Technical Report Documentation Page

1. Report No.	2 Gauge and Asses	tion No. 13 D		
	1. Oovermaent Acces	sion no	acipiani s Calalog i	
UMTRI-85-44				•
4. Title and Subtitle		5. R	eport Date	e en an de la constant de la constan
THREE-DIMENSIONAL OCCU	PANT DYNAMICS	SOFTWARE: 00	ctober 1985	
STEERING ASSEMBLY MODE:	L.	6. P	erforming Organization	on Code
				D
7. Author's)		0. Fe	erforming Urgenizeri	on Report No.
D.H. Robbins			MTRI-85-44	
9. Performing Organization Name and Addres	5	10. V	Vork Unit No. (TRAI	S)
University of Michigan Transportation Research	Institute			
Institute of Science a	nd Technology	11. (D	Contract or Grant No.	ว
Ann Arbor, Michigan 48	L09	12 1		
12. Sponsoring Agency Name and Address			ype of Keport and P	ariod Coverad
Current Broduct Engine	ring	F:	INAL REPORT	
Coneral Motors Technic	ering al Contor	Ja	an. 1984 - A	ug. 1985
Warren Michigan (8090	at Center	14. S	ponsoring Agency C	ode
Marren, menigan 40090				
16. Abstract				
generate a steering as was adopted for a varie Availability of was required Precedence base Flexibility to	sembly linkag ety of reason f the softwar ed on work at model a vari	e data set module s including: e so no code deve British Leyland ety of steering a	e. This pro- elopment assembly	ocedure
IIIKages and	energy absor	ption concepts		
Development of a steer: was demonstrated. A co impact sled test indico	ing assembly omparison bet ated similar	model was found a ween predictions results.	to be flexi and data f	ble and rom an
17. Key Werds		18 Disatilitation Banan		
Crash Victim Simulation	n	TV. UISTIGUTON JIGTEMONT		
Occupant Dynamics	-	TT 7 -	mitod	
Occupant Protection		UNLII	mited	
Steering Assembly Mode	ling			
19 Service Classif (-1 dis month)	20 5	: () () () () () () () () () (21 No. (D	00 D.:
The secontry clessific (of mis report)	a. security class	ur, (of this poge)	21. NO. OF Pages	22. Frice
None	No	ne	97	

THREE-DIMENSIONAL OCCUPANT DYNAMICS SOFTWARE: STEERING ASSEMBLY MODEL

D. H. Robbins

Transportation Research Institute Institute of Science and Technology The University of Michigan Ann Arbor, Michigan 48109

Final Report October 1985

Prepared for

Current Product Engineering General Motors Technical Center Warren, Michigan 48090

TABLE OF CONTENTS

List	of Figures	ii.
List	of Tables	vi
1.0	Introduction and Objectives	1
2.0	Selection of Concept	3
	2.1 Initial Concepts	3
	2.2 First Implementation	4
	2.2 Final Concept	7
3.0	Development of Data Set	18
	3.1 The Test	18
	3.2 The Initial Baseline Data Set	18
	3.3 The Complete Final Data Set	21
4.0	Simulation Results	48
5.0	Conclusions	87
6.0	References	91

LIST OF FIGURES

1.	Initial 4-mass wheel/column concept. Pivoted wheel	9
2.	Initial 2-mss wheel/column concept. Energy-absorption by friction	10
3.	Schematic of the two column masses for the initial 2-mass wheel/column concept	11
4.	Side view of occupant for initial 2-mass wheel/column concept. t=0ms	12
5.	Side view of occupant for initial 2-mass wheel/column concept. t=0ms	13
6.	Schematic of the two column masses for the final wheel/ column concept using spring-damper elements	14
7.	Side view of occupant for final wheel/column concept. t=Oms	15
8.	Front view of occupant for final wheel/column concept. t=Oms	16
9.	Top view of occupant for final wheel/column concept. t=Oms	17
10.	Universal driver sled test fixture	23
11.	Side view of occupant position. t=Oms	55
12.	Side view of occupant position. t=50ms	56
13.	Side view of occupant position. t=70ms	57
14.	Side view of occupant position. t=100ms	58
15.	Side view of occupant position. t=llOms	59
16.	Comparison of predicted and measured head, chest, and pelvis accelerations	60
17.	Comparison of measured femur loads with predicted applied force at the knees	61
18.	Comparison of predicted and measured head angular orientation.	62
19.	Comparison of predicted and measured head longitudinal displacement	63
20.	Comparison of predicted and measured leg longitudinal displacement	64

21.	Comparison of predicted and measured hip longitudinal displacement	65
22.	Comparison of predicted and measured steering column displacement	66
23.	Comparison of predicted and measured steering column acceleration	67
24.	Comparison of predicted and measured upward steering column load	68
25.	Comparison of predicted and measured lateral steering column load	69
26.	Predicted thorax and abdomen acceleration	70
27.	Predicted pelvis and head acceleration	71
28.	Predicted upper leg acceleration	72
29.	Predicted interactions of the chest and abdomen with the steering wheel and hub	73
30.	Predicted interaction of the head with the windshield	74
31.	Predicted interaction of the left upper leg with the knee restraint	75
32.	Predicted interactions of the hands and lower arms with the knee restraint	76
33.	Predicted interactions of the pelvis with the seat cushion.	77
34.	Predicted interaction of the left foot with the floorpan and toepan	78
35.	Predicted forces restraining the column from collapse	79
36.	Predicted forces restraining the column upward or downward motion	80
37.	Predicted forces restraining the column from lateral motion	81
38.	Predicted forces restraining the wheel rim from axial motion	82
39.	Predicted column and wheel accelerations	83
40.	Vehicle input deceleration	84
41.	Force vs. deflection for rim bottom spring-damper	85

42. Force vs. deflection for column spring-damper.

86

v

LIST OF TABLES

1.	Listing of Baseline Unrestrained Occupant Data Set	24
2.	Force-Deflection Functions Retained from Baseline Data Set.	33
3.	Listing of Final Data Set Including Energy-Absorbing Column	44
4.	Allowed Contacts	45
5.	New Force-Deflection Functions	47

•

1.0 INTRODUCTION AND OBJECTIVES

The three-dimensional occupant dynamics software package (3D-CVS), originally developed at Calspan Corporation (1), is a powerful tool for studying linkage dynamics and forcible interactions between a linkage and its physical environment. Subprograms, which have been developed for applying the software to problems in occupant protection, can be used to simulate restraint harnesses, air cushions, and occupant equilibrium positioning.

The 3D-CVS package suffers from a lack of input/output software to make the task of the user easier. In addition, few validations have been conducted to show that the software produces results similar to those observed in laboratory dynamic tests. Because of these factors, most applications of the 3D-CVS have been experimental in nature. In order to move toward the time when the 3D-CVS can be used with some confidence in realistic research, development, and design applications, work has been initiated in areas both of user aids and software expansion/improvement.

One of the projects, the subject of this report, has been to improve the capabilities of the 3D-CVS in order to model various steering assembly concepts. Rather than the development of software to accomplish this goal, existing options available in the software were used to generate a steering assembly linkage data set module. For a traditional assembly this linkage should allow column and wheel rotation, column collapse, shear capsule effects, interactions between the wheel rim and the occupant, as well as the possibility for intrusion of the assembly into the occupant compartment. There is precedence for this approach in work reported by British Leyland (2).

Non-traditional assemblies may use different concepts for the placement of energy-absorbing components. This could result from development of steering linkage concepts which route the column away from proximity to a plane passing through the center-line of the driver. The concept of a data set development solution to the steering assembly model problem rather than a software modification solution was adopted for a variety for reasons including:

- Availability of the software as no code development is required.
- Precedence based on the work of British Leyland.
- Flexibility to model a variety of steering assembly linkages and energy absorption concepts.

In conclusion, the objective was to use existing capabilities of the 3D-CVS in developing models of existing and new steering assembly concepts.

Part 2 of the report discusses the details of the selection of modeling concepts. The development of the data set, based on an impact sled experiment, is discussed in Part 3. Graphic results of the simulation and comparisons with the test are given in Part 4. The remainder of the report presents Conclusions and Recommendations as well as references.

2.0 SELECTION OF CONCEPT

2.1 Initial Concepts

The initial concept, shown in Figure 1, includes four masses. A wheel rim mass is connected through two joints to the upper column mass. The upper column strokes with respect to the lower column. The lower column sleeve is attached to the vehicle. The connecting link between rim and column, which can be thought to represent spokes, also is assigned a mass value. The remaining mass is the mobile point at the lower end of the column. This mass could become active in the case of intrusion from the engine compartment.

The wheel rim was modeled as a contact ellipsoid which would generate forces upon contact with vehicle occupant segments such as the head, chest, and abdomen. Collapse and rotation of the rim was simulated by rotation of the link connecting rim with column. Forces generated by the deformation process were the result of torques generated at the two joints.

A guide bracket was included to represent one of the known modes of column resistance to rotation. This concept was modeled as a sphere attached to the upper column mass which was contained in a sleeve with three sides. The three sides were modeled as planar contact surfaces capable of applying frictional and normal forces to the column. The fourth side was left open so that the column could drop out of the bracket.

The other two spheres on the upper column mass were intended to absorb energy much like the ball bearings do in many current designs. The two spheres had diameters slightly larger than the distance between the four sides of a hollow sleeve. Because of this, normal forces were

always generated by the contacts. Tangential forces, produced by friction of the spheres plowing through the hollow sleeve, were intended to model the collapse of the column. Column rotation was possible in that the two spheres were restrained in the hollow sleeve only by the force-deformation relationship of the contacts.

Although this concept had features which were eventually used in the final model, it was rejected became of a lack of degrees of freedom of the wheel with respect to the column. The reason for this was the observation during tests that the wheel rim could move and deform in a plane perpendicular to the long axis of the column.

2.2 First Implementation

Figure 2 describes schematically the first concept, much of which was implemented as a data set. The same technique was used for column collapse as was used in the first concept. However, instead of a rigid link connecting the wheel to the column, a sphere was attached to the wheel mass which was restrained from motion by being located within a six-sided box comprised of contact surfaces attached to the upper column. The collapse, shear, and rotation of an energy-absorbing hub is illustrated in a series of drawings at the bottom of Figure 2. Rim rotation is resisted by frictional torques generated when the sphere rotates inside the box. Rim motion perpendicular to the column (shear) is resisted by normal forces. Likewise, collapse of the rim in the direction of the axis of the column is resisted by normal forces generated by the sphere on the surfaces comprising the box.

When construction was initiated for that portion of the data set which dealt with the wheel mass and its attachment to the column, it was found extremely difficult to relate available test data to the

parameters and modeling techniques illustrated in the bottom and right schematics shown in Figure 2. To complete the data set, the arrangement of contact surfaces and ellipsoids that is illustrated in Figure 3, is used. The top schematic shows a side view of the column mass. Attached to this mass are two spheres which guide the direction of any column collapse and resist motion. Six contact surfaces are also attached to this mass. They are arranged in the configuration of a box to resist three-dimensional motion of the steering wheel when it interacts with ellipsoids attached to the torso. The bottom schematic shows side and front views of the wheel/rim model. The large ellipsoid, having the general dimension of the outline of the rim, is used to sense forcible contact with the chest and abdomen ellipses. The three small spheres sense interactions with the six contact surfaces attached to the column mass, that are arranged in the configuration of a box. These spheres, which may be thought to represent the behavior of spokes attached to the rim, model the resistance of motion by the wheel rim as it interacts with the column.

The complete implementation of the column in this configuration is shown in Figure 4 which is the computer-generated plot produced at the initiation of the computer exercise. Figure 5 shows the position of the occupant and vehicle interior at a time of 20 milliseconds into the computer run. Although the occupant has barely begun to move relative to the vehicle at this early point in the simulation, the column mass has rotated so that the spheres are no longer restrained by the sleeve. In addition, symmetry is lost as shown by the rotation of the surfaces attached to the column mass. It appears that the problem started immediately after initiation of the run.

Two problems with the analysis used in developing the computer code were identified which precipitated this problem. These are:

- 1. the lack of a model of static friction (motion must exist for friction to be applied).
- 2. the reduction of force to zero when an ellipsoid has passed completely through a contact surface (a particularly severe problem when the dimensions of the ellipsoid are small).

The first of these problems is particularly severe and was the primary cause of the failure. At the beginning of the run, tangential friction forces between the spheres on the column and the sleeve were predicted to be zero even though penetration was non-zero. The normal forces produced as the result of these contacts, were also non-zero. When the vehicle deceleration caused the beginnings of motion, a relative velocity between the column and the vehicle was initiated which precipitated a rapid buildup of friction forces. For computational reasons which are not totally understood, the integration procedure was not able to handle the buildup of several frictional forces simultaneously, and instability resulted. The properties of the second problem with the code worsened the overall effect. The use of very small integration steps did help somewhat but did not remove the overall instability. By the end of the review of results, it appeared that the problem was present from the beginning, perhaps pointing at limitations in the integration procedure as well as the physics. As a result, the first data set implementation was dropped.

A byproduct of a code lacking the capability for modeling static friction is the related problem of modeling initial equilibrium states. This prevents the use of realistic models for the initial positioning of vehicle occupants. It should be noted that this problem also exists in the MVMA-2D Code (3).

2.2 Final Concept

The final concept used an alternative to friction for energyabsorption in the column. Figure 6 shows modified views of the column and wheel/rim models. A spring-damper element is attached to the column center of mass. This element acts along the center line of the column. The other end of the spring-damper is attached to the vehicle. The force-deflection characteristics were obtained from test data supplied by General Motors. The spheres attached to the column mass serve to stabilize the motion of the energy-absorbing element as it moves within the sleeve. The diameter of the spheres was reduced so that they now fit within the sleeve. As the column rotates, normal forces are generated which tend to resist the motion. Plowing is not included in this data set. It could be added by providing a second sleeve, larger than the first, which could begin to generate tangential friction forces when the column is already in motion.

Likewise, the friction concept for resisting motion was not used in simulating the interaction between the wheel/rim mass and the column mass. Spring-dampers were attached from the center of each sphere to a point on a plane parallel to the initial plane of the wheel. The purpose of the spring-dampers is to resist deformation of the wheel rim with respect to the column. Rotation of the wheel is allowed for contacts at any point on the rim. The force-deflection data were obtained in static tests of the rim by pressing a platen onto the rim top or bottom in separate tests. Using different data for the rim top and rim bottom allows for differentiation of impacts to different parts of the rim by the chest, head, and abdomen. As shown in Figure 6, the spheres are still retained to stabilize the wheel from lateral motions.

The large ellipsoid for the wheel still is useful for chest, abdomen, and head contact. The hub contact surface attached to the column is sensitive to chest contact.

Figure 7, 8, and 9 show side, front, and top views of the occupant seated in the vehicle at the initiation of the computer run. The names of the various contact surfaces (identical to those used in the data set) have been added to clarify the definitions.

Figure 2. Initial 2-mass wheel/column concept. Energy absorption by friction.

Figure 3. Schematic of the two column masses for the initial 2-mass wheel/column concept.

Figure 4. Side view of occupant for initial 2-mass wheel/column concept. t=0ms.

Figure 7. Side view of occupant for final wheel/column concept. t=Oms.

Figure 9. Top view of occupant for final wheel/column concept. t=Oms.

17

3.0 DEVELOPMENT OF DATA SET

3.1 The Test

In order to prove that the model would actually simulate a real column system, data from an impact sled test was provided by General Motors. This test provide geometric data and the vehicle deceleration. The spatial location of various vehicle components as well as four important targets on the test dummy are shown in Figure 10. Some additional information on collapse of the column was provided separately. Tests were conducted to determine the force-deflection properties of the rim with respect to the column.

Data describing the dummy and the remainder of the force-deflection characteristics of vehicle components were obtained from a data set provided by General Motors during a related modeling project. These data probably do not reflect the most recent dummy data which are available for use with the 3D-CVS Code. Also, it is not known how well the force-deflection data for the vehicle interior components (in particular, the seat, instrument panel, and knee restraint) describe the properties of the similar components in the impact sled test buck.

3.2 The Initial Baseline Data Set

At the beginning of the project, a baseline data set was provided by General Motors for use with the three-dimensional CVS Code. This data set simulates an unrestrained passenger in a frontal barrier impact. The occupant model appears to be based on the original fifteen mass linkage proposed by Calspan Corporation. Left and right hands have been added. The data set is included as Table 1.

