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Abstract The role instabilities play in governing the evolution of solar and astrophysical plasmas is a
matter of considerable scientific interest. The large number of sources of free energy accessible to such
nearly collisionless plasmas makes general modeling of unstable behavior, accounting for the temperatures,
densities, anisotropies, and relative drifts of a large number of populations, analytically difficult. We therefore
seek a general method of stability determination that may be automated for future analysis of solar wind
observations. This work describes an efficient application of the Nyquist instability method to the Vlasov
dispersion relation appropriate for hot, collisionless, magnetized plasmas, including the solar wind.
The algorithm recovers the familiar proton temperature anisotropy instabilities, as well as instabilities
that had been previously identified using fits extracted from in situ observations in Gary et al. (2016).
Future proposed applications of this method are discussed.

Plain Language Summary Waves in some plasma systems can grow, rather than damp, in time
drawing energy from the departures from equilibrium. We present a means of efficiently determining if a
particular system is susceptible to such unstable behavior. Such determination is typically made by solving
a difficult mathematical problem or making simplifying assumptions about the system. Our technique is
compared to previously studied cases with good agreement. We then discuss plans for future application
of the technique to measurements of the solar wind, a hot and tenuous magnetized plasma that fills our
solar system.

1. Introduction

The solar wind, a hot, diffuse, and magnetized plasma, fills the heliosphere. Its low density and high tempera-
ture ensure that the charged particles that constitute the plasma experience few collisions from the time they
are accelerated from the Sun’s surface to the time they flow past the Earth; this weak collisionality allows the
system to persist in a state far from local thermodynamic equilibrium. The deviations from local thermody-
namic equilibrium, which take the form of anisotropies between temperatures parallel and perpendicular to
the mean magnetic field; relative drifts between the protons, electrons, and minor ions; ring distributions; and
more general agyrotropic particle distributions, can serve as sources of free energy that may drive unstable
behavior. The study of this menagerie of instabilities has a long and rich history in plasma and space physics,
which we do not review here. Gary [1993] is a classic reference describing instabilities relevant to the solar
wind, which can be supplemented with a modern review presented in Yoon [2017].

Work over the last decade using statistical sets of in situ solar wind observations indicate that instabilities act
to govern the evolution of the solar wind. [Kasper et al., 2002; Hellinger et al., 2006; Matteini et al., 2007; Bale
et al., 2009; Maruca et al., 2011; Chen et al., 2016] The prototypical example of these studies focuses on his-
tograming observations onto a reduced parameter space, e.g., the proton parallel plasma 𝛽||p=8𝜋npT||p∕B2

versus proton temperature anisotropy T⟂p∕T∥p plane. By counting the number of observations, or the aver-
age value of a third quantity, in different regions of this parameter space, and comparing to modeled
marginal instability thresholds, inferences can be made as to the action of instabilities in governing the
solar wind’s evolution. In the (𝛽||p, T⟂p∕T∥p) case, stability thresholds derived for the mirror instability and the
Alfvén (or oblique) firehose instability limit the observed distribution of plasma with T⟂p>T∥p and T⟂p < T∥p,
respectively. However, as discussed in Hellinger and Trávníček [2014], such conclusions may be complicated by
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the nature of such projections, which reduce a high-dimensional system to a two-dimensional space, obfus-
cating the effects of other plasma or solar wind parameters. Importantly, the stability thresholds used in these
studies typically consider only a single source of free energy, neglecting the effects of additional sources, e.g.,
electron or minor ion drifts or anisotropies, which may act to stabilize or destabilize the system. Recent work
by Chen et al. [2016] does account for the total contribution to the parallel and perpendicular pressure from
each plasma component but is limited to large-wavelength instabilities.

Rather than modeling the stability of a hot and magnetized plasma equilibrium for distinct sources of free
energy, we develop in this work a more general method for stability determination, first described by Nyquist
[1932]. Nyquist’s method determines for a given dispersion relation and equilibrium parameters the number
of normal mode solutions that have a positive growth rate. The method is employed in engineering con-
texts [Phillips et al., 1947] and has been applied to specific plasma physics cases as far back as the 1950s
[Jackson, 1958; Buneman, 1959; Penrose, 1960; Gardner, 1963]. In this work, we demonstrate that Nyquist’s
method can be used to accurately and efficiently determine the stability of a plasma equilibrium with an arbi-
trary number of drifting ion and electron populations, each with a potentially unique bi-Maxwellian velocity
distribution. The algorithm is described in section 2, followed by a pedagogical application of the method to
the well-known proton temperature anisotropy instabilities in section 3. In section 4, we apply the method to
six intervals measured by the Wind spacecraft, first considered by Gary et al. [2016], as a test of the application
of this method to actual solar wind observations. Proposed future uses of this method, including assisting
event selection for data downloaded from Parker Solar Probe and extensions beyond the bi-Maxwellian
framework, are described in section 5.

