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SUMMARY 

The analysis of fuel economy data results in estimates of the technology utilization by manufacturer and 
vehicle line. The analysis employs a hierarchical Bayesian regression model with random components 
representing vehicle lines and manufacturers. The model includes predictor variables which describe 
vehicle features, such as type of transmission, and vehicle line specific measurements, such as 
compression ratio. Non-informative priors with novel modifications are used and the Bayes estimates are 
obtained by use of Gibbs sampling. The results show there is substantial variability among manufacturers 
in efficiently utilizing technology for fuel economy. 

1. INTRODUCTION 

With the ever-growing importance of energy conservation and environmental protection the 
fuel efficiency of passenger cars and trucks must be constantly monitored. In the United States 
there is a Corporate Average Fuel Economy (CAFE) requirement of 27.5 miles per gallon 
(mpg). The requirement is a sales-weighted harmonic average for all vehicles sold by a 
manufacturer within a year. If this requirement is not met, the automobile manufacturer is 
required to pay a penalty on every vehicle sold of US$5 times the number of tenths of a mile 
per gallon below the requirement. Therefore, the incentive for producing the most fuel-efficient 
vehicles possible is driven by energy conservation, environmental awareness, customer 
expectations, and a monetary penalty. 

With the growing awareness of energy and environmental considerations the US legislature 
has been studying and, in some instances, supporting an increase in the minimum CAFE 
standards, from 27.5 mpg to as much as 40.0 mpg. Some proponents of this increase state that 
it can be achieved with established technologies. As there is considerable controversy over this 
issue, we utilized a large database to investigate the potential gain in fuel economy due to 
established technologies. That analysis is described in Andrews et al. (1993). It combined the 
data analysis with a subjective engineering assessment scheme to predict the increase in fuel 
efficiency that would be possible by the years 1995 and 2001. 
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For the data analysis part of that project, it was only necessary to obtain regression estimates 
of the effects of the studied technologies. A wealth of other information can be extracted from 
the data, however, particularly residual fuel-emciency effects of specific manufacturers and 
even specific vehicle lines. These effects measure the degree to which a given manufacturer or 
a given vehicle line has achieved fuel economy for its given level of technology utilization. 
Thus, a high residual manufacturer mean indicates that the manufacturer either does an above- 
average job of implementing the technologies for fuel economy or calibrates and optimizes the 
vehicle for fuel economy in other ways. 

The data analysis utilizes a hierarchical Bayesian model with a number of interesting 
features. These include: (1) a regression (fixed effects) component; (2) multilevel random 
effects with a correlation structure; (3) constraints on the parameters; and (4) unbalanced 
design and unequal random effect variances. 

Effective analysis of a model of this complexity virtually requires Bayesian methods; 
alternative approaches do not produce reliable accuracy estimates. For the Bayesian analysis 
we utilized non-informative priors on fixed effects and hyperparameters. For the fixed effects, 
however, a shrinkage non-informative prior was employed. 

Computation was done using the Gibbs sampling simulation scheme, with estimates 
(posterior means) and standard errors (square root of posterior variances) being produced for 
all 326 parameters. The shrinkage prior and the constraints on the parameters required some 
novel modifications. 

In Section 2 the data used in this study are described. The statistical model relating fuel 
economy to characteristics of the vehicle, including the manufacturer, is presented in 
Section 3, followed by the prior distributions in Section 4. The method of solution, Gibbs 
sampling, is given in Section 5 and the results are discussed in the final section. 

2. DATA 

The CAFE legislation requires that all passenger vehicles sold in the United States be tested 
for fuel economy on a city and a highway driving cycle. In this study, the fuel economy test 
data for automobiles and light trucks for the model years 1988, 1989, and 1990 was the starting 
point. Additional variables for each configuration, not included in the test results, were needed 
in order to properly account for fuel economy in the statistical model. These additional 
variables were cam activation and coastdown time as defined in the Appendix, which lists and 
defines all the variables. 