Many changes were made to this data set in order to develop the final steering column simulation. The location of changes have been

indicated in the listing. Line 5 indicates changes to the A4-card. It was found necessary to decrease the integration time step in order to simulate the complex and stiff behavior of the column. The change to line 9, a B2-card, moves the abdomen contact ellipsoid forward in the segment in order to pick up the contact with the lower portion of the steering wheel rim. The changes to lines 15 and 18, also B2-cards, decreases the dimensions of the foot contact ellipsoids in order to aid in establishing initial equilibrium. Two B2-cards were added after line 24 in order to define the steering column and wheel mass properties.

A variety of changes were also made to the B-cards describing the joint properties. After line 56, four cards were added for null joints connecting the column and wheel masses with the remainder of the segments. An apparent inconsistency between the left and right hip joint parameters was found on line 62 and was changed (B4-cards). Several changes were made to the properties of the shoulder, elbow, and hip joints (B4-cards) on lines 71-80. This was done to stabilize the motion which occurred during interactions of the hands and with the instrument panel. Non-zero linear flexural spring characteristics were added for the elbows and wrists (lines 73,77,79,80). The very stiff quadratic spring coefficient was reduced for the wrists (lines 79,80) while the cubic spring coefficients were reduced to zero for the elbows (lines 73,77). The energy dissipation was reduced to 0.5 for all six segments for both the flexural and torsional degrees of freedom. Nonzero linear torsional spring coefficients were also added to all six. In addition, the quadratic spring coefficient for tension was reduced for the wrists (lines 79,80). After line 80 two cards were added for

the null joints connecting the column and wheel masses with the remainder of the segments.

Non-zero viscous coefficients were added to all occupant joints on the B5-cards in an additional effort to stabilize the motions. In the case of Euler joints, non-zero values were added mostly for the precession and nutation axes (lines 81-112). The values for the viscous coefficients are those report by Fleck et al. (1). An error was corrected on line 105 (Coulomb friction) for right shoulder precession. Coulomb friction was increased for both wrists (lines 111,112). In addition, the maximum torque allowed for a joint to remain locked was increased for the elbows and wrists (lines 102-103,108-109,111-112). As for the other B-cards, two additional cards for null joint properties were added to occupant for the presence of the unconnected column and wheel masses.

At the end of the B6-cards (after line 129) convergence test parameters were inserted for the wheel and column masses. Because these separate masses have linear as well as rotational degrees of freedom, six test values were included.

The C-cards (lines 131-136) were modified to use the velocity and deceleration data obtained during the impact sled test. The D1-card was modified to reflect the change in the number of contact surfaces, the number of added ellipsoids, and the three spring-dampers. The D2-cards (lines 138-265) defining the vehicle contact surfaces have been completely replaced by the new vehicle and wheel/column model. Four cards (D5) were added after line 265 to define the additional column and wheel contact ellipsoids. After line 266 one additional blank D7-card was added because the number of segments had increased beyond 18. After

this D7-card a total of four cards was added to define the four springdampers (D8).

Of the 26 functions included in the baseline data set (lines 267-390), 21 were retained, renumbered, and in some cases, renamed. This information is summarized in Table 2. The additional sixteen functions which were developed for the new data set defined the column and wheel force-interaction functions as well as the interactions of the occupant with the wheel and column. It should be noted that all the functions listed above have been obtained from the baseline data set as no known data were available to describe these functions for the case of the impact sled test.

The F-cards included in the baseline data set (lines 392-451) were not used. This reflects the complete rearrangement of contact surfaces, force interaction functions, and number of segments. Some modifications were necessary for the G-cards. These include addition of two G2-cards after line 454 to define the initial linear position of the wheel and column masses. Two G3-cards have been added after line 471 to define the angular orientation of these two masses. Changes were also made to the angular orientation of upper legs, lower legs, and feet (lines 460-465) in order to establish initial equilibrium. The remaining G- and Hcards (lines 472-1020) were not used as the output structure of the UMTRI version of the 3D-CVS is somewhat different from that used at General Motors as described by Robbins, et al. (4).

3.3 The Complete Final Data Set

Table 3 is a listing of the final data set including the energyabsorbing steering column and deformable wheel rim. The major

differences between this data set and the baseline presented in Table 1

are:

- addition of wheel and column masses, interactions, and constraints
- use of impact sled test data for defining vehicle deceleration
- use of geometric description of impact sled test buck to define the vehicle.
- use of UMTRI version of 3D-CVS output structure

The locations of the changes have been described in detail in Part 3.2.

Two additional tables are included to supplement Table 3. Table 4 is a list of the allowed contacts defined on the F-cards. The surface or ellipse and the contacts it makes with other ellipses are listed as well the identification numbers. Table 5 is a supplement to Table 2. It lists the new force-deflection functions which were defined.

UNIVERSAL DRIVER SLED FIXTURE

Figure 10. Universal driver sled test fixture.

10.000 8.000 0.200 0.5 0.00 8.000 0.200 0.5 70.0 9.000 0.200 0.5 70.0 10.00 0.500 0.50 column and wheel masses with remainder ➤ Add two segment cards for column Page and wheel masses (B2). of segments (B3) 0000 0000 0000 79.0 79.0 -70.0 -65. 5 0000 800 63 5 800 8.0 20.
 8
 12.00
 12.50
 18.50
 1.70
 0.00

 0
 11.00
 14.00
 14.00
 14.00
 0.00

 6
 4.30
 4.30
 1.00
 14.00
 0.00

 0
 7.55
 7.55
 15.00
 0.00
 0.00

 0
 7.55
 7.55
 21.60
 0.000
 0.00

 0
 7.55
 7.55
 21.60
 0.000
 0.000

 0
 7.50
 7.50
 21.00
 0.000
 0.000

 0
 7.50
 7.50
 21.00
 0.000
 0.000

 17.50
 7.50
 21.00
 0.000
 0.000
 0.000

 17.50
 7.50
 21.00
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 < 55.0 27.0 8.0 -55. **8**--27 0.0 .0000 -5.11 -10. 00.0 0.0 0.0 0.0 13.93 0.0 0.0 0.0 .0000-23.99 4.76 2 0.0 .0000-16.36 0.0 .0000-15.11 Listing of GMCVS1.D at 16:20:49 on OCT 3, 1985 for CCId=SUVH 90. 0.00.0000-23.99 4.76 0.0 .0000-16.36 0.0 0000-15.11 0.0 .0000-13.06 5.36 .0000 -4.09 5.36 .0000 -4.09 .0000 4.780 0.0 .0000-13.06 SAMPLE FREELEM! # 1 UNRS.IR PASSR., FRONTAL BARRIER IMPACT, NO PITCH UNRS.IR PASSR., FRONTAL BARRIER IMPACT, NO PITCH CM. KG.SEC. 0.0 6 020 0.00100 0.00025 0.001 0.00025 6 020 0.0000 0.000025 0.00100 17 16 13.0 0.64 115. 0.0 0.0 80.
 J
 13
 1
 0.0
 0000
 10.2

 K
 15
 1
 0.0
 0000
 10.20

 B
 0.00
 2000
 0.500
 90.000

 B
 0.000
 0.200
 90.000

 17
 15
 17
 16
 17
 15
 17
 15
 17
 15
 16
 12
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 16
 16
 16
 14
 14
 14
 14
 14
 14
 14
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 <td 0.0 0.0 -6.48 0.0 0.0 90. -2.45 8.85 2.57 -4 -2.45 -8.85 2.57 -4-0.250 .0000 22.04 0.0 .0000 16.18 -4-0.250 .0000 22.04 0.45-18.00-14.59 -9.59 -90. 90. 1 0.00 0000 16.18 0.0 .0000 13.07 -4 0.45 18.00-14.59 0.0 .0000 13.07 0.06 -2 0.000 0.0 -2 -1.60 -2 -2.54 90. • . 4-۲, LUL A 6.5 LUL A 6.5 LLL B 3.3 LLL B 5.3 RLL D 6.2 RLL B 5.3 RLL A 7 2.273 LLA 7 2.273 RLA 9 2.273 RLA 9 2.273 RLA 0.80 RLA 0.80 C861 NN 1983 <u>0</u> Ð 14 5 5 REV RA H LAG LE T נעט 4 0 dn V HI 2 X X RS U X MU 115.8 바 N H ۲ ۲ LS 5 * 50 ¢ ₽ 22 15 × ¥

Listing of Baseline Unrestrained Occupant Data Set (Page 1 of 9). Table 1.

															ת																					cd) cd	
														i + Jonaco		mainder																				roperu	
																with rei																			- - - -	Joint p	
	•													for all :		sel masses	34).																			s tor null	
	-	•										•				umn and whe	seqments (I	D																		d two card	
	22	8				ç				8					DDA -	010	of																			1 00.01 T HU	
	500 60.00 500 60.00	200 100.0	950	.25 066	00 100.	950 0.00	950 42.	950 60.0		820 10.00	950 60.0	950 70.00		950 60.00	0.0	0.0	0.0	0.0	4	0.0		0.0	0.0	0.0			0.0		0.0		0.0		0.0			0.00 10.	
	0000	0.00	0.000 0	.0.	0.000 .5		10.	c	1	ö	0	0	.	olo	00	00	00	00	0			0.0	0.0	0.0			0.0		0.0		0.0		0.0			00 10 00	225
	150. 108	2.972 .1088 0 090.0	0.000	0.01 0.1	2.972 .1088	0.0	1.0 10.0							600. 600.																						00.0 00.10	00.00
	50.000 50.000	10.000 50.0	45.000	20.000	10.000	50.0 45 000	50.000	175 00		15.000	125.00	45.000		50.000	o,	50	ō d	<u>, o</u>	o, i	00	0	0.0	0.0	0.0	o	o.	0.0		0.0		0.0		0.0		8.0		
	0.500	0.500	0.950	0.950	0.500	0.5	0.950	0 950		0.950	0.950	0.950		0.950	174.5	174.5	180.9	180.9	180.9	30.	ЗО.	180.9	180.9	15.4	30	0.0	65.0	0.0	16.3	2.01	65.0	0.0	199	1	13.3	1 21	
	0000	0.0000	0.01 0	00.01	0000 0	, 160.	00.01			0 20.0	0.00.0	0.00		4.	200.0	0.200.0	0 200.0	0.00.0	0 200.0	0.0	0.00	0.200.0	0 200.0	0 200.0	0 10.0	0.010.0	0 400.0	0 400 400 0	0.001 0	0.001	0400	10000	0 00 0	0.00.0	0.00	· · · · ·	
	0 108	00 .250	00-10.0	0.0 0.0	00 .250	0 2 2 2 2 2 0	0.0	۔ ۲	D	2 2 2	.8	0.0	6	600	0001 0.0		0.0 20.	0.0 500.0	0.0 500.	20.0	0 20	0.0 500.0	0.0 500.	0.0 500.	0.0 20.	000 000	1.0 125	0.00	0.0 175		1.0 120.	0.0	0.0 175		0 12	i k	
	30. 30.	6.C	0	- 0	9.0	16.	0.1	0	0	1	5 E	ò	6		4 						9	U U	٢	\sim	-	30	9		90	20		0		10	90	1	
2										-		(0 +	-			~ ~		e u	-	n n	0	- 0	-				m.	^ -	~ =				-	0.0			ອມາ

Table 1. Listing of Baseline Unrestrained Occupant Data Set (Page 2 of 9).

•

Listing of GMCVS1.D at 16:20:49 on OCT 3, 1985 for CC1d=SUVI

3

Page

Table 1. Listing of Baseline Unrestrained Occupant Data Set (Page 3 of 9).

Table 1. Listing of Baseline Unrestrained Occupant Data Set (Page 4 of 9).

CC 1d=SUVH																																													•					
for																																																		
985																																																		
OCT 3, 1	- 19.5	195.1		-93.1	1.16-	- 63. 1	ACK3	-108.12	-86.72	- 108.12		10.01-	10. 10. 10.		-75.5	-93.1	c.c/-		-42.12	-37.72	ņ	-42.12	-42.12	-42.12	-42.12	-37.72	-42.12		- 19.0	0.61-	-19.00		- 121 - 3	-119.8		8.011-	-126.5	8.011				-59.5	- 75.5	-59.5		-75.5		0.01-	- 75 - 2	-91.2
16:20:49 on	50.0 50.0	- 1	UPPER 1.P.	50.0	50.0	-50.	FRONT SEAT BI	20.0	20.0	- 20.0	UWCK I.F.	50°.	- 20.	10 1. P.	50.	50. 1	- 30.		0.00	0.06-	SEAT CUSHION	30.0	30.0		30.0	30.05	- 30.0	SILL	50.0	20.0	-50.0	UT PANEL T	50.05	- 50.0	DF PANEL 2	50.	20.	-50.	.00. E		DWER I.P.	50.	50.	-50.	10 1. P.	20.	0,0	- 06-	100	50.
GNCVS1.D at	- 225.8	- 225.8		-242.9	-224.8	-242.9	12	-332.2	6.000-	2.260-,		- 246.2	- 242.4	W Pt	-246.2	-242.9	- 246.2		0.162-	0.106-	16 FR	-291.0	-276.0	0.182-	-276.0	-268.9	- 276.0	10	8.232.	- 200.	- 332.8		-277.9	-282.6	20 80	-282.6	- 301.0	-282.6		0.055-	22 FI	-242.4	-246.2	-242.4	53 W	-246.2	- 242 -	- 246.2	OH PD-	-224.8
Listing of	(TT5	177	178	179	180	181	182	681	184	581		188	189	061	161	192		201	961	197	198	193	200		202	204	205	206	207	208	502		212	213	214	215	216			221	222	523	224	225	226	227	872			202