2. Methodology

Nyquist’s method was initially developed to study instabilities due to feedback in electronic circuits [Nyquist,
1932]. This method, as well as a simplification of the method made by Penrose [1960], are frequently described
in plasma textbooks for the cases of simple electrostatic and electromagnetic equilibrium [Krall and Trivelpiece,
1973; Stix, 1992]. We therefore provide a brief review of the method, leaving aside proofs of the underlying
complex analysis to other references (see Krall and Trivelpiece [1973, section 9.6] for further details).

For a general linearized system, frequency and wavevectors that satisfy the dispersion relation |D(𝜔, 𝛾; k)| = 0
describe the system’s normal mode response to an initial perturbation; 𝜔 and 𝛾 are the real and imaginary
components of the frequency, and k is the wavevector. Normal modes with 𝛾 < 0 damp with increasing time,
while those with 𝛾 > 0 are unstable and grow with time. Nyquist’s key insight into studying these systems was
that a contour integral of |D|−1 over the upper half complex frequency plane will encircle all modes with 𝛾 > 0,
allowing a straightforward application of the residue theorem to count the number of singularities and there-
fore the number of unstable modes. It can be shown that an equivalent method of evaluating this contour
integral is to map the value of |D|−1 along the line from (𝜔 → −∞, 𝛾 = 0) to (𝜔 → +∞, 𝛾 = 0) to a parametric
curve in (|D|−1

R , |D|−1
I ) space where R and I identify the real and imaginary components of the complex val-

ued |D|−1. Plots of this parametric curve are known as a “Nyquist diagram.” The number of times this curve
encircles the origin (|D|−1

R , |D|−1
I ) = (0, 0), an integer defined as the winding number Wn, equals the number

of unstable normal modes the system supports.

To automate the counting of the winding number for an arbitrary parametric curve, we employ well-
established algorithms from applied mathematics [Shimrat, 1962; Hormann and Agathos, 2001]. For a given
curve, we identify all of the zeros where the curve crosses |D|−1

I = 0, determine the handedness of the curve
at each crossing, and add to or subtract from the value of Wn. For each left-handed crossing, |D|−1

R <0 and
|D|−1

I changes from negative to positive or |D|−1
R > 0 and |D|−1

I changes from positive to negative; we add 0.5
to Wn. For every right-handed crossing, |D|−1

R > 0 and |D|−1
I changes from negative to positive or |D|−1

R <0
and |D|−1

I changes from positive to negative; we subtract 0.5 from Wn. To account for the behavior at large
frequencies, we add 0.5 (−0.5) to Wn if |D|−1

I (𝜔 → −∞) is negative (positive). We note that Wn must be an inte-
ger; noninteger results signify an algorithmic error. The final value of Wn including all contributions from the
|DI|−1 = 0 crossings represents the number of unstable normal modes supported by the dispersion relation
and equilibrium parameters under consideration.

For this work, we model the solar wind as a collection of an arbitrary number of drifting ion and electron pop-
ulations, each with potentially unique bi-Maxwellians velocity distributions. We use the Plasma in a Linear
Uniform Magnetized Environment (PLUME) dispersion relation to supply values for |D| [Klein and Howes, 2015].
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Figure 1. Contours of the dispersion relation and normal mode solutions as a function of complex frequency (𝜔, 𝛾) for
(a) a stable case and (b and c) two unstable cases. (d–f ) Nyquist diagrams, parametric curves of D∗−1

R,I = sign(|D|−1
R,I ) log10

(1 + abs|D|−1
R,I ) evaluated along the 𝛾=0 line in complex frequency space, for the same three cases, with arrows

indicating the handedness of the curve as it crosses |D|−1
I =0 and the associated Wn . Plasma parameters for the

three cases are given in the text.

