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This article examines the relationship between demand and scheduling in college
football. We first derive two different metrics for team quality, and then use those metrics
to see how they impact attendance. We find that there is a positive interaction between
the quality of the teams. Then various simulations are run to see how attendance would
change under different scheduling scenarios. If teams are put into conferences based on
the team quality measures, the average per game attendance only rises 1–2%. This is
true if 1-year or 10-year quality measures are used. However, our simulation suggests
that this effect would be more than offset, mainly because schools with larger capacity
would play fewer home games and so aggregate attendance would fall. We discuss
whether this effect would be mitigated by capacity adjustments in the longer term. (JEL
L83, Z20, C78)

I. THE QUESTION

The production of team sports involves a form
of matching. In most professional leagues the
membership is fixed and there is no choice in the
selection of matches (the most common format of
a league is a round robin where every team plays
every other team twice, once at home and once
away). College football is rather different. Teams
belong to conferences and are usually required
to schedule a certain number of games against
conference rivals, but they are also free to sched-
ule additional games against opposition of their
choice. Moreover, the membership of confer-
ences has always been fluid, and is going through
a period of rapid change at the moment. Accord-
ing to Wikipedia 93 schools have jumped to a new
conference (full membership) since 2010.1

The aim of this article is to develop a model
for optimally matching college football teams in
competition. Our notion of optimal matching is
very simple, not unlike Becker’s (1973) theory
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of marriage. Each team has a productivity (team
quality), Zi, which they bring to any match. The
productivity of a match is the sum of individ-
ual productivities plus the interaction of the two:
αiZi +βiZj +γiZiZi. This productivity then deter-
mines demand: the number of people who are
willing to pay to watch the game.

One interpretation of the interaction term is
that it represents the demand for competitive
balance (γi > 0), which has long been consid-
ered by economists to be an important determi-
nant of the demand for team sports (see, e.g.,
Borland and Macdonald 2003). This element
alone suggests that positive assortative match-
ing is optimal—attendance is maximized glob-
ally when teams of similar quality play against
each other. However, even if this is not true, posi-
tive assortative matching may still be optimal for
individual teams (βi > 0 and γi = 0). Under this
assumption, if the home team retains all the gate
money it will be revenue maximizing to play the
best opponents.

There are two potential confounding factors
in this analysis. First, there is the phenomenon
of “rivalry games”—match-ups between teams
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that are deemed to be of historical significance
in their own right, for example, Michigan/Ohio
State, Alabama/Auburn, and so forth. Typically
these rivals are also geographically close. Often
these rivals are well matched, but it may be that
even when they are not well matched demand
remains high. The second confounding factor
relates to stadium capacity. Designing an atten-
dance maximizing schedule will typically mean
scheduling more games in the stadiums with the
largest capacity. If these stadiums are homes of
the strongest teams, then more positive assor-
tative matching can actually reduce attendance:
if two strong teams with large stadiums play
each other, by implication one large stadium
goes empty that day.2 In our analysis we find
that rivalry games have a statistically signifi-
cant positive effect on demand, but that this
does not have a large effect on aggregate atten-
dance. However, we do find that capacity effects
are larger.

In this article we use the terms “optimal”
and “attendance maximizing” interchangeably.
Of course, it can be argued that what is opti-
mal for a team involves more than attendance
considerations. Strong teams scheduling games
against weak teams might thereby improve their
end of the season ranking. The impact on demand
is not clear, since fans might not want to go
to watch such games, but winning these games
might increase demand later in the season due to
their higher winning percentage.

We develop a simple empirical model to ana-
lyze these issues. Based on a sample of college
football games we estimate attendance as a func-
tion of various observables including the qual-
ity of the teams. We then identify the attendance
maximizing conference structure, which matches
teams of roughly equal quality across the season,
and calculate the expected attendance conditional
on this structure. Our results show that the atten-
dance maximizing scheduling would increase per
game attendance by an average of 1.5%. We con-
jecture that TV audiences are more sensitive to
quality, so that the revenue benefits through TV

2. For example, consider scheduling games one weekend
for Michigan (capacity 108,000), Ohio State (105,000), East-
ern Michigan (30,000), and Bowling Green (24,000). Assume
that team quality is correlated with stadium capacity. Then
with positive assortative matching Ohio State plays at Michi-
gan and Bowling Green plays at Eastern Michigan, and if the
games are sold out then the total number of tickets sold is
138,000. Now suppose Eastern Michigan plays at Michigan
and Bowling Green at Ohio State, and that due to the lack of
positive assortative matching demand is only 75% of capacity.
The total number of tickets sold will now be 160,000.

would be even greater.3 However, this increase
in demand is not enough to offset the stadium
capacity effect identified above. In our balanced
schedule the fact that all teams must then play
half of their games on the road will imply that
some larger stadiums will go empty and there-
fore total attendance would be smaller. We argue
that this result is a consequence of current capac-
ity constraints which are a product of the existing
scheduling arrangements, and that in the longer
term capacity would adjust to a revised schedul-
ing scheme and so mitigate this effect.

The next section gives some background on
the economics of scheduling in college football.
Section III describes our data and methodology,
then we consider the results of the estimation in
Section IV. Section V describes the simulated
conference structure, and Section VII concludes.

II. BACKGROUND

A. Matching Model

College football resembles a marriage mar-
ket in the sense that each game played requires
that both sides agree to play, and both have many
alternatives from whom to choose. Surprisingly
little has been written in the academic literature
on this problem. In most team sports this prob-
lem is trivial because competition is organized on
a league basis and opponents are dictated by the
system adopted. For instance, the National Foot-
ball League (NFL) has a formula which requires
each team to play two games against each of their
divisional rivals, divisional rivals have 14 out
of 16 games against common opponents, while
the remaining two are decided by the standings
of the previous season. College football, while
also being built around league play, gives far
more latitude to teams to decide who they play.
For example, in the Big 10 teams currently have
to play eight conference games in the season,
five against members of their own division, two
against teams from the other division (on a rotat-
ing basis), and one that it plays every year. How-
ever, teams play a 12 game season and are at lib-
erty to play any four teams that will agree to play
with them. Teams are also allowed to schedule
a majority of their games at their home stadium,
provided other teams agree to play there. More-
over, while most popular sports leagues are stable

3. Mongeon and Winfree (2012) find that in the National
Basketball Association, television audiences are 4.5 times
more sensitive to winning than live audiences.
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over time, college football is subject to realign-
ment, markedly so in recent years. Colleges are
seeking out the best collection of competitors that
they can find.

