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Abstract15

We perform a three-dimensional (3D) global simulation of Earth’s magnetosphere with16

kinetic reconnection physics to study the flux transfer events (FTEs) and dayside mag-17

netic reconnection with the recently developed magnetohydrodynamics with embedded18

particle-in-cell model (MHD-EPIC). During the one-hour long simulation, the FTEs are19

generated quasi-periodically near the subsolar point and move toward the poles. We find20

the magnetic field signature of FTEs at their early formation stage is similar to a ‘crater21

FTE’, which is characterized by a magnetic field strength dip at the FTE center. After22

the FTE core field grows to a significant value, it becomes an FTE with typical flux rope23

structure. When an FTE moves across the cusp, reconnection between the FTE field lines24

and the cusp field lines can dissipate the FTE. The kinetic features are also captured by25

our model. A crescent electron phase space distribution is found near the reconnection26

site. A similar distribution is found for ions at the location where the Larmor electric27

field appears. The lower hybrid drift instability (LHDI) along the current sheet direction28

also arises at the interface of magnetosheath and magnetosphere plasma. The LHDI elec-29

tric field is about 8 mV/m and its dominant wavelength relative to the electron gyroradius30

agrees reasonably with MMS observations.31

1 Introduction32

Magnetic reconnection between the interplanetary magnetic field (IMF) and Earth’s33

intrinsic dipole field is regarded as the most important mechanism for mass and energy34

transfer from the solar wind to the magnetosphere. Flux transfer events (FTEs) are widely35

considered as a phenomenon related to dayside non-steady reconnection [Russell and El-36

phic, 1978]. An FTE is a bundle of reconnected magnetic fluxtubes created at the magne-37

topause and moving anti-sunward along the magnetopause. Such events are characterized38

by a bipolar variation of the magnetopause normal magnetic field BN , and are usually as-39

sociated with an enhancement of core field, the magnetic field component along the axial40

direction of the FTE. An FTE exhibits a flux-rope structure in three-dimensional space. It41

has been observed that the plasma inside an FTE is usually a mixture of magnetospheric42

and magnetosheath plasma [Daly et al., 1981], indicating that FTEs are generated by mag-43

netic reconnection process. The diameter of an FTE can vary from several ion inertial44

lengths [Eastwood et al., 2016] (a few hundred kilometers) to several Earth radii [Rijn-45

beek et al., 1984; Hasegawa et al., 2006]. In the dawn-dusk direction along the magne-46
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topause, FTEs can extend over a long distance [Fear et al., 2008]. FTEs frequently occur47

as a quasi-periodic process, and Rijnbeek et al. [1984] reported that the FTEs were ob-48

served about every 8 minutes during periods of southward magnetosheath magnetic field.49

FTEs have been studied with various global numerical models. Compared to local50

simulations, a global model can offer more realistic plasma and magnetic field context.51

Fedder et al. [2002] used a global ideal MHD model to study the generation of FTEs. The52

typical magnetic field signature is captured by their model, and their simulation suggests53

that the FTEs are formed by non-steady reconnection along the separator at the mag-54

netopause. Raeder [2006] performed a high resolution ideal MHD simulation with the55

OpenGGCM model. FTEs formed by multiple X line reconnection [Lee and Fu, 1985]56

with a tilted dipole field in this study. Dorelli and Bhattacharjee [2009] revisited the FTE57

generation mechanism with resistive MHD using the OpenGGCM model, and the authors58

argue that the FTEs are generated by flow vortices and the formation of new X lines is the59

consequence, rather than the cause of FTE formation. Sibeck et al. [2008] studied crater60

FTEs with the BATS-R-US MHD model. All these global simulations are based on ideal61

or resistive MHD codes, and the generation of FTEs relies either on ad hoc resistivity62

[Dorelli and Bhattacharjee, 2009] or numerical resistivity [Fedder et al., 2002; Raeder,63

2006]. Recently, a 2D-3V global magnetospheric hybrid-Vlasov simulation was performed64

to study magnetopause reconnection and FTEs by Hoilijoki et al. [2017].65

Typical FTEs are associated with an enhancement of the field strength at the center66

of a flux rope. On the other hand, the so-called crater FTEs show more complicated struc-67

ture: the center field is surrounded by two ‘trenches’ and the field strength usually show68

a dip just at the center [LaBelle et al., 1987; Owen et al., 2008]. Typical FTEs are more69

frequently observed than crater FTEs [Zhang et al., 2010]. The generation mechanism of70

crater FTEs has been explored with both numerical simulations [Sibeck et al., 2008] and71

analytic models [Zhang et al., 2010]. Zhang et al. [2010] proposed that crater FTEs are the72

initial stage of typical FTEs based on hundreds of events selected from THEMIS observa-73

tions. The structure of the core field can be even more complicated, for example, Eriksson74

et al. [2016] found a tripolar core field flux rope at the magnetopause.75

It is widely accepted that the formation of FTEs is related to the dayside magne-76

topause reconnection, which is a kinetic process for collisionless plasma. Therefore it is77

important to include proper kinetic effects into the numerical model in order to produce78

FTEs in a physical way. The MHD with embedded PIC (MHD-EPIC) model developed79
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by Daldorff et al. [2014] makes it feasible for the first time to use a kinetic model to study80

reconnection and FTEs with realistic magnetospheric configuration. Because of the small81

kinetic scales inside the magnetosheath, for example, the ion inertial length di is about82

60km ∼ 1/100 RE , we have to artificially increase the kinetic scales in the present 3D83

global simulation. As shown by our companion paper [Tóth et al., 2017, submitted paper],84

this scaling has no significant effect on the large scale structures, while the kinetic phe-85

nomena occur at linearly increased scale. Since the kinetic scale physics is included in our86

global model, the reconnection related kinetic phenomena, like the crescent shape electron87

phase space distribution, the Larmor electric field and the lower hybrid drift instability88