Page

-

223 55 94.80 50. -60. 233 95.80 50. -50. -50. 233 24.80 50. -50. -50. 244 94.80 50. -50. -50. 241 241 50. -50. -50. 241 -94.80 50. -50. -50. 241 -94.80 50. -50. -50. 241 -301.0 50. -50. -50. 241 -301.0 50. -126 -30.1 241 -301.0 50. -126 -30.1 241 -301.0 50. -126 -30.1 241 -301.0 50. -126 -30.1 241 -301.0 50. -126 -30.1 241 -281.0 561.0 50.0 -126 241 -281.0 561.0 50.0 -126 255 -281.0 50.0 -126 -35.1 255 -281.0 50.0 -19.0 50.2 <tr< th=""><th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>Add one ca and three ca wheel ell</th><th>rd for additional column cards for additional</th><th>ellipsoid</th></tr<>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Add one ca and three ca wheel ell	rd for additional column cards for additional	ellipsoid
233 96.00 91.00 50. 75. 233 74.00 50. 50. 75. 233 66.00 50. 50. 50. 241 241 27.0 70.0 50. 50. 241 241 241 50. 50. 50. 50. 241 241 275.0 70.0 50. 50. 50. 50. 241 241 275.0 56. 50. 50. 126 241 241 275.0 56. 50. 126 241 241 50. 50. 126 241 241 50. 50. 126 241 241 50. 50. 126 243 243 56. 50. 126 244 584 56. 50. 126 255 284.4 50. 50. 126 255 255 232.8 50. 127 255 255 232.8 50. 126. 125 <th>0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>Add one ca and three ca wheel ell</th> <th>rd for additional column cards for additional psoids (D5).</th> <th>ellipsoid</th>	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Add one ca and three ca wheel ell	rd for additional column cards for additional psoids (D5).	ellipsoid
221 -66.80 -50. -60. 238 -81.80 -50. -50. 241 -91.80 50. -50. 241 -37.0 000 100 -50. 241 -37.0 000 100 -50. 241 -37.0 000 100 -50. 241 -37.0 000 100 -50. 241 -37.0 000 100 -50. 241 -37.0 000 100 -50. 241 -37.0 000 100 -50. 241 -37.1 000 100 -30.1 241 -289.0 56.0 -90. -127 241 -289.0 56.0 -90. -126. 255 -271.4 50.0 -191.0 -171.1 255 -273.8 0.01.0 -50.0 -191.0 255 -273.8 0.01.0 -00.0 -191.0 255 -273.8 0.01.0 -19.0 -77.1 255 -273.8 <td< td=""><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>Add one ca and three wheel ell</td><td>rd for additional column cards for additional</td><td>ellipsoid</td></td<>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Add one ca and three wheel ell	rd for additional column cards for additional	ellipsoid
238 26 BUMPER 50 -50 241 -81.80 50 -50 -50 241 -81.80 50 -50 -50 241 -301.0 50 -50 -50 241 -301.0 50 -50 -50 241 -326.0 50 -126 -127 241 -326.0 50 -127 -127 241 -289.0 561 -50 -126 243 -289.0 561 -50 -126 243 -289.0 561 -50 -30 243 -289.0 561 -30 -30 255 -289.0 50 -35 -35 255 -289.0 50 -91 -11 255 -289.0 50 -19.0 -30 255 -289.0 50 -19.0 -30 255 -289.0 50 -19.0 -19.0 255 -289.0 50.0 -19.0 -19.0 256 -	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Add one ca and three wheel ell	rd for additional column cards for additional psoids (D5).	ellipsoid
2339 -81.80 50. -50. 241 -81.80 50. -50. 241 -301.0 50. -50. 241 -301.0 50. -50. 241 -301.0 50. -50. 241 -301.0 56. -50. 241 -301.0 56. -50. 241 -325.0 56. -126 241 -289.0 56. -126 241 -289.0 56. -35. 243 -289.0 56. -35. 253 -284.4 50. -35. 255 -284.4 50. -35. 255 -284.4 50. -35. 255 -284.4 50. -19.0 255 -284.4 50. -19.0 255 -284.4 50. -19.0 255 -232.5 50.0 -19.0 255 -232.8 0.01.0 -19.0 256 -232.8 0.0 -19.0 256 -332.	0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Add one ca and three wheel ell	rd for additional column cards for additional psoids (D5).	ellipsoid
240 -81.80 50. -50. 241 -301.0 50. 50. -50. 243 -301.0 50. 50. -50. 244 -326.0 50. 50. -50. 245 -301.0 50. -50. -127 248 -301.0 56.1 50. -126. 248 -301.0 56.1 50. -127 248 -289.0 56.1 50. -30.1 251 -284.4 50. -30.1 -30.1 253 -284.4 50. -30.1 -30.1 254 -284.4 50. -30.1 -30.1 255 -271.4 50. -30.1 -35.1 255 -272.8 0.04. 50. -31.1.1 255 -223.8 50.0 -19.0 -71.1.2 256 -232.8 50.0 -19.0 -71.1.2 255 -223.8 50.0 -19.0 -71.1.2 256 -332.8 50.0 -19.0 -71.1.2	6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Add one ca and three wheel ell	rd for additional column cards for additional	ellipsoid
241 -81.80 -50. -50. 243 -301.0 50. -126 244 -301.0 50. -126 241 -301.0 50. -126 241 -301.0 50. -126 241 -301.0 50. -126 241 -301.0 50. -301.1 241 -289.0 561.1 -301.1 243 -289.0 561.1 -301.1 251 -289.1 561.1 -301.1 255 -289.1 500.1 -351.1 255 -289.1 0.001.1 50.0 -351.1 255 -289.1 500.1 -191.1 50.0 -351.1 255 -281.1 50.0 -191.0 -111.1 251.1 255 -225.5 510.1 50.0 -191.0 -111.1 255 -225.5 511.1 50.0 -191.0 -111.1 256 -225.5 511.1 50.0 -191.0 -111.0 2561 -203.2 51.1	6 0 7 1 7 1 7 1 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2	Add one ca and three	rd for additional column cards for additional psoids (D5).	ellipsoid
242 21 701.0 50. -126 244 -376.0 50. -126 244 -376.0 50. -126 244 -376.0 50. -126 244 -289.0 56.1 -126 244 -289.0 56.1 -305.0 -305.1 244 -289.0 56.1 -50.0 -305.1 255 -284.4 50.0 -305.1 -305.1 255 -284.4 50.0 -305.1 -305.1 255 -284.4 50.0 -305.1 -305.1 255 -284.4 50.0 -305.1 -305.1 255 -225.5 50.0 -71.1 -755.1 255 -225.5 50.0 -19.0 -19.0 255 -228.0 50.0 -19.0 -19.0 256 -228.0 50.0 -19.0 -19.0 256 -228.0 50.0 -19.0 -19.0 256 -228.0 50.0 -19.0 -19.0 256 -228.0<	6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Add one ca and three wheel ell	rd for additional column cards for additional psoids (D5).	ellipsoid
213 -301.0 50. -126 214 -301.0 56. -126 216 289.0 56.1 -30.1 216 289.0 56.1 -30.1 216 289.0 56.1 -30.1 217 -289.0 56.1 -30.1 255 -284.4 50.1 -35.1 255 -274.4 50.1 -35.1 255 -274.4 50.1 -35.1 255 -273.8 50.1 -35.1 255 -225.5 50.1 -31.1 255 -225.5 50.0 -11.1 255 -225.5 50.0 -12.0 256 -232.8 0.04 10.0 256 -232.8 0.04 19.0 256 -332.8 50.0 -19.0 256 -332.8 50.0 -19.0 256 -332.8 50.0 -19.0 256 -332.8 50.0 -19.0 256 -332.8 50.0 -19.0 257<	6.5 	Add one ca and three wheel ell	rd for additional column cards for additional psoids (D5).	ellipsoid
214 -325.0 -90. -127 247 -305.0 -50. -127 247 -289.0 561 -50. -126 248 -289.0 561.4 50. -30.1 247 -289.0 561.4 50. -30.1 255 -284.4 50. -30.1 -30.1 255 -284.4 50. -35.1 -35.1 255 -284.4 50. -35.1 -35.1 255 -284.4 50. -35.1 -35.1 255 -284.4 50.4 -30.1 -35.1 255 -284.4 50.4 -91.1 -35.1 255 -282.5 50.2 -91.1 -35.1 255 -225.5 51.4 50.0 -19.0 256 -223.8 50.0 -19.0 -19.0 256 -209.2 51.1 -19.0 -19.0 256 -232.8 50.0 -19.0 -19.0 256 -209.1 50.0 -19.0 -19.0 256 <td>7,5 1,32 1</td> <td>Add one ca and three</td> <td>rd for additional column cards for additional psoids (D5).</td> <td>ellipsoid</td>	7,5 1,32 1	Add one ca and three	rd for additional column cards for additional psoids (D5).	ellipsoid
241 249 0 55.1 72.6 -126 241 289 0 55.1 50. -30.5 257 284 50. -50. -30.5 253 284 50. -50. -30.5 253 284 50. -50. -30.5 253 284 50. -30.5 -30.5 253 284 50. -30.5 -30.5 253 284 50. -30.5 -30.5 255 232.5 0.01 50. -31.5 255 -223.5 0.01 200. -19.0 255 -223.5 0.01 200. -19.0 255 -223.0 50.0 -19.0 -19.0 256 -223.0 50.0 -19.0 -19.0 256 -223.0 50.0 -19.0 -19.0 256 -223.0 50.0 -19.0 -19.0 256 -223.8 0.0 50.0 -19.0 256 -223.9 0.0 -19.0	0 8 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	Add one ca and three wheel ell	rd for additional column cards for additional psoids (D5).	ellipsoid
241 289 0 541 289 0 560 -30 251 284 50 561 50 -35 -35 251 284 50 50 -35 -35 -35 253 274 50 50 -35 -31 -11 -35 -71 -35 -71 -35 -71 -35 -71 -35 -71 -35 -71 -35 -71 -35 -71 -35 -71 -35 -71 -35 -71 -25 -71		Add one ca and three wheel ell	rd for additional column cards for additional psoids (D5).	ellipsoid
241 -289.0 580.1 50. -35.1 255 -289.0 581.4 50. -35.1 255 -289.0 581.4 50. -35.1 255 -289.0 50. -35.1 255 -284.4 50. -35.1 255 -284.4 50. -35.1 255 -284.4 50. -35.1 255 -284.4 50. -35.1 255 -284.4 50. -35.1 255 -284.4 50. -35.1 255 -232.5 50. -31.1 256 -232.8 50. -19.0 256 -209.2 51.1 50.0 255 -209.2 51.1 -19.0 256 -209.2 51.1 50.0 255 -209.2 51.1 -19.0 256 -209.2 51.1 -19.0 256 -209.2 51.1 -19.0 255 -209.2 50.0 -19.0 265 -209.2 50.0 -19.0 256 -209.2 50.0 -19.0 257 0.0 50.0 -19.0 273 0.0 <	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Add one ca and three wheel ell	rd for additional column cards for additional psoids (D5).	ellipsoid
250 -289.0 561 -30. -35.0 251 -284.4 50. -35.0 -35.0 253 -284.4 50. -35.0 -35.0 253 -284.4 50. -35.0 -35.0 255 -225.5 50.4 -30.0 -35.0 255 -225.5 50.4 -30.0 -35.0 255 -225.5 50.4 -30.0 -37.1 255 -225.5 50.4 -91.1 -37.1 255 -228.0 50.4 -91.1 -91.1 256 -228.0 50.2 -91.1 -91.1 256 -228.0 50.2 -91.1 -91.0 256 -228.0 50.2 -19.0 -19.0 261 -209.2 12.0 50.0 -19.0 265 -322.8 50.0 -19.0 -19.0 264 -0.0 50.0 -19.0 -19.0 265 -322.8 50.0 -19.0 -19.0 264 0.0 50.0 -19.0	0 0 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	Add one ca and three wheel ell	rd for additional column cards for additional psoids (D5).	ellipsoid
251 294.4 561.5 294.4 50.1 35.1 253 271.4 50.1 35.1 36.1 35.1 255 225.5 225.5 50.1 35.1 35.1 255 225.5 50.1 50.1 35.1 35.1 255 225.5 50.2 91.1 36.1 35.1 255 225.5 50.2 91.1 36.1 31.1 255 225.5 50.2 91.1 36.1 91.1 256 228.0 50.2 50.1 19.0 71.1 256 228.0 51.1 10.1 50.0 19.0 261 209.2 51.1 50.0 19.0 71.1 262 31.2 81.0 50.0 19.0 71.1 263 31.2 81.1 50.0 19.0 71.1 264 270.1 50.0 19.0 210.0 19.0 265 0.0 27.0 9.0 15.0 0.0 275 0.0 0.0 0.0	20 20 21 22 23 23 23 23 23 23 23 23 23 23 23 23	Add one ca and three wheel ell	rd for additional column cards for additional psoids (D5).	ellipsoid
253 -284.4 551 + 146 -35. 253 -284.4 5035. -35. 255 -284.4 5035. -35. 255 -284.4 5035. -35. 255 -284.4 5035. -35. 255 -232.5 5035. -91. 255 -232.5 5011.1 -35. 256 -232.8 50.0 -19.0 256 -203.2 51.0 -19.0 256 -203.2 51.0 -19.0 256 -203.2 51.0 -19.0 256 -203.2 51.0 -19.0 256 -232.8 0.0 19.0 256 -232.8 0.0 -19.0 256 -233.8 10.0 50.0 256 -232.8 0.0 -19.0 257 0.0 -19.0 0.0 258 0.0 -19.0 0.0 277 0.0 -19.0 0.0 277 0.0 14.0 278 0.0 -14.0 277 0.0 0.0 278 0.0 -14.0 278 0.0 -14.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Add one ca and three	rd for additional column cards for additional psoids (D5).	ellipsoid
253 -277,4 50. -35. 254 -204.4 50. -35. 255 -277,4 50. -35. 256 -223.8 50. -91. 257 -223.8 50. -91. 256 -223.8 50. -91. 259 -228.0 50. -71.1 259 -228.0 50. -71.1 259 -228.0 50. -71.1 251 -229.2 51.1 -71.1 251 -232.8 50.0 -19.0 251 -232.8 50.0 -19.0 253 -332.8 51.1 -71.1 254 -332.8 51.1 -71.1 255 -332.8 50.0 -19.0 254 -332.8 50.0 -19.0 255 -332.8 50.0 -19.0 255 -332.8 50.0 -19.0 256 -332.8 50.0 -19.0 255 -372.8 0.0 50.0 256 0.0 0.0 -19.0 273 0.0 0.0 2.0 273 0.0 0.0 2.0 273 <t< td=""><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>Add one ca and three wheel ell</td><td>rd for additional column cards for additional psoids (D5).</td><td>ellipsoid</td></t<>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Add one ca and three wheel ell	rd for additional column cards for additional psoids (D5).	ellipsoid
254 -284.4 -50. -35. 254 -225.5 -225.5 -50. -91. 255 -225.5 -225.5 -50. -91. 259 -225.5 -225.5 -50. -91. 259 -228.0 50. -71.1 259 -228.0 50. -71.1 259 -228.0 -50. -71.1 259 -220.1 50.0 -19.0 261 -232.8 0.19.0 -71.1 262 -332.8 50.0 -19.0 263 -332.8 51.0 -19.0 264 -200.1 50.0 -19.0 265 -332.8 51.0 -19.0 264 -332.8 50.0 -19.0 265 -332.8 50.0 -19.0 265 0.0 -30.0 -19.0 266 0.0 0.0 -15.0 273 0.0 -15.0 0.0 275 0.0 -14.0 0.0 277 0.0 -14.0 0.0 278 0.0 -14.0 0.0 279 0.0 -14.0 0.0 271 0.0 -14.0 </td <td></td> <td>Add one ca and three wheel ell</td> <td>rd for additional columr cards for additional psoids (D5).</td> <td>ellipsoid</td>		Add one ca and three wheel ell	rd for additional columr cards for additional psoids (D5).	ellipsoid
255 225.5 50. 91. 255 -225.5 50. 91. 255 -225.5 50. -91. 256 -225.5 50. -91. 256 -228.0 50. -71.1 260 -93.2 50. -71.1 261 -209.2 50. -71.1 262 -228.0 50. -71.1 261 -209.2 50.0 -19.0 262 -32.8 50.0 -19.0 263 -209.1 50.0 -19.0 264 -200.1 50.0 -19.0 265 -332.8 50.0 -19.0 264 -200.1 50.0 -19.0 265 -332.8 50.0 -19.0 264 0.0 50.0 -19.0 265 -332.8 50.0 -19.0 267 0.0 90.0 -19.0 273 0.0 14.0 0.0 275 0.0 50.0 14.0 275 0.0		Add one ca and three wheel ell	rd for additional column cards for additional psoids (D5).	ellipsoid
255 -225.5 50. -91. 256 -223.8 50. -91. 259 -203.2 50. -91. 259 -203.2 50. -71.1 256 -228.0 50. -71.1 261 -228.0 50. -71.1 261 -220.1 50. -71.1 261 -220.1 50.0 -19.0 263 -332.8 51.0 -19.0 264 -232.8 51.0 -19.0 265 -332.8 51.0 -19.0 264 -232.8 51.0 -19.0 265 -332.8 51.1 50.0 -19.0 265 -332.8 50.0 -19.0 -19.0 265 -332.8 0.0 -50.0 -19.0 265 0.0 0.0 0.0 0.0 0.0 273 9.0 0.0 0.0 2.0 2.0 273 9.0 0.0 0.0 2.0 2.0 273 9.0 0.0	- ² - ² - ²	Add one ca and three wheel ell	rd for additional column cards for additional psoids (D5).	ellipsoid
257 -235.5 50. -91. 257 -235.5 50. -91. 259 -209.2 50. -91. 259 -209.2 50. -71. 250 -209.2 50. -71. 251 -209.2 50. -71. 252 -209.2 50. -71. 252 -209.2 51. -19.0 251 -209.2 51. -19.0 252 -332.8 51. -19.0 253 -332.8 51.0 -19.0 254 -203.8 50.0 -19.0 254 -203.8 50.0 -19.0 255 -203.8 0.0 -19.0 255 0.0 -19.0 0.0 256 0.0 -19.0 0.0 257 0.0 -19.0 0.0 277 0.0 -19.0 0.0 277 0.0 14.0 0.0 277 0.0 14.0 0.0 277 0.0 1	19- 11-11 0 0 0 0 0 0	Add one ca and three wheel ell	rd for additional column cards for additional psoids (D5).	ellipsoid
253 -223.0 -91.1 256 -223.0 50. -71.1 260 -223.0 50. -71.1 261 -203.2 50. -71.1 262 -223.0 50. -71.1 263 -203.2 50. -71.1 264 -203.2 50.0 -19.0 265 -232.8 50.0 -19.0 264 -203.1 50.0 -19.0 265 -332.8 50.0 -19.0 264 -203.1 50.0 -19.0 265 -332.8 50.0 -19.0 264 0.0 -19.0 -19.0 270 264 0.0 -19.0 271 270 0.0 -19.0 273 0.0 14.0 0.0 274 9.0 0.0 2.0 273 9.0 0.0 2.0 274 9.0 0.0 2.0 273 9.0 -14.0 0.0 273 9.0 0.0 2.0 273 9.0 0.0 14.0 273 9.0 0.0 14.0 283 9.0 16.0 10.0 </td <td></td> <td>Add one ca and three wheel ell</td> <td>rd for additional columr cards for additional psoids (D5).</td> <td>ellipsoid</td>		Add one ca and three wheel ell	rd for additional columr cards for additional psoids (D5).	ellipsoid
259 31 DASH2 -71 259 -209 50 -71 261 -228 -50 -71 261 -228 50 -71 261 -209 2 50 -71 262 -322 8 10 -71 261 -209 2 50 -19 261 -332 8 50 -19 261 -332 8 50 -19 261 -332 8 50 -19 261 -332 8 50 -19 263 0 -332 8 -10 264 0 0 -15 0 272 0 0 -11 0 273 0 0 -14 0 274 9 0 -14 0 275 0 12 0 14 0 274 9 0 -16 0 0 275 9 0 -14 0 275 0 9 0 14 0 277 9 0 -16 0 277 9 <td>000 000 000 000 000 000 000 000 000 00</td> <td>Add one ca and three wheel ell</td> <td>rd for additional column cards for additional psoids (D5).</td> <td>ellipsoid</td>	000 000 000 000 000 000 000 000 000 00	Add one ca and three wheel ell	rd for additional column cards for additional psoids (D5).	ellipsoid
259 -209.2 50. -71.3 261 -209.2 50. -71.4 261 -209.2 50. -71.4 262 -22.8 50. -71.4 263 -203.2 51.1 -19.0 264 -203.1 50.0 -19.0 265 -233.2 51.1 -19.0 264 -203.1 50.0 -19.0 265 -233.2 50.0 -19.0 264 -203.1 -50.0 -19.0 265 -233.2 50.0 -19.0 261 -332.8 -50.0 -19.0 262 -332.8 -50.0 -19.0 261 -332.8 -50.0 -19.0 270 0.0 0.0 5.0 271 15.0 0.0 5.0 275 0.0 14.0 0.0 277 30.0 16.0 14.0 278 9.0 -16.0 10.0 278 9.0 -16.0 14.0 279 9.0 -16.0 10.0 279 9.0 -16.0 10.0 279 9.0 -16.0 279 9.0 -	¹⁰ 10 0 0 0 0	Add one ca and three wheel ell	rd for additional column cards for additional psoids (D5).	ı ellipsoid
260 -228.0 50. -75.1 261 -228.0 50. -71.1 263 -332.8 50.0 -19.0 264 -332.8 50.0 -19.0 264 -332.8 50.0 -19.0 264 -332.8 50.0 -19.0 264 -332.8 50.0 -19.0 264 -332.8 50.0 -19.0 265 -332.8 50.0 -19.0 269 0.0 -16.0 0.0 270 15.0 0.0 5.0 271 273 0.0 14.000 273 9.0 0.0 14.000 274 8 0.0 -14.00 277 9.0 0.0 14.00 278 9.0 0.0 14.00 279 9.0 0.0 14.00 280 9.0 0.0 14.00 281 9.0 -16.0 0.0 281 9.0 0.0 10.0 282 9.0 50.0 10.0 283 9.0 50.0 10.0 283 9.0 50.0 10.0		Add one ca and three wheel ell	rd for additional column cards for additional psoids (D5).	llipsoid r
261 -209.2 -50. -71.1 262 -332.8 S1LL -19.0 264 -332.8 50.0 -19.0 264 -332.8 50.0 -19.0 264 -332.8 50.0 -19.0 265 0.0 -0.0 -19.0 267 0.0 -19.0 -19.0 269 0.0 -19.0 -19.0 269 0.0 -115.0 0.0 270 0.0 -115.0 0.0 271 15.0 0.0 -114.0 0.0 272 5 stat 14.0 0.0 0.0 2.0 273 0.0 0.0 0.0 2.0 2.0 275 0.0 12.0 300.0 14.0 0.0 278 0.0 12.0 300.0 10.0 2.0 2.0 277 0.0 0.0 0.0 2.0 2.0 2.0 2.0 277 <		Add one ca and three wheel ell	rd for additional column cards for additional psoids (D5).	ellipsoid
262 72 72 51 10 264 -200 1 50.0 19.0 265 -732.8 50.0 19.0 265 -732.8 50.0 19.0 265 -732.8 50.0 19.0 261 1 HEADREST FURCE (KG) 0 269 0.0 -15.0 5.0 270 0.0 0.0 5.0 273 0.0 114. 0.0 277 5.6 0.0 2.0 273 0.0 14.0 0.0 275 0.0 90.0 2.0 277 12.0 300. 14.0 278 0.0 0.0 2.0 278 0.0 0.0 2.0 278 0.0 16.0 10 278 0.0 16.0 10 278 0.0 16.0 10 278 0.0 10.0 10 10		and three wheel ell	cards for additional psoids (D5).	
263 -332.8 50.0 -19.0 264 -200.1 50.0 -19.0 265 -332.8 50.0 -19.0 266 -10.0 -19.0 -19.0 267 0.0 -15.0 0 269 0.0 500 50 271 15.0 0.0 50 273 0.0 15.0 14.0 273 0.0 14.0 0.0 271 15.0 900 -14.0 273 0.0 0.0 14.0 274 0.0 -14.0 0.0 277 0.0 14.0 0.0 278 0.0 0.0 14.0 279 0.0 500 8.0 279 9.0 0.0 14.0 279 9.0 0.0 14.0 280 9.0 0.0 14.0 281 9.0 0.0 10.0 281 9.0 50.0 10.0 282 9.0 50.0 10.0 283 10.0 50.0 10.0		wheel ell	psoids (D5).	
264 -200.1 50.0 -19.0 265 1 -10.0 -19.0 267 0.0 -15.0 0.0 270 0.0 -15.0 0.0 270 0.0 0.0 5.0 270 0.0 -15.0 0.0 271 15.0 0.0 5.0 272 5 5.14.10 0.0 273 0.0 -14.0 0.0 273 0.0 -14.0 0.0 273 0.0 -14.0 0.0 273 0.0 -14.0 0.0 275 0.0 -14.0 0.0 275 0.0 -14.0 0.0 277 0.0 300.0 14.0 278 0.0 -14.0 0.0 278 0.0 -16.0 0.0 280 9.0 -16.0 0.0 281 0.0 -16.0 0.0 283 0.0 </th <th></th> <th>wheel ell</th> <th>psoids (D5).</th> <th></th>		wheel ell	psoids (D5).	
265 -332.8 -50.0 -19.00 267 1 HEADREST FURCE(KG) 0 270 0.0 0.0 5.0 271 15.0 9.0 5.0 272 0.0 900 5.0 273 0.0 9.0 9.0 273 0.0 9.0 9.0 275 0.0 9.0 14.0 275 0.0 9.0 8.0 275 0.0 9.0 14.0 275 0.0 9.0 14.0 275 0.0 9.0 14.0 278 9 0.0 14.0 280 8 0.0 14.0 281 9 0.0 16.0 281 10.0 50.0 10.0 283 10.0 50.0 10.0				
258 1 HEADREST FORCE(KG) 0 2569 0.0 -15. 0 0 271 15.0 0.0 5.0 0 271 15.0 0.0 5.0 0 271 15.0 0.0 14.0 0 271 15.0 0.0 14.0 0 273 0.0 0.0 14.0 0 275 0.0 0.0 8.0 14.0 0 277 12.0 300. 14.0 0 0 2.0 2.0 277 12.0 300. 16.0 14.0 2.0	0.0			
251 1 HEADREST FORCE(KG) 0 270 0.0 -15. 0 271 15.0 -15. 0 272 0.0 0.0 5.0 272 0.0 0.0 5.0 273 0.0 0.0 5.0 273 0.0 0.0 2.0 273 0.0 -14. 0 274 0.0 -14. 0 275 0.0 -14. 0 275 0.0 300. 8.0 277 12.0 300. 14. 278 0.0 -16. 0 280 9.0 -16. 0 281 0.0 -16. 0 281 9.0 0.0 1.0 20 281 10. 50. 4. 0 283 10. 50. 4. 0	0.0 Cot			1=4/ 01.00
259 0.0 -15. 0.0 270 0.0 0.0 5.0 271 5.0 9.0 5.0 273 0.0 10.0 5.0 273 0.0 14. 0.0 275 0.0 14. 0.0 275 0.0 6.0 8.0 275 0.0 300. 8.0 275 6.0 90. 2.0 277 12.0 300. 14. 278 9.0 0.0 2.0 278 9.0 0.0 14. 280 8 0.0 14. 281 9.0 0.0 16. 281 9.0 0.0 1.0 282 9.0 0.0 1.0 283 9.0 0.0 1.0 283 9. 0.0 1.0			Add one card tor NSE	:6>10 (D/) and
270 0.0 0.0 5.0 271 15.0 900 5.0 272 2 5.5 stat 0.0 0.0 273 0.0 -14. 0.0 0.0 274 0.0 0.0 80 0.0 275 0.0 0.0 80 8.0 275 0.0 900 8.0 8.0 277 12.0 900 8.0 8.0 277 12.0 900 14. 0.0 279 0.0 0.0 14. 0.0 279 0.0 0.0 14. 0.0 14. 280 9 0.0 16. 0.0 14. 281 10. 50. 16. 0. 20. 12. 282 10. 50. 4. 10. 16. 10.		0.0	four corde for cort	
277 10.0 900. 5.0 272 2 5 EAT CUSHIDIN FORCE (KG) 5.0 273 0.0 -14. 0.0 5.0 273 0.0 -14. 0.0 5.0 274 0.0 -14. 0.0 5.0 275 0.0 0.0 2.0 8.0 275 6.0 800. 8.0 2.0 277 12.0 300. 14.0 2.0 278 0.0 50.1 14.0 0.1 280 9.0 -16. 0.0 2.0 281 0.0 0.0 10. 50. 4.0 281 9.0 0.0 10.0 10.0 20.0 282 9.0 50.0 10.0 10.0 20.0 283 10.0 50.0 10.0 10.0 10.0 10.0			IOUL CALUS IOL SPLIN	ig/aampers (uo
273 2 3.0.0 5.6.1 CUSNIDN FURCE(KG) 273 0.0 5.6.1 14.0 0.0 274 8 0.0 0.0 2.0 275 0.0 0.0 2.0 2.0 276 6.0 0.0 2.0 4.0 277 12.0 300.14.0 4.0 2.0 279 0.0 -16.0 0.0 2.0 280 9.0 0.0 -16.0 0.0 281 0.0 50.0 10.0 10.0 282 3.0 0.0 10.0 10.0 283 10.0 50.0 1.0 20.0 283 10.0 50.0 1.0 10.0		10.0	200.	
273 0.0 0.0 -14. 0.0 274 0.0 0.0 -14. 0.0 275 0.0 0.0 8.0 8.0 277 12.0 90. 8.0 8.0 277 12.0 90. 8.0 8.0 277 12.0 90. 8.0 8.0 279 0.0 12.0 90. 8.0 280 9 0.0 16. 0.0 281 0.0 0.0 10. 10. 281 10. 50. 4. 20. 281 10. 50. 4. 20.				
275 0.0 0.0 2.0 275 6.0 90 0.0 8.0 277 12.0 900 14.0 8.0 278 3 55.184 8.0 9.0 14.0 278 3 55.184 9.0 14.0 14.0 14.0 279 3 0.0 12.0 300. 16.0 14.0 14.0 280 9 0.0 16.0 16.0 1.0 16.0 1.0 281 3 50.0 50.0 10.0				
275 0.0 0.0 2.0 276 6.0 80. 8.0 277 12.0 300. 14.0 279 0.0 -16. 0 279 0.0 -16. 0 280 8 0.0 -16. 0 281 9 0.0 0.0 10.0 10.0 282 3 0.0 0.0 1.0 10.0 10.0 283 10. 500. 10.0 500. 14.0 12.0	0.1			
276 6.0 80. 8.0 277 12.0 300. 8.0 277 12.0 300. 8.0 279 0.0 -16. 0. 280 8 0.0 16. 0. 281 9.0 0.0 16. 0. 282 31 0.0 16. 0. 281 10. 50. 1.0 283 10. 50. 1.0 283 4 1016800 1.0	20.		Ľ	
277 12.0 300. 279 3 5EATBACK FURCE(KG) 279 0.0 -16. 280 9 -16. 281 0.0 -16. 281 9.0 0.0 282 9.0 -16. 281 9.0 1.0 282 9.0 -16. 283 10. 50. 281 3. 50. 283 40. 10.	130.	0.01	200.	
278 3 5 EATBACK FURCE (KG) 279 0.0 - 16. 0.0 281 9.0 0.0 - 16. 0.0 281 9.0 0.0 - 16. 0.0 281 0.0 0.0 - 16. 0.0 282 3. 50. 1.0 1.0 283 10. 500. 16. 12.0 283 10. 500. 16. 16.	0 450.	-		
279 0.0 -16. 0. 280 8 0.0 -16. 0. 281 9.0 0.0 1.0 1.0 282 3. 50. 1.0 1.0 283 10. 50. 1.0 16. 283 10. 500. 16. 16.				
281 280 8 281 0.0 0.0 1.0 282 1.0 500. 16. 283 10. 500. 16. 281 4 TOLERE FORCE (MG)	0.0			
281 0.0 0.0 1.0 282 3. 50. 1. 283 10. 500. 16. 283 10. 100.6680 16.				
282 3. 50. 4. 283 10. 550. 16. 284 4 TUEBRD FORCE(KG)	1 7.5		20.	
283 10. 500. 16. 284 4 TOEBRD FORCE(KG)	90.	9	200	
284 A TOEBRD FORCE(KG)	1000.			
285 0.0 -10.	0.			
206 18				
	14.0	0.2	22.	
288 0.3 40. 0.4	19 22 C.	0.5	74.	
	115.	8.0	145.	
	000	9.0	.00F	

