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THE TWIST FOR POSITROID VARIETIES

GREG MULLER AND DAVID E SPEYER

Abstract. The purpose of this document is to connect two maps related to certain graphs em-
bedded in the disc. The first is Postnikov’s boundary measurement map, which combines partition
functions of matchings in the graph into a map from an algebraic torus to an open positroid variety
in a Grassmannian. The second is a rational map from the open positroid variety to an algebraic
torus, given by certain Plücker coordinates which are expected to be a cluster in a cluster structure.

This paper clarifies the relationship between these two maps, which has been ambiguous since
they were introduced by Postnikov in 2001. The missing ingredient supplied by this paper is a twist
automorphism of the open positroid variety, which takes the target of the boundary measurement
map to the domain of the (conjectural) cluster. Among other applications, this provides an inverse
to the boundary measurement map, as well as Laurent formulas for twists of Plücker coordinates.

1. Introduction and survey of results

In Section 1.1, we will provide an overview of our results. In Sections 1.4 through 1.8, we will
state the necessary definitions as rapidly as possible to give a full statement of our main results
in Section 1.9. These definitions will reappear later with more detail, motivation and context. In
Section 1.10, the reader can find an outline of the rest of the paper.

1.1. Informal summary. The Grassmannian of k-planes in Cn admits a decomposition into open
positroid varieties Π○(M), analogous to the decomposition of a semisimple Lie group into double
Bruhat cells [FZ99]. Postnikov [Pos06] showed that an appropriate choice of reduced graph G defines
a boundary measurement map

(C×)Edges(G)/GaugeÐ→ Π○(M)
Among other properties, this map can be used to parametrize the ‘totally positive part’ of Π○(M).

Scott [Sco06] gave a combinatorial recipe which assigns, to each face of the reduced graph, a
homogenous coordinate on Π○(M). Scott works only with the largest positroid, so that Π○(M) is
a dense open subset of Gr(k,n), but her recipe makes sense for any positroid. These homogeneous
coordinates collectively define a rational coordinate chart, the face Plücker map:

Π○(M) ÐÐ→ CFaces(G)/Scaling

Despite the fact that these two maps are both defined by the same combinatorial input (a choice
of reduced graph), the relation between them has been elusive.

Moreover, the results of Postnikov and Scott are weaker than we have stated in the two proceeding
paragraphs. Postnikov only shows that the boundary measurement map exists as a rational map,
which is well defined on (R>0)Edges(G)/Gauge. Scott only studies the case of the largest positroid;
when one turns to other positroids, it is not clear that the coordinates of the face Plücker map
generate the function field of Π○(M). In fairness, at the time Postnikov and Scott were working,
the algebraic structure on Π○(M) had not been defined, so these questions would have been difficult
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to formulate.1 However, now that we have such algebraic structures, these omissions form a major
gap in our understanding.

In this paper, we relate the two maps by introducing a twist automorphism τ⃗ of each open
positroid variety. The main theorem of this paper then states that the composition

(C×)Edges(G)/GaugeÐ→ Π○(M) τ⃗Ð→ Π○(M) ÐÐ→ CFaces(G)/Scaling

is an isomorphism of algebraic tori. Each coordinate is given by a monomial which is defined by a
distinguished matching on G.

As a consequence, we deduce that the boundary measurement map is a well defined inclusion
from (C×)Edges(G)/Gauge to Π○(M). We also learn that the face Plücker map is well defined on
an open torus, and gives rational coordinates on Π○(M). Thus, we show that the statements of
the first two paragraphs are correct after all. Furthermore, we obtain explicit birational inverses to
these maps.

1.2. Earlier work. The most important precedent for our work is that of Marsh and Scott [MS16].
They construct a twist map2 for the largest positroid variety in a Grassmannian, although they
only give explicit formulas for the composite map above when G is a certain standard reduced
graph known as a Le diagram.

Talaska [Tal11] provided a birational inverse to the boundary measurement map for any positroid
when G is a Le-diagram; her inverse was not formulated in terms of a twist map and seems unlikely
to generalize to other reduced graphs.

A double wiring diagram for a type A double Bruhat cell can be converted to a reduced graph for
a corresponding positroid variety. In this setting, the twist map was defined by Berenstein, Fomin
and Zelevinsky [BFZ96], and it was proved that an analogous composite map is an isomorphism of
tori (see Appendix A.4).

Our result combines and generalizes the above results, to a setting that works for all positroid
varieties and all reduced graphs. We also hope that the unified presentation in this paper clarifies
the nature of the previous results.

The authors have had many productive conversations with all the above named mathematicians,
and are very grateful to them for their generous assistance.

1.3. Notations. We use the following standard notations for combinatorial sets:

[n] ∶= {1,2, ..., n}
([n]
k

) ∶= {I ⊂ [n] ∣ ∣I ∣ = k}, the set of k-element subsets of [n].
We will write Gm for the nonzero complex numbers, considered as an abelian group. For any

finite set X, we write CX for the C-vector space with basis labeled by X, and write RX and GX
m

similarly. We write Gr(k,n) for the Grassmannian of k-planes in Cn.
For a k × n matrix A and a ∈ [n], define

Aa ∶= the ath column of A

1Postnikov’s manuscript [Pos06] was in private circulation since at least 2001, was placed on the arXiv in 2006,
and is yet unpublished. Scott’s result was first presented in her dissertation in 2001 [Sco01], and was placed on the
arXiv as a separate paper in 2003 [Sco06] (publication date 2006). At the time, positroid cells were defined only
as real semi-algebraic sets. Knutson, Lam and Speyer identified the corresponding complex varieties in work that
appeared on the arXiv in 2009 [KLS09] and in improved form in 2011 [KLS13] (publication date 2013). The varieties
in question had been studied earlier by Lusztig [Lus98], Rietsch [Rie06] and others, but the connection to Postnikov’s
theory was not made in that earlier work.

2Their twist map differs from ours by a rescaling of the columns; see Remark 6.3.
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Given a k-element set I ⊂ [n], write it as I = {i1 < i2 < ⋯ < ik} and define the Ith maximal minor
of A by

∆I(A) ∶= det(Ai1 ,Ai2 , ...,Aik)
that is, the determinant of the matrix with columns Ai1 ,Ai2 , ...,Aik .

1.4. Positroids and positroid varieties. The definitions in this section can all be found in
Knutson, Lam and Speyer [KLS13], and are due either to those authors or to Postnikov [Pos06].
See Section 2 for many alternative formulations of these definitions.

Given a k-dimensional subspace V ⊂ Cn, the corresponding matroid is the collection of k-element
subsets3

M= {I ⊂ [n] ∣ the projection Cn → CI restricts to an isomorphism V
∼Ð→ CI}

The Grassmannian Gr(k,n) can then be decomposed into pieces, each parametrizing those sub-
spaces with a fixed matroid. Unfortunately, this decomposition is incredibly poorly-behaved; its
many transgressions are explored elsewhere [Mnë88], [Stu87], [GGMS87]. We focus on a related
decomposition of Gr(k,n) which is much nicer.

Positroids are a special class of matroid with many equivalent characterizations. The shortest
definition [Pos06] is that a positroid is a matroid M with a ‘totally non-negative’ representation.
That is, it is the matroid of the columns of a real matrix whose maximal minors are non-negative real
numbers. Every matroid M has a positroid envelope ; the unique smallest positroid containingM [KLS13, Section 3].

Given a positroid M, the (open) positroid variety Π○(M) is the subvariety of Gr(k,n)
parametrizing those subspaces whose matroid has positroid envelopeM. We obtain a stratification

Gr(k,n) = ⊔
positroids M

of rank k on [n]
Π○(M)

which groups together matroid strata with the same positroid envelope. This decomposition of
Gr(k,n) arises naturally from several different perspectives and the positroid varieties avoid many
of the pathologies exhibited by the matroid strata.

While the Grassmannian and its decomposition are the intrinsically interesting objects, the re-

sults of this paper will be most easily stated on the affine cone ̃Gr(k,n) over the Plücker embedding

of the Grassmannian. Denote by Π̃○(M) the lift of a positroid variety Π○(M) to ̃Gr(k,n) ∖ {0}.

We write Π̃(M) (respectively Π(M)) for the closure of Π̃○(M) in C([n]
k
) (respectively, the closure

of Π○(M) in Gr(k,n)).4 The origin of C([n]
k
) is in every Π̃(M) and in no Π̃○(M).

1.5. The boundary measurement map. Let G be a graph embedded in a disc, with a 2-coloring
of its internal vertices as either black or white (e.g. Figure 1a). For this introduction, we assume
that each boundary vertex is adjacent to one white vertex and no other vertices. Let n denote the
number of boundary vertices, and index the boundary vertices by 1,2, ..., n in a clockwise order.

A matching of G is a collection of edges in G which cover each internal vertex exactly once.
For a matching M , we let ∂M denote the subset of the boundary vertices covered by M , which we
identify with a subset of [n] ∶= {1,2, ..., n} (e.g. Figure 1b). That is,

∂M ∶= {i ∶ vertex i is covered by M} ⊂ [n]
3Throughout, a matroid is a collection of ‘bases’, rather than ‘independent sets’ or other conventions.
4We systematically use the following notational conventions: For some sort of algebraic object X, a notation like

X○ will always denote an open dense subvariety of X and X̃ will always denote something like a cone over X. So
Π̃○(M) is a torus bundle over Π○(M), and is open and dense in Π̃(M). Similarly, Π○(M) is open and dense in

Π(M), while Π̃(M) is the affine cone over the Plücker embedding of Π(M).
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(a) A 2-colored graph embedded in the disc.
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61

(b) A matching with boundary 356.

Figure 1. A graph and a matching.

The cardinality k of ∂M is constant for any matching of G, and given by

k ∶= (# of white vertices) − (# of black vertices)
As long as G admits a matching, the graph G determines a positroid (Theorem 3.1) defined as

M ∶= {I ⊂ [n] ∣ there exists a matching M with ∂M = I}
A reduced graph is a graph G as defined above, such that the number of faces of G (that is,
components of the complement) is minimal among all graphs with the same positroid as G.

The matchings of G with a fixed boundary may be collected into a partition function as
follows. Let {ze} be a set of formal variables indexed by edges e of G. For a matching M of G,
define zM ∶= ∏e∈M ze, and for a k-element subset I of [n], define

DI ∶= ∑
matchings M

with ∂M=I
zM

Plugging complex numbers into the formal variables realizes DI as a regular function CE → C,
where E denotes the set of edges of G. Running over all k-elements subsets of [n], the partition
functions define a regular map

CE Ð→ C([n]
k
)

The partition functions are not algebraically independent, so this map lands in a subvariety.

Theorem 3.3. For any graph G as above, the partition functions satisfy the Plücker relations.

Therefore, the map CE → C([n]
k
) with coordinates {DI} has image contained in ̃Gr(k,n) ⊂ C([n]

k
).5

The correct attribution for this result is difficult, see the discussion near the proof.
This map is almost never injective because of the following gauge transformations: if v is an

internal vertex of G, (ze) is a point of CE , and t is a nonzero complex number, then define a new
point (z′e) of CE by

z′e = ⎧⎪⎪⎨⎪⎪⎩
tze v ∈ e
zE otherwise

.

Since each matching of G contains exactly one edge covering v, we know that (z′)M = t(zM) and
that DI(z′) = tDI(z).

5Throughout this introduction, results which are proved later in the paper are numbered according to where their
proofs can be found.
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The gauge transformations can be encoded more elegantly as follows. The group GE
m acts on

CE by scaling the individual coordinates; in this way, GE
m may be identified with ways to assign a

nonzero ‘weight’ to each edge. Letting V denote the set of internal vertices of G, the action of GV
m

by gauge transformations is equivalent to a map of algebraic groups

GV
m Ð→ GE

m

where the coordinate at each edge is the product of the coordinates at its endpoints.
Before this paper, the following was known but not written explicitly; see Remark 3.4. Let GV −1

m

denote the subgroup of GV
m such that the product of the coordinates is 1; equivalently, this is the

subgroup of the gauge group which leaves the partition functions invariant.

Proposition 1.1. For a graph G with positroid M, the map GE
m → C([n]

k
) given in Plücker coordi-

nates by the partition functions DI factors through GE
m/GV −1

m and lands in Π̃(M).

When G is reduced, we sharpen this to the following.

Propositions 5.14 and 7.6. For a reduced graph G with positroid M, the map GE
m → C([n]

k
) given

in Plücker coordinates by the partition functions DI factors through GE
m/GV −1

m and lands in Π̃○(M),
giving an inclusion

D̃ ∶ GE
m/GV −1

m Ð→ Π̃○(M)
The map D̃ descends to a well-defined quotient inclusion

D ∶ GE
m/GV

m Ð→ Π○(M)
We will refer to the maps D and D̃ as boundary measurement maps. The map D is equal to the
boundary measurement map of Postnikov [Pos06]; see the proof of Theorem 3.3 for a discussion of
the equivalence between Postnikov’s definition and our own.

Example 1.2. Consider the graph G in Figure 1a. Of all the 3-element subsets of [6], only {1,2,3}
is not the boundary of a matching. The open positroid variety Π○(M) is defined inside Gr(3,6) by
the vanishing of the Plücker coordinate ∆123 and the non-vanishing of ∆124,∆234,∆345,∆456,∆156,
and ∆126.6 As a consequence, the closure Π(M) of Π○(M) is the Schubert divisor in Gr(3,6).

2

3 4

5

61

i

d
b

a

e
f

g

c

h

n om

r

t
u

q

s

p

j k l

Figure 2. A general set of edge weights.

Let us describe a general point in GE
m by assigning an indeterminant weight in Gm to each edge

in G, as in Figure 2. By Theorem 3.3, there exists a 3 × 6 matrix such that, for any I ∈ ([6]
3
), the

6The non-vanishing of these Plücker coordinates removes subspaces with a smaller positroid envelope than M.
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minor with columns in I is equal to DI . One such matrix is given below in (1).7

(1)

⎡⎢⎢⎢⎢⎢⎣
1 0 −aepbks 0 fmop

klns
klqu+fpru

klst

0 1 adk+aej
bik 0 −fjmoikln −fjruiklt

0 0 0 bciklnst bikost(hl + gm) bgiknrsu

⎤⎥⎥⎥⎥⎥⎦
The boundary measurement map D for G is the map which sends the edge weights given in Figure
2 to the row-span of the matrix in (1). ∎
1.6. Plücker coordinates associated to faces. In [Pos06], Postnikov showed how a reduced
graph determines a collection of strands: oriented curves in the disc beginning and ending at
boundary vertices of G (e.g. Figure 3a). The details of this construction may be found in Section 4.
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(a) The strands of the graph.
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(b) Target-labeling of the faces.
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345
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136
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235

(c) Source-labeling of the faces.

Figure 3. Two ways to associate a k-element subset of [n] to a face.

The strands do not self-intersect (except possibly at the boundary), so each one subdivides the
disc into two components. The orientation of a strand distinguishes these components as the ‘left
side’ and the ‘right side’. One may check that each face of G is on the left side of exactly k-many
strands, where k again denotes the number of white vertices minus the number of black vertices.

There are two natural ways to use a collection of k-many strands to determine a k-element subset
of [n]: identify each strand either with the index of its source vertex, or with the index of its target
vertex. In this paper, we will be forced to work with both conventions. Given a face f of G, define
the following two k-element subsets of [n] (e.g. Figures 3b and 3c).

●←
I (f) ∶= {i ∈ [n] ∣ f is to the left of the strand ending at vertex i}

●→
I (f) ∶= {i ∈ [n] ∣ f is to the left of the strand starting at vertex i}

For any k-element subset I of [n], let ∆I denote the Plücker coordinate on ̃Gr(k,n) indexed by I.
Hence, each face f in G determines two Plücker coordinates, given by ∆●→

I (f) and ∆●←
I (f).

Letting F denote the set of faces of G, this determines a pair of regular maps

●←
F ∶ Π̃○(M) Ð→ CF

●→
F ∶ Π̃○(M) Ð→ CF

where the coordinate corresponding to a face is the appropriate Plücker coordinate.

7Note that such a matrix is not uniquely determined; however, its row-span is.
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1.7. Extremal matchings. In the next two sections, we introduce maps which will relate the

domains and images of D̃,
●→
F , and

●←
F .

For any face f of a reduced graph, we will define two matchings
Ð→
M(f) and

←Ð
M(f) of G. An edge

e of G appears in
Ð→
M(f) if and only if the face f is contained in the “downstream wedge” bounded

by the two half strands flowing out of e and the edge of the disc (see Figure 4). The edge e appears

in
←Ð
M(f) if f is in the analogous upstream edge. These matchings have the crucial property that:

∂
Ð→
M(f) = ●→

I (f) and ∂
←Ð
M(f) = ●←

I (f).
For proofs that

Ð→
M(f) and

←Ð
M(f) are matchings and have the stated boundaries, see Theorem 5.3.

e

Downstream
wedge

e

Downstream
wedge

e

Downstream
wedge

Figure 4. The downstream wedge of an edge e

Example 1.3. The matching given in Figure 1b is the matching
Ð→
M(f), where f is the interior

hexagonal face. The boundary 356 of
Ð→
M(f) coincides with the source-labeling of f , as shown in

Figure 3c. ∎
Let

Ð→
M and

←Ð
M be the monomial maps GE

m Ð→ GF
m where, for each face f , the f -coordinate ofÐ→

M(z) is z−Ð→M(f) and the f -coordinate of
←Ð
M(z) is z−←ÐM(f).

Corollary 5.5. For a reduced graph G, the maps
Ð→
M and

←Ð
M descend to well-defined isomorphisms

GE
m/GV −1

m
∼Ð→ GF

m

We denote the inverses of
Ð→
M and

←Ð
M by

←Ð
∂ and

Ð→
∂ , respectively. Justification for this notation and

an explicit formula for
←Ð
∂ and

Ð→
∂ are given in Section 5.

1.8. The twists of a positroid variety. We now define a pair of mutually inverse automorphisms
τ⃗ and ⃗τ of Π̃○(M), called the right twist and left twist, respectively. The definitions of the twists
are elementary, and use none of the combinatorics or geometry we have built up so far.

Let A denote a k × n matrix of rank k. In this introduction, we will assume for simplicity that
A has no zero columns. Let Ai denote the ith column of A, with indices taken cyclically; that is,
Ai+n = Ai. The right twist τ⃗(A) of A is the k×n matrix such that, for all i, the ith column τ⃗(A)i
satisfies the relations ⟨τ⃗(A)i ∣ Ai⟩ = 1, and⟨τ⃗(A)i ∣ Aj⟩ = 0 if Aj is not in the span of {Ai,Ai+1, . . . ,Aj−2,Aj−1}
Similarly, the left twist of A is the k × n matrix ⃗τ(A) defined on columns by the relations

⟨ ⃗τ(A)i ∣ Ai⟩ = 1, and

⟨ ⃗τ(A)i ∣ Aj⟩ = 0 if Aj is not in the span of {Aj+1,Aj+2, . . . ,Ai−1,Ai}
The reader is cautioned that these operations are only piecewise continuous on the space of matrices.
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Example 1.4. Each of the following matrices is the right twist of the matrix to its left, and the left
twist of the matrix to its right.