(LHDI), are all captured by the model. The crescent distribution was first found by Hesse89

et al. [2014] from 2D local simulation, then observed by the Magnetospheric Multiscale90

(MMS) mission recently [Burch et al., 2016]. It is formed by the magnetosheath electrons91

reaching the stagnation point and accelerated by the Hall electric field [Bessho et al., 2016;92

Shay et al., 2016]. Recently, the origin of the crescent distribution is discussed by Lapenta93

et al. [2017] with a high-resolution multiscale simulation. This special distribution has94

been proposed as an indicator of the magnetic reconnection location [Hesse et al., 2014].95

The Larmor electric field is potentially another signature that can help to identify the lo-96

cation of reconnection site [Malakit et al., 2013]. It is on the magnetosphere side, normal97

to the current sheet and pointing away from the X line. The lower hybrid drift instability98

(LHDI) develops along the current direction [Daughton, 2003; Roytershteyn et al., 2012],99

and it has been observed recently by MMS satellites [Graham et al., 2016]. LHDI was100

considered as a potential source to create anomalous resistivity for reconnection [Huba101

et al., 1977], but previous research [Mozer et al., 2011] has suggested the related resistivity102

may be not large enough. However a recent 3D simulation showed LHDI may still play an103

important role near the diffusion region because of the presence of turbulence [Price et al.,104

2016] .105

In the following sections we will describe the MHD-EPIC model, the simulation106

setup, and then discuss the simulation results.107

2 Model description108

The MHD-EPIC model has been successfully applied to investigate the interaction109

between the Jovian wind and Ganymede’s magnetosphere, where the ion inertial length is110

large compared to the size of its magnetosphere [Tóth et al., 2016]. In this paper, the same111
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model is applied to study Earth’s magnetosphere, which is more challenging because of112

the small kinetic scale. The MHD-EPIC model two-way couples the BATS-R-US [Powell113

et al., 1999; Tóth et al., 2008] MHD code and the implicit particle-in-cell code iPIC3D114

[Markidis et al., 2010] through the Space Weather Modeling Framework (SWMF) [Tóth115

et al., 2005, 2012]. A general description of the these models and the simulation setup is116

provided in this session.117

2.1 Global MHD model: BATS-R-US118

In order to make the MHD model as complete as possible, the Hall term and the119

electron pressure gradient term are included in the generalized Ohm’s law, and a separate120

electron pressure equation is solved. The generalized Ohm’s law we use is:121

E = −u × B +
J × B
qene

−
∇pe
qene

(1)122

where qe, ne and pe are the charge per electron, electron number density and electron123

pressure, respectively. The electron pressure is obtained from:124

∂pe
∂t
+ ∇ · (peue) = (γ − 1)(−pe∇ · ue) (2)125

where γ = 5/3 is the adiabatic index, and ue = u − J/(qene) is the electron velocity.126

From the numerical perspective, it is not trivial to incorporate the Hall term into127

the MHD equations. The Hall MHD equations support the whistler mode wave, which is128

dispersive and the characteristic speed is inversely proportional to the wavelength. Since129

the shortest wavelength that can be resolved in a numerical system is twice the cell size,130

the fastest whistler wave speed is proportional to 1/∆x. For an explicit time integration131

scheme, the time step is limited by the CFL condition, which leads to a time step approx-132

imately proportional to 1/(∆x)2 for Hall MHD. In order to use a reasonably large time133

step, a semi-implicit time discretization is employed [Tóth et al., 2012]. The semi-implicit134

scheme treats the stiff terms, which is the Hall term here, and other terms separately. Ex-135

cluding the Hall term, the rest of the equations are updated with an explicit scheme, and136

the time step is only limited by the fast magnetosonic wave speed. The Hall term is han-137

dled by an implicit solver after the explicit update has been done.138

The typical solar wind condition at 1AU with purely southward IMF is used as139

the boundary condition to drive the magnetosphere: B = (0, 0,−5) nT, mass density140

ρ = 5 amu/cm3, ion pressure pi = 3.45× 10−3 nPa, and solar wind velocity u = (−400, 0, 0)141

km/s. Electron pressure pe = 8pi = 2.76 × 10−2 nPa is used, so that after crossing142
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the shock, where the ions are heated by converting bulk into thermal energy while the143

electron thermal energy changes adiabatically, the ion-electron pressure ratio is about144

pi/pe ∼ 2.5. Wang et al. [2012] shows that the temperature ratio Ti/Te in the solar wind145

varies from 0.1 ∼ 2, and the ratio is about 4 ∼ 12 inside the magnetosheath. The Ti/Te146

ratio, which is the same as pi/pe, used in the simulation is close to but slightly smaller147

than the typical observed ratio. We use Ti/Te = 1/8, because our numerical experiments148

show that the electrons can be numerically heated in the PIC code if colder solar wind149

electrons are used for the upstream boundary condition. A magnetic dipole with 30116150

nT field strength at the Earth magnetic equatorial surface is used. Its magnetic axis is151

aligned with the z axis. The total magnetic field B is split into the intrinsic dipole field152

B0 and the deviation B1. A three-dimensional block-adaptive Cartesian grid is used to153

cover the whole magnetosphere: −224 RE < x < 32 RE , −128 RE < y < 128 RE and154

−128 RE < z < 128 RE . Since we focus on the dayside dynamics in this paper, the mesh155

along the dayside magnetopause is refined to high resolution with ∆x = 1/16 RE (see Fig-156

ure 1). 59 million cells are used in total. At the inner boundary r = 2.5 RE , the density is157

fixed as 28 amu/cm3, the pressure and the magnetic field B1 have zero gradient, the radial158

velocity is zero, while the tangential velocity is calculated from the ionosphere electrody-159

namics model developed by Ridley et al. [2004].160

2.2 Implicit particle-in-cell model: iPIC3D166

The semi-implicit particle-in-cell code iPIC3D was developed by Markidis et al.167

