intersection
between the reference volume and the segmented volume to
the union of the reference volume and the segmented volume:

JACCARD3D ¼ VG \ VU

VG [ VU
; (2)

A value of 1 indicates that VU completely overlaps with
VG, whereas a value of 0 implies VU and VG are disjoint.

To evaluate the classifier performance, the training and test
scores output from the classifier were analyzed using the
receiver-operating characteristic (ROC) methodology.30 The
classification accuracy was evaluated using the area under
the ROC curve, Az. The statistical significance of the differ-
ences between the different classifiers and feature spaces
were estimated by the CLABROC program using ROC soft-
ware by Metz et al.31,32

4. RESULTS

The lesion segmentation performance of the AI-CALS
compared to the radiologist hand outlines for the 84 lesions
are shown in Table I. Table II shows the computer segmenta-
tion performance compared to two different radiologists’
hand outlines for a subset of 12 lesions.

The performance of the classifiers based on different
machine learning techniques, the LDA, NN, SVM, and RAF,
is summarized in Table III. Different feature spaces contain-
ing the morphological features, the texture features, and the
combined set of both morphological and texture features
were used for classification. The features selected with LDA
were used in the SVM and NN classifiers. The LDA classifier
with morphological features achieved a training Az of 0.91 on
Set 1 and a test Az of 0.81 on Set 2. For training on Set 2 it
achieved a Az of 0.97 and a test Az of 0.90 on Set 1. The
selected features on the training sets included volume, a con-
trast feature, and gray level feature. The test Az of the NN for
Set 1 and Set 2 was 0.88 and 0.91, respectively. The SVM

TABLE I. Segmentation performance of the 84 lesions compared to hand out-
lines performed by radiologist 1 (RAD1).

AI-CALS vs. RAD1

Average distance AVDIST 4.9 � 2.7 mm

Jaccard index JACCARD3D 43.5 � 14.0%

TABLE II. Segmentation performance for a subset of 12 lesions compared to
hand outlines performed by two different radiologists (RAD1, RAD2).

AI-CALS
vs. RAD1

AI-CALS
vs. RAD2

RAD1
vs. RAD2

Average distance
AVDIST

5.2 � 2.5 mm 4.1 � 1.5 mm 2.9 � 1.1 mm

Jaccard index
JACCARD3D

43.2 � 13.2% 50.1 � 14.7% 58.7 � 11.1%
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achieved test Az of 0.88 on Set 1 and test Az of 0.90 on Set 2.
The test Az of the RAF for Set 1 and Set 2 was 0.83 and 0.88,
respectively. The distribution of the discriminant scores from
the four classifiers for testing on Set 1 and Set 2 in two-fold
cross-validation in the morphological feature space are pre-
sented in Fig 6. It can be observed that most of the classifiers
were able to provide a relatively good separation between the
two classes.

By using the texture features the LDA classifier achieved a
test Az of 0.91 on Set 1 and a test Az of 0.88 on Set 2. When
trained on Set 1 or Set 2 the stepwise feature selection proce-
dure selected subsets of the filtered Dasarathy east-west
direction features, the filtered Dasarathy horizontal direction
features and the gray level radial gradient direction features.
The test Az of the NN classifier for Set 1 and Set 2 was 0.89
and 0.92, respectively. The SVM classifier achieved test Az

of 0.91 on Set 1 and test Az of 0.89 on Set 2. The test Az of
the RAF classifier for Set 1 and Set 2 was 0.89 and 0.97,
respectively.

When the morphological and the texture features were
combined, the LDA classifier achieved a test Az of 0.89 on
Set 1 and a test Az of 0.90 on Set 2. When trained on Set 1 or
Set 2 the stepwise feature selection procedure selected a con-
trast feature, subsets of the filtered Dasarathy horizontal
direction features, and subsets of the gray level radial gradient
direction features. The test Az of the NN classifier for Set 1
and Set 2 was 0.91 and 0.95, respectively. The SVM classifier
achieved test Az of 0.92 on Set 1 and test Az of 0.89 on Set 2.
The test Az of the RAF classifier for Set 1 and Set 2 was 0.86
and 0.96, respectively. The test ROC curves for all of the clas-
sifiers when tested on Set 1 and Set 2 in the two-fold cross-
validation in the different feature spaces are shown in Fig. 7.