⎛⎜⎝
1 0 1 0 1−1 1 0 0 0
1 −1 0 1 1

⎞⎟⎠
⎛⎜⎝

1 0 1 −1 0
0 1 1 0 1
0 0 0 1 1

⎞⎟⎠
⎛⎜⎝

1 −1 0 0 0
0 1 1 −1 0
1 −1 0 1 1

⎞⎟⎠
τ⃗ τ⃗

⃗τ⃗τ ∎
As the example suggests, the two twists are inverse to each other.

Theorem 6.7. If A is a k × n matrix of rank k, then τ⃗( ⃗τ(A)) = ⃗τ(τ⃗(A)) = A.

The set of k × n matrices of rank k naturally projects onto ̃Gr(k,n) and Gr(k,n), in the latter
case sending a matrix to the span of its rows. The twists descend to well-defined maps on these
spaces as well (see Proposition 6.1). The twists become continuous when restricted to an individual
positroid variety. More specifically:

Corollary 6.8. For each positroid M, the twists τ⃗ and ⃗τ restrict to mutually inverse, regular
automorphisms of Π̃○(M) and Π○(M).

1.9. The main theorem. We are now in a position to state the main theorem.

Theorem 7.1. Let G be a reduced graph with positroid M. The following diagram commutes,
where dashed arrows denote rational maps.

GF
m GE

m/GV −1
m GF

m

Π̃○(M) Π̃○(M) Π̃○(M)

Ð→
∂

Ð→
M

←Ð
∂

←Ð
M●←

F D̃
●→
F

τ⃗ τ⃗

⃗τ⃗τ
More specifically, the diagram commutes as a diagram of rational maps, and any composition of
maps beginning in the top row is regular.

The morphisms in this diagram either commute or anticommute with the Gm action on each
variety, and so the diagram descends to a commutative diagram on the quotients.

GF
m/Gm GE

m/GV
m GF

m/Gm

Π○(M) Π○(M) Π○(M)

Ð→
∂

Ð→
M

←Ð
∂

←Ð
M●←

F D ●→
F

τ⃗ τ⃗

⃗τ⃗τ
As a corollary, we obtain a combinatorial formula for the Plücker coordinates of a twisted point

as a Laurent polynomial in the Plücker coordinates of the original point (Proposition 7.10).

Example 1.5. Let us consider the theorem in terms of the running example of Figure 1a. The
boundary measurement map D sends the edge weights in Figure 2 to the row-span of the matrix
in (1). The right twist of this matrix is given below in (2).
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(2)

⎡⎢⎢⎢⎢⎢⎢⎣
1 dks+ejs

eip
bjs
adp

hrs
cmq 0 0

0 1 bi
ad

fhipr+ikq(hl+gm)
cfjmq

gikn
fhjo 0

0 0 0 1
bciklnst

1
bhiklots

1
bgiknrsu

⎤⎥⎥⎥⎥⎥⎥⎦
To determine the value of

●→
F at the point in Π○(M) defined by this matrix, we compute the nine

minors with columns given by the source labels of faces in G (cf. Figure 3c).

∆156 = 1
bfhjorsu ∆126 = 1

bgiknrsu ∆236 = 1
aegipnru

∆234 = 1
aceilpnt ∆345 = 1

acdfmopt ∆456 = 1
bcfjmpqu

∆136 = 1
adgknrsu ∆356 = 1

adfhporu ∆235 = 1
aehilpot

We see that, for each face f in G, the value of ∆●→
I (f) on the matrix in (2) is the reciprocal of

the product of the edge weights in the extremal matching
Ð→
M(f). This is equivalent to the equalityÐ→

M = ●→
F ○ τ⃗ ○D, and thus the commutativity of the right square in Theorem 7.1. ∎

1.10. Outline of paper. The previous introduction presented as much background material as
we needed to state our results; we now begin filling in the additional background we need to prove
them. In Section 2, we present the variety of combinatorial and geometric tools we will need for
working with positroids. In Section 3, we discuss combinatorics related to matchings of planar
graphs. In Section 4, we explain the results we will need from Postnikov’s theory of alternating
strand diagrams.

The next two sections discuss prerequisite results which are largely original to this paper. Sec-

tion 5 discusses the combinatorics of the extremal matchings
Ð→
M and

←Ð
M . Section 6 defines the twist

maps and proves many lemmas about them. With these sections, we conclude the presentation of
background material and move to the proof of the main results.

In Section 7, we restate our main results and several corollary results. In Section 8, we introduce
bridge decompositions, a technical tool for building reduced graphs out of smaller reduced graphs.
Finally, in Section 9, we complete the proof of Theorem 7.1.

We conclude with two appendices. Appendix A considers several cases and examples where the
twist map takes a particularly elegant form, making connections with matrix factorizations and
with various enumerative results in matching theory. Appendix B discusses connections between
our extremal matchings (Section 5) and work of Propp and of Kenyon and Goncharov.
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and has discussed them with many people. He particularly recalls helpful conversations with Sergey
Fomin, Suho Oh, Alex Postnikov, Jim Propp, Jeanne Scott, Kelli Talaska, Dylan Thurston and
Lauren Williams. Both authors are thankful to Rachel Karpman for comments on an earlier draft
of this paper. We also thank our extremely thorough referees.

These results were accepted for presentation at FPSAC 2016, and Section 1 is similar in both
substance and language to the results in our FPSAC extended abstract. The new material in this
paper is the proofs in the remaining sections.

2. The many definitions of positroid and positroid variety

Given a k × n matrix of rank k, its column matroid M ⊂ ([n]
k
) is the set of subsets J ⊂ [n]

indexing collections of columns which form a basis. A positroid is a matroid M with a ‘totally
non-negative’ representation; that is,M is the column matroid of a matrix whose maximal minors
are non-negative real. (See [Pos06], [Oh11], [KLS13], [ARW17] for other, equivalent, definitions.) In
contrast with the difficult general problem of characterizing representable matroids, positroids can
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be explicitly classified by several equivalent combinatorial objects, which we now recall. See [KLS13,
Section 3] for further discussion.

2.1. Classification of positroids. For each a ∈ [n], let ≺a denote the linear ordering on [n] given
below:

a ≺a a + 1 ≺a ... ≺a n ≺a 1 ≺a 2 ≺a ... ≺a a − 1

Extend this to a partial ordering on ([n]
k
), where B ⪯a C means that

∀i, bi ⪯a ci, where B = {b1 ≺a b2 ≺a .... ≺a bk} and C = {c1 ≺a c2 ≺a ... ≺a ck}
For each a ∈ [n], a matroidM has a unique ≺a-minimal element we denote by I⃗a, the a-minimal

basis. The sequence I⃗ = (I⃗1, I⃗2, ..., I⃗n) of minimal bases ofM has the property that, for all a ∈ [n],● if a ∈ I⃗a, then (I⃗a ∖ {a}) ⊂ I⃗a+1, and● if a /∈ I⃗a, then I⃗a = I⃗a+1.

See [Pos06, Lemma 16.3]. The index a + 1 is taken modulo n.

An [n]-indexed collection I⃗ = {I⃗1, I⃗2, ..., I⃗n} ⊂ ([n]
k
) satisfying this property is called a Grass-

mann necklace . Given a Grassmann necklace I⃗, there is a unique largest matroid M whose set
of a-minimal bases is I⃗. The construction is direct: define M to be those k-element sets J ⊂ [n]
for which I⃗a ⪯a J for all a. The resulting collection of sets is not just a matroid; it is a positroid by
the following theorem.

Theorem 2.1. [Oh11, Theorem 6] For a Grassmann necklace I⃗, let M be the set of k-element

subsets J of [n] for which I⃗a ⪯a J for all a. Then M is a positroid. Every positroid can be realized
by some Grassmann necklace in this way.

As a corollary, the map sending a positroid to its Grassmann necklace of a-minimal bases is a
bijection between the set of positroids and the set of Grassmann necklaces.

Another consequence of the theorem is that every matroid is contained in a unique minimal
positroid. This positroid can be constructed by first finding the Grassmann necklace I of a-minimal
bases, and then applying the construction in the theorem.

It will be convenient to also consider the dual notion corresponding to maximal bases. For a
matroidM, let ⃗Ia denote the unique ≺a+1-maximal basis inM. The collection of all maximal bases⃗I ∶= { ⃗I1, ⃗I2, ..., ⃗In} has the property that, for all a ∈ [n],● if a ∈ ⃗Ia, then ( ⃗Ia ∖ {a}) ⊂ I⃗a−1, and● if a /∈ ⃗Ia, then ⃗Ia = ⃗Ia−1.

An [n]-indexed collection ⃗I = { ⃗I1, ⃗I2, ..., ⃗In} ⊂ ([n]
k
) satisfying this property is called a reverse

Grassmann necklace . By a symmetric analog of Theorem 2.1, reverse Grassmann necklaces are
in bijection with positroids, and so they are also in bijection with Grassmann necklaces.

Grassmann necklaces are equivalent to certain permutations of Z, which we now define. A
bounded affine permutation8 of type (k,n) is a bijection π ∶ Z→ Z such that:● for all a ∈ Z, π(a + n) = π(a) + n,● for all a ∈ Z, a ≤ π(a) ≤ a + n, and● 1

n ∑na=1(π(a) − a) = k.

A Grassmann necklace I⃗ in ([n]
k
) defines the following bounded affine permutation π of type (k,n).

● If a ∈ I⃗a, then a < π(a) ≤ a + n and π(a) is determined by the relation:

I⃗a+1 ≡ (I⃗a ∖ {a}) ∪ {π(a)} (mod n)

● If a /∈ I⃗a, then π(a) = a.

8Bounded affine permutations are more evocatively called juggling patterns in [KLS13].
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Proposition 2.2 ([KLS13, Corollary 3.13]). This construction defines a bijection from Grassmann

necklaces in ([n]
k
) to bounded affine permutations of type (k,n).

If I⃗ is the Grassmann necklace of the column matroid of a matrix A, then π can be constructed
directly from A by the following recipe, which we learned from Allen Knutson. We leave the proof
to the reader.

Lemma 2.3. With the above notation, π(a) is the minimal r ≥ a for which

Aa ∈ span(Aa+1,Aa+2, ...,Ar).
We note some degenerate cases: π(a) = a if and only if Aa = 0; π(a) = a+ 1 if and only if Aa and

Aa+1 are parallel and not zero, π(a) = a+n if and only if Aa is not in span(Aa+1,Aa+2, . . . ,Aa+n−1).
Remark 2.4. The analogous construction for the reverse Grassmann necklace ⃗I yields the inverse
permutation π−1 ∶ Z→ Z. ∎

We say that a π-implies b, and write a⇒π b if (b, a, π(a), π(b)) are circularly ordered in that
order, possibly with a = π(a). Note that ⇒π defines a poset structure on [n]. We define the length
of π, written `(π) to be #{(a, b) ∶ 1 ≤ a ≤ n, a ≤ b ≤ b + n, a⇒π b}. This is the length of π as an
element of the affine symmetric group, as discussed in [KLS13, Section 3.2]. In [Pos06, Section 5],
a→ π(a) and b→ π(b) are called “aligned”. See Lemma 4.5 for a justification of the notation ⇒.

The following description of I⃗ using both π and simple geometric properties of A is often more
convenient than computing I⃗ in terms of solely π or A.

Lemma 2.5. Fix a bounded affine permutation π, and an integer a.● The set I⃗a is the disjoint union of {b ∣ a⇒π π
−1(b)} and the a-minimal subset of(Aa,Aa+1, . . . ,Aπ(a)−1) that is a basis for span(Aa,Aa+1, . . . ,Aπ(a)−1).● The set ⃗Ia is the disjoint union of {b ∣ a⇒π b} and the (a + 1)-maximal subset of(Aπ−1(a)+1, . . . ,Aa−1,Aa) that is a basis for span(Aπ−1(a)+1, . . . ,Aa−1,Aa).

Remark 2.6. If π(a) = a, then the latter sets are empty. ∎
Proof. We prove the first statement, the second is similar.

Let J be the a-minimal basis among (Aa,Aa+1, . . . ,Aπ(a)−1). Since I⃗a is the a-minimal basis for

Ck among (Aa,Aa+1, . . . ,Aa+n−1), we have J = I⃗a ∩ {a, a + 1, . . . , π(a) − 1}. So it remains to show

that I⃗a ∩ {π(a), π(a) + 1, . . . , a + n − 1} = {b ∈ [n] ∣ a⇒π π
−1(b)}.

Suppose that a ⇒π π
−1(b), so π−1(b) < a ≤ π(a) < b. By the definition of π(π−1(b)) = b, the

vector Ab is not in the span of {Aπ−1(b)+1,Aπ−1(b)+2, . . . ,Ab−1}. Restricting to the subset starting

at Aa, we see that Ab is not in the span of {Aa,Aa+1, . . . ,Ab−1}, and so b ∈ I⃗a.
Conversely, suppose that b ∈ I⃗a ∩ {π(a), π(a) + 1, . . . , a + n − 1}. Then Ab is not the span of{Aa,Aa+1, . . . ,Ab−1}. On the other hand, Ab is in the span of {Aπ−1(b),Aπ−1(b)+1, . . . ,Ab−1} by

Lemma 2.3. We deduce that π−1(b) < a and thus a⇒π π
−1(b). �

Corollary 2.7. The sets {Aπ(b) ∣ a⇒π b} and {Ab ∣ a⇒π b} are each linearly independent.

Proof. We have just shown that they are contained in the bases I⃗a and ⃗Ia, respectively. �
In summary, a k×n matrix A of rank k determines the following equivalent combinatorial objects.

Proposition 2.8. Let A be a k ×n matrix of rank k. Then each of the following objects associated
to A can be reconstructed from each other.

(1) The unique minimal positroid M containing the column matroid of A.

(2) The Grassmann necklace I⃗ = {I⃗1, I⃗2, ..., I⃗n}, where I⃗a is the a-minimal basis of the columns
of A.
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(3) The reverse Grassmann necklace ⃗I = { ⃗I1, ⃗I2, ..., ⃗In}, where ⃗Ia is the a + 1-maximal basis of
the columns of A.

(4) The bounded affine permutation π ∶ Z→ Z defined by

Aa /∈ span{Aa+1,Aa+2, ...,Aπ(a)−1} and Aa ∈ span{Aa+1,Aa+2, ...,Aπ(a)}
2.2. Several flavors of positroid variety. For fixed k ≤ n,

● let Mat(k,n) denote the variety of complex k × n matrices,● let Mat○(k,n) denote the variety of complex k × n matrices of rank k,● let Gr(k,n) denote the (k,n)-Grassmannian: the variety of k-planes in Cn, and● let ̃Gr(k,n) denote the affine cone over the Plücker embedding of Gr(k,n).
The general linear groupGLk acts freely on Mat○(k,n) by left multiplication, and there are standard
isomorphisms

SLk/Mat○(k,n) ∼Ð→ ̃Gr(k,n) ∖ {0}
GLk/Mat○(k,n) ∼Ð→ Gr(k,n)

sending a matrix A to the exterior product of the rows of A, and to the row-span of A, respectively.

For a positroid M⊂ ([n]
k
), define the following locally closed subvariety of Mat○(k,n).

Mat○(M) ∶= {A ∈ Mat○(k,n) ∣ M is the minimal positroid containing the column matroid of A}
By Proposition 2.8, this could be equivalently defined as the set of matrices with a fixed Grassmann
necklace, reverse Grassmann necklace, or bounded affine permutation.

These subvarieties fit into a decomposition of Mat○(k,n).
Mat○(k,n) = ⊔

positroids MMat○(M)
The action of GLn preserves these subvarieties, and so we may consider their quotient varieties.

Π̃○(M) ∶= SLk/Mat○(M) ⊂ ̃Gr(k,n)
Π○(M) ∶= GLk/Mat○(M) ⊂ Gr(k,n)

The variety Π○(M) is called the open positroid variety associated to the positroid M. Again,
these subvarieties fit into decompositions.

̃Gr(k,n) = ⊔
positroids M Π̃○(M), Gr(k,n) = ⊔

positroids MΠ○(M)
Remark 2.9. These decompositions can also be defined as the common refinement of all cyclic

permutations of the Schubert decompositions of ̃Gr(k,n) and Gr(k,n), by [KLS13, Lemma 5.3]. ∎
We write Π(M), Π̃(M) and Mat(M) for the closures of Π○(M), Π̃○(M) and Mat○(M) in

Gr(k,n), ̃Gr(k,n) and Mat(k,n) respectively. The reduced ideal of Π̃(M) in ̃Gr(k,n) is generated

by the Plücker coordinates ∆I for I /∈ M, by [KLS13, Theorem 5.15]. Each of Π(M), Π̃(M) and

Mat(M) has codimension `(π) in Gr(k,n), ̃Gr(k,n) and Matk×n respectively. See [KLS13] for this
and many other excellent properties of these varieties.

3. Matchings of bipartite graphs in the disc

In this section, we define the boundary measurement map, which uses the matchings on a bipartite
graph G embedded in a disc to define a map from an algebraic torus to Π̃(M).
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3.1. Positroids from matchings. Throughout this paper, G will denote a bipartite graph em-
bedded in the disc, with the following additional data.● A coloring of each internal vertex as either black or white, such that adjacent internal

vertices do not have the same color.9● An indexing of the boundary vertices 1,2,. . . ,n in clockwise order.

Additionally, we make the following assumptions.● Every boundary vertex has degree 1 and is adjacent to an internal vertex.● There is at least one matching of G.

We let ∂G and V denote the sets of boundary and internal vertices of G, respectively. The set of
edges and faces of G will be denoted E and F , respectively.

A matching of G is a subset M ⊂ E such that each internal vertex of G is contained in a unique
edge in M . Given a matching M , define its boundary ∂M to be the subset of ∂V given by

∂M = {i ∈ [n] ∣ vertex i is contained in M and i is adjacent to a white internal vertex}∪ {i ∈ [n] ∣ vertex i is not contained in M and i is adjacent to a black internal vertex}
Note that, if each boundary vertex is adjacent to a white vertex, then ∂M ⊂ [n] indexes the
boundary vertices contained in edges of M . The boundary of each matching of G has size

k ∶= #(white vertices) −#(black vertices) +#(black vertices adjacent to the boundary)

Not every k-element subset of [n] may be the boundary of some matching of G. The following
theorem gives a remarkable characterization the possible boundaries of matchings of G.

Theorem 3.1. For a graph G as above, the set

M ∶= {I ∈ ([n]
k

) ∣ there exists a matching M with ∂M = I}
is a positroid. Every positroid can be realized by some graph G.

The positroid M will be called the positroid of G.