[2010]. The advantage of iPIC3D over explicit particle-in-cell codes is that iPIC3D is lin-168

early unconditionally stable, so that iPIC3D can handle larger time step and larger cell size169

than explicit PIC codes. Compared to the explicit PIC method, the cell size of iPIC3D170

is chosen based on the scale of interest instead of the Debye length, and the time step of171

iPIC3D is not limited by the plasma frequency or the speed of light, but the accuracy con-172

dition, which requires vrms∆t/∆x < 1 on all grid nodes for all species, where vrms is the173

root mean square of macro-particle velocities. In order to make the simulation as efficient174

as possible while keeping the accuracy condition satisfied, we implemented an adaptive175

time step scheme:176

∆t = c0 ·min(∆x/vrms, ∆y/vrms, ∆z/vrms), (3)177

which is calculated for each grid node and the minimum is taken over the whole PIC178

mesh. The root mean square velocity vrms is similar to the thermal velocity but contains179
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Figure 1. Part of the meridional plane with the adaptive MHD grid and the PIC region. The color repre-

sents the plasma pressure on a logarithmic scale. The black lines represent the refinement level, where the cell

size changes. The resolution of the finest level around the dayside magnetopause is 1/16 RE , and the refine-

ment ratio between two nearby levels is 2. The dashed magenta box (8 RE < x < 12 RE , −6 RE < z < 6 RE )

is the edge of the PIC region covered by iPIC3D, and it extends from −6 RE to 6 RE in the y direction.
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the effect of bulk velocity. c0 is a coefficient that should be smaller than 1. c0 = 0.4 is180

used for the simulation in this paper.181

Since the focus of this paper is the dayside magnetopause reconnection, the embed-182

ded PIC box is placed near the sub-solar magnetopause, where reconnection happens un-183

der purely southward IMF. In the GSM coordinates, the region inside 8 RE < x < 12 RE184

and −6 RE < y, z < 6 RE (see Figure 1) is solved by iPIC3D. The PIC region covers the185

magnetopause and it is just inside the bow shock. The size of the ion diffusion region is186

the same order as the ion inertial length, and this kinetic scale should be resolved in or-187

der to capture reconnection kinetic physics. However, the ion inertial length di = c/ωpi is188

about 60km ∼ 1/100 RE for a typical magnetosheath density of 20 amu/cm3. This length189

is so small that it is extremely difficult to resolve even for a 3D global MHD model, not190

to mention the PIC code. Scaling up the kinetic length helps to reduce the required com-191

putational resources. In the present simulation, all the fluid values, including density, pres-192
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sure, velocity, IMF and dipole field strength, and also the derived values like the sound193

speed, Alfven velocity and plasma beta, are realistic so that the global structure of the194

magnetosphere is comparable to the real system. On the other hand, the ion inertial length195

is scaled up 16 times to about 1/6 RE in the magnetosheath by artificially increasing ion196

mass per charge by a scaling factor of 16. Since all the quantities are normalized in the197

numerical model, there are several ways to understand or interpret the scaling. One way198

is treating the scaling as changing the charge of ions and electrons. Compared with the199

original system, we reduce the charge by a factor of 16 while all the other basic physical200

quantities, like mass per ion, number density, and temperature remain realistic. From the201

perspective of ideal magnetohydrodynamics, the scaled system is exactly equivalent to the202

original one. For a particle-in-cell code, the reduction of charge per ion reduces the elec-203

tromagnetic force on an ion and therefore increases the gyroradius and gyroperiod by a204

factor of 16. But the gyroradius and the gyroperiod are still several orders smaller than205

the global spatial and temporal scale, for example the distance from Earth to the magne-206

topause and the time for the plasma moving from the subsolar point to the cusp, respec-207

tively. How the scaling changes the structure of reconnection is discussed in detail in our208

companion paper by Tóth et al. [2017, submitted paper]. We also apply a reduced ion-209

electron mass ratio mi/me = 100, which is sufficiently large to separate the electron and210

ion scales. We choose ∆x = 1/32 RE as the PIC grid resolution so that di/∆x ∼ 5 and211

de/∆x ∼ 0.5. This resolution keeps a balance between the computational cost and the re-212

quirement of resolving kinetic scales. 216 particles per cell per species are used and there213

are about 9 billion particles in total inside the domain initially. Our numerical experiments214

suggest smoothing the electric field E and the current density j can help to suppress the215

numerical noise [Tóth et al., 2017, submitted paper].216

The typical magnetic field strength in the magnetosheath is about 30 nT, and the cor-217

responding ion gyro-frequency is Ωci = 0.0286Hz and Ωce = 2.86Hz with scaled charge-218

mass ratio. As mentioned above, the time step of iPIC3D is determined by the accuracy219

condition (Eq. 3). From the simulation, we find the maximum thermal speed of electrons220

inside the PIC domain is about 2500km/s, which leads to a time step of ∆t ∼ 0.03s ∼221

10−3Ω−1
ci ∼ 0.1Ω−1

ce with cell size ∆x = 1/32 RE . Therefore, the time step is small enough222

to resolve the gyro-motion of both electrons and ions.223
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2.3 Coupling between BATS-R-US and iPIC3D224