PLUME numerically evaluates the plasma dispersion relation as derived in chap. 10 of Stix [1992]. The disper-
sion relation depends on four global dimensionless parameters: the wavevectors parallel and perpendicular
to the mean magnetic field k⟂𝜌R and k∥𝜌R, the reference plasma 𝛽∥R, and the relativistic factor w||R∕c, as well
as six dimensionless parameters for each species: the density ratio ns∕nR, the temperature ratio T∥s∕T∥R, the
temperature anisotropy T⟂s∕T∥s, the mass ratio ms∕mR, the charge ratio qs∕qR, and the drift velocity in the ref-
erence species center of mass frame Vs∕vAR. The thermal gyroradius of species s, 𝜌s = w⟂s∕Ωs, is defined as the
ratio of the perpendicular thermal speed w⟂s =

√
2kBT⟂s∕ms over the species gyrofrequencyΩs =qsB∕msc, and

the Alfvén velocity of species s is defined as vAs =B∕
√

4𝜋nsms. Terms with the subscript R identify quantities
calculated using the reference species, which is user defined but typically selected to be the most abun-
dant ion species in a system. For a plasma modeled with N components, the dispersion relation depends on
4+ 6×N − 5 parameters. For all systems but the simplest isotropic proton-electron plasma, stability depends
on complicated interactions between a large number of energy sources and sinks, motivating our automated
treatment of stability analysis.

We illustrate in Figure 1 three examples of the typical normal mode identification process as well as our
Nyquist method algorithm. For the first example, we consider an isotropic proton-electron plasma with
𝛽p =1.0, Tp = Te and (k⟂, k∥)𝜌p =(10−3, 10−2). For the second example, we consider a proton-electron plasma
with 𝛽∥p =1.5, T∥p =T∥e, T⟂p∕T∥p =2.0, T⟂e∕T∥e =1.0 and (k⟂, k∥)𝜌p =(10−1, 2 × 10−2), the parameters for case c
in section 3. For the final example, we consider the four component plasma, composed of proton core, proton
beam, He2+(𝛼), and electron populations, with plasma parameters taken from Event 1 in Gary et al. [2016],
described further in section 4, and (k⟂, k∥)𝜌p = (10−3, 4 × 10−1).

In Figures 1a–1c, we present the contours |D|R = 0 and |D|I = 0 as a function of complex frequency.
Intersections of these contours, where |D| = 0, locate normal mode solutions, which are indicated by black
dots. By inspection, we see that Figure 1a only has solutions with 𝛾 < 0, while Figures 1b and 1c each have one
solution with 𝛾 > 0, for the range of complex frequencies illustrated. Typical instability analysis using disper-
sion relations will identify an unstable mode in the (𝜔, 𝛾) plane and use that frequency as an initial guess as
system parameters, such as k or T⟂p∕T∥p, are varied in a nearly continuous fashion. This type of analysis can be
very insightful, but it relies on either a good initial guess for the normal mode frequency or the application of a
root-finding routine over some range of user-defined frequencies and can be susceptible to misidentification
of roots or to root jumping if the variation of system parameters for a scan is too large.

In Figures 1d–1f, we present Nyquist diagrams for the same three examples as an illustration of our instability
identification method. For each case, we calculate the parametric curve [|D|−1

R , |D|−1
I ](𝜔, 𝛾0=0). The large fre-

quency limit of |𝜔| = 𝜔max is selected so that 𝜉s = (𝜔− Vs)∕k∥w∥s is larger than 10 for all plasma components.
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(The term 𝜉s is the argument of the plasma dispersion function Z used to evaluate the Landau integrals in
the dispersion relation [Fried and Conte, 1961]. The large values of ion to electron mass ratios ensure that for
𝜉e = 10, we will resolve ion cyclotron resonant behavior. For future studies of instabilities involving electron
cyclotron behavior, larger values of 𝜉e must be considered.) Values for the parametric curve are calculated
for log-spaced frequencies between −𝜔max and −|𝜔min|=−10−6Ωp and between 𝜔min and 𝜔max at a total of
4000 points. A bisection algorithm is employed to identify all |D|−1

I = 0 crossings, which may fall between
the initially selected frequency points. The handedness of the curve, as described earlier in this section,
is also calculated at each crossing and used in calculating Wn. In Figures 1d–1f, we plot the contours of
D∗−1

j =sign(|D|−1
j ) log10(1+abs|D|−1

j ). The color of the contour changes for each crossing of |D|−1
I =0. To help

elucidate these examples, a black arrow is drawn near each crossing with the same sign of |D|−1
R and same

handedness as the parametric curve. Each black arrow with |D|−1
R < 0 pointed upward or |D|−1