Proof Sketch. We need to translate between the language of matchings used in this paper and the
language of loop erased walks through perfectly oriented graphs used in [Pos06]. In the language
of loop erased walks, [Pos06, Theorem 4.11] says that, for every perfectly oriented planar graph H,
there is a positroid whose nonzero coordinates are targets of loop erased walks in H and [Pos06,
Theorem 4.12] says that every positroid is the nonzero targets of the loop erased walks in some
graph H. [Tal08] shows that targets of loop erased walks in H are the same as targets of noncrossing
paths through H. [PSW09] describes how to translate between flows in perfectly oriented graphs
and matchings in bipartite graphs which have at least one matching. �

For the majority of the paper, we focus on those graphs which realize their positroid efficiently.
A reduced graph will be a graph G satisfying the above assumptions, and such that● Every component of G contains at least one boundary vertex.● Every internal vertex of degree 1 is adjacent to a boundary vertex.10

● The number of faces of G is minimal among graphs with the same positroid.

An equivalent characterization of reduced graphs is given in Theorem 4.1.

Remark 3.2. Our version of ‘graphs’ adds a bipartite assumption to Postnikov’s plabic graphs; this
is necessary for matchings to work as desired. Our version of ‘reduced’ combines Postnikov’s leafless
and reduced assumptions [Pos06, Definition 12.5], for simplicity. ∎

9Unlike the introduction, we do not assume that the internal vertices adjacent to the boundary are white.
10Such a vertex is called a lollipop; see Section 8.
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3.2. The boundary measurement map. The positroid of G gives a rough characterization of
what matchings occur in G, in terms of possible boundaries. We can get a much finer description
of the matchings in G using partition functions. Let {ze}e∈E be a set of variables indexed by the
set of edges E. Each matching M ⊂ E defines a monomial

zM ∶= ∏
e∈M ze

For any k-element subset I ⊂ [n], the partition function DI is the sum of the monomials of
matchings with boundary I.

DI ∶= ∑
matchings M
with ∂M=I

zM

Each partition function defines a polynomial map CE → C, and collectively, they define a poly-

nomial map CE → C([n]
k
). Letting Gm denote the non-zero complex numbers, we will be interested

in the restriction to GE
m ⊂ CE , denoted by

D̃ ∶ GE
m Ð→ C([n]

k
)

Specifically, D̃ sends a point (ze)e∈E ∈ GE
m to

(DI(ze))I∈([n]
k
) ∈ C([n]

k
)

Generally, there are numerous relations among the polynomials DI , and so this map is far from
dense. Its image is characterized by the following theorem.

Theorem 3.3. For a graph G with positroid M, the map D̃ lands in Π̃(M); that is,

D̃ ∶ GE
m Ð→ Π̃(M) ⊂ C([n]

k
)

Proof sketch. The image of D̃ lands in ̃Gr(k,n); see [Pos06, Corollary 5.6] (in the language of loop
erased walks) or [Lam16, Theorem 4.1].

We must further check that D̃(GE
m) lands in Π̃(M). By [KLS13, Theorem 5.15], Π̃(M) is cut

out of ̃Gr(k,n) by the vanishing of the Plücker coordinates pI for I /∈ M. By definition of the
positroid M associated to G, if I /∈ M, then there are no matchings of G with boundary I, so
DI(z) = 0 for those I. �

Remark 3.4. It is difficult to say who deserves the credit for Theorems 3.1 and 3.3. As discussed
in the proofs, Postnikov [Pos06] proved these results in the language of loop erased walks and Ta-
laska [Tal08] transformed them to the language of flows. Postnikov, Speyer and Williams [PSW09]
were the first to transform flows to matchings but did not point out these particular consequences.

The fact that the matching partition functions obey three term Plücker relations was observed
earlier by Kuo [Kuo04]; this fact is often referred to as Kuo condensation by connoisseurs of

matchings. Kuo’s result strongly suggests that the map D̃ lands in ̃Gr(k,n) but does not prove

it, since the ideal of ̃Gr(k,n) is not generated by the 3-term Plücker relations. (For example, the

point p123 = p456 = 1, all other pijk = 0 in C([6]
3
) obeys all three term Plücker relations but is not

in G̃r(3,6).) The lecture notes of Thomas Lam [Lam16, Sections 1-5] may be the first place that
these results appear explicitly in public. See also [Spe15] for a short direct proof that the partition
functions of matchings are the Plücker coordinates of a point on the Grassmannian. ∎
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3.3. Gauge transformations. Each internal vertex v ∈ V determines an action of Gm on GE
m by

gauge transformation . If v is an internal vertex of G and t a nonzero complex number, then
send (ze) in GE

m to (z′e) in GE
m by

z′e = ⎧⎪⎪⎨⎪⎪⎩
tze v ∈ e
ze otherwise

.

The gauge transformations combine to give an action of GV
m on GE

m, called the gauge action .
Let π ∶ GV

m → Gm be the map which sends (tv)v∈V to the product of the coordinates ∏v∈V tv.
This is a group homomorphism, so its kernel is a subgroup of GV

m which merits its own notation.11

GV −1
m ∶= ker(π ∶ GV

m → Gm)
If M is a matching of G, then the gauge action by t = (tv)v∈V ∈ GV

m acts on each of the previously
defined functions as follows.

(t ⋅ z)M = π(t)zM DI(t ⋅ z) = π(t)DI(z) D̃(t ⋅ z) = π(t)D̃(z)
Consequently, each of these functions is GV −1

m -invariant, and so D̃ descends to a map

D̃ ∶ GE
m/GV −1

m Ð→ Π̃(M)
The rational projection Π̃(M) ⇢ Π(M) quotients by the action all of simultaneously scaling of

the Plücker coordinates. Hence, the composition GE
m → Π̃(M) ⇢ Π(M) is invariant under the full

gauge group GV
m, and so this composition descends to a rational map, which we denote by D.

D ∶ GE
m/GV

m Π(M)
Postnikov called D the boundary measurement map of G and studied many of its properties, par-
ticularly its relation to total positivity. As an abuse of terminology, we refer to both D and D̃ as
boundary measurement maps.

Remark 3.5. For a general plabic graph G, the map D may only be a rational map, and not a regular
one, as it is not defined on the D̃-preimage of the origin in Π̃(M). However, Proposition 5.14 will
imply that this preimage is empty whenever G is reduced, and thus D is defined on all of GE

m/GV
m.

Until this issue is resolved, we will dodge it by stating our results in terms of D̃, but the map D
provides much of our motivation. ∎
3.4. Transformations between planar graphs. There are several local manipulations of a pla-
nar graph G which do not change the corresponding positroid M. The study of such transforma-
tions was systematized by Postnikov [Pos06] and we follow his terminology12; see Ciucu [Ciu98]
and Propp [Pro03] for earlier precedents.

In each case, the transformation will produce a new graph written G′, with edge set written E′,
etc. Additionally, for each transformation, we define a map µ ∶ GE

m/GV −1
m → GE′

m /GV ′−1
m such that

D̃′ ○ µ = D̃.13 In each case, the map µ will be defined in terms of a map µe ∶ GE
m → GE′

m . Points in
GE
m are equivalent to assigning a non-zero complex number to each edge in E, so the map µe will

be defined by manipulating these edge weights.
Postnikov describes two classes of transformations – moves, which do not change the dimension

of the torus GE
m/GV −1

m , and reductions which do. We will only need moves, the reductions may
be found in [Pos06, Section 12]. The inverse of each move is likewise considered a move.

11This notation is potentially misleading; there is no distinguished choice of isomorphism GV −1m ≃ (Gm)∣V ∣−1.
12Our transformations differ from Postnikov’s slightly, because our graphs are required to be bipartite.
13For the last move (urban renewal), the map µ will be rational, and therefore only defined on a dense subset.
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● Contracting/expanding a vertex. Any degree 2 internal vertex not adjacent to the boundary
can be deleted, and the two adjacent vertices merged, as in Figure 5. This operation can
also be reversed, by splitting an internal vertex into two vertices and inserting a degree 2
vertex of the opposite color between them (and giving each new edge a weight of 1).

a1

a2

am

b c

d1

d2

dm′

µe

a1c

a2c

amc

bd1

bd2

bdm′

Figure 5. Contracting a degree 2 white vertex

Here, the map µ ∶ GE
m/GV −1

m → GE′
m /GV ′−1

m is induced by the map µe in Figure 5. The map

µ is a regular isomorphism, and so the boundary measurement maps D̃ and D̃′ have the
same image. Notice that, by repeatedly expanding vertices of degree ≥ 4, we may always
arrive at a graph with vertex degrees no more than 3.● Removing/adding a boundary-adjacent vertex. Any degree 2 internal vertex adjacent to the
boundary can removed, and the two adjacent edges can be made into one edge, as in Figure
6. This operation can also be reversed, by adding a degree 2 vertex in the middle of a
boundary-adjacent edge (and giving the new boundary-adjacent edge a weight of 1).

a1

a2

am

b c µe

a1c

a2c

amc

b

Figure 6. Removing a degree 2 white vertex adjacent to the boundary

Here, the map µ ∶ GE
m/GV −1

m → GE′
m /GV ′−1

m is induced by the map µe in Figure 6. There is
an obviou bijection between almost perfect matchings of the two graphs which, because of
the color conventions in the definition of ∂M preserves the boundaries of these matchings,
The map µ is a regular isomorphism, and so the boundary measurement maps D̃ and D̃′
have the same image. Notice that, by adding white vertices between black vertices and the
boundary as necessary, we may always arrive at a graph with only white vertices adjacent
to the boundary.● Urban renewal. At an internal face of G with four edges, the transformation in Figure 7 is
called urban renewal .

Here, the definition of µ is more subtle. Let µe ∶ GE
m ⇢ GE′

m be the rational map described

in Figure 7. It is easy to check that µe descends to a rational map µe ∶ GE
m/GV

m Ð→ GE′
m /GV ′

m .

However, it does not descend to a rational map GE
m/GV −1

m Ð→ GE′
m /GV ′−1

m . To fix this, choose

an arbitrary vertex v of G′ and let µ̂e,v be the rational map GE
m → GE′

m which first applies
µe and then acts at vertex v by the gauge transformation by b1b3+b2b4. Then µ̂e,v descends
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a1 a2

a4 a3

b1

b2

b3

b4
µe

a1 a2

a4 a3

b3
b1b3+b2b4

b4
b1b3+b2b4

b1
b1b3+b2b4

b2
b1b3+b2b4

Figure 7. Urban renewal at a square face (unlabeled edges have weight 1)

to a map on the quotient tori, from GE
m/GV −1

m to GE′
m /GV ′−1

m , and this quotient map is
independent of the choice of v. This quotient map is the map µ. If we are only working

with GE
m/GV

m, and hence with Gr(k,n) rather than ̃Gr(k,n), we may think in terms of the
simpler map µe.

Theorem 3.6 ([Pos06, Theorem 12.7]). Any two reduced graphs with the same positroid can be
transformed into each other by the above moves.

We conclude the section with the following observation which will be of use in Sections 5 and B.1.

Lemma 3.7. In a reduced graph, every face is a disc and no edge separates a face from itself,
except edges connecting the boundary to a degree 1 vertex.

Proof. First, if some face is not a disc, then there is a component of G which is not connected to
the boundary. This contradicts part of the definition of reducedness.

Now, suppose that edge e separates some face F from itself. In G ∖ e, the face F becomes an
annulus, so there is a component H of G ∖ e which is not connected to the boundary. If H is a
single vertex, then by the definition of reducedness, e connected H to the boundary, and e is one
of the allowed exceptions. If H is a tree with more than one vertex, then it has at least two leaves.
One of those leaves must not be an endpoint of e, and that leaf is a leaf in G which is not adjacent
to the boundary; contradiction.

Now, suppose that H is not a tree. If H contains as many black as white vertices, then no
matching of G uses e. In this case, G has matchings with the same boundaries as G ∖ (H ∪ e) and
the latter graph has fewer faces. If the number of black and white vertices of H differ by one, then
every matching of G uses e. Let f1, f2, . . . , fr be the other edges incident on the endpoint of e not
in G. Then G has matchings with the same boundaries as G ∖ (H ∪ e ∪⋃ fi) and the latter graph
has fewer faces. If the number of black and white vertices of H differ by more than one, then G
has no matchings at all. We have reached a contradiction in every case. �

4. Strands and Postnikov diagrams

4.1. Postnikov’s theory of strands. A graph G satisfying the assumptions of the previous sec-
tion is equivalent to a collection of oriented strands in the disc connecting the marked points on
the boundary, satisfying certain restrictions on how they are allowed to cross.

The strands of a graph G satisfying the assumptions of Section 3.1 are constructed as follows.
Each edge intersects two strands as in Figure 8: at a internal edge, the two strands cross transversely
at the midpoint; at a boundary edge, the two strands terminate at the boundary vertex. These
strands are connected to each to each other in the most natural way, so that each corner of each
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face is cut off by a segment of a strand; see the example in Figure 3a. We consider strands up to
ambient homotopy : homotopies which don’t change the intersections.

At an internal edge
At a boundary edge

adjacent to a black vertex
At a boundary edge

adjacent to a white vertex

Figure 8. Strands in neighborhood of each type of edge

The resulting collection of oriented, immersed curves will have the following properties.

(1) Each strand either begins and ends at marked points on the boundary, or is a closed loop.
(2) Intersections between strands are ‘generic’ with respect to homotopy; that is, all intersec-

tions are transverse crossings between two strands, and there are finitely many intersections.
(3) Following any given strand, the other strands alternately cross it from the left and from the

right.

Furthermore, if G is reduced, the strands satisfy additional properties.

(4) No strand is a closed loop.
(5) No strand intersects itself, except a strand which begins and ends at the same marked point.
(6) If we consider any two strands γ and δ and their finite list of intersection points, then they

pass through their intersection points in opposite orders.

Postnikov has demonstrated that these properties characterize strands of planar graphs.

Theorem 4.1 ([Pos06, Corollary 14.2]). A collection of oriented, immersed curves in a marked disc
which satisfies properties (1) − (3) are the strands of a unique graph G satisfying the assumptions
of Section 3.1. The graph G is reduced if and only if the strands satisfy properties (4)−(6). In this
case, the strand starting at boundary vertex a ends at boundary vertex π(a) mod n, where π is the
associated decorated permutation.14

4.2. Face labels. Let G be a reduced graph. By Properties (1), (4), and (5), each strand in the
corresponding Postnikov diagram divides the disc into two connected components: the component
to the left of the strand, and the component to the right of the strand. At each face, we may
consider the set of strands on which it is on the left side.15

Proposition 4.2. Each face of a reduced graph G is to the left of k strands, where k is the rank
of the positroid of G.

Proof. If F1 and F2 are adjacent faces of G separated by an edge e, then there are two strands which
pass through e, and the labels of F1 and F2 differ by deleting one of these strands and inserting
the other. So all faces have labels of the same size. For the boundary faces, this is verified as a
portion of [OPS15, Proposition 8.3.(1)]. �

To each face f of G, we would like to associate a k-element subset of [n], and hence a Plücker

coordinate on ̃Gr(k,n). The proposition gives two equally natural ways to do this.

14If π(a) ≡ a mod n then the component containing boundary vertex a will have a single internal vertex v; we will
have π(a) = a if v is black and π(a) = a + n if v is white.

15A strand may cut off a corner of a face of G; in this case, we ask which side the remainder of the face is on.
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● Target-labeling. Label each face by the targets of the strands it is left of.●←
I (f) ∶= {a ∈ [n] ∣ f is to the left of the strand ending at vertex a}

● Source-labeling. Label each face by the sources of the strands it is left of.●→
I (f) ∶= {a ∈ [n] ∣ f is to the left of the strand beginning at vertex a}

We will use both of these conventions, and so we avoid choosing a preferred convention. The ● in
our notation is meant to help the reader recall which notation refers to which convention.

These face labels generalize Grassmann necklaces and reverse Grassmann necklaces as follows.

Proposition 4.3. Let G be a reduced graph with positroid M, and let I⃗ and ⃗I be the Grassmann
necklace and reverse Grassmann necklace of M (see Proposition 2.8). If f is the boundary face in

G between boundary vertices i and i + 1, then
●←
I (f) = I⃗i+1, and

●→
I (f) = ⃗Ii.

Proof. Straightforward from the description of the starting and ending points of the strands at the
end of Theorem 4.1. �

Remark 4.4. The clash of notation in Proposition 4.3 is unfortunate, but the notation
●→
I and

●←
I

will work well with other notation that will come up more often than Grassmann necklaces. ∎
We can now explain the motivation for the notation a⇒π b. The following lemma was pointed

out to us by Suho Oh.

Lemma 4.5. Let π be a decorated permutation and suppose that a⇒π b. Let G be a reduced graph

for π and let f be a face of G. If a ∈ ●→I (f) then b ∈ ●→I (f).

Proof. Because the graph G is reduced, the strands a → π(a) and b → π(b) cannot cross (see, e.g.
[MS14, Lemma 3.1]). Therefore, any face to the left of a→ π(a) is also to the left of b→ π(b). �

Each face f determines two Plücker coordinates, ∆●←
I (f) and ∆●→

I (f), on ̃Gr(k,n), which we

restrict to Π̃○(M) (where M is the positroid of G). We combine these into two maps to CF as
follows.

Π̃○(M) CF

●←
F

●→
F

●←
F (p) ∶= (∆●←

I (f)(p))f∈F●→
F (p) ∶= (∆●→

I (f)(p))f∈F
We emphasize these maps are only defined for reduced graphs G.

Remark 4.6. There is an expectation that the set of Plücker coordinates {∆●←
I (f)}f∈F should be a

cluster for a cluster structure on the coordinate ring of Π̃○(M). (A complete description of the
conjectural cluster structure may be found in [MS14]. Leclerc [Lec16] has recently placed a cluster

structure on Π̃○(M), which we expect to coincide with this one, but the details are not yet checked.)

Scott proved this was true for the ‘uniform positroid’ M = ([n]
k
), which corresponds to the dense

positroid variety in ̃Gr(k,n) [Sco06]. One consequence of this expectation is that these Plücker

coordinates should satisfy a ‘Laurent phenomenon’. Geometrically, this means that restricting
●←
F

to a rational map

Π̃○(M) GF
m

●←
F

this map should be an isomorphism from its domain of definition to GF
m. By symmetry, the same

result should hold for the source-labeled map
●→
F . Theorem 7.1 will confirm these expectations. ∎
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Remark 4.7. The two conventions (target-labelling and source-labelling) do not always give the
same cluster structure! However, examples suggest that each cluster variable in the target-labelling
cluster structure is a monomial in the frozen variables times a cluster variable for the source-labeling
cluster structure. Chris Fraser [Fra16] has recently developed a theory of maps of cluster algebras
which take cluster variables to cluster variables times monomials in frozen variables. ∎

5. Matchings associated to faces

The goal of this section is to construct an isomorphism GE
m/GV −1

m → GF
m, or, equivalently, a

system of coordinates on GE
m/GV −1

m parameterized by F . It will be more natural to work on the
level of character lattices of these tori, where is equivalent to giving an isomorphism of lattices

ZF ⊕ZV ∼Ð→ Z⊕ZE

In this section, we construct such a map and its inverse. The most important part of this map is the
restriction ZF → ZE , which is defined by a special matching associated to each face. We explicitly
construct these matchings using downstream wedges, though each may be defined abstractly as the
minimal matching with a given boundary under a partial order (Remark 5.4 and Appendix B).