Matching theory suggests there should be few
problems in finding optimal matches. Even in the
absence of a pricing mechanism there are well-
known theorems, for example, Gale and Shapley
(1962), which suggest that optimal matches are
feasible. Their model of a marriage market works
via the “deferred acceptance mechanism”—one
gender makes offers to as many partners as they
wish and the other rejects all offers but one which
is held, and then a second round of offers is made
conditional on (deferred) acceptances received,
and the process repeats until no new offers are
received. This mechanism has the nice prop-
erty that at equilibrium no one fails to make a
match with someone that (a) they would pre-
fer and (b) would also prefer to switch their
match. This is consistent with positive assor-
tative matching, where each agent has a type,
and matches are made between similar types.
Becker (1973) shows that positive assortative
mating is an equilibrium in a marriage mar-
ket which ensures that aggregate output from
matches is maximized. The idea of positive assor-
tative matching has been applied to explaining the
distribution of wages (Sattinger 1993) and eco-
nomic development (Kremer 1993). In general,
frictions may exist which prevent efficient assor-
tative matching, while incomplete information
and moral hazard my lead to inefficient match-
ing (see, e.g., Legros and Newman 2002). For
example, Fréchette, Roth, and Ünver (2007) show
that when college football Bowl games were
scheduled later in the season with more informa-
tion about the quality of the teams, it is possible
to match teams more evenly and efficiencies were
gained as evidenced by higher television ratings.

One difficulty in identifying optimal matches
for college football teams is that the objec-
tives of each college are not clear. We will
assume that an optimal schedule is one that max-
imizes total output which we will measure by
total attendance. This will also imply that the
schedule maximizes the total attendance of each
team, subject to playing a schedule of five, six,
seven, or eight home games. However, deci-
sion makers within the college may have dif-
ferent objectives. Coaches will want a schedule
which maximizes the probability of reaching the
best possible Bowl game, Athletic Directors may
want to maximize the resources provided to the
department, which might depend on meeting the

demands of particular constituencies (e.g., the
preferences of boosters) and University Presi-
dents may have strategic goals which go beyond
sport and relate to student recruitment, college
profile, and donors. This list of decision makers
is not necessarily exhaustive.

However, we do not believe that these objec-
tives are widely at variance with output maxi-
mization as we have defined it. First, the rat-
ing schemes which determine the allocation of
teams to Bowl games tend to favor those teams
that play stronger schedules, all else equal, and
so deliberately choosing a weak schedule can be
counter-productive (Keener 1993). Second, there
are studies which have shown that successful ath-
letic programs, especially in the revenue sports,
tend to align with broader academic goals such
as recruitment and donations.4

B. Matching and the Uncertainty of Outcome
Hypothesis

With the exception of Fréchette, Roth, and
Ünver (2007), the sports literature has not focused
on the matching issue for the reasons given
above. However, it has focused on a related
concept—the uncertainty of outcome hypothesis
(the original article in this literature is Rotten-
berg 1956). In our terms, this asserts that a match
will be more attractive (larger attendance) if the
strength of the two sides is closely matched than
if they are unevenly matched. This question has
generated a large literature which has been sur-
prisingly inconclusive. Thus a survey by Borland
and McDonald (2003) found:

Of 18 studies identified, only about three provide
strong evidence of an effect on attendance. Other stud-
ies provide mixed evidence that suggests a negative
effect on attendance of increasing home win probabil-
ity only when that win probability is above about two
thirds. The majority of studies find either that there
is no significant relation between difference in team
performance and attendance, or more directly contra-
dictory, that attendance is monotonically increasing in
the probability of a home-team win.

We have reviewed 15 studies published since
then and the results are shown in Table 1. There
is some variability in the focus of these studies,
but generally they test for the effect on demand

4. Fort and Winfree (2013, 33) point out that research has
found a positive correlation between college athletic success
and alumni giving (Rhoads and Gerking 2000), student appli-
cations (e.g., Pope and Pope 2009), and budget allocations by
legislators (Humphreys 2006).
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TABLE 1
Previous Studies

Paper Sport Price? UOHmeasure Sign Significant

DeSchriver and Jensen
(2002)

College football Yes (+, sig) Homewpcbyseasonquarter + Yes, mostly in Q4

Price and Sen (2003) College football Yes (−, sig) Homewpc + Yes
Awaywpc + Yes
Diffwpc2 − No

Paul, Humphreys, and
Weinbach (2012)

College football No Homewin%, + Yes
Pointsspread, + Yes
Under/over + Yes

Groza (2010) College football No HomeWpc + Yes
Sagarinrating + Yes
Diffsag2 − Yes

Coates and Humphreys
(2010)

NFL No Homewpc + Yes
Awaywpc + Yes
|Pointsspread| + Yes
|Pointsspread2| − Yes
|Pointsspread * homeunderdog| − Yes

Meehan, Nelson, and
Richardson (2007)

MLB Yes (+, sig) Homewpc + Yes
HomeGBdivleader − Yes
AwayGBdivleader − Yes
Wpcdiffabsolute − Yes
Wpcdiff + − Yes
Wpcdiff − + Yes

Lemke, Leonard, and
Tlhokwane (2009)

MLB Yes (+, sig) Homewinprob − Marg
Homewinprob2 + Marg
Playoffchances Various Marg

Davis (2009) NL No Homewpc> .5 + yes
Coates and Humphreys

(2012)
NHL No Probhomewin + Yes, if > .584

Homewpc − No
Awaywpc + Yes

Rascher and Solmes
(2007)

NBA Yes (−, NS) (i)Wpchome + No
Wpchome2 + No
Wpcaway + No
Wpcaway2 + No
Diffinwpc − No
Diffinwpc2 − No
(ii)Homewinprob + Yes
Homewinprob2 − Yes