.

s

Table 1. Listing of Baseline Unrestrained Occupant Data Set (Page 5 of 9).

,

÷

						1	
	291	4 1	350.	0.0	500.	0.9 9	900.
	282	0. / 1	VNDSHLD R FI	9.0	.0004	0.01	
	294	0.0	- 20.	0.0			
	295 206	- C	0.1	2.0	0.5	9.0	0.25
	297	20.	0.0				
-	298	9	WNDSHLD G F				
	209	0. P	.02-	0.0			
-	100	0.0	0.0	2.0	. 75	9.0	0.95
	302	20.	0.95				
-		_ c _ c	-30	0. O		0.0	
-	305)) 61	2				
-	306	0.0	0.0		1200.	- 1	1620.
	100	N 4	1800.		2055	20.	2160.
			CONSTANT F=	0.40			
-	016	0.0	0.0	0.40			
-	110	ç	CONSTANT F=	0.1			
	312	0.0	0.0	1.0			
-		-	UPP I.P. LOAU	(KG)		0	
		5					
-	316	0.0	0.0	3.0	80.	9	120.
	317		240.	12.	560.	. 81	1150.
	816	24.	1800.				•
	319	12	CONSTANT F=	6.0			
×	020	0.0	0.0 Thread F	R.O			
	200	0.0	0.	0.95			
	323	14	CONSTANT F=	0.67			
	324	0.0	0.0	0.67			
-	325	- - -	NLUADING 5 FU				
	326	0.4					
	328	0.0	0.0	0.5	0.0	0.6	0.95
	329	1000	0.95 11 0.95				•
						•	
	200			2			
	CCC	0.0	0.1	0.5	0.	0.6	0.05
	400	1000.	20.0 2010 C MID CMM	ce (ve)			
				0.0		0.1	
	200	2 u		2			
	338	0.0	0.0	-	70.	3.	110.
-	666	، <i>د</i>	145.	4.1	170.		182.
-	OVE	.9	188.	- <u>-</u>	190.	B	
-	196		176.	25	166.	- £	
	342	12.	.061		. Oe		5
-	CVC PPL	20. 18	U. VSHLD SPIKE	(KG)			
-	345	0.0	-2.5	0.0	1.5	1.0	
	346	61					
	347	0.0	0.0	₹.0 0	60. 100	n (120.
-	846)	0.7	160.	0.9	190.	D.1	

•

Table 1. Listing of Baseline Unrestrained Occupant Data Set (Page 6 of 9).