5.1. Downstream wedges and a pair of inverse matrices. Let e be an edge in a reduced
graph G. There are two strands in the corresponding Postnikov diagram which intersect e, and by
Property (6) of Postnikov diagrams, the ‘downstream’ half of each of these strands do not intersect
each other except at e. Hence, they divide the disc into two components; the downstream wedge
of e is the component which does not contain e (see Figure 4).

A face f is downstream from an edge e if the face f is contained in the downstream wedge of
e, ignoring any corners of f that are cut off. We can use this to distinguish between the two faces
adjacent to an edge. We say that f is directly downstream of e if f is downstream of e and e is
in the boundary of f .

Given a face f ∈ F and an edge e ∈ E, define

Uef ∶= { 1 f is downstream from e
0 otherwise

}

∂fe ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 e is an internal edge in the boundary of f
1 e is an external edge, and f is directly downstream from e
0 otherwise

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Let UE,F and ∂F,E be the matrices with the above entries.

Similarly, given an internal vertex v ∈ V and an edge e ∈ E, define

Uev ∶= { 1 v is downstream from e
0 otherwise

}
∂ve ∶= { 1 v is in the boundary of e

0 otherwise
}

Let UE,V and ∂V,E be the matrices with the above entries.
For each face f , let

Bf ∶= # of edges e such that f is directly downstream from e

So Bf is 1
2#∂f rounded either up or down. In particular, if f is internal then #∂f is even and

Bf = 1
2#∂f .

Let BF,1 denote the ∣F ∣ × 1-matrix with entries {Bf}. Finally, for any finite sets A and B, let
1A,B denote the ∣A∣ × ∣B∣-matrix of ones.
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Lemma 5.1. The pair of matrices

( 1F,1 −BF,1 −∂F,E
1V,1 ∂V,E

) and ( 11,F 11,V−UE,F −UE,V )
are mutually inverse.

Once we have proved that these matrices are inverse, we will denote them by X and X−1

respectively.

Remark 5.2. The formulas defining the entries of X do not refer to strands, so this matrix makes
sense for any bipartite graph embedded in a disc, reduced or not. It it not hard to show that X is
invertible and X−1 has integer entries whenever all components of G are connected to the boundary
of the disc. However, the entries of X−1 may not lie in {−1,0,1} in this generality. ∎
Proof of Lemma 5.1. The reduced graph G gives a cellular decomposition of the disc (Lemma 3.7).
It has ∣E∣+n edges (counting the n boundary edges between boundary vertices) and ∣V ∣+n vertices
(counting the ∣V ∣ internal vertices and the n boundary vertices). Since the Euler characteristic of
the disc is 1, ∣F ∣ − (∣E∣ + n) + (∣V ∣ + n) = 1

Hence, ∣F ∣ + ∣V ∣ = ∣E∣ + 1, and so both matrices in the statement of the lemma are square. If one of
the matrices is the left inverse of the other, then it is also the right inverse. We check that

(3) ( 11,F 11,V−UE,F −UE,V )( 1F,1 −BF,1 −∂F,E
1V,1 ∂V,E

)
is the identity on each block.

Upper left block. Since each edge has a unique face directly downstream, the sum ∑f∈F Bf counts
each edge exactly once, so it is equal to ∣E∣.

The upper left entry in the product (3) is

11,F (1F,1 −BF,1) + 11,V 1V,1 = ∑
f∈F(1 −Bf) + ∑v∈V 1 = ∣F ∣ − ∣E∣ + ∣V ∣ = 1

Upper right block. If e is an internal edge, then there are two faces f with ∂fe = 1, and two
vertices v with ∂ve = 1. If e is a external edge, then there is one face f with ∂fe = 1, and one vertex
v with ∂ve = 1. In either case, − ∑

f∈F ∂fe + ∑v∈V ∂ve = 0

and so the 1 × ∣E∣-matrix 11,F∂F,E − 11,V ∂V,E is zero.
Lower left block. Fix an edge e ∈ E, and consider the closure of the union of all the faces in the

downstream wedge of e. This is homotopy equivalent to the downstream wedge itself; in particular
it has Euler characteristic 1. This closure has a cellular decomposition ∆, given by the restriction
of the graph G and the boundary of the disc.

The sum ∑v∈V Uev counts the number of internal vertices of G in the downstream wedge of e.
These vertices are all in ∆, but this count misses two types of vertices. Specifically,

(# vertices in ∆) = A +B + ∑
v∈V Uev

where A is the number of internal vertices of G which are contained in ∆ but not in the downstream
wedge of e, and B is the number of boundary vertices of the disc contained in ∆.

Similarly, the sum ∑f∈F UefBf counts edges in G whose directly downstream face is in ∆. These
are all in ∆, but this count misses two kinds of edges in ∆: edges in G∩∆ whose directly downstream
face is not in ∆, and boundary edges of the disc which are contained in ∆.

There are A-many edges in G ∩ ∆ whose directly downstream face is not in ∆. To see this,
observe that each vertex counted by A is adjacent to two edges in ∆; one of these edges has its
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directly downstream face in ∆ and the other does not. Since there are (B − 1)-many boundary
edges contained in ∆,

(# edges in ∆) = A + (B − 1) + ∑
f∈F UefBf

It follows that

∑
v∈V Uev − ∑f∈F UefBf = (# vertices in ∆) − (# edges in ∆) − 1

Since ∑f∈F Uef is the number of faces in ∆, we see that

∑
f∈F Uef(1 −Bf) + ∑v∈V Uev = ∑f∈F Uef − ∑f∈F UefBf + ∑v∈V Uev = χ(∆) − 1 = 0

This holds for any edge, and so the ∣E∣ × 1-matrix UE,F (1F,1 −BF,1) +UE,V 1V,1 is zero.
Lower right block. Fix an edge e ∈ E, and consider the sum

(4) ∑
f∈F Uef∂fe′ − ∑v∈V Uev∂ve′

for all possible e′ in E. When e′ = e, the product Uef∂fe = 1 when f is the face directly downstream
from e, and all other terms are 0, so Formula (4) evaluates to 1. For all other e′, the number of
faces such that Uef∂fe′ = 1 is equal to the number of vertices such that Uev∂ve′ = 1; hence, Formula
(4) evaluates to 0. As a consequence, the ∣E∣ × ∣E∣-matrix in the lower right of the product (3) is

UE,F∂F,E −UE,V ∂V,E = IdE,E
Hence, the product (3) is the identity matrix. �

The proof of Lemma 5.1 is delightfully efficient. The content of the lemma is eight identities
relating the block entries, but the proof only had to verify four of them. The other four identities
are free; they are encoded in the following equation.

(5) ( 1F,1 −BF,1 −∂F,E
1V,1 ∂V,E

)( 11,F 11,V−UE,F −UE,V ) = ( IdF,F 0
0 IdV,V

)
In the next sections, we will reap the benefits of these identities.

5.2. Matchings from downstream wedges. To any face f , we may associate the set of edges
such that f is in its downstream wedge.Ð→

M(f) ∶= {e ∈ E ∣ f is in the downstream wedge of e}
As a mnemonic, the arrow points towards f , just as the strands are directed from edge e in the
general direction of face f .

Two of the four identities contained in Equation (5) have essential consequences for
Ð→
M(f).

Theorem 5.3. For any face f ∈ F , the set
Ð→
M(f) is a matching of G with boundary

●→
I (f), the

source-indexed face label of f . There are Bf -many edges e in
Ð→
M(f) such that ∂fe = 1, and for any

other face f ′ ∈ F , there are (Bf ′ − 1)-many edges in
Ð→
M(f) such that ∂f ′e = 1.

At an internal face f ′, the theorem states that the matching
Ð→
M(f) contains one fewer than half

the edges in the boundary of f ′, except when f ′ = f , in which case the matching contains half of
the edges in the boundary of f (the maximum possible for a matching).

Proof. First, the lower left block in Equation (5) implies that, for any v ∈ V and f ∈ F , we have

1 = ∑
e∈E ∂veUef = ∑

e∈Ð→M(f)
∂ve
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Equivalently, for any v ∈ V , the set
Ð→
M(f) contains one edge adjacent to v; hence,

Ð→
M(f) is a

matching.
Inspecting Figure 4, we see a face f is in the downstream wedge of an edge connecting boundary

vertex a to a white vertex whenever f is to the left of the strand beginning at a. Similarly, f is in
the downstream wedge of an edge connecting boundary vertex a to a black vertex whenever f is to

the right of the strand beginning at a. Hence, the boundary of the matching
Ð→
M(f) is

●→
I (f).

Next, the upper left block in Equation (5), implies that, for any f, f ′ ∈ F ,

Bf ′ − 1 + δff ′ = ∑
e∈E ∂f ′eUef = ∑

e∈Ð→M(f)
∂f ′e

Hence, when f = f ′, this sum is Bf , and when f ≠ f ′, this sum is Bf ′ − 1. �

Remark 5.4. Appendix B demonstrates that the matching
Ð→
M(f) is the minimal matching among

all matchings with boundary
●→
I (f), for a partial ordering generated by swiveling matchings. ∎

5.3. A torus isomorphism from minimal matchings. For any matching M , the associated
monomial zM on GE

m is invariant under the action of the restricted gauge group GV −1
m . Therefore,

we may define a map Ð→
M ∶ GE

m/GV −1
m Ð→ GF

m

whose coordinate at each face is the inverse to the matching associated to that face.

(Ð→M(z))
f∈F = z−Ð→M(f) = ∏

e∈E z
−Uef
e = ∏

e∈E
f downstream from e

z−1
e

Proposition 5.5. The map
Ð→
M is an isomorphism between GE

m/GV −1
m and GF

m.

Proof. Let m ∈ ZE be such that zm is GV −1
m -invariant. Consequently, there is some d ∈ Z such that,

for each vertex v, the total degree of the edges adjacent to v is d. Equivalently,

∂V,E ⋅m = d ⋅ 1V,1
It follows that

(1F,1 −BF,1 −∂F,E
1V,1 ∂V,E

)(−d
m

) = (d(BF,1 − 1F,1) − (∂F,E ⋅m)
0

)
By Lemma 5.1, this is equivalent to the matrix identity

(−d
m

) = ( 11,F 11,V−UE,F −UE,V )(d(BF,1 − 1F,1) − (∂F,E ⋅m)
0

)
This implies the following equality.

m = −UE,F (d(BF,1 − 1F,1) − (∂F,E ⋅m))
Consequently, Ð→

M(z)d(BF,1−1F,1)−(∂F,E ⋅m) = z−UE,F (d⋅(BF,1−1F,1)−(∂F,E ⋅m)) = zm(6)

Hence, every character on GE
m/GV −1

m is the pullback of a character along
Ð→
M, and so the pullback mapÐ→

M∗ on character lattices is a surjection. Since a surjection between lattices of the same dimension

is an isomorphism,
Ð→
M∗ is an isomorphism of lattices and

Ð→
M is an isomorphism of tori. �

Corollary 5.6. The monomials z
Ð→
M(f), as f ranges over F , form a basis of characters of GE

m/GV −1
m .

Proof. The set of coordinates x−1
f (as f runs over F ) is a basis of characters for the torus GF

m. The

pullback of these functions along
Ð→
M are the minimal matching monomials z

Ð→
M(f). �
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Equation (6) in the proof of Proposition 5.5 provides an explicit formula for writing a character

of GE
m/GV −1

m in terms of the z
Ð→
M(f). We highlight a special case of this.

Corollary 5.7. Let z ∈ GE
m, and let M be a matching of G. Then

zM = Ð→M(z)(BF,1−1F,1)−∂F,E ⋅M = ∏
f∈F (zÐ→M(f))#{e∈M ∶ ∂fe=1}−(Bf−1)

For any I ∈ ([n]
k
), we have

DI (z) = ∑
matchings M

with ∂M=I
Ð→
M(z)(BF,1−1F,1)−∂F,E ⋅M = ∑

matchings M

with ∂M=I
∏
f∈F (zÐ→M(f))#{e∈M ∶ ∂fe=1}−(Bf−1)

Remark 5.8. The proposal that matchings of a planar graph should be described by a generating
functions whose variables are assigned to faces, and where the exponent of a face f should be
Bf − 1 −#{e ∈M ∶ ∂fe = 1}, first occurred in [Spe07]. ∎
5.4. The inverse map. We now consider the inverse map to

Ð→
M, for which we use a separate

notation. ←Ð
∂ ∶= Ð→M−1 ∶ GF

m → GE
m/GV −1

m

Unfortunately, there is no natural lift of
←Ð
∂ to a map GF

m → GE
m, and so there is no natural way

to write
←Ð
∂ in terms of coordinates on GE

m. The best we can do is the following, which involves a
gauge transformation at an arbitrary vertex.

Proposition 5.9. For any x ∈ GF
m, any lift of

←Ð
∂ (x) to GE

m is GV
m-equivalent to

←Ð
∂ ′(x) ∈ GE

m,
defined by16

←Ð
∂ ′(x)e ∶= ∏

f∈F x
−∂fe
f = ⎧⎪⎪⎨⎪⎪⎩

1
xf1xf2

for e an internal edge between faces f1 and f2

1
xf

for e an external edge with directly downstream face f

⎫⎪⎪⎬⎪⎪⎭
Furthermore, the gauge transformation of

←Ð
∂ ′(x) at any vertex by the value ∏f∈F xBf−1

f is GV −1
m -

equivalent to
←Ð
∂ (x); that is, it has the same image in GE

m/GV −1
m as

←Ð
∂ (x).

Proof. As before, let zm be GV −1
m -invariant, so that there is some d ∈ Z such that the total degree

of m at each vertex is d. Regardless of what vertex we perform the gauge transformation at, the
total degree of m at that vertex is d, and so the gauge-transformation scales the value of zm by

(∏f∈F xBf−1

f )d. Therefore,

⎛⎝⎛⎝∏f∈F x
Bf−1

f

⎞⎠ ⋅ ←Ð∂ ′(x)⎞⎠
m = ⎛⎝∏f∈F x

Bf−1

f

⎞⎠
d ⎛⎝∏f∈F x

−∂fe
f

⎞⎠
m = xd(BF,1−1F,1)−∂F,E ⋅m

By Equation (6), this is equal to the value of zm on
←Ð
∂ (x). Since this holds for all GV −1

m -invariant

characters, the image of this point in GE
m/GV −1

m equals
←Ð
∂ (x).

�
Remark 5.10. As a consequence, if we are only interested in the induced map17←Ð

∂ ∶ GF
m/Gm Ð→ GE

m/GV
m

obtained after quotienting by the action of Gm, then we may use the formula for
←Ð
∂ ′ instead. ∎

16This justifies the notation
←Ð
∂ , as it is gauge-equivalent to the map on character lattices given by −∂F,E .

17We continue to abuse notation by using the same notation for a map and its quotient by the scaling action.
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We can use Proposition 5.9 to analyze a commonly used family of coordinates on GE
m/GV

m.

Corollary 5.11. Let f be an interior face of G with boundary edges e1, e2, . . . , e2r. Let fi be the

face on the other side of ei from f . Define αf ∶ GE
m → Gm by αf(z) = ∏2r

i=1 z(ei)(−1)i. Then

αf(z) = 2r∏
i=1

(zÐ→M(fi))(−1)i+1

One can write a similar formula when f is a boundary face, with cases depending on how many
black and how many white vertices border f .

The αf are clearly GV
m-invariant, and have often been used as GV

m-invariant coordinates on GE
m,

and as rational coordinates on Π○(M) induced by D [Pos06, ABC+16, GK13].

Remark 5.12. Once we know that D̃ is an inclusion (Proposition 7.6), the monodromy coordinates

can be combined into a single rational function α ∶ Π̃○(M) ⇢ GF
m. Assuming the cluster structure

on Π̃○(M) described in [MS14], there is a rational cluster ensemble map χ ∶ Π̃○(M) ⇢ X , whereX is the associated X -cluster variety [FG09]. Corollary 5.11 may be reformulated to say that α is
the pullback along χ ○ τ⃗ of the cluster X ⇢ GF

m associated to the reduced graph G.18 ∎
5.5. Uniqueness of matchings for boundary faces. We are now ready to show that the map
D̃ lands in Π○(M). We need one more combinatorial lemma.

Proposition 5.13. For a boundary face f ,
Ð→
M(f) is the unique matching of G with boundary

●→
I (f).

Proof. Suppose that M is another matching with boundary
●→
I (f). The set of edges in one of M

and
Ð→
M(f) but not both is a disjoint union of closed cycles of even length; let γ be one such closed

cycle. Let 2` be the length of γ and let H be the graph surrounded by γ. Then the restriction ofÐ→
M(f) to H gives a matching of H; call this matching M ′. Note that M ′ ∩ γ consists of ` edges.

Since M ′ is a matching of H, we have

#M ′ = 1

2
#Vertices(H).

Since H is a disc, we have

#Vertices(H) −#Edges(H) +#Faces(H) = 1

and thus

(7) #M ′ = 1

2
(#Edges(H) −#Faces(H) + 1)

Since every face f ′ of H is an interior face of G, the boundary of each such f ′ contains #∂f ′/2−1
edges of M ′ by Theorem 5.3. Each edge of M ′ is counted twice in this way except for the ` edges
along γ, so we have

2#M ′ − ` = ∑
f ′∈Faces(H)#{e ∈M ′ ∩ f ′} = ∑

f ′∈Faces(H)(
#∂f ′

2
− 1) =

1

2

⎛⎝ ∑
f ′∈Faces(H)#∂f ′⎞⎠ −#Faces(H) = 1

2
(2#Edges(H) − 2`) −#Faces(H) =

#Edges(H) − ` −#Faces(H)
18A subtle detail: the presence of ‘frozen variables’ allows some choice in the cluster ensemble map χ. The specific

χ which relates monodromy coordinates to X -cluster variables has 1-dimensional fibers and 1-codimensional image.
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and thus

(8) #M ′ = 1

2
(#Edges(H) −#Faces(H))

Equations (7) and (8) are obviously in conflict, and we have reached a contradiction. �

This has a geometric consequence. When f is a boundary face, the partition function D●→
I (f) is

a monomial, not just a polynomial, and so it takes non-zero values on all of GE
m/GV −1

m .

Proposition 5.14. Let G be a reduced graph. The boundary measurement map D ∶ GE
m/GV −1

m →
Π̃(M) lands inside the open positroid variety Π̃○(M).

Proof. We already know that the boundary measurement map lands in the closed variety Π̃(M).
By Proposition 4.3, the labels

●→
I (f) of the boundary faces are the elements of the reverse

Grassmann necklace (I1, I2, . . . , In). The open positroid variety Π̃○(M) is the intersection of the
cones on the permuted open Schubert cells for the Ia ([KLS13, Theorem 5.1]). The nonvanishing
of pIa is exactly what picks out the open Schubert cell for Ia from the closed Schubert variety. �

5.6. Upstream wedges and associated matchings. Each of the constructions and definitions
in this section has an analog, when ‘downstream’ is replaced by ‘upstream’. This is equivalent to
the effect of reversing the orientations of the strands, taking the mirror image of the graph and
relabeling boundary vertex j as n − j (with indices cyclic modulo n).