Buraimo and Simmons
(2008)

EPL No Homeptspergame + Yes
Awayptspergame + Yes
Theilmeasure − Yes
Probhomewin − Yes
Probhomewin2 + Yes

Forrest et al. (2005) Eng. Foot. Lea. No Homepointspergame + Yes
(3 division) Awaypointspergame − No

Probratio − Yes
Probratio2 + Yes

Forrest and Simmons
(2006)

FLC No Homepoints + Yes
Awaypoints + Yes
Hometeamhomeform + Yes
Points/gamedifferenceadjusted ? No

Buraimo, Forrest, and
Simmons (2009)

FLC No Homeptspergame + Yes
Awayptspergame + Yes

Benz, Brandes, and
Franck (2009)

Bundesliga Yes (−, NS) Diffinleaguepos − No

Diffinptspergame − No
Theil − No
Relativewinprob − No
Probhomewin + No
Probhomewin2 + No

EPL, English Premier League; Eng. Foot. Lea., English Football League; FLC, Football League Championship; MLB, Major
League Baseball; NBA, National Basketball Association; NL, National League; NHL, National Hockey League.
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of the quality of the home team, the quality of the
away team, and the expected difference in per-
formance of the two teams. Quality is typically
measured either by the recent winning records of
the teams or by the pre-match betting odds on the
teams. Almost all of the studies find that demand
is increasing in the quality of the home team.
When tested for, it is generally found that demand
is also increasing in the quality of the away team
(in the words of Coates and Humphreys 2010,
“fans want to see good teams play”). The results
for the competitive balance measures are gen-
erally more ambiguous, in line with the earlier
research. Several studies suggest that the opti-
mal winning percentage/probability of winning
for the home team is in the region of 66%. Seen
from our perspective the ambiguity is perhaps not
surprising. If demand is increasing in qualities of
the teams taken separately and in their interaction
as well, then picking up the latter effect is likely
to be difficult econometrically.

Measures of differences in team quality,
whether based on win/loss records or betting
odds fail to generate a consistent pattern, are
sometimes perversely signed, and often entail
quadratic terms with impossible implications.
For example, a finding that demand is decreasing
in both the absolute difference in win loss records
and its square would normally be taken as confir-
mation of the uncertainty of outcome hypothesis.
However, the implication of this is that a very
weak home team playing against a very strong
home team could face negative demand.

In our model, based on our discussion of assor-
tative matching and Becker’s marriage model,
we view the value of the match as dependent on
both the qualities of the home and away teams
taken separately and the product of the two qual-
ities. Thus at worst a highly unbalanced match
could contribute nothing to demand other than the
quality of the strong team.

III. DATA AND METHODOLOGY

A. Team Quality Measures

Our first step is to measure team quality. Foot-
ball Bowl Subdivision games were used to cre-
ate team quality variables. Our sample consists
of 14,924 games played between 1990 and 2010.
However, since lagged variables were used, the
games from 1990 were not used so the estimation
had 14,278 observations.

We identify quality in two different ways:
Method 1: We estimate the expected margin of

victory for each game based on a weighted aver-
age of past performance measured by win per-
centage and the strength of schedule for each
team. A team’s strength of schedule is the aver-
age winning percentage of a team’s opponents up
to the date of the game. Therefore, this nonlinear
estimation takes into account where the game is
played (home, away, or neutral), the winning per-
centage of each team for the current and previous
year, and the strength of schedule for each team
for the current and previous year. The weighting
between the current and previous year depends
on how many games the teams have played in the
current season.

The equation is given by

MOV = β1 + β2Neutral + β3

(
1 −

(
1∕Nβ11

H

))(1)

win%h,t,NH
+ β4

(
1∕Nβ11

H

)
win%h,t−1,N

+ β5

(
1 −

(
1∕Nβ11

H

))
SOSh,t,NH

+ β6

(
1∕Nβ11

H

)
SOSh,t−1,N + β7

(
1 −

(
1∕Nβ11

A

))

win%a,t,NA
+ β8

(
1∕Nβ11

A

)
win%a,t−1,N

+ β9

(
1 −

(
1∕Nβ11

A

))
SOSa,t,NA

+ β10

(
1∕Nβ11

A

)
SOSa,t−1,N

where MOV is the margin of victory for the
home team, Neutral is equal to one if the game
is on a neutral field, NH is the nth game of the
season for the home team, NA is the nth game of
the away team, win% is the winning percentage,
SOS is the strength of schedule,5 h represents
the home team, a represents the away team, t
is the season, and N denotes that the winning
percentage or strength of schedule is calculated
at the end of the previous season. Table 2 gives
the parameter estimates and t-statistics, the model
correctly predicts 73% of games.

This model was then used to create a quality
metric for every team for each game. A team’s
quality value was computed using the parameter
estimates from Equation (1) in addition to their
winning percentages for this year and the previ-
ous year, as well as the strength of schedule for
both years. Home team parameter estimates were

5. SOS is equal to the average winning percentage of the
opponents that the team has played up until that game.
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TABLE 2
Estimation of Margin of Victory

Variable Estimate t-Statistic

β1 6.575*** 4.17
β2 −3.331*** −5.59
β3 48.663*** 26.86
β4 39.167*** 29.85
β5 26.409*** 10.64
β6 71.260*** 23.86
β7 −54.304*** −28.09
β8 −39.496*** −29.21
β9 −29.737*** −14.31
β10 −70.739*** −24.08
β11 0.345*** 19.32
N 14,278
R2

.37
% of games predicted correctly .73

*** denotes significance at the 1% level.

used, but since there is no road team identified a
value of .5 was used for the visiting team’s win-
ning percentage and strength of schedule. So, this
measure represents the expected margin of vic-
tory against a .500 team, so that the metric for
team i during season t for the Nth

i game is given by

MOV∗
i,t,NH

= β1 + β2 + β3

(
1 −

(
1∕Nβ11

H

))
(2)

win%i,t,NH
+ β4

(
1∕Nβ11

H

)
win%i,t−1,N

+ β5

(
1 −

(
1∕Nβ11

H

))
SOSi,t,NH

+ β6

(
1∕Nβ11

H

)
SOSi,t−1,N

+ β7

(
1 −

(
1∕Nβ11

H

))
.5 + β8

(
1∕Nβ11

H

)
.5

+β9

(
1−

(
1∕Nβ11

H

))
.5+β10

(
1∕Nβ11

H

)
.5.