Page

.

v
5	sting of	GMCVS1.D	at	16:20	64	л 00	-	16	មិ ភូមិ ភូមិ	or CCI	d≖SUV	I			
	646	1.2		190			1.4			160.		1.5			130.
	350	1.1		08	_,		2.0			40.		2.2			20.
	351	2.5		o											
	352	19	2	NR I	107 -1	VD (KG	~								
	353	0.0		1	\$ 0		•	o.				0.0			
	134				0		-			200		•			120.
	356			390	, ,		-			420.		n n			150.
	357			465			~			485.		80			195.
	358			525						550.		61			000
	353	17.		100			6			900.		20		÷.	.010
	360	21.		1300			ę.	en.		160000					
	361	20	-	IE ADE	207	D (KG	_	4				(
	362	0.0		1	40.		0	Þ.				0.0			
	363	9 9 9			0			ę				ů r			
	364				D.D.		- C	g •					V: 14		
			-		د د د								,	•	
	000		-		2		c	c				0.0			
	E OF				2)	2							
	160	0			0.0		0	2		0.05		4.0			0.13
-	010	0.65		0.0				20		0.55		2.2	0		0.80
ł	110	2.8		6.0	N		9	0		0.99					
	372	22		DEBR	0 K										
	373	0.0		1	<u>.</u>		•	o.				0.0			
	374	80								!					2
	375	0.0		,	0.0		ċ.	2		0.47		4 i 0 i			6.0
	376	0.65		00	- (- 9	ç Q		0.26		2.2			9.24
		1. Y E C	NAV		, -		2	?		5					
	010	0.0			0.0										
	080		6	0	. 156			0.0							
	381	2.4	DOU	JEPAN	*										
	382	0.0		-	0.0		0	80							
	585	25	SEI	u`	(
	1961			- (0.			0							
	586	50 36		201	DCFS	(Ka)									
	207	0.0			2.5		0.0					0.1			
	388														
	68E	0.0			0.0		0.4			4.		-			8.
	061	5.1			16.		20			18 .		2.5			.0
	160	666	'	1	1	1	•				•				•
	392		~ ~	in e	n n	N	~	-	N	2	-	•	N		-
			N U	N 1	۲ C	8	Ľ	ú							
	505		n úc	о и г	:=	2	5	5	4						
	396	81 6	-	-	0	0	16	12	12						
	166	BIE	\$	0	6	0	9	15	12						
	398	4 18	φ	v	61	0	16	15	2						
	399	4 18	•	1	6	0	9	15	5 /						
	100	8	0	0	6	c	9	5	D (
1	401	F .	2	2.	5		9	2							
ĸ	402	-				¢	2								
					0 0	, c	2	1	10						
			10	10		0	9	1	12						
	106	5 18	51	Ē	9		16	15	12						

Table 1. Listing of Baseline Unrestrained Occupant Data Set (Page 7 of 9),

Page

۲

₽₽ <u>55555555555555555555555555555555555</u>	 งยาตีสีตรม ขุดหนึ่ง มีพิศักรรม ขุด ค.ศ. พ.ศ. พ.ศ. พ.ศ. พ.ศ. พ.ศ. พ.ศ. พ.ศ.	000 0														
	000000000000000000000000000000000000		\$ \$\$000000000000000	88868860888888888888888888888888888888	2225555-555555555	PpPA	two	cards	for	pos i t i	on of	co	E E	d whe	ses	(62).

Table 1. Listing of Baseline Unrestrained Occupant Data Set (Page 8 of 9),

Add two cards for angular orientation of column and wheel masses (G3). 0 Page 2 0.0 Ð 00 0.0 Listing of GMCVS1.D at 16:20:49 on 0CT 3, 1985 for CC1d=SUVH 0.0 000 0.0 0.0 8 ££ 0.0 9.0 10.0 0.0 0.0 49 23 0000000 0.0 15.0 15.0 20.0 0.0 00 56 0000 0000 0000 57 0 0 0.0 စစ္ 5 0.0 5 u 0 m *

Table 1. Listing of Baseline Unrestrained Occupant Data Set (Page 9 of 9),

Table 2. Force-Deflection Functions Retained from Baseline Data Set.

```
- seat cushion (kg)
- seat back force (kg)
- toeboard force (kg), renamed, toepan force (kg)
- windshield R function
- windshield G function
- constant F=0.40
- constant F=0.1
- upp I.P. load (kg), renamed, head/I.P. load (kgf)
- constant F=0.9
- toeboard F
- constant F=0.67
- underloading G function
- underloading R function
- windshield force (kg)
- windshield spike (kg)
- lower IP load (kg)
- toeboard G
- toeboard R
- windshield renamed windshield fric
- seat F
- body forces (kg) renamed I.P. (kgf)
```

Listing of GMCDL1 at 16:21:03 on DCT 3, 1985 for CCId=SUVH

0 0 9 175 00001 00001 00001 00001 1 9 10 10		CM. K		EC.0			0.			so.				
0 0		v	375.C	òò	ĕ	ē	000	000	_					4 . A
I 19 10		0	- -	0	000	000	000	0.0						8 . S
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-	1	2				:		1		į		
ULU A 6.091 5550 5550 1550 175 170 175 170 157 0000 0000		2			2.479	6/ F . Z	995.1	3				50	000 - 0	
W 2 11, 14 1 4 5 43 7 2000 0.0000		5		2	0000	0000	Dal z.	3	3					
H I I I I I I I I I I I I I I I I I I I		5												
UIL A = 0.01 750 7.70		2 3				0000							8	
III E 7.300 7550 755 75					0212									
If F 1 277 0550 (1500 (1500 (150 (150 (150 (150 (1		5			09999.	0000	0151					500		
RUL C 1.227 0550 0550 1575 5.75 5.75 5.75 2.000 00000 82.2 RUL C 1.227 0550 1560 1560 1560 1560 00000 0000 <td< td=""><td></td><td></td><td></td><td>000</td><td>. 7650</td><td>. 7650</td><td>0160.</td><td>р.</td><td>6/ · 6</td><td>23.1</td><td>0 -4.22</td><td>8</td><td>0000</td><td></td></td<>				000	. 7650	. 7650	0160.	р.	6/ · 6	23.1	0 -4.22	8	0000	
RIL F 1.22 0.000 1.22 0.000 1.22 0.000 1.22 0.000 1.22 0.000 1.22 0.000 1.22 0.000 1.22 0.000 1.22 0.000 1.22 0.000 1.22 0.000 1.22 0.000 1.000 0.000				227	.0550	.0550	.0150			0.0	0000.0	000	0000	יא
RT F F 12.707 7550 755		LUL I	9.0	160	6960	.6860	OLEL .	7.50	1.50	. 62	0 -0.94	000	0000	8.2
Wirk F 1.227 0.0550 0.0550 150 150 0.000 000 0000<		BLF BLF	е е	000	. 7650	.7650	160.	5.15	5.75	1.62	0 -4.22	8	0000	8.2
LUK 7 2.000 1160 1160 0259 4.50 4.50 1.50 0000 0000 0000 0000 0000 0000 0		3AF	-	227	.0550	0220	.0150			0.0	0000.0	0000	0000.	8.2
I.I.A 7 2.2733 3550 3560 3550 3500		N)	32.0	8	. 1160	. 1160	.0250	4.50	4.50	0.61	0000	80.	0000	В.2.
RUA 8.2.000 1160 0150 4.50 4.50 13.00 00000 8.2.2 LII NO.2001 0181 0185 0115 0115 00115 00115 0000 000 000	_	11	12.2	273	.3600	3600	0320	4.25	4.25	20.8	0 1.15	800	0000.	8.2.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		RUA	3 2.0	8	. 1160	. 1160	.0250	4.50	4.50	0.61	0000.0	8	0000.0	8.2
UII N 0.800 0115 0115 0012 5.50 3.00 000 000		A.I.R.	3 2.2	513	3600	. 3600	.0320	4.25	4.25	20.8	0 1.15	000	00000.0	8.2
RH M 0 80 0115 0115 0115 0012 5.5 3.05 9.00 0.0		1	4 0.8	000	0115	.0115	0012	5.50	3.05	0.6	000.0	000	0000	8.2.
MML W 1.43 0.2281 1.2381 0.000		RH	0	ç	0115	0115	0012	មា មា	3.05	0.6	000	0000	0000	8.2
NWHL W 1.49 AGAT 2281 1.29 6.48 0.0 6.53 0.00		MCDL		142	7620	2.286	2.285	1.49	64.1	-	9 15.00	0.00	000.0	5
W 2 -		MWHA	-	0	4547	1820	2281	1.25	18.50	19.5	00.0	000.0	000.0	6
W P 2 -2-1.6 0 -6.480 0 0 0 NP 0 3 -2-2.540 -15.530 0 0 0 0 HP R 4 -70 0 -9.530 0 0 0 0 LH W 1 -2-2.5540 -9.530 0 0 0 0 0 LH W 1 -70 0 0 0 0 0 0 0 LH W 1 -40 0 0 0 0 0 0 0 0 0 1 18 2 170 0 0 0 0 0 1 19 1 <					-4 De	c	E 9 -	c	c					
W P 2 -2-1.5 0 -5.48 0 0 13.93 HP R 4 -70 0 -9.55 0 0 0 HP R 4 -70 0 0 -9.55 0 0 0 HP R -70 0 0 -9.55 0 0 0 0 LK K 6 0 <t< td=""><td></td><td></td><td></td><td></td><td>_ _</td><td>5 c</td><td>c</td><td>i c</td><td>; c</td><td>c</td><td>)</td><td></td><td></td><td></td></t<>					_ _	5 c	c	i c	; c	c)			
NP 0 3 -2-2.54 015.590 0. 0. 0. 1.14 HP R 4 -20. 09.59 0. 0. 0. 0. 0. 1.14 (H W 1 -4-2.45 -9.53 0. 0. 0. 0. 0. 23 39 (H W 1 -4-2.45 -9.53 0. 0. 0. 23 39 (K X 6 0. 0. 16.19 0. 23 0. 23 39 (K X 6 0. 0. 16.19 0. 23 39 (R Y 1 -4-2.45 9.65 0. 0. 0. 4.76 0. 23 39 (R Y 1 -4-2.45 9.65 0. 0. 0. 4.76 0. 23 39 (R X 2 9 10. 0. 16.19 0. 0. 4.76 0. 23 39 (R X 1 -4-2.45 9.65 0. 0. 4.76 0. 23 39 (R X 1 -4-2.45 9.65 0. 0. 4.76 0. 23 39 (R X 1 -4-2.45 9.65 0. 0. 4.76 0. 23 39 (R X 1 -4-2.45 9.65 0. 0. 4.76 0. 23 39 (R 1 1 -4-2.45 9.65 0. 0. 4.76 0. 23 39 (R 2 9 10. 0. 16.18 0. 0. 4.76 0. 23 39 (R 2 9 10. 0. 16.18 0. 0. 4.76 0. 23 39 (R 4 10 -4-25 0. 22 04 5.36 04.09 (R 4 1 0 -4-25 0. 22 04 5.36 04.09 (R 4 1 10 -4-25 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		3		1	- 1 - 6	5 c	-6.4	5 c	i c	; =	56			
Wr $q = 2^{-2}$, 54^{-1} , -55^{-1} , -55^{-1} , -55^{-1} , -55^{-1} , -55^{-1} , -55^{-1} , -55^{-1} , -55^{-1} , -55^{-1} , -55^{-1} , -55^{-1} , -55^{-1} , -55^{-1} , -55^{-1} , -55^{-1} , -23^{-1} , -23^{-1} , -39^{-1} , -10^{-1} , -23^{-1} , -10^{-1} , -23^{-1} , -10^{-1} ,		•			; c	5 c	c	5	50	c				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		an	0		2-2.54	6	- 15.5	.06		0				
HP R -2° 09.59 0. 0. 4.78 (H W 1 -4-2.45 -9.85 0. 0. 4.76 0. 231.93 (K X 6 10. 0. 16.19 0. 4.76 0. 23770. 0. (K X 6 10. 0. 16.19 0. 43.0 0. 231.93 (K X 7 -4-2.45 9.85 0. 0. 0. 43.0 0. 73. 0. (K X 9 10. 0. 0. 0. 4.76 023.99 (K X 9 10. 0. 16.19 0. 0. 0. 73. 0. (K X 9 10. 0. 16.19 0. 0. 0. 231.99 (K X 9 10. 0. 16.19 0. 0. 0. 231.99 (K X 9 10. 0. 16.19 0. 0. 0. 231.99 (K X 9 10. 0. 16.19 0. 0. 0. 173.0 (K X 1 -4-2.45 9.18 2.57 0. 0. 0. 231.99 (K 1 12 -40. 0. 19.00 0. 0. 13.06 (K 2 3 3 -40.45 -1814.590. 0. 0. 0. 0. 0. 0. 0. (K 1 12 -40. 0. 13.07 0. 0. 0. 13.06 (K 1 12 -40. 0. 13.07 0. 0. 0. 13.06 (K 1 12 -40. 0. 13.07 0. 0. 0. 13.16 (K 1 12 -40. 0. 13.07 0. 0. 0. 13.16 (K 1 12 -40. 0. 13.07 0. 0. 0. 13.16 (K 1 12 -40. 0. 13.07 0. 0. 0. 13.16 (K 1 12 -40. 0. 13.07 0. 0. 0. 13.07 (K 1 12 -40. 0. 13.07 0. 0. 0. 13.16 (K 1 12 -40. 0. 13.07 0. 0. 0. 13.16 (K 1 12 -40. 0. 13.07 0. 0. 0. 13.16 (K 1 12 -40. 0. 13.07 0. 0. 0. 13.16 (K 1 12 -40. 0. 13.07 0. 0. 0. 13.16 (K 1 12 -40. 0. 13.07 0. 0. 0. 13.16 (K 1 12 -40. 0. 13.07 0. 0. 0. 13.16 (K 1 12 -40. 0. 13.07 0. 0. 0. 13.16 (K 1 13 -40. 0. 13.07 0. 0. 0. 13.16 (K 1 13 -40. 0. 10.2 0. 0. 0. 13.16 (K 1 13 -40. 0. 10.2 0. 0. 0. 13.16 (K 1 13 -40. 0. 10.2 0. 0. 0. 13.16 (K 1 13 -40. 0. 10.2 0. 0. 0. 13.16 (K 1 13 -40. 0. 10.2 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.					0	o	0	ò	0	0				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		an	۲		0.0	ò	-9.50	0	0	4.4	5			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					0	0	0	0	0	0				
-90. 90. 0. 0. 0. 0. 27. -70. 0. LK 7 -425 0. 0. 0. 0. 16.46 0. 16.46 0. 16.46 0. 16.46 0. 16.46 0. 16.46 0. 17. -425 0. 0. 13.0 0. 13.0 0. 13.0 0. 13.0 0. 13.0 0. 13.0 0. 13.0 0. 13.0 0. 13.0 0. 13.0 0. 0. 13.0 0. 0. 13.0 0. 0. 13.0 0.		CH 1	-	; •	4-2.45	- B - B	5 2.57	0	0	- 23	66.			
LK X 6 10. 16.18 0. 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 179.0 0. RI Y 1 -4.25 0. 0. 0. 0. 0. 19.0 19.0 0. 19.0					6-	06	c	0	4.76	0	27.	-10.	ò	
LA 7 -4-25 0 0 43.0 0 RII 7 -4-245 818 2.57 0 0 -4.09 0 79 0 RII 7 -4-2.45 818 2.57 0 0 -4.09 0 79 0 79 0 79 0 79 0 79 0 79 0 79 0 79 0 79 0 79 0 79 0 79 0 79 0 79 0 79 0 <td< td=""><td></td><td>C X J</td><td>e v</td><td></td><td>•</td><td>0</td><td>16.15</td><td></td><td>0</td><td>91 -</td><td>36</td><td></td><td></td><td></td></td<>		C X J	e v		•	0	16.15		0	91 -	36			
LAG 7 -425 0. 22.04 5.36 0. 7.03 0. 7.03 0. 7.03 0. 7.03 0. 7.03 0. 7.03 0. 7.03 0. 7.03 0. 7.03 0. 7.04 5.13 0. 0. 7.03 0. 7.0 0. 7.0 0. 7.0 0. 7.0 0. 7.0 0. 7.0 0.	-				c	c	c	c	43.0	ò				
90 0. 0. 0. 0. 79. 0. 79. 0. RIY 1 -4-2.48 8.88 2.57 0. -23 99. 0. 79. 79. 70. RX 3 90. 90. 0. 4.76 0. -23 99. 0. 0. 16.49 0. -23 99. 0. 0. 16.45 0. -23 99. 0.				; •	425		22.0	5.36	0	1	60			
RIY 1 -4-2.45 8.65 3.57 0. 0. -23 99 0. 0. -23 99 0. 0. 0. -23 99 0. 0. 0. -23 99 0. </td <td>_</td> <td></td> <td></td> <td></td> <td>6</td> <td>c</td> <td>c</td> <td>Ş</td> <td>c</td> <td>c</td> <td>c</td> <td>19</td> <td>Ċ</td> <td></td>	_				6	c	c	Ş	c	c	c	19	Ċ	
RK Z 9 0 0 0 0 0 -21 70 0 RK Z 9 10 0 16 10 0 13 0 -16 16 0 16 10 0 14 0 -21 70 0 RA H 10 -4 25 0 22 04 5.36 0 -4 09 79 0 14 59 0 14 10 -1 25 0 22 04 536 0 -4 09 0 13 0 0 13 0 0 13 10 13 0 0 0 0 0 0 13 14 15 10 0 <td< td=""><td></td><td>112</td><td></td><td>1</td><td>4-2.45</td><td>8.85</td><td>2.57</td><td>ċ</td><td>6</td><td>- 23</td><td>66</td><td></td><td></td><td></td></td<>		112		1	4-2.45	8.85	2.57	ċ	6	- 23	66			
RK Z 9 10. 0. 16.18 0. -16.36 RA H 10 -1<-25					90.	90.	0	0	4.76	0	-27.	70.	o.	
0 0 0 0 0 1		Ma	ຄ ຄ	•	0	ò	16.15	.0	0	- 16	. 36			
RA H 10 -425 0. 22.04 5.35 0. -4.09 LS 3 -40.0 0. 0. 0. 0. 79.0 0. LE 7 0. 0. 0. 0. 0. 79.0 0. LE 7 0. 0. 0. 0. 0. 0. 79.0 0. LE 7 0. 0. 0. 0. 0. 0. 79.0 0. RS 0 0. 0. 0. 0. 0. 13.06 8.70 0. RS 1 -40.0 0. 14.590 0. <t< td=""><td></td><td></td><td></td><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td>43.</td><td>0</td><td></td><td></td><td></td><td></td></t<>					0	0	0	0	43.	0				
90. 0. 90. 0. 90. 0. 79. 0. LS S 3 40.45 -18. -14.590. 0. -13.06 -13.07 0. -13.07 0. -13.07 0. -13.07 0. 0. 0. 0. 0. 0. 0. 0. 13.07 0.		RA	₽ +	; •	4-,25	o.	22.04	1 5.36	ò	7	60			
LS S 3 -40.45 -18 -14.590. 013.06 LE T 12 -40. 0. 13.07 0. 013.16 RS U 3 -40.49 10. 13.07 0. 013.11 RS U 3 -40.49 1814.590. 013.06 RE V 14 -40. 0. 13.07 0. 013.06 LW J 13 10. 0. 13.07 0. 015.11 EW V. 15 10. 0. 10.2 0. 05.11 RW K- 15 10. 0. 10.2 0. 05.11					90.	°.	ò	90.	ò	0	ò	79.	o	
0. 0. 0. 90. 0. 0. 05565. 0. LE T 12 -40. 0. 11.007 0. 015.11 RS U 3 -40.45 1814.590. 0. 0. 0. 8. RE V 14 -40. 0. 13.07 0. 013.06 RE V 14 -40. 0. 13.07 0. 015.11 UW J 13 10. 0. 10.2 0. 015.11 RW K- 15 10. 0. 10.2 0. 05.11 RW K- 15 10. 0. 10.2 0. 05.11		S,	то 10	i r	40.45	- 18	- 14 -	.06	ö	El -	90			
LE T 12 -40. 0. 13.07 0. 015.11 80. 0. 0. 0. 0. 0. 13.07 0. 015.11 RS U 3 -40.43 1014.590. 0. 013.06 RE V 14 -40. 0. 13.07 0. 0. 0. 55. 65. 0. LW J 13 10. 0. 13.07 0. 015.11 LW J 13 10. 0. 10.2 0. 05.11 RW K- 15 10. 0. 10.2 0. 05.11					ö	ö	90. 06	0	ò	ò	- 22-	-65.	Ö	
90, 0, 90, 0, 90, 0, 90, 0, 91, 10,		LE L	12	ĩ	ĝ.	ö	13.01	0	ò	- 15				
RS U 3 -40.45 1814.590. 013.06 0. 090. 0. 055. 65. 0. RE V 14 -40. 0. 13.07 0. 015.11 1W J 13 10. 0. 10.2 0. 05.11 1W V ⁻ 15 10. 0. 10.2 0. 05.11 RW K ⁻ 15 10. 0. 10.2 05.11					90.	0	°.	3 0.	o	ò	8	20.	0	
0. 090. 0. 0. 0. 0. 0. 55. 65. 0. RE V 14 -40. 0. 13.07 0. 015.11 1.W J 13 10. 0. 10.2 0. 05.11 RW K ⁻ 15 10. 0. 10.2 0. 05.11 RW K ⁻ 15 10. 0. 10.2 0. 05.11		RS (6	1	10.45	18.	- 14 -	.06	Ö	Et	90.			
REV 14 -10. 0. 13.07 0. 015.11 90. 0. 0. 90. 0. 08. 70. 0. LW J 13 10. 0. 10.2 0. 05.11 RW K-15 10. 0. 10.2 010. 0.					.0	0.	-90.	ō	o.	0	52	65.	0	
90. 0. 0. 90. 0. 08. 70. 0. Lw J 13 10. 0. 10.2 0. 05.11 0. 0. 010. 2. 105.11 Rw K ⁻ 15 10. 0. 10.2 05.11		BE		1	Q.	0	13.01	0	0	- 15				
LW J 13 10. 0. 10.2 0. 05.11 0. 0. 0. 0. 010. 1. RW K ⁻ 15 10. 0. 10.2 0. 05.11					<u> 0</u> 0.	0	ö	90.	o	0		70.	0	
0. 0. 0. 010. 0. RWK-15 10. 0. 10.2 0. 05.11		, Y	61 1	-	0		10.2	°.	o.	5	:			
RW K ⁻ 15 10, 0, 10.2 0, 0, -5.11					0	•	0.	o.	-10.	ò				
		H Ma	- 15			1								