BATS-R-US and iPIC3D are coupled through the Space Weather Modeling Frame-225

work (SWMF). These two models are compiled together to generate a single executable226

file. Both models can run simultaneously on specified processors and the information ex-227

change is parallelized and handled by the Message Passing Interface (MPI). The details of228

the two-way coupling has been described by Daldorff et al. [2014].229

In the simulation presented in this paper, we run the Hall MHD code first with the230

local time stepping scheme to reach a steady state. Then BATS-R-US sends the informa-231

tion, including density, velocity, pressure and magnetic field, to iPIC3D. iPIC3D initializes232

the electric field based on the Ohm’s law. The Maxwellian distributed particles are gen-233

erated according to the fluid information so that iPIC3D and BATS-R-US have consistent234

density, velocity and pressure at the same position. After the PIC initialization, the MHD235

and PIC models update independently with their own time steps. The coupling frequency236

between these two models can be set to a value that is independent of the MHD or PIC237

time step. During the coupling, iPIC3D calculates moments of the particle distribution238

function, such as the density, velocity and pressure, and overwrites the MHD cells over-239

lapping the PIC region. In return the MHD model provides electromagnetic field as well240

as particle boundary conditions for iPIC3D. For the particle boundary, iPIC3D removes241

the particles in the boundary cells, and re-generates new particles based on the fluid vari-242

ables obtained from MHD. Between the two coupling time points, iPIC3D uses the lat-243

est information obtained from BATS-R-US as a boundary condition during each iteration.244

In the simulation presented here, the time step for BATS-R-US and iPIC3D are around245

∆tMHD = 0.015 s and ∆tPIC = 0.032 s, respectively. The MHD code and the PIC code246

are coupled every time step. The time step of PIC is larger than that of MHD because the247

MHD time step is limited near the magnetic poles due to the high Alfven speed, while248

these regions are outside the PIC domain.249

Previously we generated particles in only one ghost cell layer [Daldorff et al., 2014]250

as a particle boundary condition. Our numerical experiments suggested that using more251

layers (5 layers specifically in this paper) as the particle boundary, while the electromag-252

netic field boundary is still only enforced at the outermost layer, is helpful to smoothly253

transit from PIC to MHD. The MHD cells overlapped with the PIC particle boundary are254

not overwritten by PIC. A similar technique has been used to implement open boundary255

condition for stand-alone PIC simulations [Peng et al., 2015].256
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We run the simulation on 6400 processors for 170 hours on Blue Water supercom-257

puter [Bode et al., 2012] to model one hour of simulation time. iPIC3D and BATS-R-US258

use about 80% and 15% of the simulation time, respectively. The coupling and other over-259

head use the remaining 5%.260

2.4 Energy conservation261

Even though the PIC region is not a closed system, therefore mass and energy flow262

into and out of the region, it is still important to check the energy variation during the263

simulation to make sure the PIC model does not suffer from numerical heating or cool-264

ing. The normalized energy changes are shown in Figure 2. Throughout the simulation,265

the total energy Et variation is less than 3%. The small variation suggests that the numer-266

ical heating or cooling are insignificant. The initial condition for iPIC3D is under MHD267

equilibrium, but not necessarily under Vlasov equilibrium. The electromagnetic field en-268

ergy EEM and kinetic energy of each species normalized by the initial total energy are269

also shown in Figure 2. During the first several minutes, energy is transferred from the270

particles to the electromagnetic field. After 200s, the ion and electron energy decreases271

about 5%, while the electromagnetic field energy increases from 0.3 to about 0.36. This is272

the transition from the MHD steady state to a PIC preferred state. Further change of these273

energies are gradual and small. EEM is mainly magnetic field energy, which is about 3274

orders larger than the electric field energy.275

Figure 2. The normalized the total energy Et , electric field and magnetic field energy EEM , ion energy

Eion and electron energy Eelectron. They are normalized by the initial total energy.

276

277
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3 Results278

3.1 Overview279

The iPIC3D code is initialized from a steady Hall MHD state, which is shown in280

Figure 1. The steady state is obtained from the Hall MHD run by using a local time step-281

ping scheme, and a reconnection X line already exists near the equatorial plane along282

the dayside magnetopause. Since the local time stepping scheme is diffusive in this case,283

the reconnection signature near the X line is weak, for example, the Hall magnetic field284

strength is only about 1 nT. The PIC code inherits the magnetic field topology and starts285

evolving based on Maxwell’s equations and the motion of the macro-particles. An overview286

of the evolution of the dayside magnetopause is shown in Figure 3, which contains the287

Hall magnetic field By and the field lines at the meridional plane inside the PIC box. At288

t = 70 s, By has already increased to about 8 nT. The Hall field extends far away from289

the X line with roughly the same field strength for each branch. 15s later, south of the290

existing reconnection point, another X line starts to form at around x = 10.2 RE and291

z = −1 RE . At t = 145 s, both X lines can be seen clearly, and a flux rope like structure292

forms between the two X lines. The top X line has moved to about z = 0.5. The bottom293

X line is almost steady to this point, but it will move southward later. At t = 325 s, the294

top and bottom X lines reach about z = 1.8 and z = −3.5, respectively, and the center of295

the flux rope is moving southward with the bottom X line. Since the flux rope is moving296

away from the top X line, the current sheet between them becomes unstable and a sec-297

ondary flux rope is generated (rightmost panel of Figure 3). During the one hour simula-298

tion, flux ropes form near the subsolar point and move toward the poles quasi-periodically.299

More details about the reconnection and the flux ropes, for both macroscopic and micro-300

scopic scales, are discussed in the following sub-sections.301

3.2 Evolution of FTEs304

More complicated structures arise in 3D. Flux ropes colored with the ion veloc-305

ity z component uiz at different times are shown in Figure 4. At t = 100 s, a short flux306

rope appears near the subsolar point. It is labeled as FTE-A. This flux rope extends from307

y ∼ −1 RE to y ∼ 1 RE in the dawn-dusk direction. It suggests that next to the primary X308

line near z = 0, another X line starts to form south of the subsolar point. We have checked309

a series of 2D x − z plane cuts, and found that the signature of reconnection, like the ion310

jets, at the second X line is clear at y = 0, but appears very weak far away from the Sun-311
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Figure 3. A series of snapshots showing By strength (color) and the projected magnetic field lines in the

meridional plane inside the PIC region. The color bar is different in each plot.