In this way, we associate matchings
←Ð
M(f) to each face f , which have boundary

●←
I (f), and we

use these matchings to construct a pair of inverse isomorphisms
←Ð
M and

Ð→
∂ . All the analogous results

go through mutatis mutandis. We highlight the fact that the maps
←Ð
∂ and

Ð→
∂ are very close to each

other, in that they only differ by values at boundary faces.

Proposition 5.15. For x ∈ GF
m and for any face f in G,

(Ð→M ○ Ð→∂ (x))f = xf ∏
i∈●→I (f)

xi−
xi+

where i+ and i− denote the boundary face clockwise and counterclockwise (respectively) from the
edge adjacent to vertex i.

Consequently, if x ∈ GF
m has value 1 at every boundary face, then

←Ð
∂ (x) = Ð→∂ (x).

Proof. By adding boundary-adjacent vertices as needed, we may assume that the only internal
vertices adjacent to the boundary are white. As a consequence, each edge adjacent to vertex i has

i+ downstream and i− upstream. It follows that the upstream analog
Ð→
∂ ′(x) of

←Ð
∂ ′(x) ∈ GE

m satisfiesÐ→
∂ ′(x)−Ð→M(f) = ←Ð∂ ′(x)−Ð→M(f) ∏

i∈●→I (f)
xi−
xi+

Another consequence of our simplifying assumption is that Bf ′ is always half the number of bound-
ary edges in f ′, and so it coincides with its upstream analog. Consequently, the gauge transforma-
tion in Proposition 5.9 is the same in its upstream analog. We may then compute.

(Ð→M ○ Ð→∂ (x))f = Ð→∂ (x)−Ð→M(f) = (xBF,1−1F,1)Ð→∂ ′(x)−Ð→M(f)
= (xBF,1−1F,1)←Ð∂ ′(x)−Ð→M(f) ∏

i∈●→I (f)
xi−
xi+

= ←Ð∂ (x)−Ð→M(f) ∏
i∈●→I (f)

xi−
xi+

= xf ∏
i∈●→I (f)

xi−
xi+

�
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6. The twist for positroid varieties

This section defines the left and right twist of a k × n-matrix of rank k and collects its basic
properties. These operations on matrices descend to inverse automorphisms of each open positroid
variety Π̃○(M), which will be used to relate the boundary measurement map of a reduced graph
G to the Plücker coordinates associated to faces.

For a k × n matrix A and a ∈ [n], define

Aa ∶= the ath column of A

We extend this notation to any a ∈ Z to be periodic modulo n. For any k-element set I ⊂ Z we
define

∆I(A) ∶= det(Ai1 ,Ai2 , ...,Aik)
where I = {i1 < i2 < ⋯ < ik}.

6.1. Definition of the twists. Let ⟨− ∣ −⟩ denote the standard Euclidean inner product on Ck.
Recall that Mat○(k,n) is the set of k × n complex matrices with rank k. Given A ∈ Mat○(k,n),

define the right twist of A to be the k × n matrix τ⃗(A) whose column τ⃗(A)a is the unique vector
such that,

For b ∈ I⃗a, we have ⟨τ⃗(A)a,Ab⟩ = ⎧⎪⎪⎨⎪⎪⎩
1 a = b
0 a ≠ b

Since I⃗a is a basis of Ck, this describes a unique vector. Note that, if Aa = 0 then a /∈ I⃗a and thus
τ⃗(A)a is required to be perpendicular to a basis of Ck; we deduce that, if Aa = 0 then τ⃗(A)a = 0.

We similarly define the left twist ⃗τ(A) using the left Grassmann necklace:

For b ∈ ⃗Ia, we have ⟨ ⃗τ(A)a,Ab⟩ = ⎧⎪⎪⎨⎪⎪⎩
1 a = b
0 a ≠ b

Unwinding the definition of the Grassmann necklace, we can restate these definitions. Assuming
for simplicity that none of the Aa are 0, we have

⟨τ⃗(A)a,Aa⟩ = ⟨ ⃗τ(A)a,Aa⟩ = 1

⟨τ⃗(A)a,Ab⟩ = 0 whenever Ab /∈ span(Aa+1,Aa+2, . . . ,Ab−1) for a < b ≤ a + n
⟨ ⃗τ(A)a,Ab⟩ = 0 whenever Ab /∈ span(Ab+1,Ab+2, . . . ,Aa−1) for b < a ≤ b + n

The Grassmann necklace and reverse Grassmann necklace of A are constant on the set Mat○(M)
consisting of matrices with the same positroidM as A (Proposition 2.8). As a consequence, τ⃗ and⃗τ are algebraic maps when restricted to Mat○(M).

The torus Gn
m has a right action on Mat○(k,n) by scaling the columns.

Proposition 6.1. For any A ∈ Mat○(k,n), α ∈ GLk and β ∈ Gn
m,

τ⃗(αAβ) = (α−1)⊺τ⃗(A)β−1

Proof. For an index c, let βc denote the c-th coordinate of β. For any a ∈ [n] and any b ∈ I⃗a.
⟨((α−1)⊺τ⃗(A)β−1)a ∣ (αAβ)b⟩ = ⟨β−1

a τ⃗(A)a ∣ βbAb⟩
= βb

βa
⟨τ⃗(M)a ∣Mb⟩ = { 1 a = b

0 otherwise
}

By the construction of the right twist, τ⃗(αAβ) = (α−1)⊺τ⃗(A)β−1. �

Quotienting by SLk, we see that the twists are algebraic maps Π̃○(M) → ̃Gr(k,n). We will make
a more precise statement in Corollary 6.8.
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Remark 6.2. The result on the Gn
m action says that any formula for τ⃗(A)a or ⃗τ(A)a must be

homogenous of degree −1 in Aa, and homogenous of degree 0 in the other columns A. ∎
Remark 6.3. The twist of Marsh and Scott [MS16] (which is defined for matrices with uniform

positroid envelope and denoted
Ð→
M) is related to our twist by rescaling the columns; specifically, for

each a,
Ð→
Ma = ∆Ia(M)τ⃗(M)a. We consider the simple homogeneity statement of Remark 6.2 to be

evidence that our choice of normalization is cleaner than theirs. ∎
6.2. Twist identities. We prove a pair of identities relating a matrix and its right twist.

Lemma 6.4. Let π be the bounded affine permutation of A. If a < b < π(a), then

⟨τ⃗(A)a ∣ Ab⟩ = ⟨τ⃗(A)b ∣ Aπ(a)⟩ = 0

Proof. Since a < b < π(a), we have that Aa is not 0 and Aa+1 is not parallel to Aa.

Define L⃗a = span(Aa,Aa+1, . . . ,Aπ(a)−1), and L⃗′a = span(Aa+1, . . . ,Aπ(a)−1). Using Lemma 2.3,

Aa is not in L⃗′a, so L⃗a = L⃗′a⊕ span(Aa). Lemma 2.5 tells us that {Ac ∶ c ∈ [a, π(a))∩ I⃗a} is a basis of

L⃗a so {Ac ∶ c ∈ (a, π(a))∩ I⃗a} is a basis of L⃗′a. Since τ⃗(A)a is orthogonal to {Ac ∶ c ∈ (a, π(a))∩ I⃗a},

we conclude that τ⃗(A)a is orthogonal to L⃗′a. The vector Ab lies in L⃗′a, so ⟨τ⃗(A)a,Ab⟩ = 0.
We now prove ⟨τ⃗(A)b ∣ Aπ(a)⟩ = 0. If b < π(a) < π(b), then this follows from the first paragraph.

If b ≤ π(b) < π(a), then b⇒π a so, by Lemma 2.5, π(a) ∈ Ib ∖ b and we have ⟨τ⃗(A)b ∣ Aπ(a)⟩ = 0. �

Lemma 6.5. For any A ∈ Mat○(M), and any I = {i1 < i2 < ... < ik}, J = {j1 < j2 < ... < jk} ⊂ Z,

∆I(τ⃗(A))∆J(A) = det

⎛⎜⎜⎜⎝
⟨τ⃗(A)i1 ∣ Aj1⟩ ⟨τ⃗(A)i1 ∣ Aj2⟩ ⋯ ⟨τ⃗(A)i1 ∣ Ajk⟩⟨τ⃗(A)i2 ∣ Aj1⟩ ⟨τ⃗(A)i2 ∣ Aj2⟩ ⋯ ⟨τ⃗(A)i2 ∣ Ajk⟩⋮ ⋮ ⋱ ⋮⟨τ⃗(A)ik ∣ Aj1⟩ ⟨τ⃗(A)ik ∣ Aj2⟩ ⋯ ⟨τ⃗(A)ik ∣ Ajk⟩

⎞⎟⎟⎟⎠
Proof. Consider the n×n matrix τ⃗(A)⊺ ⋅A, and its restriction to the rows in I and the columns in
J . The lemma is equivalent to the statement that the product of the determinants is equal to the
determinant of the product. �

6.3. Twists as inverse automorphisms. As previously observed, the twists are algebraic when
restricted to matrices in Mat○(M) for some positroid M. The next proposition asserts that the
twists are actually algebraic endomorphisms of this subvariety; that is, τ⃗(A) and ⃗τ(A) have the
same positroid envelope as A.

Proposition 6.6. For any A ∈ Mat○(M), the twists τ⃗(A) and ⃗τ(A) are in Mat○(M).

Proof. Let I⃗ = {I⃗1, I⃗2, ..., I⃗n} be the Grassmann necklace of M and let a ∈ [n]. The matrix that

appears in Lemma 6.5 for I = J = I⃗a is lower triangular with ones on the diagonal; hence,

(9) ∆I⃗a
(τ⃗(A)) = 1

∆I⃗a
(A)

In particular, ∆I⃗a
(τ⃗(A)) is non-zero.

Now, let J be a k-element subset of [n], and suppose J /∈ M. We will show that ∆J(τ⃗(A)) = 0.

The hypothesis that J /∈ M means that there is some a for which I⃗a /⪯a J . In other words, writing

I⃗a = {i1 ≺a i2 ≺a ... ≺a ik}, J = {j1 ≺a j2 ≺a ... ≺a jk},
there is some b ∈ [k] such that jb ≺a ib.
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By Lemma 6.5, the Plücker coordinate ∆J(τ⃗(A)) is

(10)
1

∆I⃗a
(A) det

⎛⎜⎜⎜⎝
⟨τ⃗(A)j1 ∣ Ai1⟩ ⟨τ⃗(A)j1 ∣ Ai2⟩ ⋯ ⟨τ⃗(A)j1 ∣ Aik⟩⟨τ⃗(A)j2 ∣ Ai1⟩ ⟨τ⃗(A)j2 ∣ Ai2⟩ ⋯ ⟨τ⃗(A)j2 ∣ Aik⟩⋮ ⋮ ⋱ ⋮⟨τ⃗(A)jk ∣ Ai1⟩ ⟨τ⃗(A)jk ∣ Ai2⟩ ⋯ ⟨τ⃗(A)jk ∣ Aik⟩

⎞⎟⎟⎟⎠
We claim that the top right b × (k − b + 1) submatrix of (10) is zero; that is, for any c, d ∈ [k] with
c ≤ b ≤ d, we have ⟨τ⃗(A)jc ∣ Aid⟩ = 0

To see this, first observe that Aid is not in the span of {Aa, ....,Aid−1} by the definition of I⃗a. We
also have jc ⪯a jb ≺a ib ⪯a id, and so Ajc appears in the list {Aa, ...,Aid−1}. Therefore, Aid is not in

the span of {Ajc , ...,Aid−1}, so id ∈ I⃗jc . Then ⟨τ⃗(A)jc ∣ Aid⟩ = 0 by the definition of the right twist.
Hence, the top right b × (k − b + 1) submatrix of (10) is zero, and so ∆J(τ⃗(A)) = 0.

By [Oh11], a k × n matrix B is in Mat○(M) if and only if

∀J /∈ M, ∆J(B) = 0

∀a ∈ [n], ∆I⃗a
(B) ≠ 0

Hence, we have checked that τ⃗(A) ∈ Mat○(M). The analogous result for ⃗τ(A) holds by a symmetric
argument. �

We may improve this as follows.

Theorem 6.7. For any positroidM, the twists τ⃗ and ⃗τ define inverse automorphisms of Mat○(M).

Proof. Let I⃗ = {I⃗1, I⃗2, ..., I⃗n} and ⃗I = { ⃗I1, ⃗I2, ..., ⃗In} denote the Grassmann necklace and reverse

Grassmann necklace of M, respectively. Choose any a ∈ [n] and any b ∈ I⃗a.
If A ∈ Mat○(M), then Ab /∈ span{Aa,Aa+1, ...,Ab−1}, so

dim(span{Aa,Aa+1, ...,Ab}) = dim(span{Aa,Aa+1, ...,Ab−1}) + 1.

Let dim(span{Aa,Aa+1, ...,Ab}) = c. Hence, c elements of ⃗Ib lie in {a, a + 1, ..., b}, and so

J ∶= ( ⃗Ib − {b}) ∩ {a, a + 1, ..., b − 1}
has c−1 elements. The set {Aj}j∈J is part of a basis for Ck, so it is linearly independent, and hence
it is a basis for the (c − 1) dimensional space

span{Aa,Aa−1, ...,Ab−1}
In particular, as long as a ≠ b, Aa is a linear combination of {Aj}j∈J . By the construction of the
left twist, ⟨ ⃗τ(A)b ∣ Aj⟩ = 0 whenever j ∈ J . Hence, as long as a ≠ b, ⟨ ⃗τ(A)b ∣ Aa⟩ = 0. If a = b, then⟨ ⃗τ(A)b ∣ Aa⟩ = 1.

Since a and b were arbitrary, the matrix A satisfies all the identities which define τ⃗( ⃗τ(A)). Hence,
τ⃗( ⃗τ(A)) = A. The argument that ⃗τ(τ⃗(A)) = A is identical. �

Corollary 6.8. For any positroidM, the twists τ⃗ and ⃗τ descend to mutually inverse automorphisms
of Π̃○(M) and Π○(M).

Proof. Using Proposition 6.1, this is the quotient of Theorem 6.7 by SLk (in the case of Π̃○) and
GLk (in the case of Π○). �

We conclude the section with a refinement of Lemma 6.4 we will need later.

Lemma 6.9. For all A and a, the set {τ⃗(A)b ∶ a⇒π b} is a basis for span(Aa, . . . ,Aπ(a)−1)⊥.

Here, V ⊥ denotes the orthogonal complement to V .
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Proof. Let L⃗a denote span(Aa, . . . ,Aπ(a)−1). Let c ∈ [a, π(a)) and choose b such that a⇒π b. Then

b < a ≤ c < π(a) < π(b) so, by Lemma 6.4, ⟨τ⃗(A)b,Ac⟩ = 0. So, each τ⃗(A)b is orthogonal to L⃗a.

By Proposition 6.6, τ⃗(A) has the same positroid envelope as A. In particular, {τ⃗(A)b ∣ b ∈ ⃗I(a)}
must be a basis for Ck. By Lemma 2.5.b applied to τ⃗(A), {τ⃗(A)b ∣ a⇒π b} is a subset of this basis,
and so is linearly independent. By Lemma 2.5.a applied to A,

∣{b ∣ a⇒π π
−1(b)}∣ = k − dim(L⃗a)

Since ∣{τ⃗(A)b ∣ a⇒π b}∣ = ∣{b ∣ a⇒π b}∣ = ∣{b ∣ a⇒π π
−1(b)}∣, the cardinality of {τ⃗(A)b ∣ a⇒π b} is

equal to the dimension of L⃗⊥a. Therefore, it is a basis for L⃗⊥a. �

7. The main theorem

We restate our main theorem, which is the commutativity of a diagram built out of the maps
constructed in the last five sections.

We reuse and reiterate much of the notation from the previous sections. Let G be a reduced
graph with positroidM. Let Π̃○(M) denote the open positroid variety ofM (Section 2.2). Let V ,
E and F denote the vertices, edges and faces of G, and we define the tori GE

m/GV −1
m and GF

m as in

Section 3.3. We have the isomorphisms
←Ð
M,
Ð→
M,
←Ð
∂ and

Ð→
∂ between these tori from Section 5.3. Let

D̃ be the boundary measurement map (Section 3); from Proposition 5.14, we can view D̃ as a map

to Π̃○(M). Let
●→
F and

●←
F be the source-labeled and target-labeled face Plücker maps (Section 4.2).

Finally, let ⃗τ and τ⃗ be the left and right twists (Section 6).

Theorem 7.1. The following diagram commutes, where dashed arrows denote rational maps:

GF
m GE

m/GV −1
m GF

m

Π̃○(M) Π̃○(M) Π̃○(M)

Ð→
∂

Ð→
M

←Ð
∂

←Ð
M●←

F D̃
●→
F

τ⃗ τ⃗

⃗τ⃗τ
More precisely, the diagram commutes in the category of rational maps and any composition of
maps starting in the top row is regular.

We will defer the details of the proof until Section 9, and instead spend the rest of this section
exploring the theorem. We begin with several remarks on the diagram itself.

Remark 7.2. Each of the spaces in the diagram has a natural Gm-action which commutes or anti-
commutes with each of the maps, and so there is a quotient commutative diagram.

GF
m/Gm GE

m/GV
m GF

m/Gm

Π○(M) Π○(M) Π○(M)

Ð→
∂

Ð→
M

←Ð
∂

←Ð
M●←

F D ●→
F

τ⃗ τ⃗

⃗τ⃗τ
The bottom row of the diagram now takes place in the Grassmannian itself, and the maps

←Ð
∂ andÐ→

∂ have a much simpler form (Proposition 5.9 and Remark 5.10). ∎
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Remark 7.3. The top row depends on the graph G, but the bottom row does not. If G and G′
are two reduced graphs related by a move (Section 3.4), then the birational map µ defined in that
section gives a birational isomorphism between the center elements of the corresponding top rows,
which commutes with the other maps in the diagrams. ∎
Remark 7.4. The right action of Gn

m described in Proposition 6.1 can be extended to actions on
the tori in the top row, coming from monomial maps from Gn

m to GE
m and GF

m. The vertical maps
in the diagram commute with this Gn

m action, and the horizontal maps anti-commute. ∎
Remark 7.5. We collect our justifications and mnemonics for our notation. Maps with rightward

arrows always travel to the right in the diagram, or (in the case of the vertical map
●→
F ) are in the

right-hand edge. The twists τ⃗(A)a and ⃗τ(A)a depend on the columns of A to the right and left of

Aa, respectively. In
Ð→
M(f) and

←Ð
M(f), the direction of the arrow recalls whether the strands points

towards or away from face f . The maps
←Ð
∂ and

Ð→
∂ are inverse to

Ð→
M and

←Ð
M. Finally, the bullet in

the notation for
●→
F and

●←
F indicates whether we are using source or target labeled strands. ∎

7.1. Inverting the boundary measurement map. Theorem 7.1 implies that the boundary
measurement maps are inclusions.

Proposition 7.6. For a reduced graph, the maps D̃ ∶ GE
m/GV −1

m Ð→ Π̃○(M) and D ∶ GE
m/GV

m Ð→
Π○(M) are open immersions.