R >0 pointed
downward adds 0.5 to Wn, while each black arrow with |D|−1

R < 0 pointed downward or |D|−1
R >0 pointed

upward subtracts 0.5 from Wn.(The complementary function D∗−1
j is necessary to illustrate these curves due to

the large range of values for |D|−1 natural to our systems; the structure of D∗−1
j preserves the zero crossings and

signs of both components of |D|, making it ideal for visualizing the Nyquist diagram.) As the parametric curve
does not cross zero for 𝜔→±∞, we illustrate with red arrows the behavior of the curve for the two large fre-
quency limits. For all three cases shown, |D|−1

I (𝜔→−∞) < 0 and |D|−1
I (𝜔→∞)> 0, resulting in a left-handed

encirclement, adding 0.5 to Wn. Accounting for the handedness of zero crossings and large 𝜔 limits
produces a winding number of 0, 1, and 1, respectively, for the three examples, which is identical to the
number of unstable modes supported by each equilibrium.

Unlike typical dispersion relation analysis, the winding number calculation does not provide any informa-
tion about the normal modes, such as their frequency, growth rate, or eigenfunction polarizations. It simply
identifies the number of unstable modes supported by a particular system. However, the winding number
calculation can be applied generally and automatically, without any intelligent selection of modes that are or
will become unstable due to parameter variation and without the concern of mode misidentification or the
solution jumping to a different normal mode. Additionally, the Nyquist curve can be calculated using any con-
stant value of 𝛾 ; that is, instead of calculating the winding number from the [|D|−1

R , |D|−1
I ](𝜔, 𝛾0 = 0) curve,

and thus how many normal modes have a growth rate greater than 𝛾 = 0, we can calculate the winding num-
ber from the [|D|−1

R , |D|−1
I ](𝜔, 𝛾0 ≠ 0) curve, yielding the number of normal modes that have a growth rate

greater than 𝛾 = 𝛾0. As we will see in the following section, this allows us to highlight unstable modes which
will grow fast enough to affect the dynamics of our systems of interest.

3. A Pedagogical Example

As a first test of our algorithm, we consider the well-known proton temperature anisotropy driven instabilities.
We calculate Wn at six points in (𝛽∥p, T⟂p∕T∥p) space for a proton-electron plasma, with T∥p =T∥e and T⟂e =T∥e.
The six points, illustrated in the left panel of Figure 2, are selected so that we consider a stable case, and a case
beyond each of the five marginal stability thresholds. We use values from Table 1 in Verscharen et al. [2016]
with a threshold value of 𝛾th = 10−3Ωp for the mirror, ion cyclotron, parallel firehose, and Alfvén firehose
instabilities; the Chew-Goldberger-Low (or fluid) firehose threshold is simply T⟂p∕T∥p = 1 − 2𝛽−1

∥p . For each
value of (𝛽∥p, T⟂p∕T∥p), we calculate Wn over a 1282 point wavevector grid with k⟂𝜌p and k∥𝜌p ranging from
10−2 to 101. For comparison, we draw the reader’s attention to Figure 2 in Klein and Howes [2015], which plots
the growth rate of unstable modes as a function of k in a similar fashion to Figure 2.

For the stable equilibrium, case a, Wn is 0 over the entire wavevector plane, as expected for a system with no
unstable modes. For case b, with (𝛽∥p, T⟂p∕T∥p) = (0.15, 3.0), Wn is 0 for most k𝜌p but is equal to 2 over a nar-
row band of parallel wavevectors. This is the wavevector region where the proton cyclotron instability arises.
An increase in 𝛽∥p for case c, to (𝛽∥p, T⟂p∕T∥p) = (1.5, 2.0), both expands the proton cyclotron unstable
wavevector region and drives the mirror instability for more oblique wavevectors. We can distinguish between
the two types of instabilities based upon the number of modes driven unstable; the proton cyclotron insta-
bility drives both a forward and a backward propagating Alfvén wave, resulting in Wn = 2, while only one
nonpropagating mode is driven by the mirror instability, resulting in Wn =1 for modes with k⟂ > k∥. The small
region with Wn = 3 indicates wavevectors unstable to both the mirror and proton cyclotron instabilities.