The differences in the Az values between pairs of classi-
fiers did not achieve statistical significance. The classifiers
achieved slightly higher Az values in the texture and com-
bined feature spaces than in the morphological feature space;
however, the differences did not achieve statistical signifi-
cance after Bonferroni correction for the multiple compar-
isons (P-value < 0.05/18 = 0.0028 to be considered
significant).

5. DISCUSSION

The agreement between the AI-CALS lesion segmentation
and the radiologists’ manual segmentation was slightly lower
than the agreement between two radiologists’ hand outlines,
indicating that the computer segmentation will need to be fur-
ther improved. Both the morphological and the texture fea-
tures were important for classifying the bladder cancer stage.
When only morphological features were used in the classifier,
volume, and contrast features were always selected. Volume
was the primary feature used to describe lesion size. When
the classifier used only the texture features, the features from
the three main groups, the filtered Dasarathy east-west direc-
tion features, the filtered Dasarathy horizontal direction fea-
tures, and the gray level radial gradient direction features
were consistently selected. There was essentially no change
in classification accuracy when the morphological features
were added to the texture features in the combined set.

The LDA, SVM, and NN classifiers all led to relatively
consistent results. There was no statistically significant differ-
ence in the performances between pairs of the classifiers. The
best overall results for the two-fold cross-validation were
obtained when a combined feature set was used with an NN
classifier. Using Set 1 for training, the training Az was 0.97
and the test Az was 0.95. Using Set 2 for training, the training
Az was 1.00 and the test Az was 0.91.

The RAF classifier showed greater imbalance between Set
1 and Set 2 than the other classifiers. When training was done
on Set 2 and testing on Set 1, the Az were substantially lower
than the Az values when training was done on Set 1 and test-
ing on Set 2. For example, the test Az decreased from 0.88 to
0.83 for morphological features, from 0.97 to 0.89 for texture
features only, and from 0.96 to 0.86 for the combined fea-
tures. This imbalance between the two sets could be due to
the fact that RAF utilized all the features in the subspace,
whereas the other three classifiers involved feature selection.

Examples of bladder cancers with stages ≥ T2 or < T2
and the corresponding classifier scores are shown in Fig. 8.
The reported scores are test scores for the LDA, SVM, NN,
and RAF classifiers based on the morphological features. In

TABLE III. Summary results for LDA, NN, SVM, and RAF classifiers in morphological, texture, and combined feature spaces. The column “Number of Fea-
tures” did not apply to the RAF classifier. All features were used for the RAF classifier. The differences in the Az values between pair-wise comparison of the dif-
ferent classifiers did not achieve statistical significance after performing Bonferroni correction for the 18 comparisons (P > 0.0028).

Feature type
Number of
features

LDA NN SVM RAF

Training Testing Training Testing Training Testing Training Testing

Morphological features

Training (Set 1) testing (Set 2) 4 0.91 0.81 0.96 0.91 0.95 0.90 1 0.88

Training (Set 2) testing (Set 1) 4 0.97 0.90 0.98 0.88 0.97 0.88 1 0.83

Texture features

Training (Set 1) testing (Set 2) 2 0.91 0.88 0.95 0.92 0.92 0.89 1 0.97

Training (Set 2) testing (Set 1) 7 1 0.91 1 0.89 1 0.91 1 0.89

Combined features

Training (Set 1) testing (Set 2) 3 0.92 0.90 0.97 0.95 0.92 0.89 1 0.96

Training (Set 2) testing (Set 1) 7 1 0.89 1 0.91 1 0.92 1 0.86
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Figs. 8(a)–8(d) the T1 stage cancers of different sizes that
were correctly classified with low scores by all classifiers are
shown. Note that the output score ranges are different for dif-
ferent classifiers so that the score values should not be com-
pared across classifiers. T3 stage and T2 stage cancers that
were correctly classified with high scores from all classifiers
are presented in Figs. 8(e)–8(h), respectively. A case that was