Proof. The inverse rational map is
←Ð
∂ ○ ●→F ○ τ⃗ . Since this rational map is defined on the image of D̃,

the map D̃ is an open immersion. The result for D is identical. �

We describe the inverse map
←Ð
∂ ○ ●→F ○ τ⃗ in words: Given a point in the positroid variety, twist it,

compute the Plücker coordinates given by the face labels, and then weight an edge by the reciprocal
of the product of the adjacent faces, with the correction involving the gauge action described in
Proposition 5.9. If we only want an inverse map from Π○(M) to GE

m/GV
m, then the gauge correction

can be omitted.

Remark 7.7. This generalizes the main result of Talaska [Tal11], who proves invertibility of the
boundary map for Le-diagrams. Talaska’s description of the inverse does not involve the twist, but
expresses the coordinates of GE

m/GV −1
m directly as ratios of Plücker variables. ∎

7.2. The Laurent phenomenon. From Theorem 7.1, we see that the domain of definition of
●→
F

is the image of τ⃗ ○ D̃. Since D̃ is injective (Proposition 7.6) and τ⃗ is an isomorphism, this shows

that the domain of definition of
●→
F is a torus. So any function on Π̃○(M) will restrict to a regular

function on this torus, and hence to a Laurent polynomial in a basis of characters of this torus.
Theorem 7.1 says that the Plücker coordinates ∆●→

I (f) are such a character basis for this torus,

which proves the following.

Proposition 7.8. A function in the coordinate ring of Π̃○(M) may be written as a Laurent poly-
nomial in the functions {∆●→

I (f)}f∈F .

By a similar argument, such a function may also be written as a Laurent polynomial in {∆●←
I (f)}f∈F .

Remark 7.9. This verifies part of the ‘Laurent phenomenon’ that would follow from the conjectural
cluster structure on Π̃○(M); specifically, the Laurent phenomenon for those clusters represented
by a reduced graph. ∎
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7.3. Laurent formulas for twisted Plückers. The main theorem also provides explicit Laurent
polynomials for certain functions on Π̃○(M); specifically, the twisted Plücker coordinates.

Proposition 7.10. For any J ∈ ([n]
k
), we have

∆J ○ ⃗τ = ∑
matchings M
with ∂M=J

∏
f∈F ∆

(Bf−1)−#{e∈M ∶ ∂fe=1}●→
I (f)

That is, each Laurent polynomial expressing a twisted Plücker coordinate in terms of the {∆●→
I (f)}f∈F

is a partition function of matchings with fixed boundary.

Proof. We use the right-hand square in Theorem 7.1. Applying ∆J ○ ⃗τ is equal to applying D̃○←Ð∂ ○●→F
and projecting on the J-th coordinate. The J-th coordinate of D̃ is the partition function DJ , the
sum of matching monomials over matchings with boundary J . Rewriting Corollary 5.7, for all
x ∈ GF

m, we have

DJ (←Ð∂ (x)) = ∑
matchings M

with ∂M=J
∏
f∈F x

(Bf−1)−#{e∈M ∶ ∂fe=1}
f

Precomposing both sides with
●→
F completes the proof. �

Remark 7.11. There is a similar formula for the Plücker coordinate of a right twist, using the
left-hand square in Theorem 7.1, which is even a sum over the same set of matchings.

∆J ○ τ⃗ = ∑
matchings M
with ∂M=J

∏
f∈F ∆

(B̃f−1)−#{e∈M ∶ ∂̃fe=1}●←
I (f)

However, the reader is cautioned that B̃f and ∂̃fe here are the analogs of Bf and ∂fe in which
‘downstream’ has been replaced by ‘upstream’. ∎
Remark 7.12. Theorem 7.1 does not directly give a combinatorial description of the Laurent poly-
nomials of the (untwisted) Plücker coordinates. ∎
7.4. The double twist. Theorem 7.1 has interesting consequences for τ⃗2, as we will now explain.

Proposition 7.13. Consider a positroidM with permutation π and Grassmann necklace I⃗1, I⃗2, ..., I⃗n.
Let A ∈ Mat○(M). For any I which occurs as the source-label of a face some reduced graph for M,
we have

∆I(τ⃗2(A)) = ∆π(I)(A)∏
i∈I

∆I⃗i
(A)

∆I⃗i+1(A)
An analogous result for ∆I ○ ⃗τ2 holds when I is the target-label of a face in a reduced graph forM.

Proof. Fix a reduced graph G with positroid M and a face f such that I = ●→
I (f). Then

∆●→
I (f)(τ⃗2(A)) = (●→F (τ⃗2(A)))

f

Thm. 7.1= (Ð→M ○ Ð→∂ ○ ●←F (A))
f

Prop. 5.15= (●→F (A))
f
∏
i∈I

(●→F (A))
i−

(●→F (A))
i+

= ∆●←
I (f)(A)∏

i∈I
∆●←

I (i−)(A)
∆●←

I (i+)(A) Prop. 4.3= ∆●←
I (f)(A)∏

i∈I
∆I⃗i

(A)
∆I⃗i+1(A)

Since
●←
I (f) = π(●→I (f)), the result is proven. �
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We can give a geometric interpretation to Proposition 7.13. We define a map µ ∶ Mat○(M) →
Mat○(k,n) as follows:

µ(A)i = Aπ(i) ∆I⃗i
(A)

∆I⃗i+1(A)(−1)#{j∶i⇒πj}+(k−1)δ(n∈[i,π(i)))

here δ(n ∈ [i, π(i))) is 1 if n ∈ [i, π(i)) and 0 otherwise. It is easy to see that µ descends to a map
Π○(M) → Gr(k,n).
Proposition 7.14. Let A ∈ Mat○(M). If I is a source-label of a face for some reduced graph forM, then

∆I(τ⃗2(A)) = ∆I(µ(A))
as functions Mat○(M) → C (or Π̃○(M) → C).

Remark 7.15. It is tempting to conjecture that τ⃗2(A) = µ(A); in particular, this equality holds
whenever A has uniform positroid envelope. However, this equality fails for other A; see Example
7.16 for a counterexample. The significance of Proposition 7.14 (at least for the authors) is to
characterize the manner in which τ⃗2 comes deceptively close to µ. ∎
Proof. We first check the result up to sign.

∆I(µ(A)) = det(µ(A)i)i∈I = ±det
⎛⎝Aπ(i)

∆I⃗i
(A)

∆I⃗i+1(A)⎞⎠
i∈I

= ±∆π(I)(A)∏
i∈I

∆I⃗i
(A)

∆I⃗i+1(A) = ±∆I(τ⃗2(A)).
We now think about the signs. We emphasize that we consider I specifically as a subset of [n],

and not some other lift modulo n.
There are two places where signs are introduced. First, det(µ(A)i)i∈I is ordered according

to the linear order on I. When we reorder to the linear order on π(I), we introduce the sign(−1)#{(j,i)∈I2∶ j<i, π(i)<π(j)} = (−1)#{(j,i)∈I2∶i⇒πj}. Since I is a source-label, by Lemma 4.5, if i ∈ I
and i ⇒π j then j ∈ I. So the exponent can be rewritten as ∑i∈I #{j ∈ [n] ∶ i ⇒π j}. This is

precisely the contribution from the (−1)#{j∶i⇒πj} factor in the deifnition of µ.
The second sign is introduced when we change from using the linear order on π(I) to the linear

order on π(I) reduced modulo n to lie in [n]. For each i ∈ I obeying i ≤ n < π(i), this reordering

introduces a sign of (−1)k−1. This is the contribution from the (−1)(k−1)δ(n∈[i,π(i))) factor. �

Example 7.16. Let

A = [p q 0 −s
0 0 r t

] .
So

∆12(A) = 0 ∆13(A) = pr ∆14(A) = pt
∆23(A) = qr ∆24(A) = qt ∆34(A) = rs

The decorated permutation of π is π(1) = 2, π(2) = 4, π(3) = 5, π(4) = 7. The matroid M is{13,14,23,24,34}.
Then

τ⃗(A) = [p−1 q−1 t
rs 0

0 0 r−1 t−1] τ⃗2(A) = [ p q rs
t 0−pts − qts 0 t

] .
Meanwhile,

µ(A) = [pq q − qs(−s) rs
ptp 0

0 − qs t 0 t
rr

] = [p q rs
t 0

0 − qts 0 t
] .

There is a unique reduced graph for this permutation, with source-labels 14, 23, 24, 34. We see
that ∆I(τ⃗2(A)) = ∆I(µ(A)) for these I, but that ∆I(τ⃗2(A)) ≠ ∆I(µ(A)) for I = 12 or 13. ∎
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8. Bridge decompositions

In order to prove Lemma 9.1, we need one more tool known as bridge decompositions. Bridge
decompositions were introduced in [ABC+16]; we will use [Lam16] as our reference for their proper-
ties. Essentially, adding bridges and adding lollipops are two ways to make a more complex reduced
graph from a simpler one.

G

i − 1i

G●,i

i − 1ii + 1

G○,i

i − 1ii + 1

Add black
lollipop

Add white
lollipop

Figure 9. Adding lollipops

Let G be a reduced graph with n−1 boundary vertices and bounded affine permutation π. Figure
9 shows two new graphs G●,i and G○,i on n vertices; we say that they are the result of adding a
black lollipop or white lollipop to G in position i. Write σ ∶ Z → Z for the order preserving
injection whose image is {j ∈ Z ∶ j /≡ i mod n}, with σ(i + 1) = i + 1. The following lemma is an
immediate computation:

Lemma 8.1. The graphs G●,i and G○,i are reduced. Writing π●,i and π○,i for the corresponding
bounded permutations. For j ∈ Z, we have

π●,i(j) = ⎧⎪⎪⎨⎪⎪⎩
i j = i
σ(π(σ−1(j))) j ≠ i π○,i(j) = ⎧⎪⎪⎨⎪⎪⎩

i + n j = i
σ(π(σ−1(j))) j ≠ i

Let x be a point of ̃Gr(k,n − 1) parametrized by G and let x●,i and x○,i be the corresponding points

of ̃Gr(k,n) and ̃Gr(k + 1, n). Then we have the equalities of Plücker coordinates

∆J(x●,i) = ⎧⎪⎪⎨⎪⎪⎩
∆σ−1(J)(x) i /∈ J
0 i ∈ J ∆J(x○,i) = ⎧⎪⎪⎨⎪⎪⎩

t∆σ−1(J∖{i})(x) i ∈ J
0 i /∈ J

Adding a lollipop is a trivial way to change a reduced graph; adding a bridge is a less trivial
way. Let G be a reduced graph with bounded affine permutation π. Define siG and Gsi to be the
graphs shown in Figure 10; we say that siG is G with a left bridge added between i and i+ 1 and
Gsi has a right bridge added. (If we have introduced an edge between two vertices of the same
color, we contract it.)

G

ii + 1

siG

ii + 1

Gsi

ii + 1

Add left
bridge

Add right
bridge

Figure 10. Adding bridges
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Let si be the following permutation of Z:

si(j) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
j + 1 j ≡ i mod n

j − 1 j ≡ i + 1 mod n

j otherwise

.

We now summarize the key properties of adding a bridge.

Lemma 8.2. If π(i) > π(i+1), then Gsi is a reduced graph with bounded affine permutation π ○ si.
If π−1(i) > π−1(i + 1), then siG is a reduced graph with bounded affine permutation si ○ π.

Let x be a point of ̃Gr(k,n) parametrized by G and let y and z be the points of ̃Gr(k,n) cor-
responding to adding left and right bridges as shown. Then we have the equalities of Plücker
coordinates

∆J(y) = ⎧⎪⎪⎨⎪⎪⎩
∆J(x) + t∆J∖{i}∪{i+1}(x) i ∈ J, i + 1 /∈ J
∆J(x) otherwise

∆J(z) = ⎧⎪⎪⎨⎪⎪⎩
∆J(x) + t∆J∖{i+1}∪{i}(x) i + 1 ∈ J, i /∈ J
∆J(x) otherwise

.

The key point is that, by combining lollipops and bridges, we can build a reduced graph for any
bounded affine permutation.

Lemma 8.3. Let ρ be a bounded affine permutation of type (k,n), for n > 1. Let f be the number
of faces in any reduced graph for ρ. Then (at least) one of the following holds:

(1) There is some i with ρ(i) = i. In this case, we can obtain a reduced graph for ρ by adding
a black lollipop to some reduced graph on n − 1 vertices.

(2) There is some i with ρ(i) = i+n. In this case, we can obtain a reduced graph for ρ by adding
a white lollipop to some reduced graph on n − 1 vertices.

(3) There is some i with ρ(i) < ρ(i + 1) and siρ a bounded affine permutation. In this case, we
can obtain a reduced graph for ρ by adding a left bridge to some reduced graph for si ○ ρ,
which will have f − 1 faces.

(4) There is some i with ρ−1(i) < ρ−1(i+ 1) and ρsi a bounded affine permutation. In this case,
we can obtain a reduced graph for ρ by adding a right bridge to some reduced graph for ρ○si,
which will have f − 1 faces.

Remark 8.4. In fact, as the reader will see from the proof, at least one of (1), (2), (3) always holds,
and at least one of (1), (2), (4) always holds. ∎
Proof. If ρ(i) = i, then define the bounded affine permutation π of type (k,n − 1) so that π●,i = ρ.
Taking any reduced graph for π; adding a black lollipop gives a reduced graph for ρ. Similarly, if
ρ(i) = i+n, then we can define π so that π○,i = ρ; we can obtain a reduced graph for ρ by adding a
white lollipop to a reduced graph for π.

So we may assume that i < ρ(i) < i + n for all i. This means that si ○ ρ and ρ ○ si will still be
bounded affine permutations. We know that ρ(n) = ρ(0) + n > ρ(0). Therefore, for some i between
0 and n−1, we must have ρ(i+1) > ρ(i) and case (3) applies for this i. For similar reasons, case (4)
applies for some i. �

9. Proof of the main theorem

Over the next several sections, we will prove Theorem 7.1. The majority of the proof will consist
of proving the following lemma.
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Lemma 9.1. Let G be a reduced graph, and let z ∈ GE
m. For any face f ∈ F ,

∆●→
I (f)(τ⃗(D̃(z))) = 1

z
Ð→
M(f)

9.1. At a boundary face. At a boundary face, Lemma 9.1 follows directly from prior results.

Proposition 9.2. If f is a boundary face in G, then Lemma 9.1 holds.

Proof. Let f be the boundary face between boundary vertices a − 1 and a. By Proposition 4.3,●→
I (f) = ⃗Ia. By Proposition 5.13,

Ð→
M(f) is the unique matching with boundary ⃗Ia, and so

∆ ⃗Ia(D̃(z)) = zÐ→M(f)
By Theorem 6.7 and the analog of Equation (9) for left twists,

∆ ⃗Ia(D̃(z)) = ∆ ⃗Ia( ⃗τ(τ⃗(D̃(z)))) = 1

∆ ⃗Ia(τ⃗(D̃(z)))
Combining the two equalities proves the proposition. �

This establishes Lemma 9.1 for reduced graphs without internal faces. This will be the base case
of our inductive argument.

9.2. Move-equivalence.

Lemma 9.3. If Lemma 9.1 holds for a reduced graph G, then it also holds for any reduced graph
obtained from G by:

(1) contracting or expanding a degree two vertex,
(2) removing or adding a boundary-adjacent degree two vertex,
(3) removing or adding a lollipop, or
(4) urban renewal.

Proof. We first consider the first three cases, which are easy. Let G be the graph without the degree
two vertex/lollipop in question and let G′ be the modified graph. Then there is a straightforward
bijection between matchings of G and of G′. This matching preserves the values of the boundary
measurement map and takes the minimal matching of G to the minimal matching of G′.

We now consider the case of urban renewal. We will use the notations from Figure 7. We denote
the central square face by s. We write G for the graph before mutation (left side of the figure) and
G′ for the mutated graph (right side of the figure). We will use primed variables V ′, E′, F ′ for the
sets of faces of G′. For a face g ∈ F , we write g′ for the corresponding face of G′, by the obvious
bijection.

Let z be an element of GE
m/GV −1

m . Let w be a lift of z to GE
m. Let w′ be the element of GE

m

given by the formulas on the right side of Figure 7. Let w′′ be the result of applying a gauge
transformation by b1b3+b2b4 to w′ at some vertex of G and let z′′ be the image of w′′ in GE′

m /GV ′−1
m .

For any matching M of G, we have

(z′′)M = (w′′)M = (b1b3 + b2b4)(w′)M
Set q = τ⃗(D̃(z)). We know that D̃(z) = D̃(z′′) (Urban Renewal preserves boundary measure-

ments) and τ⃗ is a well defined map, so we also have q = τ⃗(D̃(z′′)).
So our goal is to establish that

∆●→
I (f)(q) = 1

z
Ð→
M(f) ∀f∈F implies ∆●→

I (f ′)(q) = 1

(z′′)Ð→M(f ′) ∀f ′∈F ′ .
We split into two cases:
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Case 1: f ′ ≠ s′. From Theorem 5.3, the square s must have one edge in the minimal matchingÐ→
M(f). Without loss of generality, let it be the edge b1. Looking at how strands change under urban

renewal, we see that
Ð→
M(f ′) is the unique matching which agrees with

Ð→
M(f) at every edge which is

in both G and G′. (I.e. all but the four edges in the left hand side of Figure 7 and the eight edges

on the right hand side of Figure 7.) Let u be the product of the weights on all edges that
Ð→
M(f)

and
Ð→
M(f ′) have in common. Then w

Ð→
M(f) = b1u and (w′)Ð→M(f ′) = b1

b1b3+b2b4u so (w′′)Ð→M(f ′) = b1u.

In this case,
●→
I (f) = ●→

I (f ′); denote this common value by I. We are assuming we know ∆I(q) =
1

z
Ð→
M(f) . We deduce

∆●→
I (f ′)(q) = ∆I(q) = 1

z
Ð→
M(f) = 1

w
Ð→
M(f) = 1

b1u
= 1

(w′′)Ð→M(f ′) = 1

(z′′)Ð→M(f ′)
as desired.

Case 2: f ′ = s′. Let f1, f2, f3 and f4 be the faces of G adjacent to s, with fi ∩ s the edge

weighted bi. There is a k − 2 element set S and indices (a, b, c, d) such that
●→
I (s), ●→I (f1), ●→I (f2),●→

I (f3), ●→I (f4) and
●→
I (s′) are Sac, Sab, Sbc, Scd, Sad and Sbd respectively.

We have the Plücker relation

∆●→
I (s′)(q) = ∆Sbd(q) = ∆Sab(q)∆Scd(q) +∆Sbc(q)∆Sad(q)

∆Sac(q) .