For the three T⟂p < T∥pcases, cases d–f, we keep T⟂p∕T∥p = 0.5 constant and vary 𝛽∥p from 2.0 to 3.0 to 6.0.
For case d, we find Wn =2 over the wavevector region where the parallel firehose instability is known to drive
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Figure 2. The winding number as a function of (k⟂𝜌p, k∥𝜌p) calculated at six points in the (𝛽∥p, T⟂p∕T∥p) plane, indicated
in relation to marginal stability thresholds in the left panel. A stable wavenumber is indicated in white, a wavenumber
with one unstable mode in blue, two in yellow, and three in red.

unstable forward and backward propagating magnetosonic waves. For case e, the Wn = 2 parallel firehose
region is expanded, and we also recover the Alfvén firehose instability, which drives a single nonpropagating
Alfvén mode at oblique wavevectors. For the highest 𝛽∥p case, case f, both the parallel and Alfvén firehose
unstable regions have expanded to include nearly all wavevectors with |k|𝜌p<1. This (𝛽∥p, T⟂p∕T∥p) point
satisfies the CGL instability criteria, and thus in the large wavevector limit, the Vlasov solution agrees with
instability predictions from MHD. For all six cases, our algorithm is able to correctly calculate both where in
wavevector space unstable modes are driven and the number of unstable modes.

As previously noted, the Nyquist method does not produce any characteristics of the unstable modes; values
of Wn as a function of wavevector do not distinguish between slowly and quickly growing instabilities.
However, we are able to calculate Wn(k⟂𝜌p, k∥𝜌p) using a contour integral with any arbitrary value of 𝛾 = 𝛾0,
with the resulting integer reporting the number of modes with 𝛾 > 𝛾0. In Figure 3, we repeat the winding
number calculations at the same six points in (𝛽∥p, T⟂p∕T∥p) space used for Figure 2, replacing 𝛾0 = 0 with
𝛾0 =10−2Ωp. The stable case, case a, has Wn =0 for all wavevectors. Cases b and c have significant reductions
in the wavevector regions which have nonzero Wn. By comparing the 𝛾0 = 0 and 𝛾0= 10−2Ωp cases, we see
that a significant fraction of the wavevectors unstable to the mirror mode, especially with large wavevectors,
have weak growth rates. This is not a novel finding but a novel means of identifying regions of unstable modes
with sufficiently large growth rates.

We see similar reductions for the T⟂p<T∥pcases. The parallel firehose instability is relatively weak for case d,
with no wavevectors having growth rates larger than 10−2Ωp. For cases e and f, there are some reductions in
the extent of the unstable wavevector regions, especially for case f in the small k∥, or large wavevector, limit.

Figure 3. The winding number for the same (𝛽∥p, T⟂p∕T∥p) points used in Figure 2, recalculated for a minimum growth
rate of 𝛾∕Ωp = 10−2.
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Figure 4. Calculation of Wn for the six cases presented in Figure 2 along lines of constant angle, constant k⟂𝜌p =10−3,
or constant k∥𝜌p = 10−3.

As this method is intended for eventual application to analysis of a large number of observations, we would
like to calculate Wn at fewer than 1282 = 16,384 wavevectors and still determine if the system supports any
unstable modes. We take advantage of the preference for unstable modes to occur for wavevectors satisfying
k⟂≪k∥, k⟂≈k∥, and k⟂≫k∥ and calculate Wn along seven paths: constant k⟂𝜌p =10−3, constant k∥𝜌p=10−3, and
𝜃 = atan

(
k⟂∕k∥

)
∈ [5, 25, 45, 65, 85]°. The paths of constant 𝜃 are illustrated in Figures 2 and 3 as grey dashed

lines. In Figure 4, we plot Wn calculated for 128 points in |k|𝜌p along the seven paths for the six (𝛽∥p, T⟂p∕T∥p)
cases. The results are consistent with the full wavevector scans and illustrate that we are able to capture the
presence and structure of these temperature anisotropy instabilities with significantly fewer calculations.