The original data consisted of 2264 automobile and 1509 truck records for a total of 3773. 
Not all the records were usable in the analysis and 1019 automobile and 561 truck 
configurations were eliminated, resulting in 2193 records in the final data set. The final data 
set covered approximately 80% of the vehicles sold in the United States. Data deficiencies and 
model constraints were the two broad reasons for eliminating records. 

The main data deficiency was that a number of records were discovered to be simply the 
same record carried into the following model year. In other cases the same test results were 
used for a second configuration when that configuration differed only in a minor way. 
Elimination of such duplicates reduced the data set by 656 records. Because of the non- 
availabilty of the cam activation and/or the coastdown time variables, an additional 534 
configurations had to be eliminated. 

On the modelling side, preliminary regression runs revealed a number of configurations with 
very large negative residuals. Often these were very high-performance vehicles and as such were 
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eliminated as being optimized for performance at the expense of fuel economy; unfortunately, 
the data did not include performance measures. Others which were of extreme configuration 
in terms of the model variables were also eliminated. Examples of eliminated vehicles are 
Rolls-Royce, Lambourgini, Yugo, and all police vehicles. All vehicles with 12-cylinder engines, 
rotary engines, and diesel engines were also eliminated. All these vehicles (124 configurations), 
which have a very small market share, could be described as exotic and their elimination 
simplified and reduced stress on the model. 

Turbo- and supercharged vehicles were removed from the data set because they are not 
considered to be general-use technologies for improving fuel efficiency. Only a very small 
number of vehicles in the data set had five-speed automatic or continuously variable 
transmissions. Because estimation of the fuel economy benefit would be very unreliable in 
these vehicles, they were also eliminated. 

The final data set used in the statistical model consisted of 2193 configurations for the 24 
variables described in the Appendix. Note that the fuel economy value used is the combined 
city and highway measurements, computed by 

0.55 0.45 
MpG= ( E F ? + r n Y )  

where CITY is the miles per gallon measured by the city driving test and HWAY is the miles 
per gallon measured by the highway driving test. The weighted harmonic average attempts to 
capture a driving pattern that contains 55% of the driving distance in the city and 45% on the 
highway. This harmonic average is the quantity that is addressed in policy matters, such as 
legislation. 

The lack of any variable in the data set related to tyre-rolling resistance and drive-train 
friction was a serious shortcoming and it was decided to augment the data with coastdown 
time, which is a test track measurement of how long it takes a vehicle, not under power, to 
coast from 55 miles per hour to 45 miles per hour. A variable which measures tyre rolling 
resistance and drive train friction is tyre and chassis loss (TCL) which is computed from 
coastdown time (CDT), dynamometer setting (DPA ), and equivalent test weight (ETW) by 

TCL = (- 1 - 

3. MODEL 

The regression model for the ith record in the data set is 

log Yi = 0 0  + X i  8 + c/, + ti 
where 

Yi = MPG; 
8 = ( P I ,  ..., Pp)' is a p x 1 vector of parameters, and 00 is the constant term; 

Xi = the 1 x p  vector of covariates; 
CI, = the random effect for the vehicle-line I ;  of the ith record; 
~i = the random error. 

The ti are independent N(0 ,02)  random variables. The prior and hyperprior structure on the 
regression parameters, the vehicle-line random effects, and the error variance are described in 
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the next section. The covariates are: Xi = (Xi l ,  ..., Xip) ,  where p = 23. They are of two types: 

Xil, ..., Xis ,  the logarithms of the eight characteristic variables, ETW, TCL, DPA, N/ V, 
AXLE, CID, COMP and HPICID; 

Xi s ,  . . . , X i Z 3 ,  the indicators of the presence of various technologies and/or transmission types. 