Since all the terms on the right hand side label faces of G, our assumption to know Lemma 9.1 for
G gives

∆●→
I (s′)(q) = z

Ð→
M(s) ( 1

z
Ð→
M(f1)zÐ→M(f3) + 1

z
Ð→
M(f2)zÐ→M(f4)) = w

Ð→
M(s)

w
Ð→
M(f1)wÐ→M(f3) + w

Ð→
M(s)

w
Ð→
M(f2)wÐ→M(f4) .

We want to show this equals

1

(z′′)Ð→M(s′) = 1

(w′′)Ð→M(s′) = 1

(b1b3 + b2b4) ⋅ (w′)Ð→M(s′) .
In other words, we want to show

(11)
w
Ð→
M(s)(w′)Ð→M(s′)
w
Ð→
M(f1)wÐ→M(f3) + w

Ð→
M(s)(w′)Ð→M(s′)
w
Ð→
M(f2)wÐ→M(f4) = 1

b1b3 + b2b4
Let γa, γb, γc and γd be the halves of strands a, b, c and d running towards b1 and b3. Consider

an edge e of G, other then the ones labeled b1, b2, b3, b4. If e does not lie on any of γa, γb, γc, γd ,
then the weight we occurs in either all the matching monomials of (11), or none of them, and thus
cancels out. If e lies on one of these strands, then we occurs once in each numerator and once in
each denominator, so it cancels again. So the only terms that don’t cancel from the left hand side
of (11) are the terms coming from the four edges of s. Adding them up, the left hand side of (11)
is (b2b4) ⋅ b1b3(b1b3+b2b4)2

b1 ⋅ b3 + (b1b3) ⋅ b2b4(b1b3+b2b4)2
b2 ⋅ b4 = 1

b1b3 + b2b4 ,
as desired. �

9.3. Adding a left bridge. Let Ĝ be a reduced graph with a left bridge between b and b+ 1, and
let G be the graph of Ĝ with the left bridge removed. The number n of boundary vertices and the
cardinality k of the boundary of any matching are the same for both Ĝ and G. Any set of non-zero
edge weights ẑ on Ĝ restricts to a set of non-zero edge weights z on G.
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z1

z2

z3

bb + 1

Figure 11. A left bridge between b and b + 1.

Let z1, z2, z3 be the weights on the edges in Figure 11. The image of the boundary measurement
map on z and ẑ are related as follows.

Proposition 9.4. If a matrix A represents D̃(z), then the matrix Â with

Âa ∶= { Aa if a ≠ b
Ab + z2

z1z3
Ab+1 if a = b }

represents D̃(ẑ).

Proof. A matching M of Ĝ which doesn’t contain the bridge restricts to a matching of G, and all
matchings of G occur this way. The associated monomials in weights coincide: ẑM = zM .

A matching M of Ĝ which contains the bridge cannot also contain the external edges at vertices
b and b + 1. Hence, there is a matching M ′ of G which is the restriction of M together with the
external edges at vertices b and b + 1. We have

∂M ′ = (∂M ∖ {b}) ∪ {b + 1}
and every matching of G whose boundary contains b + 1 but not b occurs this way. The associated
monomials are related by

ẑM = z2

z1z3
zM

′

Hence, DI(ẑ) = DI(z) for all I which either contain b + 1 or don’t contain b. For any (k − 1)
element set J ⊂ [n] disjoint from b and b + 1,

DJ∪{b}(ẑ) =DJ∪{b}(z) + z2

z1z3
DJ∪{b+1}(z)

It follows that the maximal minors of Â coincide with the partition functions of Ĝ on ẑ. �

Lemma 9.5. Let A and Â be as in Proposition 9.4, and let π be the bounded affine permutation
of A. Let τa denote the columns of τ⃗(A) and let τ̂a denote the columns of τ⃗(Â).

With the above notations, τ̂a − τa is in the span of {τb ∶ b⇐π a}.

We write I⃗a and ̂⃗Ia for the Grassmann necklace of π and sb ○ π.

Proof. Set c = π−1(b) and d = π−1(b + 1). Since we are assuming that `(sb ○ π) = `(π) + 1, we have
d < c ≤ b < b + 1. We first identify a number of cases where τ̂a = τa.

Case 1: a ∈ [b + 1, d + n]. In this case, I⃗a = ̂⃗Ia, and this set does not contain b. So τa and τ̂a are
defined by duality to the same basis, and τa = τ̂a.

Case 2: a ∈ (c, b). In this case, I⃗a = ̂⃗Ia. We have b and b + 1 ∈ I⃗a ∖ {a}. Although Ab ≠ Âb, we

have span(Ab,Ab+1) = span(Âb, Âb+1) so τa and τ̂a are defined to be orthogonal to the same k − 1

plane. This shows that τa and τ̂a are proportional, and they both have dot product 1 with Aa = Âa.
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Case 3: a = b. In this case, I⃗b = ̂⃗Ib. For c ∈ I⃗b ∖ {b}, we have Ac = Âc so, as in case 2, τb and τ̂b
are defined to be orthogonal to the same k − 1 plane, and are hence proportional. To see that the
proportionality constant is the same, note that we have 1 = ⟨τb,Ab⟩ and 1 = ⟨τ̂b,Ab + z2

z1z3
Ab+1⟩. But

b + 1 ∈ I⃗b, so ⟨τ̂b,Ab+1⟩ = 0 and we see that 1 = ⟨τ̂b,Ab⟩, establishing τb = τ̂b.
In short, we have so far established τa = τ̂a for a ∈ (c, d + n]. Therefore, from now on, we are in
Case 4: a ∈ (d, c].
In this case, we have I⃗a = S ∪ {b + 1} and ̂⃗Ia = S ∪ {b} for some k − 1 element subset S of[n] ∖ {b, b + 1}. We know that π(a) ∈ [a, a + n] and, as a ≠ d, we have π(a) ≠ b + 1. We break into

two further cases:
Case 4a: π(a) ∈ (b + 1, a + n]. In this case we claim that, one more time, we have τa = τ̂a.

We check that τa obeys the defining properties of τ̂a. We have ⟨τa, Âa⟩ = ⟨τa,Aa⟩ = 1. Also, for

s ∈ S ∖ {a}, we have ⟨τa, Âs⟩ = ⟨τa,As⟩ = 0. It remains to check that ⟨τa, Âb⟩ = 0. Our assumption
on π(a) implies that b and b + 1 ∈ (a, π(a)) so, by Lemma 6.4, we have ⟨τa,Ab⟩ = ⟨τa,Ab+1⟩ = 0.

Thus, ⟨τa, Âb⟩ = ⟨τa,Ab⟩ + z2
z1z3

⟨τa,Ab+1⟩ = 0 as desired.

Finally, we reach the sole case where τa ≠ τ̂a:
Case 4b: π(a) ∈ [a, b]. Define µ ∶= τ̂a − τa. The defining properties of τ̂a and τa give ⟨µ,As⟩ = 0

for s ∈ S. In particular, since b, b + 1 /∈ [a, π(a)), we have ⟨µ,As⟩ = 0 for s ∈ I⃗a ∩ [a, π(a)). But, by
Lemma 6.9, this means that µ is in the span of {τb ∶ b⇐π a}, which is the desired conclusion. �

We can now establish the bridge case of the inductive step for our proof of Lemma 9.1.

Lemma 9.6. If Lemma 9.1 holds at each face in G, then it holds for each face in Ĝ.

Proof. We reuse the notations A, Â, τ and τ̂ of the previous Lemma.
Let us consider a face f̂ of Ĝ which is not the boundary face between vertices b and b + 1.

Then f̂ corresponds to a face f in G, and they have the same source-indexed face label. Define

I ∶= ●→
I (f̂) = ●→

I (f). Furthermore, f̂ is not downstream from the bridge, and if f̂ is downstream

from an edge e in Ĝ, then f is downstream from e as an edge in G. Hence, the minimal matchings

coincide:
Ð→
M(f̂) = Ð→M(f). Our assumption is that ∆I(τ) = 1/zÐ→M(f), and we have just shown

1/zÐ→M(f̂) = 1/zÐ→M(f). So our goal is to prove that ∆I(τ) = ∆I(τ̂).
By Lemma 4.5, if a ∈ I and a⇒π p, then p ∈ I. Choose an order of I refining the partial order⇒π. By Lemma 9.5, when ordered in this manner, the bases {τa ∶ a ∈ I} and {τ̂a ∶ a ∈ I} are related

by an upper triangular matrix with 1’s on the diagonal. So ∆I(τ) = ∆I(τ̂) as desired.

We have now established Lemma 9.1 at every face of Ĝ except the boundary face between vertices
b and b + 1. At this face, Lemma 9.1 holds by Proposition 9.2. �
9.4. Conclusion of the proof. We may now complete the proof of the main theorem.

Proof of Lemma 9.1. We have shown that Lemma 9.1 is true for reduced graphs with no internal
faces (Proposition 9.2), that it remains true after adding a lollipop (Lemma 9.3) or a left bridge
(Lemma 9.6), and that it remains true after any mutation (Lemma 9.3). For any bounded affine
permutation π, a reduced graph for π can be built via repeatedly adding bridges and lollipops
(Lemma 8.3) and any two reduced graphs for π are connected by a sequence of mutations ([Pos06,
Theorem 13.4], see also [OS14]). �
Proof of Theorem 7.1. We prove the commutativity of the right-hand square in the Theorem; the
other square will follow by a mirror argument. The commutative of the pairs of horizontal arrows
is equivalent to Proposition 5.5 and Theorem 6.7.

By Lemma 9.1, the composition
●→
F ○ τ⃗ ○ D̃ is regular and equal to

Ð→
M. This implies the commu-

tativity of any pair of paths in the right-hand square which begin in the top row. In particular, it

implies that the restriction of
←Ð
∂ ○ ●→F ○ τ⃗ to the image of D̃ is a (regular) right inverse to D̃.
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The positroid variety Π̃○(M) has dimension k(n − k) − `(π) by [KLS13, Theorem 5.9]. By a
combination of Theorem 12.7 and Proposition 17.10 in [Pos06], this is equal to ∣F ∣, the number of

faces of G. Hence, D̃ is a regular map between integral varieties of the same dimension with a right
inverse; hence it is an open inclusion.

We compute

D̃ ○ ←Ð∂ ○ ●→F ○ τ⃗ ○ D̃ Lemma 9.1= D̃ ○ ←Ð∂ ○ Ð→M Prop. 5.5= D̃

This implies that
●→
F ○ τ⃗ ○ D̃ ○ τ⃗ is the identity on the image of D̃. Since D̃ is an open inclusion, this

implies that
●→
F ○ τ⃗ ○ D̃ ○ τ⃗ is equal to the identity as rational maps. This implies the commutativity

of any pair of paths in the right-hand square which begin in the bottom row. �

Appendix A. Examples of the twist

This appendix collects several examples in which the twist is simple or notable.

A.1. Uniform positroid varieties. For fixed k ≤ n, let Muni be the uniform positroid , the
matroid in which every k-element subset of [n] is a basis. The variety Mat○(Muni) parametrizes
k × n complex matrices such that each cyclically consecutive minor

∆12...k,∆23...(k+1), ...,∆(n−k+1)(n−k+2)...n,∆(n−k+2)(n−k+3)...n1, ...,∆n1...(k−1)
is non-zero. We refer to Π○(Muni) ⊂ Gr(k,n) as the (open) uniform positroid variety ; it is the
open subvariety defined by the non-vanishing of the cyclically consecutive Plücker coordinates.19

Example A.1. We consider the case k = 1. The matrices in Mat(1, n) with uniform positroid
envelope are those with no zero entries. The twist acts on matrices by

τ⃗ [a1 a2 ⋯ an] = [a−1
1 a−1

2 ⋯ a−1
n ]

Here, Mat○(Muni) is an algebraic torus and the twist is inversion in the torus, so it has order 2.
The Grassmannian Gr(1, n) is projective space Pn−1, and the open uniform positroid subva-

riety Π○(Muni) is the subset on which no homogeneous coordinate vanishes. The twist acts by
simultaneously inverting each homogeneous coordinate. ∎
Example A.2. We consider the case k = 2. A matrix A = ( a1 a2 ⋯ an

b1 b2 ⋯ bn ) has uniform positroid envelope
if each ∆i(i+1) ∶= aibi+1 − ai+1bi is non-zero. The twist acts by

τ⃗ [a1 a2 ⋯ an
b1 b2 ⋯ bn

] = [ b2
∆12

b3
∆23

⋯ b1
∆n1−a2

∆12

−a3
∆23

⋯ −a1
∆n1

]
So the (i, j)-th Plücker coordinate of the twist is

∆(i+1)(j+1)
∆i(i+1)∆j(j+1) . In particular, up to an invertible

monomial transformation, the (i, j)-th Plücker coordinate of the twist is the same as the (i+ 1, j +
1)-st Plücker coordinate of the original matrix. Our main result says that the (i, j)-th Plücker
coordinate of the twist can be written in terms of the Plücker coordinates in any cluster as a sum
over matchings in a planar graph; see [CP03, Mus11] for examples of such formulas.

We can also observe that the square of the twist acts by

τ⃗2 [a1 a2 ⋯ an
b1 b2 ⋯ bn

] = [−∆12

∆23
a3

−∆23

∆34
a4 ⋯ −∆n1

∆12
a2−∆12

∆23
b3

−∆23

∆34
b4 ⋯ −∆n1

∆12
b2

]
This implies the order of τ⃗ depends on the parity of n. If n is odd, then τ⃗2n is the identity.

19The open uniform positroid variety in Gr(k,n) is the complement of a simple normal-crossing canonical divisor,
making it an example of an affine log Calabi-Yau variety with maximal boundary, in the sense of [GHK15]. This may
be the source of the cluster structure, according to the perspective of [GHKK14].
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Figure 12. A graph with infinite order twist (source-labeled faces)

If n is even, then

τ⃗n [a1 a2 ⋯ an
b1 b2 ⋯ bn

] = [αa1 α−1a2 ⋯ α−1an
αb1 α−1b2 ⋯ α−1bn

] where α ∶= ∆12∆34⋯∆(n−1)n
∆23∆45⋯∆n1

Since there are matrices on which α is not a root of unity, the twist τ⃗ has infinite order on Mat○(2, n).
Moreover, since the GL2-invariant quantity ∆13/∆12 scales by a factor of α2 each time τ⃗n is applied,
and so τ⃗ is not periodic on Π○(Muni) either. However, τ⃗n is trivial up to the action of Gn

m on
Π○(Muni) by rescaling columns.

For general k, the twist has order 2n/gcd(k,n) on the quotient Π○(Muni)/Gn
m ⊂ Gr(k,n)/Gn

m

by rescaling columns. ∎
A.2. A twist of infinite order. While Example A.2 provided a case where the twist has infinite
order, that example was finite order modulo column rescaling. We provide a richer example of a
twist with infinite order.

Consider the positroid variety Π(M) in Gr(4,8) cut out by the vanishing of Plücker coordinates

∆1234 = ∆3456 = ∆5678 = ∆1268 = 0

A reduced graph for M is shown in Figure 12. Using Proposition 7.10, the left twist of ∆4568 is
given by a sum over the two matchings with boundary 4568.

(12) ∆4568 ○ ⃗τ = 1

∆4568
+ ∆4567∆2468

∆4568∆2456∆4678

The left twists of the analogous coordinates ∆2678, ∆1248, and ∆2346 are given by similar binomi-
als, obtained from this one by rotation of the graph by π/2. The left twist of the central coordinate
∆2468 is a sum over 17 matchings with boundary 2468.

(13)
∆2468 ○ ⃗τ = 1

∆2468
+ [ ∆2456∆4678∆1268∆2348

∆2468∆4568∆2678∆1248∆2346× (1 + ∆4567∆2468

∆2456∆4678
) (1 + ∆1678∆2468

∆4678∆1268
) (1 + ∆1238∆2468

∆1268∆2348
) (1 + ∆2345∆2468

∆2348∆2456
)]
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We will describe the ⃗τ orbit of the image under D̃ of the identity element of GE
m/GV −1

m . This
may be given as the row span of the following matrix.⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 1 1 0 −1 0 1 0−1 0 2 1 1 0 −1 0
1 0 −1 0 2 1 1 0−1 0 1 0 −1 0 2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
We list the values of the Plücker coordinates for the source-labelled faces under the first several
twists, and then describe the general recursion.

2468 4568, 2678, 1248, 2346 boundary faces
x 1 1 1⃗τ(x) 17 2 1⃗τ2(x) 386 9 1⃗τ3(x) 8857 43 1⃗τ4(x) 203321 206 1

In general, if the i-th row is (ui, vi,1), Equations (12) and (13) give

(ui+1, vi+1,1) = (v4
i+1 + 1

ui
,
ui + 1

vi
, 1)

An easy induction shows that ui and vi are given by the linear recursions.

ui+1 − 23ui + ui−1 = −4 vi+1 − 5vi + vi−1 = 0.

It is easy to see from the linear recursion that vi is increasing without bound, so the torus invariant
quantity (∆1248∆2346∆4568∆2678)/(∆2348∆2456∆4678∆1268) = v4

i is likewise increasing, and we have
provided a direct computation that the twist is not periodic even up to column rescaling.

Note that the ui and vi had to be integers, because they are sums over matchings of Laurent
monomials that evaluate to 1. This is a valuable check when performing computations by hand.

Remark A.3. The mutable part of the quiver for this reduced graph is of type D̃4, with edges
oriented away from its central vertex. From the above formulas, we may check that the twist is
the same (up to torus action) as first mutating at all 4 outer vertices of D̃4, and then mutating at

the center. This is the Coxeter transformation for this quiver, and (as D̃4 is not of finite type) the
Coxeter transformation is not of finite order, even up to torus symmetry. ∎
A.3. A reduced graph whose image is not given by nonvanishing of Plücker coordinates.
Consider the reduced graph in Figure 13, with interior face labels 124, 346, 256 and 246. This graph
is reduced, so D ∶ GE

m/GV
m → Gr(3,6) is an open immersion. The complement of D(GE

m/GV
m) is a

degree 11 hypersurface which factors as

∆123∆234∆345∆456∆156∆126∆125∆134∆356X

where X = ∆124∆356 −∆123∆456. Up to column rescaling, X is the twist of ∆246. In particular, X
vanishes when the 2-planes Span(v1, v2), Span(v3, v4) and Span(v5, v6) have a common intersection;
this description of the non-Plücker cluster variable on Gr(3,6) was observed by Scott [Sco06].

A.4. Double Bruhat cells and the Chamber Ansatz. Consider a reduced word s = si1si2 ...si`
for an element w in the symmetric group Sn. Construct a reduced graph Gs as follows (an example
is given in Figure 14).● Start with a rectangle. Add vertices numbered 1,2, ..., n down the right side, and n+ 1, n+

2, ...,2n up the left side.● Connect each i on the right to 2n − i + 1 on the left with a horizontal line.
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256
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345
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234456
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Figure 13. A graph for which the twist uses non-Plücker cluster variables

● Reading left to right, for each si in the reduced word s, add a vertical edge between the
line containing i and the line containing i + 1. Color the top vertex white and the bottom
vertex black.● Add 2-valent white vertices to the edges so that the resulting graph is bipartite and every
boundary vertex is adjacent to a white vertex.