4. Application to Wind Observations

We next turn to an application of the Nyquist method to in situ solar wind observations. Gary et al. [2016]
selected six intervals from the Wind measurements from 19 March 2005 which were associated with enhanced
magnetic fluctuations. Using data from the magnetometer [Lepping et al., 1995], the Solar Wind Experiment
Faraday cup [Ogilvie et al., 1995] and electrostatic analyzer [Lin et al., 1995], bi-Maxwellian fits of a proton core
and beam, alpha particles, and electrons were constructed, with parameters given in their Table 1. Using the
fit parameters of the four plasma populations, they performed a normal mode analysis of the six intervals and
found parallel propagating instabilities associated with five of the intervals. In this section, we repeat their
normal mode analysis, as well as calculate the winding number associated with the observed equilibrium.

In Figure 5 (top row), we plot the imaginary component of the normal mode frequency of the fast/
magnetosonic and Alfvén waves associated with the six selected events as a function of k∥𝜌p for constant
k⟂𝜌p =10−3. The drifting proton beam and 𝛼 particles break the 𝜔=−𝜔 symmetry found in systems with no
drifts, leading to different dispersion relations for sunward and antisunward propagating waves. Stable damp-
ing rates are plotted as dashed lines, while unstable growth rates are plotted with solid lines. As was reported
in Gary et al. [2016], no unstable mode was identified for Event # 3, and the instabilities we find for Events # 1,
2, 6, and 7 are the same as described in the previous work. For Event # 4, we located one of the two instabili-
ties reported in Gary et al. [2016]. The antisunward propagating magnetosonic mode is stable for the reported
values in their Table 1; after correspondence with the authors, we believe an artificially large drift velocity for
the 𝛼 population was used in the calculation of their Figure 7.

In Figure 5 (middle row), we plot Wn(k∥𝜌p), calculated using the same bi-Maxwellian fits for the four plasma
populations used for the normal mode analysis. We see that Wn =0 for all wavevectors with no unstable mode,
and when one or more unstable mode is supported, the winding number matches the number of unsta-
ble modes; e.g., Wn=2 for wavevectors for which both the antisunward propagating Alfvén and fast modes
are unstable in Event # 7. This comparison demonstrates that calculation of Wn can determine if particular
intervals of solar wind observations, and not just idealized systems with single sources of free energy, are
linearly unstable.
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Figure 5. (top row) Damping (dashed lines) and growth (solid) rates from a normal mode analysis of the sunward/antisunward Alfvén and fast modes for the six
selected intervals as a function of k∥𝜌p . (middle row) The winding number for the same intervals, which is nonzero for the same wavevectors an unstable normal
mode is identified. (bottom row) Probability distribution functions of winding number extracted from a Monte Carlo randomization of the measured equilibrium
plasma parameters.

As seen in section 3, not all instabilities arise for wavevectors satisfying k⟂≪ k∥. In an attempt to determine
if any of the observed events have instabilities with oblique wavevectors, we calculate Wn for the six events
over a grid in (k⟂𝜌p, k∥𝜌p), illustrated in Figure 6. For the five unstable events, Wn ≠ 0 only for the parallel
wavevectors already identified in the scan of k∥ presented in Figure 5, and for Event # 3 no oblique instability
is identified. Our algorithm for calculating Wn has allowed us to verify that only parallel instabilities are driven
for the observed equilibrium.

We lastly consider how variations in the plasma equilibrium, introduced either through changes in the solar
wind or errors in observation may affect the stability of the system. For the six events, we perform a Monte
Carlo variation of the observed dimensional quantities, namely, population density, drift velocity, parallel and
perpendicular temperature, and magnetic field amplitude. For each quantity F0, we vary the quantity to a
value randomly drawn from a Gaussian distribution centered at F0 with standard deviation 0.1× F0. To ensure
that quasineutrality and zero net current are maintained, the electron density and drift velocity are set using
the values from the ion variation. For each instantiation of this procedure, Wn(k∥𝜌p) is recalculated. This pro-
cedure is repeated 1000 times for each event, and the probability distribution function of Wn is displayed in
Figure 5 (bottom row).