There are eight continuous variables (logarithm transformed) available as fuel economy 
predictor variables and 15 indicator variables are used to indicate the presence of various 
technologies and manual/automatic transmissions. The corresponding pi in the model can be 
thought of as the fuel economy effects from the characteristic variables and the technologies 
and transmission types. The vehicle-line random effects provides interesting information about 
vehicle lines and manufacturers. Some experimentation with interaction terms revealed that, 
with the limited available data, interaction terms would not provide a significantly better 
estimated model. 

4. PRIOR DISTRIBUTION 

It is reasonable to model the CI, for manufacturer k (note that numerous records in the data 
set can arise from the same vehicle line, I )  as 

cr i L d .  N(pLk, V k ) ,  I = Nk- 1 + 1, .. . , Nk 

with p~k and Vk representing overall manufacturer residual mean and variance and (Nk - N k - l )  
being the number of vehicle lines in the kth manufacturer’s fleet. We also model the pk and 
Vk, hierarchically. To allow for possible correlation among firms (due, for example, to 
competition) we set 

where I is the M x M identity matrix and (1) is the M x M matrix of ones. There is less reason 
to suppose correlation among the V k ,  so we simply assume 

F = (PI, pz, ..., PM) - NdO, XI + y(1)) (4) 

v k  i‘Ld’iG(a, 7 ) ,  k =  1, . . . ,M 

where M is the total number of manufacturers and IG(a, 7 )  is the inverse gamma distribution 
with density 

The choice of these distributions is for computational convenience, but because of the 
hierarchical nature of the model there is a reasonable degree of built-in robustness. 

The prior used for the hyperparameters (az, A, 7, y) and the constant 00 (which could, 
alternatively, be thought of as a hyperparameter, namely the mean of the g k )  is 

?r(Po,u2, A, 7, y) = l/(u2y3’4) 

reflecting the usual non-informative prior for uz, and being constant in PO, A, and 7. Although 
A, 7 ,  and y are scale parameters, they occur at higher levels of the hierarchical model and hence 
cannot be assigned priors proportional to their inverses. Any ‘small’ power greater than -1  
is acceptable; the choices 0, 0, - 3  for A, 7, and y, respectively, prove convenient later. The 
remaining hyperparameter, a, was found to have only a slight effect on the answers, and it 
sufficed to assign a a ten-point discrete prior, giving equal mass of & to each of 
(0*75,1*0,1-5,2-0,2*25,2*5,2.75,3.0,3.5,4*0) .  



ESTIMATION OF MANUFACTURING EFFECTS s9 

The prior distribution for the regression parameters, p', is the constrained non-informative 
prior 

7 r ( p ' ) =  I $I-(P-l)ln(P) ( 5 )  

Here I n  is the indicator function on the set: 

Q =  (8: 810 > 0, 0 1 5  > 0, 01s > 0) (6) 
The prior n(p') has considerable justification. When used to estimate p' in the absence of 
random effects, ~ ( p ' )  results in a standard shrinkage estimator for 8, an estimator that can 
be justified from many perspectives (robust Bayes, minimaxity, adaptive ridge regression). The 
presence of the indicator on Q in equation ( 5 )  is because it is known from engineering 
principles, that 010, 015, and 018 are positive. These coefficients correspond to the technologies 
TBZ, ACTR, and ELEC, respectively. The reason these three technologies can be singled out 
for such treatment is that they are the only ones whose presence has no effect on the 
characteristic variables, and hence which are not directly confounded with the characteristic 
variables. 

At first, accommodation of ~ ( 8 )  within Gibbs sampling appears to be difficult, because the 
resulting posterior distribution of p', given the other parameters, is not a nice distribution. This 
problem can be easily circumvented, however, by introducing an auxiliary parameter [ > 0, 
and using the prior distribution 

41 E )  =~P(0,4-11p)ln(P) 
T ( E )  = E - ~ / ~ z ( o , ~ ) ( E )  

The use of equation (7) corresponds to the desired marginal prior, ~ ( p ' ) ,  because 

(7) 

s, t-3'2 ( 2 7 r t 4 ) P f i  1 exp[-i I p'12) d t a l / I  

Furthermore, the conditional posteriors for p' and for t ,  given all other parameters, are nice, 
so that Gibbs sampling can be easily employed. 