4

5

6 1

2

3

Figure 14. The graph Gs associated to s = s2s1s2

Remark A.4. The reduced graph Gs is constructed so that the associated Postnikov diagram is
the pseudoline arrangement for s or, equivalently, the double wiring diagram for (s,e) [BFZ96,
FZ99]. ∎

Let w0 be the antidiagonal n×n matrix with 1s in odd columns and −1s in even columns. Then
the open inclusion

Gl(n,C) ↪ Gr(n,2n), A↦ rowspan ([A w0])
induces an isomorphism from the double Bruhat cell Glw,e ∶= B+∩(B−wB−) to the positroid variety
Π○(M) associated to Gs [KLS13, Section 6].

Example A.5. Let s = s2s1s2. The associated positroid M contains all 3-element subsets of{1,2,3,4,5,6} except those which contain {1,6} and those contained in {1,2,5,6}. The open
positroid variety Π○(M) in Gr(3,6) can be parametrized as the row span of matrices of the form

(14)

⎡⎢⎢⎢⎢⎢⎣
a b c 0 0 1
0 d e 0 −1 0
0 0 f 1 0 0

⎤⎥⎥⎥⎥⎥⎦
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such that acdf(be − cd) ≠ 0. This open condition is equivalent to requiring that the matrix⎡⎢⎢⎢⎢⎢⎣
a b c
0 d e
0 0 f

⎤⎥⎥⎥⎥⎥⎦
∈ B+

is an element of B−wB−. ∎
Using this isomorphism, the boundary measurement map D

GE
m/GV

m
DÐ→ Π○(M)

is equivalent to an open inclusion of GE
M/GV

m into the double Bruhat cell Glw,e.20

The domain of the boundary measurement map D may also be simplified. Let E′ ⊂ E be the set
of edges in G which are either vertical or adjacent to the right boundary. It is a simple exercise to
show that the action of the gauge group may be used to set the weight of every edge not in E to

1, yielding an isomorphism GE
m/GV

m
∼Ð→ GE′

m .
The resulting incarnation of the boundary measurement map

GE′
m

DÐ→ Glw,e

may be characterized in terms of matrix multiplication. Explicitly, let d1, d2, ...dn be non-zero
weights on the edges adjacent to the right boundary, and let t1, t2, ..., t` be non-zero weights on the
vertical edges in E (all other weights are 1). Then the image under D is the product

Ei1(t1)Ei2(t2)⋯Ei`(t`)D(d1, d2, ..., dn)
where D(d1, d2, ..., dn) is the diagonal matrix with the given entries, and Ei(t) is the matrix with
1s on the diagonal, t in the (i + 1, i)-entry, and 0s elsewhere.

Example A.6. Let s = s2s1s2. Any set of non-zero edge weights on Gs is uniquely gauge equivalent
to a set of edge weights of following form

4

5

6 1

2

3

1 d1

1 1 1 d2

1 1 1 1 1 d3

t2

t1 t3

The boundary measurement map sends these edge weights to the row span of the matrix⎡⎢⎢⎢⎢⎢⎣
d1 d2t2 d3t2t3 0 0 1
0 d2 d3(t1 + t3) 0 −1 0
0 0 d3 1 0 0

⎤⎥⎥⎥⎥⎥⎦
The left half of this matrix arises as the product of elementary matrices below.⎡⎢⎢⎢⎢⎢⎣

d1 d2t2 d3t2t3
0 d2 d3(t1 + t3)
0 0 d3

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣
1 0 0
0 1 t1
0 0 1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
1 t2 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
1 0 0
0 1 t3
0 0 1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
d1 0 0
0 d2 0
0 0 d3

⎤⎥⎥⎥⎥⎥⎦= E2(t1)E1(t2)E2(t3)D(d1, d2, d3) ∎
20This example is in the Grassmannian, not the Plücker cone, and so we use the quotient version of Theorem 7.1.
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The problem of inverting the boundary measurement map D for Gs is then equivalent to the
problem of expressing a matrix in Glw,e as a product of elementary matrices indexed by s. This
is a classical problem, whose solution in [BFZ96, FZ99] (dubbed the Chamber Ansatz ) was an
important precursor to both cluster algebras and Postnikov’s diagrams.

Proposition 7.6 provides an explicit inverse to D, as the composition
←Ð
∂ ○●→F ○ τ⃗ . This composition

directly generalizes the Chamber Ansatz, in that the computation exactly replicates the formulas
given in [BFZ96]. A key component in this assertion is that our right twist automorphism τ⃗ of
Π○(M) induces the BFZ twist automorphism of GLw,e, as defined in [FZ99, Section 1.5].

Example A.7. We continue the running example of s = s2s1s2, and compute the action of
←Ð
∂ ○ ●→F ○ τ⃗

on the matrix in (14). This computation is given in Figure 15.

⎡⎢⎢⎢⎢⎢⎣
a b c 0 0 1
0 d e 0 −1 0
0 0 f 1 0 0

⎤⎥⎥⎥⎥⎥⎦
τ⃗↦⎡⎢⎢⎢⎢⎢⎣

1
a

e
bd−ce 1

c 0 0 1−b
ad

−c
be−cd 0 0 −1 −b

d
be−cd
adf 0 0 1 e

f
be−cd
df

⎤⎥⎥⎥⎥⎥⎦
●→
F↦

4

5

6 1

2

3

1

1
c

1
a

1
be−cd b

acd
1
ad

(adf)−1

←Ð
∂↦

4

5

6 1

2

3

1 a

c ac2d
b

a2cd
b

ad

be − cd
adf(be − cd)

a2cd2f
b

a2cd2f
b

a2d2f

adf

ac

acd(be−cd)
b

a2cd2

b

gauge∼
4

5

6 1

2

3

1 a

1 1 1 d

1 1 1 1 1 f

b
d

be−cd
bf

cd
bf

Figure 15. Explicitly inverting the boundary measurement map

In the last step, gauge transformation has been used to normalize the weight of each edge not in
E′ to 1. Since the result is the preimage of (14) under D, we have the following matrix identity.

⎡⎢⎢⎢⎢⎢⎣
a b c
0 d e
0 0 f

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣
1 0 0
0 1 be−cd

bf

0 0 1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
1 b

d
0

0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
1 0 0
0 1 cd

bf

0 0 1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
a 0 0
0 d 0
0 0 f

⎤⎥⎥⎥⎥⎥⎦
∎

Remark A.8. For a general double Bruhat cell Glw,v, one would choose a double reduced word s
for (w, v) (see Section 1.2 in [FZ99]). The construction of Gs is almost the same, except simple
transpositions for v determine vertical edges with black top vertex and white bottom vertex. The
boundary measurement map is then equivalent to a product of D, Eis and Fis, where Fi(t) is the
elementary matrix with t in the (i, i+1)-entry. Consequently, inverting the boundary measurement
map recovers the formulas for factorization parameters in [FZ99, Theorem 4.9]. ∎
A.5. Three flags and plane partitions. In this section, we will discuss a positroid of rank m on
3m elements, which we will name (u1, u2, . . . , um, v1, . . . , vm,w1, . . . ,wm). The affine permutation
on {1,2, . . . ,3m} is

f(i) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2m + 1 − i 1 ≤ i ≤m
4m + 1 − i m + 1 ≤ i ≤ 2m

6m + 1 − i 2m + 1 ≤ i ≤ 3m

.
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The defining rank conditions are

rank(wm−r+1, . . . ,wm−1,wm, u1, u2, . . . , ur) = r
rank(um−r+1, . . . , um−1, um, v1, v2, . . . , vr) = r
rank(vm−r+1, . . . , vm−1, vm,w1,w2, . . . ,wr) = r

and the consequences of these conditions.
Let

Ar = Span(wm−r+1, . . . ,wm−1,wm) = Span(u1, u2, . . . , ur)
Br = Span(um−r+1, . . . , um−1, um) = Span(v1, v2, . . . , vr)
Cr = Span(vm−r+1, . . . , vm−1, vm) = Span(w1,w2, . . . ,wr)

So A●, B● and C● are three transverse complete flags in m-spaces. Conversely, any three transverse
flags A●, B● and C● in m-space can be realized in this way, and uniquely so up to rescaling the ui, vi
and wi. For example, ui can be recovered up to scaling by the formula Span(ui) = Ai ∩Bm−i+1. So,
for this positroid, Π○(M)/G3m

m is the space of three transverse flags in m-space, up to symmetries
of m-dimensional space. This is the generalized Teichmüller space for GLn local systems on a disc
with three marked boundary points [FG06].

Let u′i, v′i and w′
i be the vectors of the twist and let A′●, B′● and C ′● be the corresponding flags.

By the definition of the twist, u′i is perpendicular to Span(ui+1, ui+2, . . . , um, vm−i+2, . . . , vm−1, vm) =
Bm−i + Ci−1. We compute that A′

i = Span(u1, u2, . . . , ui) is the orthogonal complement of Bi. So
A′● is the flag B⊥● , whose i-th subspace is orthogonal to the (m − i)-th subspace of the flag B●.
Continuing in this manner, (A′●,B′●,C ′●) = (B⊥● ,C⊥● ,A⊥●).

1
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4

5

6

789101112

13
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15

16

17

18

Figure 16. The reduced graph for three transverse GL6 flags

There is a unique21 reduced graph for this positroid, shown in Figure 16. The face labels are
indexed by (a, b, c) ∈ Z3≥0 with a + b + c =m, and are

qabc ∶= ∆12⋯a (m+1)(m+2)⋯(m+b) (2m+1)(2m+2)⋯(2m+c)
Monomials in the qabc which are invariant under rescaling the vectors u, v and w form coordinates
on the moduli space of triples of transverse flags. Let q′abc be the corresponding functions for the
twisted vectors. So Proposition 7.10 writes the q′abc as Laurent polynomials in the qabc, where we
sum over dimer configurations on the graph in Figure 16. Once we eliminate forced edges from
these graphs, we see that matchings with the given boundary are in bijection with rhombus tilings

21By unique here, we allow isotopies and the first two types of moves, but not the third (urban renewal).
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of a hexagon with side length (a, b, c, a, b, c) (see Figure 17), which are in turn in bijection to plane
partitions in an a × b × c box. Hence, the twisted coordinate q′abc is given by a sum over plane
partitions of a box, one of the most classically studied questions in enumerative combinatorics,
beginning with Major MacMahon in 1916.

(a) A matching (red edges forced by boundary) (b) The corresponding rhombus tiling

Figure 17. An example of the correspondence between matchings with boundary(1,2,3,7,8,13) and rhombus tilings of the (3,2,1,3,2,1) hexagon

Appendix B. The lattice structure on matchings

The set of matchings of G has a natural partial ordering, which makes the set of matchings with
a fixed boundary into a combinatorial lattice. As a consequence, these sets have unique minimal

and maximal elements. In this appendix, we demonstrate that the matchings
Ð→
M(f) and

←Ð
M(f) can

be described in terms of this partial order, without reference to strands. Specifically,
Ð→
M(f) is the

unique minimal matching with boundary
●→
I (f), and

←Ð
M(f) is the unique maximal matching with

boundary
●←
I (f).22

B.1. Lattice structure on matchings. Let G be a reduced graph and let M be a matching of
G. Let f be an internal face of G such that M contains exactly half the edges in the boundary of
f , the most possible. The swivel of M at f is the matching M ′ which contains the other half of
the edges in the boundary of f and is otherwise the same as M .23 The new matching M ′ also has
boundary ∂M ′ = ∂M = I.24

Swiveling twice at the same internal face returns to the original matching, but we may use the
orientation of the face f and the coloring of the vertices to distinguish between swiveling up
and swiveling down , as in Figure 18. We may extend this to a partial ordering ⪯ on the set of
matchings with boundary I, where M1 ⪯M2 means that M2 can be obtained from M1 by repeatedly
swiveling up. An example is given in Figure 19. (It is true, though not obvious, that it is impossible
to swivel up repeatedly and return to the original matching.)

22The boundaries of
Ð→
M(f) and

←Ð
M(f) are distinct, and so these are extremal elements in different posets.

23Propp uses the word “twist” rather than “swivel”, but that word has another meaning for us.
24Note that, by Lemma 3.7, there are no topological subtleties in defining the boundary of an internal face.
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5

6 1
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34
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34

F

Swiveling up

Swiveling down

Figure 18. Swiveling up and down at the face F

≺
≺
≺

≺
≺

Figure 19. The poset of matchings with boundary 236

Theorem B.1. Let G be a reduced graph, and let I be a matchable subset of [n]. Then the partial
ordering ⪯ makes the set of matchings on G with boundary I into a finite distributive lattice.

We will deduce this result from a similar result of Propp, which we now describe.
Let Γ be a planar graph embedded in the two-sphere S2, so that all the faces of S2 ∖Γ are discs

and no edge separates a face from itself. We designate one face F∞ to play a special role. Let d be
a function from the vertices of Γ to the positive integers. A d-factor of Γ is a set M of edges such
that, for each vertex v of Γ, there are precisely d(v) edges of M containing v. So, if d is identically
one, then a d-factor is a perfect matching. As with matchings, we can define upward and downward
swivels taking d-factors to other d-factors; we do not permit swivels around F∞. Again, we define
M1 ⪯M2 if we can obtain M2 from M1 by repeated upward swivels.

Theorem B.2 ([Pro02, Theorem 2]). Let Γ, d and F∞ be as above. Assume the following condition:

Condition (∗): For every edge e of Γ, there is some d-factor containing e and
some other d-factor omitting e.

Then the partial order ⪯ is a finite distributive lattice.

One might hope to prove Theorem B.1 from Theorem B.2 by deleting certain boundary vertices
from G in order to make a graph Γ whose matchings correspond to the matchings of G with
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boundary Γ. Unfortunately, if we do this in the obvious way, condition (∗) fails. We therefore take
a different route.

Proof of Theorem B.1. We may assume that every boundary vertex i of G is used in some matching
and not used in some other matching. Otherwise, the vertex i lies in a component disconnected
from the rest of G and we can delete that component and study the remaining graph. We may
also delete any lollipops in the graph, as the corresponding edge is either in every matching or no
matching with boundary I.

Applying the move from Figure 6 repeatedly, we may assume that all the boundary vertices of
G border white vertices. Now remove the boundary vertices and replace them by one black vertex
v∞, which we connect to all of the white vertices which used to border boundary vertices. Call the
resulting graph Γ; we embed it in S2 in the obvious manner. We choose F∞ to be the face which
contains the vertices 1, n, and v∞. Lemma 3.7 implies that all faces of S2 ∖Γ are discs and no edge
separates a face from itself.

Let d be the function which is 1 on every vertex of Γ other than v∞, and k at v∞. It is
straightforward to see that d-factors of Γ correspond to matchings of G. Also, we claim that every
edge e of Γ is in some d-factor but not in some other d-factor. For the edges from v∞, this follows
from the reduction in the first paragraph. For an edge e not adjacent to the boundary of G, if
e is not used in any matching, then we can delete G from e and obtain a graph with the same
boundaries of matchings; by Lemma 3.7, this will merge two faces of G, contradicting that G is
reduced. If e is used in every matching, then we can likewise delete e and all edges with an endpoint
in common with e. So the hypotheses of Propp’s result apply, and we obtain a lattice structure on
the set of d-factors of Γ.

Let Λ be this lattice with meet and join operations ∨ and ∧. Let ∂ ∶ Λ→ ([n]
k
) send a d-factor of Γ

to the boundary of the corresponding matching of G. Here is our key claim: If ∂(M1) = ∂(M2) = I,
then ∂(M1 ∨M2) = ∂(M1 ∧M2) = I.

To prove this, we have to enter the proof of Propp’s Theorem B.2. Propp defines a correspondence
between d-factors M of Γ and certain real valued height functions hM on the faces of Γ. Let e
be an edge of Γ incident to v∞ and let F and F ′ be the faces separated by e. Then there is
some number 0 < δ < 1 such that hM(F ) − hM(F ′) = δ if e ∈ M and = δ − 1 otherwise. We
have hM1∨M2(F ) = max(hM1(F ), hM2(F )) and hM1∧M2(F ) = min(hM1(F ), hM2(F )). Moreover,
hM1(F ) −hM2(F ) and hM1(F ′) −hM2(F ′) are integers. It follows from these formulas that that, if
e is in both M1 and M2, then it is in M1 ∨M2 and M1 ∧M2 and, if e is in neither M1 nor M2, then
it is also not in M1 ∨M2 or M1 ∧M2. In particular, our key claim holds.

So the subset of Λ with boundary I is closed under ∨ and ∧. Restricting the operations of Λ to
this subset, we have a finite distributive lattice as claimed. �
Corollary B.3. The set of matchings of G with boundary I has a unique ⪯-minimal element and
unique ⪯-maximal element, assuming the set is non-empty.

Proof. A lattice has a unique minimal element and unique maximal element. �
Corollary B.4. Any two matchings of G with boundary I are related by a sequence of swivels.

Proof. They may both be swiveled up to the maximal matching. �
Remark B.5. This proof leads to some results about positroids which appear to be new. Place a

partial order ⪯ on ([n]
k
) by (i1, i2, . . . , ik) ≤ (j1, . . . , jk) if and only if ia ≤ ja for all a. It is well known

that ⪯ is a distributive lattice, with ∧ and ∨ given by termwise min and max. One can show that

∂ ∶ Λ→ ([n]
k
) obeys ∂(M1 ∨M2) = ∂(M1) ∨ ∂(M2) and ∂(M1 ∧M2) = ∂(M1) ∧ ∂(M2). We therefore

obtain the following corollary: The set of bases of the positroid M is closed under termwise min
and max. Also, assume that G is connected, which is the same as assuming that the positroid is
connected as a matroid. Then upward swivels around the faces of Γ incident to v∞ change the
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boundary by turning i into i + 1. We deduce that it is possible to turn any basis of M into the
maximal basis by repeatedly replacing i by i + 1. ∎
B.2. Extremal matchings. We connect this lattice structure to the matchings

Ð→
M(f) and

←Ð
M(f).

Proposition B.6. For any face f ∈ F , the matching
Ð→
M(f) is the minimal matching of G with

boundary
●→
I (f).

Proof. If f ′ ∈ F is an internal face with f ′ ≠ f , then
Ð→
M(f) contains one fewer than half the edges

in the boundary of f ′; hence,
Ð→
M(f) cannot be swiveled at f ′. If f is internal, then

Ð→
M(f) contains

those edges e in the boundary of f such that f is directly downstream from e. Consulting to Figure

18, we see that swiveling
Ð→
M(f) at f is always increasing for ⪯. Hence,

Ð→
M(f) is minimal for ⪯. �

A corollary of this result is an alternate proof of Proposition 5.13.

Corollary B.7. For a boundary face f ,
Ð→
M(f) is the unique matching of G with boundary

●→
I (f).

Proof. The matching
Ð→
M(f) does not contain enough edges around any internal face to swivel.

Since any matching with boundary
●→
I (f) is obtained from a sequences of swivels of

Ð→
M(f), it is

unique. �
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