Figure 6. Winding number calculation for the six selected Wind intervals, calculated as a function of k⟂𝜌p and k∥𝜌p.
The parallel instabilities shown in Figure 5 are recovered, and no oblique instabilities are identified.
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We see that for Events # 1, 2, and 7, more than 90 % of the considered equilibrium are unstable, with the peak
of the ensemble instability arising for the same wavevectors driven unstable for the observed equilibrium.
The Probability distribution function of Wn for Event # 4 has a bimodal distribution, with ≈60% of the ensem-
ble unstable around k∥𝜌p = 0.1 and ≈ 40% unstable around 0.4, a region of probable instability much wider
than the relatively narrow observed region of instability. Further analysis calculating the energy transfer
between the individual plasma components and the electromagnetic wave on selected unstable instances
from the ensemble, not shown, finds that the two unstable regions are associated with resonant energy trans-
fer from either the alpha or proton beam populations, respectively. For Event # 3, only≈20% of the ensemble is
unstable, indicating that neither observational error in measuring the plasma nor small changes in the equilib-
rium are likely obscuring instabilities in the system. The efficient and automated nature of our Nyquist method
algorithm allows for an assessment of the effects of measurement error on our ability to observe instabili-
ties; for three of the events, the observed region of instability matches exactly with the probable region: for
one event the same lack of instabilities is found, and for two events, a broader range of probable instabilities
is identified.

5. Discussion and Conclusion

In this work, we provided a review of Nyquist’s method for stability determination, with particular emphasis
on its application to hot, diffuse, magnetized plasmas. Using the PLUME numerical dispersion relation solver,
we implemented an efficient and automated algorithm for evaluating Nyquist’s method, outputting an inte-
ger known as the winding number Wn which corresponds to the number of unstable modes supported by
the system for an selected plasma equilibrium. This algorithm was tested against well-known proton temper-
ature anisotropy instabilities as well as in situ observations of instabilities in the solar wind and was found in
agreement with the typical normal mode instability analysis.

One intended use for this algorithm is for NASA’s Parker Solar Probe Mission (PSP), scheduled to launch in late
2018, that will make the first in situ measurements of solar wind plasma in the near-Sun environment [Fox et al.,
2015]. One of the key science questions for PSP is to “[d]etermine the structure and dynamics of the plasma
and magnetic fields at the sources of the solar wind”; instabilities are likely to play a role in the dynamic
phenomena of interest. The thermal plasma instruments on PSP which comprise the Solar Wind Electrons
Alphas Protons (SWEAP) instrument suite consist of four sensors: a Faraday cup, two electron electrostatic
analyzers, and an ion electrostatic analyzer[Kasper et al., 2015]. These instruments will measure the thermal
plasma of the solar wind from 10 eV to 20 keV for protons and 5 eV to 30 keV for electrons. The data collected
from this instrument suite will be downlinked in two parts. The first part will be survey data that will sample
the solar wind plasma at a 56 s cadence. These data will then be utilized to select full resolution data with a
maximum cadence of 0.5 s to study the solar wind plasma in detail. To select an hour’s worth of data from
over 10 days at closest approach to the Sun, the survey data will need to be examined to find the most scien-
tifically relevant intervals. The method described in this paper will be utilized to help guide scientists in their
identification of the data to select.

The survey data will be processed from raw form into a higher-level set that will include three species,
protons, alphas, and electrons, and will provide the density, velocity, and temperature for each. Using the
SWEAP data combined with measurements of electric and magnetic fields from the Fields instrument suite
[Bale et al., 2016], other auxiliary data will be calculated including Alfvén speed, plasma 𝛽 , and sound speed.
The Nyquist method will then be run on the survey data, calculating the winding number using the 56 s survey
data along the seven paths in wavevector space illustrated in Figure 4. The winding number will be plotted
with the observed plasma parameters and other derived quantities to allow scientists a way to identify the
best high-cadence data to select for download.

Within this work, we have restricted ourselves to a bi-Maxwellian description of the plasma equilibrium. The
Nyquist method does not generally have this restriction, and future studies will consider other dispersion rela-
tions with more accurate descriptions of the velocity distribution of the plasma, considering other analytical
functions such as kappa distributions, or dispersion relations produced from direct numerical integration of
an observed distribution. Differences between applications of the Nyquist method using different dispersion
relations may help elucidate where departures from a Maxwellian description significantly affect the stability
of a plasma.
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The technique presented in this work will be useful for the study of the stability of a large number of plasma
systems, in particular, expanding our understanding of stability of plasmas within the canonical (𝛽∥p, T⟂p∕T∥p)
plane and exploring the impact of other sources of free energy, and may be applied to measurements of the
solar wind and planetary magnetospheres, as well as data sets derived from multifluid or kinetic numerical
simulations. These applications will be considered in future work.
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