MOV∗
i,t,NH

was then used as a quality metric
for the home team, MOVH , and the away team,
MOVA. A constant was then added to ensure that
MOVH > 0 and MOVA > 0.

Method 2: We also construct an ELO rating
for each team.6 ELO ratings are widely used
in competitions where the organizers want to
match competitors of similar ability, most notably
in chess. An ELO rating is built up by play-
ing games, where the result of each game gen-
erates an addition or subtraction depending on
win or loss, where the size of the adjustment is

6. See Elo (1978) for an explanation of the ranking
method. Elo ratings have been used for ranking in a num-
ber of different sports. See for example, Hvattum and Artnzen
(2010) for an application to soccer.

calibrated according to the pre-match expectation
of the outcome, which is based on the ELO ratings
going into the game. For each competitor the ini-
tial value is arbitrary, but once enough games
have been played ELO ratings provide a consis-
tent measure of relative performance. Thus for
each game the expectation of a win for team i
against team j is

(3) Eij = 1∕
(

1 + 10
(
ELOi−ELOj

)
∕400

)
.

And the rating is updated according to

(4) ELO′
i = ELOi + K

(
Rij − Eij

)

where R is the result (win= 1, loss= 0) and K is
a scaling factor. There is some controversy over
the appropriate value of the scaling factor, but we
chose the commonly used value of 50. However,
we do not believe this significantly affects the
estimation of our demand model. To construct the
ELO ratings we used results dating back 20 years
so that even our earliest demand observations are
based on around 10 years of results.

B. Attendance Estimation

We collected attendance data from various
sources for 4,839 college football games played
between 2001 and 2010. However, we do not
have attendance for all Football Bowl Subdivi-
sion games over this time period. Attendance data
are more readily available for recent games. For
example, we have 245 observations in 2001, but
729 in 2010.7

We now use our alternative measures of qual-
ity to estimate demand. Our hypothesis is that
attendance is a function of both home and away
team quality. As well as team quality we assume
that demand is a function of year and stadium
fixed effects and monthly dummies. We also
allow for the effect of “rivalry” games. Clearly
the definition of a rivalry game is somewhat arbi-
trary, but we want to capture the possibility that
certain games may add to demand even if the
quality of the teams is poor. We suspect that
Michigan vs. Ohio State would sell out no mat-
ter who played for the teams. To capture rivalry
effects we invited six colleagues to choose from a
list of all match-ups from the last 20 years (2,769)
and indicate which match-ups they thought were
true “rivalry” games. Only about 15% of these

7. This does not include Notre Dame because all of their
games were censored due to sell outs according to our criteria,
explained later in the article.
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TABLE 3
List of Rivalry Games

Air Force v Army
Air Force v Navy
Alabama v Auburn
Alabama v LSU
Arizona v Arizona State
Army v Navy
California v Stanford
Duke v North Carolina
Florida v Georgia
Florida v Florida State
Florida State v Miami
Georgia v Georgia Tech
Indiana v Purdue
Iowa v Iowa State
Kansas v Kansas State
Kansas v Missouri
Michigan v Michigan State
Michigan v Notre Dame
Michigan v Ohio State
Mississippi State v Ole Miss
Notre Dame v Stanford
Notre Dame v USC
Oklahoma v Oklahoma State
Oklahoma v Texas
Oregon v Oregon State
Pittsburgh v West Virginia
Texas v Texas A&M
UCLA v USC
Utah v Utah State
Virginia v Virginia Tech
Washington v Washington State

games have been played more than 15 times,
whereas one might expect true rivalry games
would be played almost every year. We decided
to designate match-ups as rivalry games if two
thirds or more (at least four of six) of our asses-
sors thought that they were. This generated a total
of 31 rivalry games, which are listed in Table 3.
Table 4 has summary statistics of the data used to
estimate attendance.

Although we do not have data on prices, these
are likely to be captured by the combination
of stadium fixed effect and year dummies. A
number of stadiums sell out on a regular basis
and so we use Tobit as well as ordinary least
squares (OLS) to estimate demand. Ideally we
would like to know the exact stadium capacity at
each game, since this can vary significantly for a
number of reasons. There are differences in how
teams report attendance and stadium capacity
can vary for each team from year to year or even
game to game.

We estimate the following demand model

y∗i = β0 + XH
i β1 + XA

i β2 + XHA
i β3 + Xmonth

i β4∶8

(5)

+ Xrival
i β9 + Xyr

i β10∶20 + Xstad
i β21∶145 + εi

TABLE 4
Summary Statistics for Attendance Estimation

Variable Mean
Standard
Deviation Maximum Minimum

Attendance 53,092 26,835 113,090 1,535
MOVH 26.822 9.227 49.088 0.068
MOVA 47.026 10.200 71.732 0
ELOH 1.092 0.229 1.620 0.452
ELOA 0.962 0.281 1.590 0.304
Sep 0.355 0.478 1 0
Oct 0.315 0.465 1 0
Nov 0.285 0.451 1 0
Dec 0.018 0.131 1 0
Rival 0.044 0.206 1 0
2001 0.051 0.219 1 0
2002 0.063 0.243 1 0
2003 0.059 0.236 1 0
2004 0.061 0.240 1 0
2005 0.070 0.255 1 0
2006 0.095 0.294 1 0
2007 0.111 0.315 1 0
2008 0.143 0.350 1 0
2009 0.151 0.358 1 0
2010 0.151 0.358 1 0

where y∗i is the attendance data and we observe
yi = y∗i only if the attendance is not censored. In
order for a game to be denoted as censored (sold-
out), it met three criteria. First, the attendance had
to be least 98% of the maximum attendance value
for that stadium. Second, there had to be at least
two games that were 98% or more of the max-
imum attendance value for the stadium. Third,
at least one-tenth of the games in the stadium in
the sample had to be at least 98% of the maxi-
mum value of the stadium.8 Therefore, the thresh-
old for a sell-out varied by team. Teams with
larger stadiums needed a higher attendance to be
considered a sell-out when compared with teams
with smaller stadiums. These criteria resulted in
16.3% of games being denoted as a sell-out, after
Notre Dame was thrown out of the sample since
all of their games qualified as a sell-out.