302

303

Earth line, for example at y = 0.78 RE or y = −0.78 RE . At t = 150 s, the flux rope has312

extended significantly in both dawn and dusk directions. Along the flux rope, the ion ve-313

locity varies. Close to the dusk side (positive y), the flux rope moves slowly, because the314

northward reconnection jet produced by the second X line slows down the southward flow315

originating from the primary X line. Close to the dawn side (negative y), the flux rope316

moves faster, because the reconnection at the second X line is not strong enough to sig-317

nificantly slow the southward flow ejected from the primary X line. The variation of the318

z component of the ion velocity along the flux rope, which is approximately aligned with319

the y direction, makes the flux rope inclined. At t = 240 s, the flux rope is even more320

tilted because of the varying ambient ion jet velocity. A new small flux rope, FTE-B in321

Figure 4, is generated at t = 320 s above FTE-A. FTE-A bifurcates at y ∼ −2.5 and the322

new branch extends along the dawn-northward direction. FTE-A keeps moving southward323

while FTE-B is growing. At t = 540 s, a large portion of FTE-A, except for the dawn324

part, has already moved to the southern edge of the PIC domain (z = −6). FTE-B elon-325

gates significantly along the dawn-dusk direction. It is twisted at the dawn side so that326

the axial direction is almost parallel to the z-axis. At the dusk side, FTE-B connects to a327

newly formed flux rope FTE-C. At t = 660 s, FTE-B and FTE-C have merged and become328

indistinguishable. These 3D plots suggest:1) flux ropes arise from multiple X line recon-329

nection and can grow in time along the dawn-dusk direction, 2) the pole-ward moving330

velocity varies along a flux rope and makes them tilted, and 3) two flux ropes can merge331

and form a new long flux rope.332

–12–This article is protected by copyright. All rights reserved.



Since the PIC code is two-way coupled with the MHD model, the flux ropes can333

smoothly move out of the PIC region. Figure 5 shows a series of snapshots of jy and field334

lines of FTE-A in the meridional plane (x-z plane) after it leaves the PIC domain. FTE-A335

moves southward along the magnetopause after being generated near the subsolar point.336

At t = 600 s, the flux rope is already close to the southern cusp. There is strong axial337

current jy ∼ 0.02µA/m2 near the center of the flux rope. As FTE-A moves toward the338

cusp, jy inside the flux rope decreases in intensity, which indicates the dissipation of the339

magnetic helicity, as we can see at t = 660 s. When the FTE reaches the center of the340

cusp (t = 720 s), the field lines at the leading edge of the FTE and the cusp field lines are341

anti-parallel and create a narrow and short current sheet with negative jy around x ∼ 4 RE342

and z ∼ −9.5 RE . The ion velocity uiz at x = 4 RE in Figure 6 shows a jump around343

z = −9.5 RE . The narrow current sheet and the velocity jump imply that reconnection oc-344

curs between the flux rope field lines and the cusp field lines. At t = 840 s, after FTE-A345

leaves the cusp, the signature of the flux rope becomes very weak: even though the mag-346

netic field is still perturbed, the jy component is close to zero near the center and no ‘O’347

line can be found. Finally, the remnant of the flux rope completely disappears as it moves348

toward the tail. Beside the FTE presented here, all other FTEs are also dissipated near349

the cusps in the the meridional plane. Since an FTE is a 3D structure, its behavior far350

from the meridional plane needs to be further explored. FTEs were observed by the satel-351

lite along the distant tail magnetopause (x = −67 RE ) on the dusk flank [Eastwood et al.,352

2012]. One possibility to explain the conflict between the simulation and the observation353

is that these FTEs may bypass the cusps and move along the flank from the dayside to the354

tail magnetopause.355

3.3 Magnetic field signature363

Since the most widely used indicator of FTEs in satellite data is the magnetic field364

signature, we discuss how the flux rope magnetic field looks like along a virtual satel-365

lite trajectory. A series of meridional cuts are shown in Figure 7 to illustrate the mag-366

netic field evolution. At t = 290 s, north of the FTE-A event, there is an X line at about367

z = 1 RE surrounded by the quadrupolar Hall magnetic field By . As expected, the two368

branches on the magnetosheath side with amplitude of ∼ 30 nT are stronger than the other369

two on the magnetosphere side with amplitude of ∼ 10 nT. Near the X line, the magne-370

tosheath and magnetosphere are separated by a current sheet with very weak magnetic371
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field. 30 s later, another X line near z = 0 arises, and an O line forms between the two372

X lines. Around the edge of the O lines, the azimuthal component of the magnetic field373

grows, while the By component is still very weak just near the center. We note that the374

strong field on the magnetosheath side of the flux rope is mainly contributed by the Bz375

component because of the accumulation of the inflow of magnetic flux. The reconnec-376

tion at the northern X line is stronger than that of the southern one, so the ion jet around377

the O line is moving southward with a slow speed less than 100 km/s. Inside the O line,378

the pressure starts increasing. 100 s later, the pressure at the center of the flux rope has379

reached about 1.3 nPa while the core field is still small. At t = 540 s, the O line struc-380

ture continues to grow as the two X lines move northward and southward, respectively.381