A final relevant observation concerning ~ ( 8 )  is that the marginal prior of some k- 
dimensional subvector of p', call it 81 with p'f denoting the remaining co-ordinates, is 

7r2(&>= 1 I 81-(p-1)l~(p') d81c 

where Q* is the appropriate projection of Q. Hence if one is seeking inferences for a subvector 
of 3, the observation stream from the Gibbs sampler for the full p' can also be used for any 
subvector, with assurance that the answer will be consistent with the answer that would have 
been obtained from a Gibbs sampler with the subvector and use of ~ ( p ' )  in that lower 
dimension. 



s10 R. W. ANDREWS, J .  0. BERGER AND M. H.  SMITH 

5 .  GIBBS SAMPLING 

The purpose of this section is to describe the algorithm used to construct the posterior 
distribution of the parameters of interest. A FORTRAN program was developed to execute a 
Gibbs sampler Monte Carlo algorithm. See Geman and Geman (1984), Gelfand and Smith 
(1990), Geyer (1991), and Tierney (1991) for descriptions of the background and theoretical 
properties of the Gibbs sampler methodology. 

Initialization 

In order to start the Gibbs sampling iterative algorithm, initial values must be set for the 
parameters. These initial values were established by using OLS (ordinary least squares) 
estimation of our model without the random effects terms, i.e. the model 

The results of this OLS analysis yielded significant coefficients for all but one of the predictor 
variables. The achieved r2 was 0.957 and the standard error of regression was 0-054. 

The initial value for the vector of coefficients is the OLS estimate, denoted p“). For the 
initial value of a’, we use the sample variance of the OLS residuals. For the initial values of 
the vehicle-line effects, CZ, we use the average OLS residuals over that car line: 

Sum of the residuals within car-line I 
Number of tests within car-line 1 

c:“) = 

For pk and Vk the initial values are: 

pi” = Sample mean of the CI(’)’s, within manufacturer k 
Vi” = Sample variance of the CI(’)’s, within manufacturer k 

If there is only one car line within a particular manufacturer, then Vk’) was set equal to the 
sample variance of all C/o”s. For A‘’’ we used the sample variance of all the pi’)’s and for 
7(’) we used the sample variance of all the Vio)’s. The initial value of a was a(’) = 1. 

Various other starting values were used to see if the Gibbs sampler is sensitive to the initial 
settings. Little sensitivity was found. 

The Full Conditionals 

The conditional posterior distributions used in the Gibbs sampler will be listed in the same 
order that they are simulated in the algorithm. The symbol n(. I a )  will be used generically to 
label these densities, with the parameters to the left of the bar indicating those parameters for 
which this is a density, and the variables to the right denoting the other variables (parameters 
or data) upon which the conditional distribution actually depends. (Note that these are all full 
conditionals, i.e. the conditioning is on all variables not listed on the left. However, we 
conventionally list on the right of the bar only those variables that are relevant.) 
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For notational convenience, define 

f i  = (PI Y . . ., Phd, v = ( Vl , . . . , VM), 
and assume that the data have been ordered by manufacturer and vehicle line with Mk being 
the first index in the data for a vehicle of manufacturer k, and Lj being the first index for 
vehicle line j. Let MO = LO = 0. 

(i) a ( u 2 1 ~ , ~ , ~ o ,  & c ) = I G G ( ~ I - ~ ) , + c ? = ~  ( Y i - f i o - X i p ' - ~ i ~ ) ~ ) .  
(ii) *([I  p')= G G ( p -  l), f l  81'). Here G ( v , p )  refers to the Gamma distribution with 

density 

(iii) To avoid extreme inefficiency in the Gibbs sampler due to high correlation between 00 
and 8, we generate them jointly as follows: define 

Then, defining Q as in equation (6), 

a ( J l a 2 , E , Y , X , C ) = N  C * X y Y - C ) , c *  l n ( 8 )  
(2 ) 

Note that computing C* can be organized efficiently by computing, in the initialization 
of the program, the orthogonal 0 such that O'g*gO = diagldl, ..., duly and observing 
that 

where O(1) is the first row of 0 and 

This avoids matrix inversions in the iterative portion_of the pfogram. The easy way to 
account for In(  p) is merely to repeatedly generate @ until E s2 is obtained, but this 
turned out to be quite expensive. Hence we used a truncated normal generator for the 
positive Piy based on the inverse c.d.f. method. 