XH
i represents the strength of the home team

(either MOV or ELO), XA
i is strength of the away

team, XHA
i is the interaction of the strength of the

home and away teams, Xmonth
i represents month

dummy variables, Xrival
i is a dummy variable for

rivalry games, Xyr
i represents year dummy vari-

ables, Xstad
i represents stadium dummy variables,

and εi is the error term.

8. If less than 10% of games were greater than 98% of the
maximum, the censoring issue was not deemed to be severe at
that stadium and there is a greater probability that the games
are uncensored and randomly within 2% of the maximum.
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TABLE 5
Attendance Estimation (Year and Stadium Fixed Effects Not Shown)

OLS OLS Sub CLAD Tobit OLS OLS Sub CLAD Tobit

MOVH 283*** 115* 252*** 191***
(6.64) (1.91) (4.01) (5.56)

MOVA 114*** 33.4 73.2** 60.1**
(4.61) (1.04) (2.02) (2.43)

MOVH * MOVA 0.891 5.24*** 1.84 4.1***
(1.04) (4.23) (1.41) (3.00)

ELOH 21264*** 16456*** 18908*** 19714***
(13.79) (7.51) (12.05) (7.90)

ELOA 7263*** 251 4039** 2,679
(4.78) (0.12) (2.20) (1.23)

ELOH * ELOA −816 7074*** 1960 4733**
(−0.60) (3.56) (1.18) (2.18)

September −119 −1,104 157 264 −479 −1606** −337 −149
(−0.24) (−1.53) (0.32) (0.48) (−1.00) (−2.27) (−0.74) (−0.19)

October −265 −1781** 102 36.1 −1304*** −3003*** −1151** −1,230
(−0.54) (−2.45) (0.22) (0.06) (−2.68) (−4.19) (−2.49) (−1.40)

November −947* −3017*** −806* −657 −2328*** −4599*** −2445*** −2336***
(−1.93) (−4.15) (−1.67) (−1.46) (−4.77) (−6.39) (−5.11) (−2.85)

December 599 −714 −449 739 −892 −2390** −1,340 −1,046
(0.79) (−0.65) (−0.51) (0.80) (−1.19) (−2.22) (−1.14) (−0.87)

Rivals 4600*** 6707*** 6600*** 6114*** 4345*** 6097*** 5796*** 5689***
(11.71) (11.23) (6.14) (9.58) (11.20) (10.38) (4.77) (8.53)

R2 0.963 0.933 0.964 0.935
Log likelihood 41,197 41,114
N 4,839 2,771 4,839 4,839 4,839 2,771 4,839 4,839

Notes: “OLS sub” refers to OLS estimates using only teams that have no censored observations. Standard errors for the CLAD
estimation were calculated using a bootstrap with 200 replications.

***, **, * denote statistical significance at the 1%, 5%, and 10% level, respectively.

IV. RESULTS

The demand estimation results are presented
in Table 5. Using both measures (MOV and
ELO), we ran an OLS on the full sample, and
OLS using only teams without censored obser-
vations,9 a Censored Least Absolute Deviation
(CLAD) model as described in Powell (1984),
and a Tobit model. Both our MOV and our ELO
measures of quality show that the strength of
the home team and the strength of the away
team add significantly to demand, as one might
expect. The interaction of the home and away
quality measures, which can be interpreted as
the effect of competitive balance on demand,
is insignificant in the full sample OLS and
CLAD estimations but significant and with the
expected sign in the sub-sample OLS and Tobit
estimations. One interpretation of this is that the
teams with capacity constraints are generally
the stronger teams who have big rivals but also
have a habit of scheduling very weak teams

9. With both OLS estimations, we do not account for
censoring and assume yi = y∗i .

from time to time. If capacity constraints are not
allowed for, then it might appear that playing
minnows does not reduce demand, but once
capacity constraints are included the effect of the
competitive imbalance becomes apparent. Our
rivalry measure is also strongly significant and
adds significantly to demand.

V. SCHEDULE SIMULATIONS

A. Random Schedule

Based on this analysis we are able to con-
struct simulated schedules for the 2010 season
and estimated the demand that would be asso-
ciated with these alternative schedules. First, we
compared the actual schedule to a random sched-
ule. The 100 simulations were run where each
week the visiting teams were randomly assigned
one of the home teams, and so the number of
home games and total number of games did not
change for teams. The results in Table 10 are the
averages from the 100 simulations, and we dis-
cuss these below.
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B. Stratified Schedules

Next, we simulated a stratified schedule based
on the quality measures for the teams. We report
four schedules (conference realignments) based
on (a) each quality measure (MOV and ELO) and
(b) 1 year’s quality measures (2010) or a 10-year
average quality measure.

For each schedule we ranked the teams from
1 to 118. The teams are ranked based either on
their quality at the beginning of the 2010 season
or their average quality at the beginning of the
season for the previous 10 years (2001–2010).
We then put the top 13 teams in the first con-
ference, the next 13 teams in the next confer-
ence, and so on. We then gave each team a 12
game schedule, 6 home games and 6 road games
with the other 12 teams in the conference. There-
fore, each team’s entire schedule is with other
team’s within the conference. Each team’s sched-
ule is balanced in the sense that if they play the
best team at home, they play the next best team
on the road, the next team at home, and so on.
This mandates that each team plays one-half of
their games at home and one-half of their games
away. This balanced scheduling process gener-
ates a slightly smaller number of games than are
currently played in a season.