We can see the core field By at the center of the O line has grown to a significant value382

of ∼ 30 nT now, while the center pressure drops to ∼ 1.0 nPa. The converging jets from383

the two X lines are comparable and the flux rope is almost steady. 180 s later, the core384

field grows to ∼ 40 nT and the corresponding pressure drops to about 0.8 nPa. The whole385

structure at this stage is moving northward driven by the ion jet generated by the south-386

ern X line. To demonstrate the scaling factor has weak influence on the global structures,387

we performed another simulation with ion inertial length increased by a factor of 32. The388

simulation results are shown in Figure 8. The FTE in Figure 8 develops similarly to the389

one in Figure 7: the core field grows gradually and the ion pressure is anti-correlated with390

the core field strength. The FTEs in Figure 8 and Figure 7 also have comparable sizes.391

At the early time when the O line just formed, for example, at t = 420 s, the weak392

core field is surrounded by relatively large toroidal fields. We argue that this is an exam-393

ple of the so-called ’crater FTEs’ that have been observed by spacecrafts [LaBelle et al.,394

1987; Zhang et al., 2010]. Since the O line moves slowly during its initial stage of for-395

mation, the magnetic field observed at a fixed point can not reflect its global structure.396

Instead, the magnetic field along the magnetopause (the red curve in the left panel of Fig-397

ure 9) is shown in the right panel of Figure 9 to illustrate its magnetic field structure.398

Along the magnetopause, from south to north, the Bx field, which is roughly normal to399

the magnetopause, reaches a local minimum of ∼ −15 nT at z = 0 and then quickly in-400

creases to ∼ 15 nT at z = 1 RE . The flux rope is bounded by the depressed magnetic401

field ‘trenches’ at z = −0.2 RE and z = 2 RE as indicated by Bt . The depression re-402

sults from the low magnetic field strength inside the current sheet as can be seen from403

the right panel of Figure 9. Bt reaches a local maximum at the same position of the Bx404
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peaks (z = 0 RE and z = 1 RE ), while the field strength decreases to about 10 nT between405

the peaks. We refer to the event on 30 July 2007 observed and analyzed by Zhang et al.406

[2010] for comparison. Figure 6 of Zhang et al. [2010] shows the magnetic field signature407

of this event. Even though the 30 July 2007 event has a large guide field (corresponding408

to By component in our simulation), and its magnetic field around the flux rope is more409

steady than our simulation, the whole structure of this event is similar to what is shown in410

Figure 9.411

As the flux rope evolves, the core field strength grows to a significant value. The412

magnetic field measured at a fixed position x = 10.2 RE , z = 2.75 RE is shown in the413

right panel of Figure 10. The vertical dashed line at t = 760 s represents the location of414

the maximum Bt . Around this time, the Bx field, which is roughly perpendicular to the415

magnetopause, jumps from ∼ 5 nT to ∼ −20 nT within about 25 s. At t = 760 s, both the416

axial field By and the total field Bt reach a maximum. These features match the signatures417

of the FTE observed by Zhang et al. [2010]. During the one-hour long simulation, there418

are ten FTEs with significant core field moving across the southern PIC edge. The occur-419

rence frequency is consistent with observations [Rijnbeek et al., 1984] and previous MHD420

simulations [Raeder, 2006].421

The IMF is purely southward in our simulation and there is no uniform background422

guide field at the magnetopause. But a significant core field can still arise during the423

FTE generation and evolution as seen in Figure 7. When a flux rope is still close to the424

X lines, the core field may be encompassed by the Hall magnetic field generated by the425

reconnection, resulting in complicated guide field structure. The BM field at t = 540 s is426

shown in Figure 11. In order to compare with observations, the magnetic field has been427

transformed into a boundary normal coordinate system (LMN), in which the N compo-428

nent points outward, normal to the magnetopause, the M component is determined by429

N × ZGSM and the L component completes the right-hand coordinate system. Since the430

plot is shown in the meridional plane, the YGSM direction is anti-parallel to the M di-431

rection. Around the flux rope center, the guide field BM is negative, while the southern432

part of this flux rope is surrounded by positive BM . The polarity of the positive ’Y’ shape433

BM is consistent with the Hall magnetic field generated by the X line at z = −1 RE . If434

a satellite is moving across the flux rope along the red solid line in the left panel of Fig-435

ure 11, the satellite will observe a tripolar guide field structure (right panel of Figure 11).436

Similar structure was first observed in the solar wind [Eriksson et al., 2015], and it was437
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also observed by the Polar satellite at the magnetopause (see Figure 1 of Eriksson et al.438

[2016]). The Polar event shows a large negative BM core field bounded by two narrow439

BM depressions in the presence of a large background guide field. There is no background440

guide field in our simulation and thus the right panel of Figure 11 shows a pure tripolar441

structure: the large negative BM field is surrounded by two relative small positive peaks.442

Despite the difference in the background guide field, the topology of BM obtained from443

our simulation is very similar to the Polar observation.444

3.4 Kinetic features460

We have examined the global structure of the FTEs in the previous discussion. In461

this subsection, we will demonstrate that the underlying kinetic physics is properly cap-462

tured by our model. The Larmor electric field, identified by Malakit et al. [2013], is a lo-463

calized electric field that appears on the magnetospheric side of the dayside reconnection464

site. The x-component of the electric field Ex at the end of the simulation (t=3600s) is465

shown in Figure 12. The positive Ex pointing towards the Sun along the magnetopause466

is the Hall electric field, while behind the Hall electric field, the localized negative field467

pointing towards the Earth is the Larmor electric field. A 1D cut through the reconnec-468

tion site along the x direction is also shown in Figure 12. The Larmor field strength is -3469

mV/m, the magnetospheric side ambient field is about 2 mV/m, and the nearby Hall field470

is about 12 mV/m. These values are reasonably close to the MMS observation by Graham471

et al. [2016], for which the Hall electric field strength was ∼ 20 mV/m and the Larmor472

field strength was about 10 mV/m (see Figure 2 of Graham et al. [2016]).473

Even though the ion inertial length is scaled up by a factor of 16 in the present sim-474

ulation, the electric field strength is not sensitive to the scaling factor. Ignoring the elec-475

tron inertia term, the generalized Ohm’s is:476

E = −ui × B +
1

qini
j × B −

1
qini
∇pe = −ue × B −

1
qini
∇pe (4)