(iv) For each k =  1, ..., A4 and N ~ - I +  1 < I < Nk, 

T(CI I u2, Y, x, Po, p', Cck, Vk) 
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(v) 

(vii) 

(viii) 

A convenient way to deal with the prior dependence among the p k  in equation (4) is to 
represent p k  via p k  = v k  + 6, where the q k  are i.i.d N(0, A )  and 6 is N(0,y)  (for all k). 
The conditionals of the p k ,  6, A, and y that are convenient to use here (we do not 
condition 6 on p k )  are, for each k = 1, ..., M ,  

where 

v k  

( M k  - M k -  1 ) 
v: = 

The rather unusual choice of y-3'4 as a non-informative prior for y was made to ensure 
that a(y 16) is proper, as well as the the overall posterior. 

a(a I 7, V )  a [I'(a)] -M7aM(II p=l v k ) - p ;  recall we discretized a, with 
a €  ( 0 ~ 7 5 , 1 ~ 0 , 1 ~ 5 , 2 ~ 0 , 2 ~ 2 5 , 2 ~ 5 , 2 ~ 7 5 , 3 ~ 0 , 3 ~ 5 , 4 . 0 ) ,  so a ( a l 7 , V )  needs to be 
calculated only for these ten values of a, with a then being generated from the resultant 
discrete density. 

Note: The gamma and inverse gamma random variables above were generated using the IMSL 
(version 10.0) routine DRNGAM, and the normal random variables using the IMSL routines 
RNNOF and DRNMVN. (See IMSL, 1989.) 

Iteration and Burn-in 

The Gibbs sampler begins with tlCo), the initial vector of all parameters. One then passes 
through each of the nine conditional distributions listed above, generating new realizations of 
the parameters and resulting in a new vector tl('). For each conditional distribution, the values 
of the parameters used to the right of the bar are the latest generated values. This leads to a 
sequence @'),  6(2), 1 3 ( ~ ) ,  ..., of iterations of the parameters. 

We rather arbitrarily chose the first 100 iterations of the Gibbs sampler to be 'burn-in', in 



ESTIMATION OF MANUFACTURING EFFECTS S13 

order hopefully to reach the stationary distribution of the Gibbs sampler. Probably, far fewer 
than 100 would suffice, but the cost of 100 iterations is negligible. 

The Gibbs sampler was then run for an additional m iterations past burn-in. To investigate 
stationarity, numerous plots were made and numerous running averages were computed. None 
indicated any cause for alarm. 

Estimation and Monte Carlo Variance 

To estimate E [ g ( e ) ] ,  where g(0) is some function of the parameters 0 and E denotes posterior 
expectation, we use 

The Monte Carlo variance of B [ g ]  is (cf. Geyer, 1991) 

where y t  = y - r  = Covariance (g(O( j ) ) ,g (O( j+r ) ) ) ,  for the stationary distribution of the Gibbs 
sampler. The covariance of lag t can be estimated by 

Because the estimator of f t  is unstable for large values of t, one cannot directly plug this into 
equation (8). Instead, it is standard to use a down-weighted version, such as 

We chose the weights (as recommended by Geyer, 1991) to be 

i f t > T  
cos(t/T) if 1 < t < T 

w(t)= I" 
where T is the first value of 1 for which if qt < 0. The estimated standard deviations, 6, 
based on a run of size m = 500 were found for i = 0,1, ..., 23. 