Recall that demand in our model is determined
by quality, which is in turn determined by per-
formance results. For the simulation we need to
update quality throughout the season. We did this
by assuming that each team’s quality measure is
updated throughout the season in the way that
the measures actually did change in 2010. For
example, for a team’s third road game, their qual-
ity measure was the same as that team’s quality
measure when they played their third game in
2010. If a team did not have 6 home games, or
six road games, their last home/road quality mea-
sure was used.10 Unfortunately, with 118 teams,
there is one team left over after teams have been
assigned to nine conferences. In the simulation,
this team plays a generic Football Championship
Subdivision team for each game.

The four proposed conferences are shown in
Tables 6–9. Tables 6 and 7 are based only on
quality as measured in 2010, Tables 8 and 9 are

10. While it might seem arbitrary to assume that quality
would evolve in our league structure in the same way that
it did in the actual competition structure in 2010, it seems
reasonable to suggest, at least as an approximation, that the
quality of a team is independent of the opposing teams. In
other words, if the schedule had been different the game
scores would have been different, but these should have
implied the same quality estimates.

TABLE 6
Conference Alignment from MOV Variable for

2010 Season

Conference 1 Conference 2 Conference 3

Texas Arizona Arkansas
Alabama Oregon State Utah
Cincinnati LSU UCLA
Boise State BYU Oklahoma State
Florida Penn State Bowling Green
Pittsburgh Georgia Tech Clemson
Wisconsin Navy Minnesota
Ohio State Nebraska Central Michigan
Iowa North Carolina Auburn
Oregon Miami Georgia
TCU Missouri Florida State
Virginia Tech West Virginia Kentucky
USC Oklahoma SMU
Conference 4 Conference 5 Conference 6
Washington Syracuse Middle Tennessee
Troy Rutgers Idaho
Mississippi State Stanford Northern Illinois
Marshall Boston College Louisiana Lafayette
Texas Tech Fresno State Utah State
South Carolina South Florida Ohio
Tennessee UCF Iowa State
East Carolina Nevada Louisiana Monroe
Purdue Notre Dame Texas A&M
Air Force California Temple
Ole Miss Southern Miss Florida Atlantic
Northwestern Michigan State Louisville
Houston Wyoming Baylor
Conference 7 Conference 8 Conference 9
Kansas San Jose State Western Michigan
Tulsa NC State Toledo
UNLV Memphis Duke
Kansas State Arizona State North Texas
Wake Forest Louisiana Tech Tulane
Colorado State Washington State Vanderbilt
Miami (OH) Illinois UTEP
UAB Virginia Rice
Hawaii Army Kent State
Michigan Indiana Maryland
Buffalo San Diego State New Mexico State
Colorado Florida International Western Kentucky
Arkansas State New Mexico Ball State

Notes: Teams in italics maintained a rivaly game with
this conference alignment. Stanford maintained two rivalry
games. Eastern Michigan was the last ranked team and played
Football Championship Subdivision teams in the simulation.

based on average quality measured between 2001
and 2010. Tables 6 and 8 are calculated on the
basis of the MOV measure, Tables 7 and 9 on the
basis of the ELO measure.

These schedules are optimal in the sense that
the best teams (based on the relevant quality
measure) are playing the best teams, which
increases demand for college football. However,
this does cause a decrease in rivalry games,
which is a major complaint about conference
realignment. Another factor that can decrease
overall attendance is that each team has six
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TABLE 7
Conference Alignment from ELO Variable for

2010 Season

Conference 1 Conference 2 Conference 3

Florida TCU Boston College
Texas Georgia Tech Clemson
Alabama Utah Auburn
Ohio State BYU Pittsburgh
USC Texas Tech Miami
Oregon Iowa Arkansas
Penn State Oregon State Arizona
Boise State Nebraska Missouri
Virginia Tech West Virginia Ole Miss
Oklahoma Wisconsin Tennessee
Georgia Florida State Stanford
Cincinnati California South Carolina
LSU Oklahoma State Rutgers

Conference 4 Conference 5 Conference 6
North Carolina NC State Maryland
Michigan State Mississippi State Troy
Northwestern Air Force Washington
Kentucky Texas A&M Hawaii
UCLA Michigan Colorado
South Florida Purdue UCF
Kansas Kansas State Illinois
Wake Forest Houston Iowa State
Notre Dame Fresno State Middle Tennessee
Navy Virginia Wyoming
East Carolina Nevada Southern Miss
Central Michigan Minnesota Baylor
Arizona State Louisville Tulsa

Conference 7 Conference 8 Conference 9
Vanderbilt Rice UTEP
Indiana SMU San Jose State
Syracuse Northern Illinois Arkansas State
Bowling Green Colorado State Utah State
Washington State UAB Memphis
Temple Idaho Kent State
UNLV Louisiana Lafayette Army
Ohio New Mexico Florida International
Marshall Louisiana Monroe Tulane
Duke Buffalo New Mexico State
Louisiana Tech Ball State Miami (OH)
Florida Atlantic San Diego State Eastern Michigan
Western Michigan Toledo North Texas

Notes: Teams in italics maintained a rivaly game with this
conference alignment. Western Kentucky was the last ranked
team and played Football Championship Subdivision teams
in the simulation.

home games and six road games. Currently,
teams with high demand typically have more
home games than road games, thereby increasing
aggregate attendance.

Table 10 shows the results from the various
schedules. The first row in Table 10 shows that
our stratified schedule does have fewer games,
due to the fact that this schedule is balanced.
The second row shows the average per game
attendance for teams. It is important to note that
these numbers are an average of the average
attendance for each team. The results show that

TABLE 8
Conference Alignment from Average MOV

Variable from 2001 to 2010 Season

Conference 1 Conference 2 Conference 3

USC Tennessee Iowa
Oklahoma Auburn Louisville
Texas Oregon State UCLA
Florida West Virginia Oklahoma State
LSU Michigan South Carolina
Ohio State Alabama Arkansas
Miami Boston College Cincinnati
Florida State Wisconsin Clemson
Georgia Texas Tech Penn State
Virginia Tech Notre Dame Maryland
Boise State Georgia Tech Pittsburgh
Oregon Nebraska California
TCU Utah BYU