Tóth et al. [2017, submitted paper] shows the electron velocity ue of the current sheet does477

not change with the scaling factor while the current sheet width scales. The gradient of478

electron pressure is inversely proportional to the scaling factor, because the pressure jump479

is fixed across the current sheet and the current sheet width is proportional to the scaling480

factor. Since the charge per ion or electron is also reduced by the same factor, the scaling481

does not change the electric field strength. Besides the scaling of the ion inertial length,482

a reduced ion-electron mass ratio mi/me = 100 is used in this study to increase electron483
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kinetic scales (see section 2.2). The influence of the mass ratio mi/me has been studied in484

numerous papers [Shay and Drake, 1998; Hesse et al., 1999; Ricci et al., 2004; Shay et al.,485

2007; Lapenta et al., 2010]. For the Larmor electric field , Malakit et al. [2013] specifi-486

cally estimates its amplitude to be:487

E ∼
kBTi
qiri

(5)

where kB is the Boltzmann’s constant, Ti , qi and ri are the temperature, charge per ion488

and ion Larmor radius of the ions on the magnetospheric side. In the simulation, qi is re-489

duced by a factor of 16 and ri becomes 16 times larger compared to the realistic situation,490

while the temperature Ti does not change. So, the scaling of inertial length should not491

influence the strength of the Larmor electric field. On the magnetosheath side, our simula-492

tion shows the ion temperature is about 2 × 106 K , and the magnetic field strength is about493

60 nT. Substituting these values into Eq. 5 gives E ∼ 5.5 nT. As mentioned above, the494

value obtained from simulation is about -3 mV/m.495

The crescent shape electron phase space distribution has been observed near the496

electron diffusion region at the dayside magnetopause by MMS [Burch et al., 2016]. The497

same distribution is also found in our 3D global simulation. The phase space distribution498

of electrons inside a cube region: 10.27 RE < x < 10.33 RE , −0.3 RE < y < 0.3 RE and499

−2.1 RE < z < −1.9 RE is shown in Figure 12. The crescent distribution is found in the500

Vy −Vx plane, corresponding to the two velocity components perpendicular to the magnetic501

field. The crescent hot electrons are drifting along negative y direction with a speed close502

to 3000 km/s. The direction of the flow is consistent with the E × B direction, and the ve-503

locity of the crescent particles is very close to the MMS observation [Burch et al., 2016].504

Slightly further away from the reconnection site, where the Larmor field appears, inside a505

cube 10.08 RE < x < 10.14 RE , −0.3 RE < y < 0.3 RE and −2.1 RE < z < −1.9 RE ,506

the ion phase space distribution also presents crescent like shape as it is shown in Fig-507

ure 12(c). The crescent ions drift in positive y direction because Ex is negative. We also508

checked the distributions for particles inside the current sheet but far from the reconnec-509

tion site, and no crescent distributions are found for either electrons or ions.510

Kinetic effects along the magnetopause current direction are also captured by our517

3D MHD-EPIC model. Figure 13 shows the fully developed lower hybrid drift instabil-518

ity (LHDI) at the end of the simulation (t=3600 s) at the z = −3 RE plane. The electric519

field EM shown in Figure 13 is the M component in the boundary normal coordinates,520

and M is anti-parallel to the current direction. The black curve in Figure 13 separates the521
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negative and positive Bz . We can see the LHDI appears along the magnetopause on the522

magnetospheric side. A closer view of EM , as well as Bz , ion mass density ρi and elec-523

tron velocity uey are also shown Figure 13. The LHDI arises near the interface of magne-524

tosheath and magnetosphere, where there is a sharp density gradient. Bz , ρi and uey show525

sawtooth pattern at the same location. The amplitude of the LHDI electric field is about 8526

mV/m, which is consistent with MMS observations [Graham et al., 2016]. The dominant527

wavelength shown in Figure 13(b) is about 0.38 RE , and the ambient magnetosheath side528

electron gyroradius is about re = 0.025 RE with the artificially changed charge per elec-529

tron mass ratio, which results in kre ∼ 0.4, where re = meve/(qeB) and ve is defined as530

ve =
√

2Te/me. The value of kre is also consistent with observations [Graham et al., 2016]531

and theory [Daughton, 2003]. We analyzed the LHDI at different times and different loca-532

tions; the value of kre varied from ∼ 0.3 to ∼ 0.5, and kre ∼ 0.4 is a typical value. Sim-533

ilar to the argument above with the Ohm’s law, the electric field strength is not sensitive534

to the scaling; that is why the LHDI electric field strength agrees with MMS observations.535

But the length scale does change with the scaling. The charge per mass of electron qe/me536

is artificially increased by a factor of 294 in the simulation, and the electron thermal ve-537

locity is reduced by a factor of
√

18.36 = 4.3 for mi/me = 100. The magnetic field is538

realistic, hence the electron gyroradius is about 68 times larger than in reality. If we scale539

back the LHDI wavelength of the simulation by the same factor, it will be ∼ 35 km. As a540

comparison, MMS observed 10km ∼ 13km wavelength [Graham et al., 2016]. Figure 13(f)541

shows the isosurfaces of EM = 4 mV/m colored by the ion velocity uiz viewed from the542

Sun. Along the magnetic field direction, the isosurfaces are cut off two or three times.543