The Monte Carlo sample size, m, for the final run was determined by setting the m-'& 
equal to the desired accuracy, and solving for m. The accuracy we desired was l/lOO of the 
posterior variance of the pi ,  so that the Monte Carlo variance would be negligible compared 
with the statistical variance. This procedure indicated that a sample size of m a  1000 was 
needed. We decided to use m = 5000 (after the 'burn-in' of 100 iterations), to produce the final 
numbers. This turned out to be a fortunate choice, as the I?$, determined above turned out to 
be as much as four times too small; by choosing m = 5000 we nevertheless achieved our goal 
of negligible Monte Carlo variance. 

6.  RESULTS 

We will first discuss features of the posterior distribution of the p's. Table I gives the estimated 
mean and standard deviation of the 24 p's. For any particular coefficient, the mean and 
standard deviation are estimated by the sample average, p i ,  and the usual sample standard 
deviation, a,, of the m = SO00 replications of the Gibbs Sampler. The estimated means are 
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all compatible with engineering knowledge. Note that the standard deviations of these 
estimates are moderate. 

The mean and standard deviation of the parameter, a2, and the hyperparameters, g, A, 7, 

CY and 6 are also given in Table 1. From that table, the mean for u2,  0.00146, is approximately 
half the OLS error variance, indicating that the vehicle-line random effects do pick up 
considerable residual variance. Recall that [ was simply an artifactual parameter introduced 
for simplicity in analysis, so its moments have no interesting interpretation. The 
hyperparameters a, 7, and 6 also are of little interpretational interest. 

The variance of the manufacturer means, has posterior mean 0.00232, indicating that the 
standard error of the manufacturer effect is 4.8%. This shows that there is a substantial 
variability among manufacturers in their ability (or desire) to efficiently utilize technology for 
fuel economy. This is seen by looking at actual estimated manufacturing effects, the pk, given 
in Table I1 for 37 manufacturers. Note that these are residual means. The random effect Ct 
can be thought of as the residual fuel economy of vehicle line I due to factors other than the 

Table I. Mean and standard deviation of 
parameters from posterior distribution (SO00 

replications) 

Parameter Mean 

9.5607 

0.0660 
- 0.4527 

- 0.1812 
- 0.291 1 
- 0.0363 
- 0.4108 

0.2714 

0.0276 
0 * 0407 
0.0098 
0.0274 
0.0263 
0.0244 
0 * 0260 

- 0.0323 
0.0280 
0 * 0024 

0.0760 
0.0486 
0,0627 
0 * 0620 
0.00146 

0.00221 
0.00285 
3.110 
0.00235 

-0.1578 

-0.0177 

35.287 

Std. dev. 

0.1720 
0 * 0204 
0.0062 
0.01 16 
0.0166 
0.0158 
0.0107 
0-0316 
0.0125 
0.0056 
0.0057 
0-0047 
0.0070 
0-0054 
0-0081 
0.0044 
0 0060 
0.0042 
0.0024 
0.0073 
0.0066 
0.0052 
0.0060 
0.0117 
o-oooo55 

o-O00747 
0.000957 
0.6948 
0,00733 

10*851 
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(Xi). The mean, pk, of the CI over all vehicles of manufacturer k can then be thought of as 
the residual fuel economy of the manufacturer due to other factors. 

The correlation between the manufacturer means, as modelled by equation (4), is calculated 
by using the output stream from Gibbs sampling. The mean of the posterior correlation is 
0.271 and the standard deviation is 0.368. The tenth, fiftieth, and ninetieth percentiles for the 
correlation are O.oooO46, 0.049, and 0.974, respectively. This shows that there is a very large 
variance associated with the correlation and that most of the distribution is skewed towards 
zero. 

It is tempting to ascribe these manufacturer effects to varying 'abilities' in utilization of 
technology to achieve fuel efficiency. However, a manufacturer could, instead, have been 

Table 11. Mean and standard deviation of p (ordered on 
mean) 

Manufacturer Mean Std. dev. 