Conference 4 Conference 5 Conference 6
Fresno State Bowling Green Arizona
Texas A&M Washington Northern Illinois
Colorado South Florida NC State
Virginia Colorado State Kentucky
Southern Miss Michigan State Air Force
Purdue Arizona State Troy
Kansas State North Carolina Illinois
Minnesota Syracuse New Mexico
Wake Forest Stanford Kansas
Northwestern Toledo Nevada
Missouri Marshall Miami (OH)
Ole Miss Hawaii Houston
Washington State East Carolina Western Michigan

Conference 7 Conference 8 Conference 9
Rutgers Ball State Tulane
Tulsa North Texas Arkansas State
UCF UTEP Western Kentucky
Mississippi State UNLV SMU
Iowa State Rice Louisiana Lafayette
Central Michigan Utah State New Mexico State
Middle Tennessee San Jose State Idaho
Baylor Vanderbilt Kent State
Louisiana Tech Indiana Louisiana Monroe
UAB Ohio Duke
Memphis San Diego State Buffalo
Navy Wyoming Army
Florida Atlantic Temple Florida International

Notes: Teams in italics maintained a rivaly game with this
conference alignment. Florida and Florida State maintained
two rivalry games. Eastern Michigan was the last ranked team
and played Football Championship Subdivision teams in the
simulation.

a completely random schedule is just slightly
worse (by between 1/3% and 1/2% on average)
than the current conference scheduling. The ran-
dom schedule by definition does not give prior-
ity to rivalry games, suggesting that the rivalry
effect is not especially strong. The impacts are
relatively small, which gives some evidence that
the number of out of conference games creates
schedules that are not that far different, in terms
of strength of schedule, from a completely ran-
dom schedule. Also it is important to note that



SZYMANSKI & WINFREE: CONTESTS AND COLLEGE FOOTBALL 493

TABLE 9
Conference Alignment from ELO Variable from

2001 to 2010 Season

Conference 1 Conference 2 Conference 3

Texas Oregon Iowa
Florida Nebraska Arkansas
USC Wisconsin Kansas State
Oklahoma Penn State UCLA
Ohio State Oregon State Utah
Georgia Boston College Virginia
LSU Texas Tech California
Miami Alabama Maryland
Florida State Georgia Tech TCU
Virginia Tech Boise State Purdue
Tennessee Clemson Louisville
Michigan West Virginia Texas A&M
Auburn Notre Dame Arizona State
Conference 4 Conference 5 Conference 6
South Carolina Arizona Colorado State
Colorado Minnesota Marshall
BYU Cincinnati Mississippi State
NC State North Carolina Air Force
Michigan State South Florida Illinois
Pittsburgh Fresno State Toledo
Missouri Northwestern New Mexico
Washington State Southern Miss East Carolina
Oklahoma State Kansas Troy
Ole Miss Hawaii Bowling Green
Washington Iowa State Indiana
Stanford Kentucky Miami (OH)
Wake Forest Syracuse Houston
Conference 7 Conference 8 Conference 9
Rutgers Baylor Duke
Northern Illinois Tulsa SMU
Navy UNLV North Texas
UCF Middle Tennessee Utah State
Nevada Rice Florida International
Louisiana Tech Tulane Louisiana Lafayette
Memphis Central Michigan Arkansas State
Vanderbilt San Jose State New Mexico State
San Diego State Ball State Louisiana Monroe
Florida Atlantic Ohio Kent State
Wyoming UTEP Idaho
UAB Western Kentucky Army
Western Michigan Temple Eastern Michigan

Notes: Teams in italics maintained a rivaly game with
this conference alignment. Florida and Florida State main-
tained two rivalry games. Buffalo was the last ranked team
and played Football Championship Subdivision teams in the
simulation.

while this simulation randomly assigned visit-
ing teams, the home teams were the same as the
actual home teams in 2010, and these home teams
tended to be the ones with the larger stadiums. If
we had randomly assigned home field advantage
as well, then the average stadium size would have
been smaller and so this random schedule would
have had yet lower attendance.

By contrast, the stratified schedule which
matches teams of roughly equal strength (and
also has fewer rivalry games), increases the aver-
age per game attendance between 1% and 2%.

This increase is due to the interaction between
home and road team qualities.

The fourth row shows the total attendance for
the year. Since there are 3.85% fewer games in
our stratified simulations we multiply the strati-
fied attendance total by 1.0385. This is equiva-
lent to assuming that each team played 6.23 home
games so that there were 729 games total. In our
stratified simulation each team plays the same
number of home games. Under this scenario, total
attendance actually drops roughly 3%. This is
because any increase in demand from schedul-
ing more evenly ranked teams is more than offset
by the fact that teams that generally have a high
attendance are forced to have fewer home games.

For example, the biggest beneficiary of mov-
ing to a stratified schedule based on a 10-year
average is Navy. Using the MOV metric, their per
game attendance would go from 33,952 to 35,456
and the number of home games goes from 5 to
6.23. Therefore their total attendance would go
from 169,759 to 220,921 for a gain of 51,162.
Most of this gain is due to the increase in the num-
ber of home games instead of the increase in per
game attendance. The biggest drop in attendance
would happen to Ohio State. While their per game
attendance goes from 113,611 to 115,614, their
number of home games would go from 8 to 6.23.
Therefore, their total attendance would go from
908,889 to 720,361, which is a drop of 188,528.

If the goal of the National Collegiate Ath-
letic Association (NCAA) was to continue hav-
ing balanced conferences, then the conferences
would need to be realigned periodically, presum-
ably yearly. We note that changes in conference
realignment would be less dramatic if they used
quality measures that were averaged over the pre-
vious ten seasons.