The ion velocity jumps or even changes directions across a cut-off region. It suggests that544

these cut-off regions correspond to reconnection sites and that the LHDI electric field is545

weak near the diffusion regions [Pritchett, 2013].546

3.5 Comparison with Hall MHD553

For comparison, we also run a pure Hall MHD simulation with the same setup ex-554

cept the PIC region is removed and the MHD grid resolution around the dayside magne-555

topause is refined to 1/32 RE , which is the resolution used by PIC in the MHD-EPIC run.556

Even for Hall MHD, resolving the ion inertial length is necessary in order to capture the557

Hall effect correctly. Due to the small kinetic scale inside the magnetosheath, scaling the558

ion inertial length is also required for a global Hall MHD simulation since Hall MHD is559
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also computationally expensive as we will see. We note that the ion inertial length in the560

pure Hall MHD simulation is also scaled up by a factor of 16 so it can be resolved with561

the 1/32 RE cell size. Hall MHD is reasonably optimized by using a semi-implicit scheme562

to overcome the time step imposed by the whistler mode wave and speed up the simula-563

tion. It still takes 6400 cores running about 67 hours to model one hour because of the564

high resolution and the stiffness of the Hall term. As a comparison, the MHD-EPIC simu-565

lation (170 hours on 6400 cores) is about 2.5 times more expensive. Hall MHD produces566

the Hall magnetic field near the X line and generates flux ropes in a way similar to MHD-567

EPIC. But Hall MHD cannot reproduce the kinetic features, neither the crescent particle568

distributions nor the LHDI.569

4 Summary and conclusion570

We have performed a one-hour long high-resolution global simulation with the MHD-571

EPIC model to study dayside reconnection and FTEs. Our simulation is the first attempt572

to investigate the FTEs and reconnection with kinetic physics resolved in a realistic mag-573

netopause environment. Although the kinetic scale is artificially increased to reduce the574

computational cost, the model still captures the kinetic features very well. MMS observa-575

tions, like the crescent particle phase space distribution and LHDI, are reproduced in our576

model. The FTEs from the simulation also agree well with spacecraft observations. The577

key results from the present simulation are:578

• When an FTE arises, its cross section is small and it is short in the dawn-dusk di-579

rection. During its growth, the cross section increases and the FTE extends along580

the dawn-dusk direction.581

• An FTE forms near the subsolar point and moves toward the poles under steady582

southward IMF conditions. When the FTE reaches the cusp, reconnection happens583

between the FTE magnetic field and the cusp magnetic field lines, thus dissipat-584

ing the FTE. The signature of the FTE in the meridional plane is weak behind the585

cusps.586

• An FTE is flanked by two reconnection sites during its formation, and the converg-587

ing ion jets are found around the FTE.588

• The present simulation confirms that the ’crater FTEs’ magnetic field signature can589

be found at the early stage of an FTE formation when the axial magnetic field is590

–19–This article is protected by copyright. All rights reserved.



still weak. A strong core field may develop as the FTE evolves, and the Hall mag-591

netic field may provide the initial seed core field. Therefore a fully developed FTE592

has the typical strong core field structure.593

• A tripolar guide field structure is found from our simulation.594

• The Larmor electric field is found near the reconnection site on the magnetospheric595

side, and its amplitude is about -3 mV/m.596

• A crescent electron phase space distribution is found near the reconnection site597

where the Hall electric field reaches its maximum. A similar distribution is also598

found for ions at the place where the Larmor electric field appears.599

• The lower hybrid drift instability (LHDI) appears at the interface of the magne-600

tosheath plasma and magnetosphere plasma. The LHDI electric field peak strength601

is about 8 mV/m, and a typical ratio between its wavelength and the electron gyro-602

radius is about kre ∼ 0.4. The simulation agrees with the MMS observations and603

theory.604

Compared to the models relying on ad hoc resistivity or numerical resistivity to gen-605

erate FTEs or investigate reconnection process, our 3D MHD-EPIC model makes one sig-606

nificant step forward by incorporating a self-consistent kinetic description of reconnection607

into a global MHD model. While the kinetic scales are increased by artificially reduc-608

ing the charge per mass for both ions and electrons, all the other parameters are realistic.609

The scaling changes the size of kinetic features, for example the wavelength of LHDI, but610

other values, like the strength of Larmor electric field or LHDI electric field, are not mod-611

ified by the scaling. Another artificial change is the solar wind electron pressure. It is set612

to a value 8 times larger than the ion pressure so that p/pe ∼ 2.5 inside the magnetosheath613

while the ratio is usually about 4 ∼ 12 from observation [Wang et al., 2012]. The artifi-614

cially increased electron pressure can help to stabilize the simulation, and it does not devi-615

ate significantly from the observed values. We plan to improve this in the future studies.616

The MHD-EPIC model offers a powerful tool to study magnetospheric physics. The617

PIC code only covers the dayside magnetopause in the present simulation. As a natural618

extension, it can be elongated to cover the bow shock so that the kinetic processes as-619

sociated with the bow shock can be modeled. Another future application is covering the620

tail reconnection site with another PIC region, so that both dayside and tail reconnections621

are handled by a kinetic code. Then we will be able to study substorm in a more realis-622

tic way. Both the ion pressure and electron pressure are solved by the MHD code in the623
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current simulation, but they are scalars. The missing of the off-diagonal pressure tensors624

introduces discrepancy at the boundaries of the PIC code. This discrepancy can be im-625

proved by using a ten-moment fluid model in the future.626
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Figure 4. Evolution of FTEs. Viewed from the Sun, a series of snapshots are shown with magnetic field

lines colored by ion velocity uiz [km/s].
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Figure 5. FTE dissipation crossing the southern cusp. A series of snapshots of current density jy[µA/m2]

and field lines are shown. The plots are obtained from MHD output. Along the FTE’s trajectory, the grid is
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Figure 8. Same as Figure 7, except that the ion inertial length is scaled up by a factor of 32.448
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