Suzuki 
Honda 
Toyota 
Isuzu 
JCI 
Mercedes-Benz 
Hyundai 
Daihatsu (Truck) 
Nissan (Truck) 
Ford 
Nissan 
Mazda 
Ford (Truck) 
Suzuki (Truck) 
General Motors (Truck) 
Mitsubishi 
General Motors 
Mazda (Truck) 
Nummi 
Fuji 
Alfa 
Toyota (Truck) 
Isuzu (Truck) 
AMC (Truck) 
Chrysler 
Fuji (Truck) 
Land Rover (Truck) 
AMC 
Peugeot 
Shelby (Truck) 
Mitsubishi (Truck) 
BMW 
VW (Truck) 
Chrysler (Truck) 
VW 
Saab 
Audi 

0.1193 
0.0624 
0.0491 
0.0475 
0-0461 
0.0437 
0.0345 
0.0265 
0.0250 
0.0249 
0.0247 
0.0238 
0.0199 
0.0191 
0-0180 
0.0126 
0.0092 
0.0081 
0~0040 
0.0022 
0.0010 
0.0010 

- 0.0060 
-0.0079 
- 0.01 14 
-0.0134 
-0.0155 
-0.0161 
- 0.0225 
-0.0256 
- 0.0284 
-0.0331 
-0.0504 
- 0.0529 
- 0.0596 
-0.0634 
-0.0701 

0.0312 
0 * 01 49 
0.0134 
0.0322 
0.0315 
0 * 0202 
0.0301 
0.0346 
0.0180 
0.01 14 
0.0103 
0.0172 
0.01 16 
0.0278 
0.01 16 
0.0124 
0.0104 
0.0233 
0.0281 
0.01 12 
0 0342 
0.0221 
0.0198 
0-0179 
0.0131 
0.0167 
0-0354 
0.0291 
0.0174 
0-0354 
0.0148 
0-0174 
0.0323 
0-0153 
0.0157 
0.0250 
0.0132 
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attempting to optimize with respect to performance, ride, or handling, not fuel efficiency. 
Since we do not have such performance variables in our database, interpretation of the cause 
of manufacturer effects requires care. Also, note that the standard errors of many of these 
means are comparatively large. 

The manufacturer effects do, in any case, measure the residual manufacturer fuel efficiency. 
Thus Suzuki, for which the posterior mean of p is 0.1193, achieves very high fuel efficiency 
relative to the technologies it uses. Of the three US firms, General Motors and Ford both have 
positive values for the mean of p but the value for Chrysler is slightly negative; this holds also 
for the truck side. This runs contrary to the usual thinking that Chrysler does well on fuel 
economy because their fleet-wide average is usually higher than the other two; for example, 
in 1989 the CAFE ratings were: Chrysler: 28.0; GM: 27.2; and Ford: 26.6. However, when 
conditioned on vehicle characteristics and technology utilization, Chrysler has a somewhat 
worse manufacturer fuel economy. (This is statistically clear only for Chrysler Truck, because 
of the large standard errors.) 

It is also worth investigating the residual fuel economy at the vehicle-line level. The 37 
manufacturers had a total of 223 vehicle lines or models in the data set. The automobile side 
of General Motors had the most vehicle lines with 23. Table I11 gives a partial list of these 
vehicle lines and for each the Gibbs generated posterior mean and standard deviation of Cl are 
reported, where Cr is the vehicle-line random effect in the model. 

Many of the 223 Cl's have a large standard deviation, as demonstrated by the Caprice 
Wagon from General Motors with a standard deviation of 0.0302. Note that the Honda Civic 
CRX HF has one of the largest values of the mean of CI out of the 223 models. This vehicle 
was intentionally manufactured for fuel economy, and in fact, the HF stands for high fuel. 