VI. COSTS OF REALIGNMENT

The realignment simulated here would cre-
ate a hierarchy of divisions containing equally
matched teams, and thus resembles the structure
of professional soccer leagues in Europe. There
teams play in hierarchically organized divisions
linked by the promotion and relegation rule. This
requires that the worst performing teams, mea-
sured by success on the field, are relegated at
the end of the season to the immediately inferior
division, to be replaced for the following season
by the best performing teams from that division.
Teams can and do move up and down the hierar-
chy depending on the quality of their play.
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TABLE 10
Unrestricted Attendance Estimation from Simulation Results

Acutal Random Stratified 10-Year Avg.
Schedule
Estimation MOV ELO MOV ELO MOV ELO MOV ELO

# of games 729 729 729 729 708 708 708 708
Average per game

attendance
44,850 44,919 44,639 44,749 45,359 45,694 45,319 45,638

% from actual −.47% −.38% 1.14% 1.72% 1.05% 1.60%
Total attendance 34,103,871 34,155,670 33,921,020 33,986,660 33,066,622 33,311,003 33,037,368 33,270,317
% from actual −.54% −.49% −3.04% −2.47% −3.13% −2.59%

Notes: Due to the unbalanced schedule, there were a total of 729 home games in the sample. The random simulation only
changed opponents and not the dates of home games, therefore there are also 729 home games. The stratified and 10-year average
simulations use six home games for each team and therefore there are 702 games in total. However, to find the season’s total
attendance, each team’s average attendance was multiplied by 6.23 to make the comparisons more meaningful.

Our simulation shows that this realignment
would lead to lower attendance, mainly due to the
fact that the higher quality teams with larger sta-
diums would play fewer games at home. While
there is a loss of rivalry games, the main cost is
the change in home games for teams with large
stadiums. The 4.4% of games in our sample are
considered rivalry games and our largest esti-
mates of the impact of those games is a 12.6%
increase in attendance. Therefore, we estimate
rivalry games to account for .56% or less of
total attendance. Capacity effects from balanced
schedules, on the other hand, can decrease aggre-
gate attendance 4%.

However, this effect might only be short term.
Given that demand should increase for each team
(because the matching effect generates more
attractive games), then all teams might increase
capacity in the longer run to meet increased
demand. We did not find a strong rivalry game
effect, and even if demand was reduced some-
what by the loss of rivalry games, the results
imply that it might not be too difficult to generate
new rivalry games. In any case, the realignment
was intended solely to maximize assortative
matching, but it is possible to generate alter-
native models which improves the balance of
matches while preserving more rivalry games.11

It also seems plausible that the greatest benefit of
increasing balance in competition might not be
increased attendance at the stadium but increased
media interest.

However, there are other costs involved with
realignment. Given that the current conferences

11. In recent years, there has been some movement of
teams across various conferences. Perhaps conferences recog-
nize the value of admitting teams of similar quality, but at the
same time maintain rivalry games and allow the larger teams
to schedule more home games.

are largely based on geography, making confer-
ences more performance based would increase
travel costs since teams would be further away.
These travel costs are not only of the form of
direct financial costs, but might also include a
reduced willingness of visiting fans to attend
games, which would thereby reduce atten-
dance.12 A related point is that this may cause
problems with other college sports. Many of
the current conferences embrace all sports and
hence a realignment based on college foot-
ball might drastically increase travel costs for
Athletic Departments.

There could be adverse effects due to the fact
that conferences would change. While our model
attempts to control for rivalry games, there may
be a positive effect on demand from maintaining
conference stability over a long time period. Also,
if it turned out that there was little long-term
mobility up and down the hierarchy then schools
that were perpetually at the bottom might lose
demand because of the lost opportunity to play
occasional games against highly ranked teams.

VII. CONCLUSIONS

In this article we have simulated an opti-
mal league structure for college football derived
from our estimates of team quality (based on
results) and the empirical relationship between
attendance and the quality of the home and away
teams. We find that the restructuring would yield
a small increase in attendance. We do not find
that the loss of rivalry games due to restructur-
ing would lead to significantly adverse effects on

12. In Europe the soccer leagues operate within national
boundaries and so travel costs do not tend to be important.
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attendance. It is commonplace in sports compe-
tition to match contestants of similar ability. In a
league format, players of similar ability are usu-
ally classed together although there may be some
opportunities to move between classes (in knock-
out competition organizers usually prefer to seed
players so that the best do not meet in the early
rounds). Arguably this matching occurs because
people like to see the best play against the best.

Sports economics has tended to focus on
the competitive balance hypothesis that demand
increases when opponents are equally balanced.
This entails the proposition that the best play-
ing against the best (as well as the worst playing
against the worst) is more attractive than contests
among teams of unequal abilities.

In many contexts it has proved hard to demon-
strate clear support for the competitive balance
hypothesis, perhaps because leagues often tend to
be relatively well balanced. It may be that the dis-
parities in some college football games are great
enough to reveal the competitive balance effect.
Indeed, we know that strong teams often choose
to play against very weak opponents, and our
analysis shows that this comes at a cost in terms
of attractiveness to fans, even if our simulations
suggest that there are offsetting benefits within
the current system.

The competitive balance hypothesis has been
used as an argument in favor of redistribution
among teams that are already members of a
league. In the college football context, where
teams have discretion to choose who they play
during the season, the implications are rather dif-
ferent. It is not surprising that teams have incen-
tives to pick very weak opponents, all else equal.
There are benefits in terms of preparing players
for stronger opponents ahead, and also in terms
of creating an aura of invincibility (even if this is
not always entirely credible).

Were the NCAA free to design the entire con-
ference system from scratch, then we suppose
they would pick a structure along the lines we
have identified. More interestingly, will realign-
ments driven by individual choice lead ultimately
to balanced divisional structure of the type we
have simulated? There are reasons to think that
they will, given that strong teams potentially
gain revenues when they commit to playing more
games against other strong teams, and there are
clear benefits to be seen to be playing at the
highest level. We believe that conference realign-
ments are evidence of this process at work. That
said, this process could take decades or more to
complete.

Finally, we draw a parallel between this
problem and the issues facing European soccer
competition. In Europe teams are traditionally
organized in national leagues, but the most attrac-
tive competition format is generally thought to
be the Union of European Football Associations
(UEFA) Champions League, where teams from
different countries play each other. The problem
with this system is that the top teams in differ-
ent countries (e.g., Barcelona, Bayern Munich,
Manchester United, or AC Milan) seldom get
to play each other. For many years now there
have been discussions about the creation of a
European “Superleague”—and although this
has not materialized existing competitions have
been reformed to enable the top clubs from
different countries to play each other more often
than in the past. In our view, that is because
fans typically want to see the best play against
the best.
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