8.3.41 8.3.42 8.3.42 8.3.42 8.3.42 8.3.67 8.3.07 Table 3. Listing of Final Data Set Including Energy-Absorbing Column (Page 1 of 11),

-

. . . .

Listing of GMCOLI at 16:21:03 on OCT 3, 1985 for CCid=SUVH

59 60			0.	Ο.	ø.	0.	0.	o .					8.3.Q1
61			0.	ο.	ο.	ο.	ο.	о.			-		8.3.Q2 8.3.R1
62		_											8.3.R2
63	115.8	0.	0.2	0.5	90.		115.8	0.	0.2	0.5	70.0	B.4.A	
64	115.8		0.2	0.5	90.		115.8	0.	0.2	0.5	70.	8.4.8	
65	30.	. 108	0.	0.9	60.		150.	. 108	0.	0.5	60.	B.4.C	
66	30.	. 108	0.	0.5	eo.		150.	. 108	Ο.	0.5	eo.	8.4.0	
67	6.	. 25	0.	0.5	10.		2.972	. 1088	0.	0.5	100.	8.4.E1	
68	16.	160.	160.	0.5	60.		0.	0.	0.	0.	0.	B.4.E2	
39	0 .	10.	10.	0.95	45.		0.	0.	0.	0.95	0.	8.4.F	
23	.	0.	0.	0.95	5U.		1.	10.	10.	0.95	42.	B.4.G1	
77	6	25	<u>.</u>	0.5			0.070	U.	0.	0.	0.	B.4.G2	
73	16	160	160	0.5	60		2.912	. 1008	<u>o</u> .	0.5	100.	8.4.H1	
74	0	10	10	0.95	45		<u>0</u> .	<u>0</u> .	0.	0.05	0.	B.4.H2	
75	•	10	10	0.95	50		ų.			0.95		8.4.1	
76	0	0	n	0.00	0		<u>.</u>	0	1 0.	0.95	42.	8.4.01	
77	14.	õ.	õ.	.5	125		14	õ.	0.	"	60	0.4.02	
78	0.	ŏ.	õ.	0.	0.		0.	õ.	õ	, s	0.	B 4 42	
79	14.	20.	ŏ.	.5	45.		14.	õ.	<u>0</u> .	5	70	1.4.62	
80	0.	0.	õ.	ò.	0.		0.	ŏ.	ŏ	0.	0	R A 12	
81	14.	o .	o .	. 5	125.		14.	õ.	Ö	.5	60.	0.4.62	
82	Ο.	Ο.	Ο.	Ο.	0.		0.	Ō.	ō.	0.	0.	R.4.M2	
83	14.	20.	Ο.	. 5	45.		14.	0.	o .	. 5	70.	RF 1	
84	ο.	ο.	Ο.	ο.	Ο.		ο.	ο.	0.	0.	0.	8.4.N2	
85	14.	20.	Ο.	. 5	60.		14.	20.	O .	. 5	60.	LW	
86	14.	20.	Ο.	. 5	60.		14.	20.	Ο.	. 5	60.	RW	
87												B.4.Q	
78												8.4.R	
89	1.4	1000.	200.	174.5	ο.				Ο.	0.		B.5.A	
90	1.4	1000.	200.	105.0	0.				Ο.	Ο.		8.5.B	
91	. 2	20.	200.	174.5	Ο.				Ο.	Ο.		B.5.C	
92	.2	20.	200.	180.9	O .				Ο.	ο.		8.5.D .	
93	1.2	500.	200.	180.9	0.				ο.	Ο.		8.5.E	
94	1.2	500.	200.	180.9	0.				0.	0.		8.5.F	
95	1.2	500.	200.	180.9	0.				0.	o .		8.5.G	
07	·. 2	120.	10.	15.4	0.				0.	0.		B.5.H	
28		20.	10.	30.	0.				<u>o</u> .	0.		8.5.1	
99	ò	0	10	0	ŏ.				0.	0.		8.5.0	
100	1.2	500	200	180 9	ŏ				0.	0.		8.5.K	
101	1.2	500	200	180.9	õ.				<u>0</u> .	0.		0.3.L	
102	1.2	500	200	180.9	õ.				õ.	õ.		0.3.M	
103	1.2	125.	10.	15.4	ŏ.				õ.	0.		0.5.1	
104	. 6	20.	10.	30.	ŏ.				ň	õ		0.5.0	
105	. 6	20.	10.	30.	ŏ.				õ.	õ.		850	
106	Ο.	0.	to.	0.	o .				ŏ.	Ő.		8.5.8	
107	1	125.	400.	65.	0.				0.	0 .		8.5.5	
108	. 1	50.	400.	65.	Ο.				Ó.	0.		8.5.T	
109	Ο.	0.	400.	Ο.	0.				Ο.	0.		8.5.V	
110	. 1	175.	100.	60.	Ο.				Ο.	0.		8.5.V	
111	· . •	175.	100.	60.	Ο.				Ο.	0.		B.5.W	
112	Ο.	0.	100.	0.	0.				Ο.	0.		8.5.X	
113	. 1	125.	400.	65.	0.				Ο.	0.		8.5.Y	
114	. 1	50.	400.	65.	Ο.				Ο.	0.		8.5.Z	
115	Ο.	0.	400.	0.	0.				Ο.	0.		8.5.AA	
116	. •	175.	100.	60.	O .				Ο.	ο.		8.5.AB	

Table 3. Listing of Final Data Set Including Energy-Absorbing Column (Page 2 of 11).

8.5.AC	8.5.AE	8.5.AF	R.S.AH	18.6	9.8	ຍ ຍີ່ຍ		8.6	9.8	8.6	9.0 8		8.6	8.6	8.6	9.6			5.6	C. 1.A	C.2.A			D.2.1A	0.2.18		D. 2. 2A	0.2.20	0.2.20	0.2.20	0.2.38	D.2.3C	0.2.30	0.2.48	D.2.4C	0.2.40	N. 2. 5 H	0.2.90	0.2.50	D.2.6A	0.2.60	0.2.60	D.2.7A	0.2.78
				0.00														ŝ	88) 	0	ċ																						
				00.01												•		2			ō	1.1-																						
o e	. c	0		10.00							r							200			1 0.	9.B																						
ò				01.00	. 00	29		0	0.00	0.10	2 : 2 :		20	1 .0	 Q	2	2.2	2		2	~	2.7	5																					
				0.10 0	0.10	20		0	0.10	0.10	0 : 0 :		0.00	0.10	O					2 Z	è.																							
				0.10	0.10	88 			- 0	0.40	8 i • ·	58	50	0.10	0.40	8 		50	50	MOTIN		ະ ເ																						
				¢	•	00	50	o c	0	0	0	50	° S	0	°	0	00	56	> c	HICLE	0	~ (-	•	•																				
																				RY VE	o	52	, ,)				Ð.	+	n		*	E.1	14.6	1.2	14.6	-	6.2	 0	, 1		6.9		10.0
ö	o c	0																		PRIMA	0	8. (5.	,	ē.			- 26	23.	- 56	5		Ë,	ī	Ţ	ī.	Ĩ	1	۹ ۱	Ē		1		1
60.		25.																		SE	1361	26.		,						1141 A 11			,	Þ.			KAINI			IT PAN				
100		00																		ER PUL	ò	6,61	5	NVANO	50.	- 20	LAN.	- 50.	- 50	50.		-50.	50.	-50	-50.	50.	U RESI	205	- 50.	TRUMEN		50.		050
175.	. c	50.																		BARRI	ò	5.0		FLO			105			NA15							HEA			SNI			SB1	-
-		-																		FRONT	0	00	5	· -	96.8	96.8	2.01	123.1	86.8	123.1	ר ר ני	10.	51.4	36 8	66.8	36.8	10 Q	105.8	51.8	60 L	0. 11 11 11 11 11 11	56.5	~	- 13 -
				. 67	4	ı 1	9 1	- 6	5	0	-	N	, 4	5	9	1	c (D (2 -	- 0		21	n u	-	8	5	2	2	Ð	4 1			8		-	2		10	6				-	ç

Table 3. Listing of Final Data Set Including Energy-Absorbing Column (Page 3 of 11).

Page

ņ

D.2.8A	0.2.88	D 2 80	D.2.9A	D.2.98	D.2.9C	0.2.30		0.2.100	0.2.100	D.2.11A	D.2.118	0.2.110	01.2.110	D. 2. 12R	0.2.120	D.2.120	D.2.13A	02		D. 2. 14A	02	02	02 7 3 464	ACT . 2. U	02	02	0.2	22	02	0.2	0.2			0.2	2.2			2	.2				.2	~		2
																																		-				-	-		-					-
																																•														
R.7	97	87		_													10037	99169	66693		91747	20000							,	1030	1800	4287														
- 4 1 -	· El -	-41.	1		C0 . L		7.13	2.73	E1 . 1		20	2.73		5.73	E	61.2	- 19 7	-36.10	- 19.7		- 16.65			-14.79	-31.16	19.12	14.79	21.67	-31.16		80, 81	26.00	1				8°.8	ហេរ ខេរ	n . D	2.	2.	22.	ļ		22.	
																									•	,	,		1	1		•			. •		-	-	•	N I	2	1	Ċ		iii	
o	<u>.</u>	50.			50.		ċ		.00			00					_	0		_				Ω.	សាម	7	ຄ	5	5											8 7	ئ	ŧ۵.	Ľ		5.1	
	¥0	'	201	19 10		502	10	in .		ונ הכרי	ភ្លំ	Ĩ	204	រភ័ រ	۲. ۱.		E 96		1	COLEAE			OLEAR	-		DIFAI		Ī			ີມີ	1	0.1 0	2 0	1	01.8	22		DLR	18	2	8	- 17	-	- 18	
.81	1.71	- B -			16	0	0	50	- a	. 8	50	60	N	ទ			.8895	323695	8895			123695		60			, 60	13		67773	61743	02 197	ບ . ະ	5	15	0	51	0 H	ם ?	75	75	13	22 22	12	15	1
- 20	Ŧ	- 50	1 1	0	ъ. Т	-	0.0		.	5	E	19.		40			102	34	102		2 <u>2</u>	1.46	Ë	102	 	-	102	103.	34.0	8.68	89.5	61.6		82-	-41.	61	87		20	-28.		-28.	-	-28	- 11	

Table 3. Listing of Final Data Set Including Energy-Absorbing Column (Page 4 of 11),

Page

۲

Listing of GMCOLI at 16:21:03 on OCT 3, 1985 for CC1d=SUVH

233	-40.	- 22 .	22.				
234	-40.	22.	-22.				0.2
235	23	COLP					0.2
236	-37.5	-22	22.				0.2
237	-37.5	22.	22				0.2
238	- 37.5	-22.	-22				0.2
239	24	HUB					0.2
240	- 36 .	- 18.5	18 5				0.2
241	-36.	18.5	18 5				0.2
242	-36	-18 5	-18 5				0.2
242.2	25	KNEE REST	PAINT				0.2
242.4	51.4	-50	- 31 3				U.2.3A
242.6	70.	-50	37				0.2.38
242.8	51.4	50.	-31	a .			0.2.30
243	21	.49 1.49	1.49 -10.	<u></u>	0 0		0.2.30
244	22	.24 1.24	1.24 0	0 -17 250	0 . 0.		0.5
245	23	.24 1.24	1.24 0.	-17 2517 25 0	0. 0.		0.5
246	24	.24 1.24	1.24 0.	17.25 17 25 0	0.0.		0.5
247					v. v.		0.5
248							0.7
248.1	18 200	. O.	0. 54.27	1029.91-10	. 33	00 0	D.7
248.2	19 180). O .	-17.25-40.	017.25-1.	25 34	00 0	08
248.3	19 180	17.2	517.25 -40.	-17.2517.25 -1.	25 35	00 0	ha
248.4	19 180	17.25	17.25 -40.	17.25 17.25 -1.	25 35	00 0	58
249	1	SEAT CUSIC	N FORCE(KG)			U U.	E 4
250	Ο.	- 14 .	Ο.	1.			E 2
251	. 8						E A
252	Ο.	0.	2.	20.	4.	45.	F.A
253	6.	80.	8.	130.	10.	200.	F.A
254	12.	300.	14.	450.	•		E.4
255	2	SEATBACK F	ORCE(KG)				E.I
256	0.	- 16 .	Ο.	1.			E.2
257	8						E.4
258	0.	Ο.	1.	7.5	2.	20.	E.4
259	3.	50.	4.	90.	6.	200.	E.4
260	10.	500,	16.	1000.			E.4
261	3	TOEPAN FOR	CE (KG)				E. 1
262	0.	- 10.	Ο.	۰.			E.2
203	18	•					E.4
204	0.7	0.	0.1	14.	0.2	22.	E.4
203	0.3	40.	0.4	56.	0.5	74.	E.4
260	0.0	95.	0.7	115.	0.8	145.	E.4
267		150.	2.0	240.	3.	300.	E.4
260		350.	5.	500.	6.	900.	E.4
270	· .		9.	1650.	10.	1800.	E.4
271	0	-20	FUNCTION				E.1
272	· ·	20.	υ.				E.2
273	0 1				· ·		E.4
274	20	.	2.	0.5	9.	0.25	E.4
275		WNDSHID A	FINCTION				E.4
276	0	-20	0.000				E.1
277		20.	U .				E.2
278	0.	0	7	76	•		E.4
279	20	0.95	4.	. / 5	9.	0,95	E.4
280	6	CONSTANT E	-0 4				E.4
281	0	0	0.4				E.1
282	7	CONSTANT P	-0.05				E.2
		CONSTRACT P	-0.05				E.1

Table 3. Listing of Final Data Set Including Energy-Absorbing Column (Page 5 of 11),

Page 5

.