The four vehicle lines from Suzuki all have exceptionally high values for CI and therefore 
demonstrate that Suzuki, as a manufacturer, is concentrating on fuel economy. Also, the four 
vehicle lines from Mercedes-Benz all have reasonably large values for Cr, which indicates that 
it is not just the small vehicles that register large residual fuel economy. The value of 0.0699 
for Jaguar is interesting because it is a vehicle that is perceived to be designed for performance, 
but yet on this residual fuel economy measurement it has a relatively large positive value. The 
smallest value of Cr for any automobile is given by the -0.0937 for the BMW M3; and 
likewise, the smallest for the trucks is - 0.1143 for the Chrylser W250. 

Table 111. Mean and standard deviation of CI (partial list) 

Vehicle line Manufacturer Mean Std. dev. 

Metro XFI 
Civic CRX HF 
Metro 
Metro LSi 
Sprint 
Caprice Wagon 
Jaguar 
560.X 
300.x 
500.X 
420.X 
M3 
w250 

Suzuki 
Honda 
Suzuki 
Suzuki 
Suzuki 
General Motors 
JCI 
Mercedes-Benz 
Mercedes-Benz 
Mercedes-Benz 
Mercedes-Benz 
BMW 
Chrysler 

0.2061 
0.1425 
0.1337 
0.1324 
0.1232 
0.0742 
0 * 0699 
0.0600 
0.0489 
0.0425 
0.0416 

- 0.0937 
- 0.1 143 

~~ 

0-0283 
0 * 0207 
0*02OO 
0.0186 
0.0219 
0.0302 
0.0183 
0.0232 
0.0143 
0.0272 
0.0273 
0.0338 
0.0221 
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It is anticipated that the importance of fuel economy measurement will increase in the the 
immediate future and procedures that analyse the test data will similarly increase in 
prominence. The models used in these analyses should account for the random effects due to 
manufacturing and vehicle lines, as described in this paper. 

APPENDIX: DATA SET VARIABLES 

MPG The combined city and highway miles per gallon, computed from the city and 
highway test cycle values by equation (1). 

ETW The equivalent test weight, which is the curb weight plus 300 lb for load. It 
is recorded in increments of 125 lb. 

TLC The tyre and chassis loss, which measures tyre rolling resistance and drive train 
friction. It is computed from equation (2). 

The dynamometer setting, which is used on the fuel economy test equipment 
to compensate for aerodynamic drag losses. 

DPA 

NV The ratio of engine revolutions to vehicle velocity in top gear. 
~ 

AXLE The final drive ratio on front-wheel vehicles and the axle ratio on rear-wheel 
vehicles. 

CID 

COMP The engine compression ratio. 

The cubic inch displacement of the engine. 

HPCID The engine horsepower divided by the cubic inch displacement, which is 
referred to as specific horsepower. 

An indicator of multi-point fuel injection, in which atomized fuel sprays are 
generated, one for each cylinder. 

IMPI 

ITBI An indicator for throttle-body injection, in which a metered single atomized 
spray is supplied to the engine. 

An indicator for an overhead cam engine, with two valves per cylinder. IOH2 v 
IOH3 V 

IOH4 V 

An indicator for an overhead cam engine, with three valves per cylinder. 

An indicator for an overhead cam engine, with four valves per cylinder. 

IACTR An indicator for a roller cam follower as the mechanism for valve activation. 
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IA CTD An indicator for a direct acting cam follower as the mechanism for valve 
activation. 

An indicator for an automatic transmission with four forward gear ratios. IA UT04 

ILKUP An indicator for a mechanical system that locks the transmission torque 
converter. 

An indicator for a transmission which has an electronic control for selecting 
the appropriate gear. 

IELEC 

IF WD An indicator for a vehicle with front-wheel drive. 

IMAN4 An indicator for a manual transmission with four forward gears. 
~~ 

IMANS 

ICRP3 

An indicator for a manual transmission with five forward gears. 

An indicator for a transmission with a creeper gear and three other forward 
gears. 

ICRP4 An indicator for a transmission with a creeper gear and four other forward 
gears. 
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