clinically identified as T1 stage pre-surgery but later was
identified as a T2 stage cancer postsurgery is shown in
Figs. 8(k) and 8(l). The classifiers classified the cancer as
≥ T2 with high scores. Figs. 8(m) and 8(n) show a T2 stage
cancer that was incorrectly identified by the LDA, SVM, and
NN classifiers with low scores, but correctly identified by the
RAF with a high score.
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FIG. 6. Distribution of the classifiers discriminant scores for testing on Set 1 and Set 2 in two-fold cross-validation using the morphological features. (a) LDA
(Set 1) Az = 0.90, (b) LDA (Set 2) Az = 0.81, (c) SVM (Set 1) Az = 0.88, (d) SVM (Set 2) Az = 0.90, (e) NN (Set 1) Az = 0.88, (f) NN (Set 2) Az = 0.91, (g)
RAF (Set 1) Az = 0.83, (h) RAF (Set 2) Az = 0.88.
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We also have extracted features from the manually seg-
mented bladder lesions and applied the four different types of
classifiers with the different feature sets to the cancer stage
prediction. The classifiers using features extracted from the
manually segmented lesions performed similarly to the classi-
fiers using features extracted from the AI-CALS segmented
lesions. The test Az values ranged from 0.77 to 0.95. For 6 of
the 24 experiments the classifiers using features extracted
from the manually segmented lesions performed better than
classifiers using features extracted from the AI-CALS seg-
mentations. However, the differences did not reach statistical

significance. Therefore, although the performance of the AI-
CALS lesion segmentation was slightly lower than the radiol-
ogists’ hand outlines the final classification results were
similar.

The main limitation of the study is the small dataset.
Another limitation is that we have not applied the deep learn-
ing convolution neural network (DLCNN) to this bladder
cancer staging task. DLCNN has been shown to be superior
to conventional classifiers in many classification tasks, espe-
cially the classification of natural scene images with millions
of training samples. It also shows promise in number of
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FIG. 7. ROC curves for testing on Set 1 and Set 2 in two-fold cross-validation for LDA, SVM, NN, and RAF classifiers: Left column: testing on Set 1, right col-
umn: testing on Set 2. (a) and (b) morphological features; (c) and (d) texture features; (e) and (f) combined features. [Color figure can be viewed at wileyonlineli-
brary.com]
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medical imaging applications33,34 including bladder segmen-
tation35 and bladder cancer treatment response monitoring.36

However, our experience with DLCNN also indicates that it
is not always the best, perhaps limited by the relatively small
annotated training set in medical imaging, even with transfer
learning. As the performances of the four conventional classi-
fiers used in this study were quite high, it would not be a fair
comparison for DLCNN if we do not have adequate training
for the latter. We will continue to collect additional cases and
compare the conventional classifiers with DLCNN for blad-
der cancer staging in a future study.

6. CONCLUSION

In this preliminary study we proposed machine learning
methods for prediction of bladder cancer stage. It was found
that the morphological features and texture features were
useful for assessing the stage of bladder lesions. The LDA,
SVM, and NN classifiers all led to relatively consistent
results. There was a trend that the SVM and NN classifier
slightly outperformed the LDA classifier. The best overall
results for the two-fold cross-validation were obtained when
a combined feature subspace was used with the NN

(a) (b) (c) (d)

LDA= -1.85; SVM= -0.95; NN= 0.04; RAF= 0.28 LDA= -2.44; SVM= -1.50; NN= 0.05; RAF= 0.20

(e) (f) (g) (h)

LDA= 7.46;  SVM= 2.13;  NN= 1.00;  RAF= 0.86 LDA= 1.62;  SVM= 1.73;  NN= 0.91;  RAF= 0.54

(k) (l) (m) (n)

LDA= 3.42;  SVM= 1.50;  NN= 1.00;  RAF= 0.82 LDA= -0.97;  SVM= -0.55;  NN= 0.33;  RAF= 0.69

FIG. 8. Examples of bladder cancers with stages ≥ T2 or < T2. The outlines represent the AI-CALS segmentation. The reported scores are test scores for the
LDA, SVM, NN, and RAF classifiers based on the morphological features. Note that the output score ranges are different for different classifiers so that the score
values should not be compared across classifiers. The two cases in (a, b) and (c, d) both contained was a T1 stage cancer that was properly classified with low
scores from all classifiers. (e, f) was a T3 stage case that was properly classified with high scores from all classifiers. (g, h) was a T2 stage case that was properly
classified with high scores from all classifiers. (k, l) was a case that was clinically identified as T1 presurgery but was identified as a T2 stage cancer postsurgery.
The classifiers classified the cancer as ≥ T2 with high scores. (m, n) was T2 stage cancer that was incorrectly identified by the LDA, SVM, and NN classifiers
with low scores and correctly identified by the RAF with a high score. [Color figure can be viewed at wileyonlinelibrary.com]
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classifier. Further studies are under way to improve the stag-
ing of bladder cancer and test the classifier on a larger data-
set, and to investigate the potential of improving the
predictive model by combining imaging biomarkers with
non-imaging biomarkers.
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