8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(KGF) 0.	3. 12. 0.9 .67 0.95	FUNCTION 0.5 FUNCTION 0.5	0.5 (KG) 0.	(Ka) (Ka) (Ka)	0.4 7.4 7.0 0.0 0.0	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.2 1.5
		80. .09.	0	•	1 100. 1 100. 1 160. 1 160.	60. 	420. 420. 5550. 460000.	0.05 0.55 0.99

..

Table 3. Listing of Final Data Set Including Energy-Absorbing Column (Page 6 of 11).

Page

v

Listing of GMCOLI at 16:21:03 on OCT 3, 1985 for CCId=SUVH

341	0.	0.	0.2	0.47	0.4	0.37 E.4
342	0.65	0.31	1.5	0.26	2.2	0.24 E.4
343	2.8	0.22	10.	0.01		E.4
344	19	WNDSHLD FRIC				E.1
345	O .	10.				E.2
346	0.76	0.156	0.			E.3
347	20	SEAT F				E.1
348	Ο.	10.	_			E.2
349	0.3	0.1	0.			E.3
350	21	MID I.P. (KGF)	-			E.1
351	0.	-2.5	0.		1.	E.2
352			~ .			E.4
333	0.	0.	0.4	4.	1.	8. E.4
334	1.5	16.	2.0	18.	2.5	30. E.4
333		Chesisi	•			E. 1
356	U	- / .	0.			E.4 E.4
337	0 3			241		501 E.4
356	0.	1242	7.	18.4.4	2.2	692. E.4
359	"	CUEST C	•.	1347.		E.4
360	n 23	-7	0			5.1
361	U		0.			E 4
767	۰° ،	0	1	0.2	2 2	0 275 E Å
364	Å.	0.270	7	0 357		E A
365	24	CHEST R	••	0.001		F. 1
366	0	-7	0			F 7
367	5.5	••	••			F.4
368	0	0	•	0 48	2 2	0.356 F.4
369	4.	0.352	7.	0.218		E.4
370	25	COLUMN EA				E.1
371	Ο.	-20.	0.			E.2
372	4					E.4
373	Ο.	0.	1.	1000.	2.	2500. E4
374	Э.	8900.				E4
375	26	COLUMN G				E.1
376	Ο.	<u>.</u> O.	0.01			E.2
377	27	COLUMN R				E.1
378	0.	0.	0.99			E.2
379	28	HUB FD	_			E.1
380	0.	-20.	0.			E.2
381	- 5				_	E.4
382	0.	0.	1.	500.	2.	1000. E4
383	4.	4000.	5.	10000.		E4
384	29	HUBG				E.1
385	0.	0.	0.95			E.2
386	30	HUB R	0.04			E.1
387	0.		0.01			E.2
388	- ³¹			•		E.I
303	õ.	900	0	v .		E 2
390 1	. 11	CONST F=0	υ.			E.J
390.1	^	0	0			C 1 E 3
390.7	. 11		v .			
390.21	^	-20	0			
390.21	J. A	20.	.			F.4
390.27	0.	0	. 5	815.7	12.5	815.7 F4
390.24	20.	4000.				E4
390.3	34	WHL . SP . DAMP . TOP	,			EI
	-					

Table 3. Listing of Final Data Set Including Energy-Absorbing Column (Page 7 of 11).

Page 7

.

.

																,								5				Γ.	F. 1									Γ.	F. 1			-			1								
																								-																													
	E C	20.				.6	0				2.					_	Ċ		, c	5	2		,	N																													
	č	2				-	ñ				ê					5	2				2		¢	N																													
																							e	N																													
	5					ທ					4									•			e	×																													
	-					-	5.				4	÷		0			1				2		•	-																													
																							r	•																													
							ا ت					41.									2	3	c	•																													
	39	-				5	71				54	15				20	00		1		5 u	5	•	N	0	0	2	2	y,	1 9 (b (• •		- 0	5		•	-	- 1	- 1	- •	- •		, o	. 0	~	+	1	~	2	2	2	
																							r	N.	11	13	2	2	2	2		<u>v</u> u			2	2	2	ŝ	2	N 1	N 8	• •		. U	. N	2	2	2	~	6	6 6	e 6	
		-					•														, tt	,	•	• •			2		2		2 6	2 4			0	0					- • > •			. .				•		0	50	20	•
0	е.	6		ò		8.	n		ò		~	14	6	o		-	*	+		2	2	2	ę	-			-	-				ų	,			0	-							•	•	•	•	•	-	e	Ð	6	•
			08.4										ž											• 0		0		m (9	P (D (•			•	-		2	~ •							-	-	•	-	ŝ	10	5	
n			WYQ.				UD.	0 I 7	<u>.</u>			.е Г	LOA	ċ							ģ	5	•			-	80	- 1			 > c	 > #			ີ ເຄ	9 9	5	- 1	N 0		, .			- 10	5	-	10	•	-	й е	й -	8	ē
	ò	-	L. SP	1	,	0	ī	DOME	-		0	12	4	- AC		ò	õ	400	50	102			•	. 60	8	-	80	- -	6	~ 0	- 	Sur	្រា	•	5	- 9	•	- 1	~ •	~ •	, .			- 10	6	-			-	=	3	-	•
			Ī					ABI					ž										•		0	5	0	-	0	5 0	-) D	- 0	-	÷	-	•	0 0						0		-	- -	<u> </u>	=	=	=	;
9			5		9			g		Ð			-		17							5	•		+ 2	•	2	0 1 0 0	N (~ r			i ñi	ю 10	ñ B	Ň	ň n	N i	ŇÌ					N	ñ o	х -	×	ž	ž	ž	2	2	ř
2	ò	10 10	(5	. (0	ດ. ເຄ	£7)	ċ		Ö	8	17	o.		ò	P	9		1	2	66	•											J	Ţ	-	-	1					2	ž	¥	-	÷	-	2	-	2	-	
- 2	E	ž	÷.	-	2	2	ž	£0	5	2	23	23	51	5	59	69	73	11	81	85	08																																

80

Page

• • • • •

Table 3. Listing of Final Data Set Including Energy-Absorbing Column (Page 8 of 11).

6)

age

Listing of Final Data Set Including Energy-Absorbing Column (Page 9 of 11) Table 3.

	8 P 4 B	< 10	< ₽
00000 00000		IIIIIIIIIIIIIIIIII	
N N N			

Ξ							
ß							
ē							
õ							
Ľ		-					
ē			000000000	000000000	00000000000000		
5				•			
198		8					
. .		۰,					
•		•					
5		. 6	000000000	00000000			00000000000
-							
5	00000	5					
6		ò					
<u></u>	មាល	. 4					
			000000000				
ŧ		°		0-			. U U 4 D U U U U U U U U U U U U U U U U
ā		۳. ۲	000000000	000000000		000000000000	0000000000
-			ຄ		0	σ)
Б.	ູ້ຄູ່	-	-		•	-	
ž	1 - 1 0 0	ò					
		Ū					
0				•			
ĥ	0709-0	2222	450 - B B D - N				
÷.	844440 88880 88880	5555	000000000000000000000000000000000000000	00000000	000000000000000000000000000000000000000		000000000000
-							
-							

Table 3. Listing of Final Data Set Including Energy-Absorbing Column (Page 10 of 11).

Table 3. Listing of Final Data Set Including Energy-Absorbing Column (Page 11 of 11).

	Ξ	1	: 1	: I	Ξ	1	Ξ	I	HH	I	H	Ξ	H	I	111	1	: 3	÷																										
									9		<u>0</u>		₽		ç	?																												
									Ð		6 7		0		σ	,																												
									80	0	æ	61	8	61	¢	ł																												
HAAS									~	8	2		~	18	-																													
cc ld=									5	11	9	11	9	17	¢																													
985 for	Ö	0	Ö	ò	0	0	Ö	ò	ស	9	un.	9	ID.	9	1 0	16													6							е.							e.	
ж е									4	5 ·	4	5	4	15	æ	5																												
on 0CT	0	0	o	ò	0	0	ō	0	e (4	5	2	•	44	Ð	4											8,5		112.					8.5	4	112.					8.8	7.	112.	
60									N		~	2	2	6	2	Đ		c	5	c	s c	i c	; .		5 c	-	-	• •	160		o	ö	-	-	<u>0</u>	160.		0	-	o		ġ.	160.	
16:21	120.	130.	140.	150.	160.	170.	180.	190.	- !	2	-	5	•	12	-	12			5				•						2.		•					.					<u>ຄ</u> .		.9	
at	0	0	0	0	0	0	0	0	_		_		_				•	-		c	ċc	; -	Ċ	s c	- <	c			ņ	ž.	7	Ö	ò	0	л. Г	ED I	27 .	ò	ö	ī	2	ιņ.	ĥ	<u>×</u>
or GMCDL									6		61		61		16		5	-	0	c	; -	: c	òc	; -	: c	ċ	5	5	- 30.	GMCOL 1	.0	-	o.	ເ	<u>ي</u>	-80.	GMCD1. 1	-	.0		<u>ت</u> ه.	5.	-30.	GMCDL 1
Listing	1053	1054	1055	1056	1057	1058	1059	1000	1061	2901	1063	1064	1065	1066	1067	1068	1069	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027

Раде

e

:

•

Surface or Ellipsoid Number	Surface or Ellipse Name	Ellipse (number)
1	Floorpan	Left foot, right foot (8,11)
2	Toepan	Left foot, right foot (8,11)
3	Knee restraint	Left and right upper and lower legs (6,7,9,10)
4	Windshield	Head (5)
5	Head restraint (Instrument panel top)	Head (5)
6	Instrument panel	Left and right lower arms and hands (13,15,16,17)
7	SB1 (Bottom seat back)	Lower and center torso (1,2)
8	SB2 (Top of seat back)	Center and upper torso (2,3)
9	SCl (rearmost seat cushion segment)	Lower and center torso (1,2)
10	SC2 (Seat cushion segment)	Left and right upper legs, lower torso (1,6,9)
11	SC3 (Seat cushion segment)	Left and right upper legs, lower torso (1,6,9)
12	SC4 (Forwardmost seat cushion segment	Lower torso (1)
13	COLEAT (Top of column)	The two spheres on the column mass (18,21)
14	COLEAB (Bottom of column)	The two spheres on the column mass (18,21)
15	COLEAR (Right side of column	The two spheres on the column mass (18,21)

Table 4. Allowed Contacts

Table 4. Allowed Contacts (continued)

Surface or Ellipsoid Number	Surface or Ellipse Name	Ellipse (number)
16	COLEAL (Left side of column	The two spheres on the column mass (18,21)
17	BOTOUT (Stop at bottom of column	The bottom sphere on the column mass (18)
18	COLT (Top of wheel mass retainer)	The three spheres on the wheel mass (22,23,24)
19	COLB (Bottom wheel mass mass retainer	The three spheres on the wheel mass (22,23,24)
: 20	COLR (Right wheel mass retainer)	The three spheres on the wheel mass (22,23,24)
21	COLL (Left wheel mass retainer)	The three spheres on the wheel mass (22,23,24)
22	COLA (Wheel mass retainer toward vehicle front)	The three spheres on the wheel mass (22,23,24)
23	COLP (Wheel mass retainer nearest occupant)	The three spheres on the wheel mass (22,23,24)
24	HUB (Steering column hub on column mass)	Center and upper torso (2,3)
25	Knee Restraint	Left and right lower arms and hands (13,15,16,17)
1	Lower torso	Left and right lower arms (13,15)
2	Center torso	Left and right hands, steering wheel (16,17,19)
3	Upper torso	Left and right lower arms and hands, steering wheel (13,15,16,17,19)
4	Neck	Steering Wheel (19)
5	Head	Steering Wheel (19)

Name	Number	Function
CHESTST	22	Static force-deflection curve for chest.
CHESTG	23	Permanent deflection ratio for chest.
CHESTR	24	Conserved energy ratio for chest.
COLUMNEA	25	Static force-deflection curve for column.
COLUMNG	26	Permanent deflection ratio for column.
COLUMNR	27	Conserved energy ratio for column.
HUBFD	28	Static force-deflection curve for hub.
HUBG	20	Permanent deflection ratio for hub.
HUBR	30	Conserved energy ratio for hub.
BOTOUTFD	31	Column bottom out force-deflection curve.
CONST. F=0	32	Zero friction
COL.SP.DAMP.	33	Force-deflection for column spring/dampers.
WHL.SP.DAMP.TOP	34	Force-deflection for spring/dampers.
WHL.SP.DAMP.BOT.	35	Force-deflection for spring/dampers at bottom of wheel.
ABDOMEN FD	36	Force-deflection curve for abdomen
LWR IP LOAD (KG)	37	Alternate force-deflection curve for lower instrument panel.

Table 5. New Force-Deflection Functions

4.0 SIMULATION RESULTS

The simulation results are presented as seven groups of figures as follows:

- Occupant position (Figures 11-15)
- Comparison of simulation with test results (Figures 16-25)
- Predicted accelerations (Figures 26-28)
- Vehicle/occupant interactions (Figures 29-34)
- Column and wheel dynamics (Figures 35-39)
- Vehicle deceleration (Figure 40)
- Force-deflection curves for column and wheel spring-dampers (Figures 41-42).

The first group of figures presents computer-generated schematics of occupant position. The initial position is shown in Figure 11. By 50 milliseconds (Figure 12), the abdomen ellipsoid has contacted the lower rim of the steering wheel. This has produced deformation and rotation of the wheel in the direction of column collapse as was observed in the test. A variety of additional interactions have been initiated by 70 milliseconds (Figure 13). These include substantial penetration of the:

- seat cushion by the pelvis,
- toepan and floor by the feet,
- knee restraint by knees, hands, and lower arms, and,
- wheel rim and hub by the chest

The upper torso is rotating the column and pushing it upwards as can be observed by the restraining forces produced by the housing of the energy-absorbing column. By 100 milliseconds (Figure 14), the head has rotated into the rim and also contacted the windshield. It should also be noted that there is no force generated on the lower leg ellipsoid. This is due to the location of the center of the ellipsoid with respect to the end of the knee restraint. A small modification to the geometry of the lower leg ellipsoids would lead to the production of significant forces, likely leading to a reduction of the penetration of the foot into the toepan. Figure 15 shows the beginnings of rebound. During

this period, the upper torso rides up the wheel rim and causes the top of the rim to rotate toward the column as was observed in the test movie. After this point in time, contacts are gradually released.

Figures 16-25 present comparisons of simulation results with those from the test. Head, chest, and pelvis accelerations are shown in Figure 16. In general the agreement is good. It should be noted that the simulation output has not been filtered. The spike in the head acceleration at about 90 milliseconds reflects the interaction with the upper rim of the steering wheel. The spike near the beginning of the chest acceleration curve occurs at initial contact. The oscillations indicate a springiness in the wheel/column interaction with the upper torso. Perhaps a parameter study should be undertaken to see what parameters (damping, energy-absorption, friction, etc.) could be better defined to reduce what appears to be a somewhat underdamped interaction.

Figure 17 shows a comparison between measured and predicted forces in the upper legs. There is a basic difference between the two quantities. The test results present the load measured in the femur load cells which includes loads transmitted from the hip joint, the seat cushion, the knee joint, and contacts of the knee with the knee restraint. Because of this, even the contacts of the feet with the floor and toeboard will be reflected in the test values. The predicted quantities are based on the direct contact of the upper leg ellipsoids with the knee restraint and include no additional loadings. Under these circumstances, the agreement is quite good. However, further study is warranted to determine whether the predicted force lag is related to poorly placed contact ellipsoids, a small error in occupant positioning, or is actually an accurate prediction.

Figure 18 shows a comparison of predicted and measured head angular orientation. Agreement is much better than for head forward motion which is shown in Figure 19. Predicted head motion is approximately 2 centimeters less than that which was measured. The predicted forward motions of the hip and leg (See Figures 20 and 21) are larger than would be expected. This probably points out the need for improved forcedeformation data for one or more of the seat cushion, knee restraint, floor, and toepan.

Figures 22 through 25 compare various aspects of the steering column performance. The predictions in Figure 22 show about 3 centimeters more collapse of the column than was observed in the test. In addition, the column rebounds much more quickly than occurred during the test. The addition of more energy absorption will be required in the force-deflection functions for the spring/damper elements to improve this aspect of model performance. Figure 23 compares predicted and measured axial column accelerations. Again it should be noted that the output from the simulation was not filtered. A visual observation shows that these two curves follow the same general path. Figure 24 compares the predicted upward-directed loads applied to the steering column with those which were measured. The forces predicted for the column were those occurring due to contacts of the ellipsoids on the column with the vehicle surfaces which formed the sleeve. It is not known where the force transducer was located in the test buck. The important item to note is that forces of approximately the same magnitude were produced in both cases and their phasing was good. In all probability the interaction of the abdomen with the lower rim of the steering wheel was responsible for the first of the predicted spikes. Figure 25 compares

lateral loads on the vehicle due to the column. Although these values can be predicted, their meaning is unclear due to lack of knowledge of transducer placement. It would be expected, however, that the predicted forces would be lower due to the approximate symmetry of the simulation.

Figure 26 through 28 present predictions which were not verifiable by comparable measurements. Figure 26 shows the similarity between accelerations in the abdomen (center torso) and the thorax. The initial higher spike in the center torso is due to the initial contact of the abdomen with the steering wheel rim. Figure 27 shows expanded versions of the head and pelvis accelerations. The predicted initial high acceleration in the upper legs (See Figure 28) follows the shape of the femur load cell results (See Figure 17) more closely than the predictions of force at the knees. This lends some credibility to the idea that femur load cell results reflect more dynamic interaction than merely knee impact.

Figure 29 through 34 describe interactions of various body segments with the vehicle. Figure 29 shows the timing of abdomen (CT), thorax (UT), and head contacts with the wheel ellipsoid (Whl) and the hub. As expected, the initial contact is between the abdomen and the wheel rim. This is followed by a high level interaction between the thorax and the hub. The column reacts dynamically and completely releases the force before contact is reestablished about 10 milliseconds later. It is likely that damping properties added to the spring/damper representing column collapse would improve the dynamic coupling. Parameter studies would be necessary to develop appropriate tuning. The contacts of the thorax with the wheel rim were better tuned. An interaction between the head and the wheel rim began at 84 milliseconds and continued until

approximately 120 milliseconds. Figure 30 shows windshield/head contact which follows the wheel/head contact by about 10 milliseconds.

Figure 31 shows details of the interaction of the left knee with the knee restraint. All interactions of the hands and lower arms with the lower instrument panel (knee restraint surface) are shown in Figure 32. It should be noted that the left and right hands do not interact at the same time. The reason for this is not known, but some asymmetry is to be expected due to round-off errors when the Euler angles that are supplied as impact data are transformed into direction cosines within the program. The reason could also be an undiscovered problem with the initial baseline data set. Further work is necessary to solve this ¹ problem.

The various interactions of the pelvis (lower torso) with the seat back and cushion are shown in Figure 33. The four segments of the seat cushion are labeled SC1, SC2, SC3, and SC4. The surface SC1 is closest to the seatback while SC4 is closest to the front of the vehicle. Initial forces are generated by the seatback (lo st bk) and surface SC1. As the simulation progresses, the occupant moves forward and interacts with one after the other of the surfaces. Although the total force curve is fairly smooth, it appears possible that the abrupt change in force at about 50 milliseconds may be unrealistic and could be reflected in the predicted dynamics from that point on. Also, it is not known whether this seat cushion model reflects the seat used in the test.

Figure 34 shows interactions of the feet with the toepan. Asymmetry of loading can be noted. The overall effect on occupant dynamics was not significant.

Figures 35-39 present predictions of column performance. Axial loadings on the column are shown in Figure 35. Until about 47 milliseconds the loadings are due to vehicle deceleration. At 47 milliseconds the initial contact of the abdomen with the lower wheel rim is reflected into the column. By 60 milliseconds the upper torso is loading the column directly through the hub. The large increase in force after 80 milliseconds is due to the bottoming of the column. A second surface (Col Btm Out) had little effect in restraining column motion due to the small diameter of the sphere attached to the column in comparison to the large motions which were necessary.

Figure 36 shows the forces restraining up-and-down motions of the column within the restraining sleeve. Forces generated by both contact sensing spheres attached to the column mass are presented. The curves labeled Col Top and Col Top2 refer respectively to interactions of the sphere nearest the occupant and the sphere nearest to the front of the vehicle with the surface restraining the column from upward movement. Similarly Col Bot and Col Bot2 show the resistance to downward movement. The maximum loading is at about 70 milliseconds when the occupant is tending to push the steering column upward. To resist this torque the sphere nearest the occupant is restrained from upward movement (Col Top2) while the sphere nearest the front of the vehicle is restrained from downward movement (Col Bot). Figure 37 shows details of the resistance to lateral motions. The quantities R Col and L Col show interactions of the sphere nearest the front of the vehicle with the right and left restraining surfaces. The fact that these small asymmetric loads exist at all is due to the slight asymmetry of the occupant which exists even before contact is initiated.

The curves in Figure 38 show the loadings applied to the rim as reflected in the forces generated in the three spring/dampers that attach the wheel mass to the column mass. The initial interaction is with the lower section of the rim. This is reflected in both spring dampers attached to the bottom of the wheel. Substantial loading of the upper portion of the wheel contact ellipsoid does not occur until after 60 milliseconds. It is not until after 80 milliseconds that the bulk of the load transfers to the upper half of the wheel causing rotation of the top of the rim toward the front of the vehicle. Figure 39 shows the accelerations predicted for the wheel and column masses.

Figures 40-42 reflect input data. Figure 40 shows the input deceleration function that was derived from data supplied with the impact sled test information. Figures 41-42 are force-deflection curves for the spring-dampers. These curves were prepared using simulation output. The curve for column axial resistance was developed from data supplied with sled test information. The rim resistance data input was developed from tests conducted at General Motors specifically for this project. In both cases, an estimate of force unloading should be developed to improve that aspect of the simulation.

Figure 11. Side view of occupant position. t=Oms.

.

Figure 12. Side view of occupant position. t=50ms.

Figure 13. Side view of occupant position. t=70ms.

.

Figure 14. Side view of occupant position. t=100ms.

.

Figure 15. Side view of occupant position. t=110ms.

Figure 17. Comparison of measured femur loads with predicted applied force at the knees.

Figure 20. Comparison of predicted and measured leg longitudinal displacement.

Figure 21. Comparison of predicted and measured hip longitudinal displacement.

Figure 22. Comparison of predicted and measured steering column displacement.

Figure 23. Comparison of predicted and measured steering column acceleration.

Time in milliseconds

Time in milliseconds

₽ ₽ 120 B 100 B 墙 Figure 26. Predicted thorax and abdomen acceleration. time (msec) + Center Torso ₿ B B 80 -H B G 8 60 ф D ß 园 40 Thorax 20 ранарф- О 0 Τ T Τ Τ I I 1 110 100 06 70 60 50 40 30 20 0 80

Acceleration

Hattan and and ß B^RBBB Figure 27. Predicted pelvis and head acceleration. Head Acceleration Pelvis time (msec) ₽ -£ appenda

Acceleration

s,9

Head/Wh! Predicted interactions of the chest and abdomen with the steering wheel and hub. 120 9 ⊲ 100 time (msec) ◇ UT∕Hub 80 0 09 ₫ Ð UT/Whi 40 + 20 Figure 29. CT/WhI 0 T I I I ł 2.6 2.4 2.2 1.6 4. 1.2 0.8 0.6 0.4 0.2 0 2 <u>م</u> ----(Thousands) KgF

Resultant Force

Resultant Force

KgF

Resultant Force

RgF

76

КgF

SC4 X SC3 Resultant Force vs. Lower Torso sc1 + Ø lo st bk I

Figure 33. Predicted interaction of the pelvis with the seat cushion.

КgF

Resultant Force

Force

•

G 120 A L Col2 Ø Figure 37. Predicted forces restraining the column from lateral motion. 1 100 Resultant Force vs. Column 80 60 ۱ R Col2 40 + 20 R Col 0 1 1 Τ 20 10 30 -10 -20 -30 0

Force

КgF

Acceleration

s'ə

φ σ ф ф Force/Deflection Spring Damper 2 中田田 ~ Rim Length (cm) ഗ M F m 400 50 0 250 150 100 0 350 300 200

Figure 41. Force vs. deflection for rim bottom spring-damper.

85

Rim Bottom Resistance (KgF)

26 7 N Ð 24 В Ħ Force/Deflection 22 ₿ Column Length (cm) ф Spring Damper 1 20 Π 18 ₿ ₿ 16 ф ф Ф 4 ф 12 4 0 1 2.4 2.2 2.6 1.6 1.2 0.8 0.6 0.4 0 2 0. 4. 0.2 ---Column Axial Resistance (KgF) (Thousands)

Figure 42. Force vs. deflection for column spring-damper.

5.0 CONCLUSIONS

Two basic conclusions have been reached with regard to the results generated during this project. The first is that a steering assembly model is feasible and has been demonstrated. A comparison between predictions and test data indicates similar results. This conclusion is tempered somewhat by the observation that 3D-CVS software is hard to use.

The second conclusion is that simulation accuracy improves with the quality of the available input data. This conclusion can be reached for all projects involving simulation of occupant dynamics. Any application of software of this type places the burden on the user of obtaining physical data to describe:

- the occupant (test dummy)
- the three-dimensional geometry of the vehicle
- the dynamic deflection and force response of vehicle components to interaction with an occupant, or with each other in the case of the column model
- the initial conditions describing the location of the occupant in the vehicle along with the forcing function (vehicle deceleration).

The better the quality of the data--the better the quality of results. It is essential that baseline experimental data related to the design task at hand be available before simulation is attempted. This emphasizes the importance of coordinating the efforts of analytical, design, and test staff in order to gain optimum results from a simulation activity such as the wheel/column model. Access to and communication with all of these groups aided this investigator greatly in reaching a reasonably successful solution to the problem.

In order to improve the quality of this simulation result and others which will be accomplished in the future, several recommendations can be made about:

- Improved graphic output.
- Development of new column test procedures.
- Use of accident reconstruction techniques to develop initial occupant position.
- Modification of the 3D-CVS friction model to include static friction.
- Improvement of the integration algorithm to decrease stepsize more accurately.
- Improvement of ellipsoid/surface contact algorithm.

Data set preparation is awkward for the user. The first and most basic aid should be the development of documented baseline data sets describing the physical properties of the dummies which are in use. The documentation should include test reports and a rationale for each entry to the data file. Volume 2 of Fleck's report (1) is a good point at which to start. In addition, automated procedures should be developed for preparing vehicle geometric models using quantities obtained directly from vehicle drawings as input. Likewise, automated procedures should be developed for occupant positioning. A particular problem is defining the angular degrees of freedom for the various segments and the initial joint orientations. A most effective means for accomplishing this would use an interactive display of the occupant in a vehicle. Targets developed from test or design data would be entered on the screen for positioning known points on the occupant (H-point, kneepoint, heel-point, eye point, and any others). The location of these same points on the dummy could then be adjusted by moving them on command to coincide with the targets. When an appropriate position is reached, a command to the software would automatically compute all angular parameters needed for input. The procedure could also be coupled with the existing 3D-CVS equilibrium sub-program or with a procedure modeled after the HELPER program (5) developed for the MVMA-2D occupant motion simulation package. In many ways the package which has

been proposed is not unlike some of the design tools used in Human Factors studies (SAMMIE, CYBERMAN) of occupant position, clearance, and reach.

Improved interactive graphics output would be an important aid both in data set preparation and analysis of results. The wireframe models which exist can be modified to improve hidden line removal, if desired, and to provide a graphic display of contacts which occur and the vector direction and location of the resulting forces applied to the occupant.

With respect to wheel/column modeling, new test procedures should be developed to determine the conditions under which binding will occur to form the basis for realistic modeling of this phenomenon. The capability to generate forces in particular directions exists within the software and awaits a physical description for implementation.

An improvement to modeling technique is recommended based on the accident reconstruction work reported by Robbins, et al. (6). The procedure is to overlay the simulated occupant linkage on a photograph (slide) of the test setup in order to select the proper location and orientation of contact ellipsoids to be attached to the occupant.

The remaining three recommendations have to do with changes in the existing 3D-CVS code. The first is to modify the current friction model to include static friction. As described in Section 2.2, this lack of an effective static friction model almost caused abandonment of the project. The necessary changes appear to be feasible and, when implemented for linear motions, produce somewhat the same effect as locking and unlocking of joints, only at prescribed values of force. It should be noted that the same problem also exists with the MVMA-2D Code.

The second coding change which is recommended has to do with the integration procedure. There is a tendency for the simulation to stop when step sizes have to be suddenly decreased, usually due to the beginning of a contact interaction or the sudden application of internal joint torques. This appears to be related to lack of storage of previously computed numerical information which can serve to aid the process of step size reduction. Again, this is a feasible improvement which could aid immensely in the solutions for stiff interactions. Related to this should be an effort to reintroduce the RESTART option in the General Motors version of the 3D-CVS code. When stiff interactions are anticipated, the execution can be stopped and restarted using more satisfactory integration parameters for the region of the solution in question.

The final recommendation has also been discussed in Section 2.2 and is relatively easy to solve. This is the reduction of force to zero when an ellipsoid has passed completely through a contact surface. This is a particularly severe problem when the dimensions of the ellipsoid are small with respect to the deformation of the surface.

6.0 REFERENCES

- Fleck, J.T., Butler, F.E., and DeLeys, N.J., <u>Validation of the Crash</u> <u>Victim Simulator</u>, Report ZS-5881, Calspan Corporation, Buffalo, NY, December 1982, 3 Vols.
- 2. <u>CAL-3D User Conference Proceedings</u>, Sponsored by MVMA and NHTSA, Dearborn, MI., May 1981.
- 3. Bowman, B.M., Bennett, R.O., and Robbins, D.H., <u>MVMA Two-Dimensional</u> <u>Crash Victim Simulation, Version 3</u>, Report No. UMTRI-85-24-1,2,3. 3 Vols. University of Michigan Transportation Research Institute, Ann Arbor, June 1985.
- Robbins, D.H. and Bennett, R.O., <u>Three-Dimensional Occupant Dynamics</u> <u>Software: Belt Model Use</u>, Report No. UMTRI-85-45. University of Michigan Transportation Research Institute, Ann Arbor, October 1985.
- 5. Bowman, B.M. and Pope, M.E., <u>MVMA-2D Occupant Positioning for</u> <u>Approximate Initial Equilibrium</u>, Report GMR-4198, General Motors Research Laboratories, Warren, MI, September 1982.
- Robbins, D.H., Huelke, D.F., and Sherman, H.W., <u>Biomechanical</u> <u>Accident Investigation Methodology: Second Phase Case Reports and</u> <u>Guidelines for Application</u>, Report No. UMTRI-85-36, University of Michigan Transportation Research Institute, Ann Arbor, August, 1985.