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Abstract14

The role instabilities play in governing the evolution of solar and astrophysical plasmas is15

a matter of considerable scientific interest. The large number of sources of free energy ac-16

cessible to such nearly-collisionless plasmas makes general modeling of unstable behavior,17

accounting for the temperatures, densities, anisotropies, and relative drifts of a large num-18

ber of populations, analytically difficult. We therefore seek a general method of stability19

determination that may be automated for future analysis of solar wind observations. This20

work describes an efficient application of the Nyquist instability method to the Vlasov dis-21

persion relation appropriate for hot, collisionless, magnetized plasmas, including the solar22

wind. The algorithm recovers the familiar proton temperature anisotropy instabilities, as23

well as instabilities that had been previously identified using fits extracted from in situ24

observations in Gary et al. [2016]. Future proposed applications of this method are dis-25

cussed.26

1 Introduction27

The solar wind, a hot, diffuse, and magnetized plasma, fills the heliosphere. Its low28

density and high temperature ensure that the charged particles which constitute the plasma29

experience few collisions from the time they are accelerated from the Sun’s surface to the30

time they flow past the Earth; this weak collisionality allows the system to persist in a31

state far from local thermodynamic equilibrium. The deviations from LTE, which take the32

form of anisotropies between temperatures parallel and perpendicular to the mean mag-33

netic field, relative drifts between the protons, electrons, and minor ions, ring distributions,34

and more general agyrotropic particle distributions, can serve as sources of free energy35

that may drive unstable behavior. The study of this menagerie of instabilities has a long36

and rich history in plasma and space physics, which we do not review here. Gary [1993]37

is a classic reference describing instabilities relevant to the solar wind, which can be sup-38

plemented with a modern review presented in Yoon [2017].39

Work over the last decade using statistical sets of in situ solar wind observations in-40

dicate that instabilities act to govern the evolution of the solar wind. [Kasper et al., 2002;41

Hellinger et al., 2006; Matteini et al., 2007; Bale et al., 2009; Maruca et al., 2011; Chen42

et al., 2016] The prototypical example of these studies focuses on histograming observa-43

tions onto a reduced parameter space, e.g. the proton parallel plasma β | |p = 8πnpT| |p/B2
44

versus proton temperature anisotropy T⊥p/T∥p plane. By counting the number of observa-45

tions, or the average value of a third quantity, in different regions of this parameter space,46

and comparing to modeled marginal instability thresholds, inferences can be made as to47

the action of instabilities in governing the solar wind’s evolution. In the (β | |p,T⊥p/T∥p)48

case, stability thresholds derived for the mirror instability and the Alfvén (or oblique) fire-49

hose instability limit the observed distribution of plasma with T⊥p > T∥p and T⊥p < T∥p50

respectively. However, as discussed in Hellinger and Trávníček [2014], such conclusions51

may be complicated by the nature of such projections, which reduce a high-dimensional52

system to a two-dimensional space, obfuscating the effects of other plasma or solar wind53

parameters. Importantly, the stability thresholds used in these studies typically consider54

only a single source of free energy, neglecting the effects of additional sources, e.g. elec-55

tron or minor ion drifts or anisotropies, which may act to stabilize or destabilize the sys-56

tem. Recent work by Chen et al. [2016] does account for the total contribution to the57

parallel and perpendicular pressure from each plasma component, but is limited to large-58

wavelength instabilities.59

Rather than modeling the stability of a hot and magnetized plasma equilibrium for60

distinct sources of free energy, we develop in this work a more general method for sta-61

bility determination, first described by Nyquist [1932]. Nyquist’s method determines for62

a given dispersion relation and equilibrium parameters the number of normal mode solu-63

tions that have a positive growth rate. The method is employed in engineering contexts64
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[Phillips et al., 1947], and has been applied to specific plasma physics cases as far back as65

the 1950’s [Jackson, 1958; Buneman, 1959; Penrose, 1960; Gardner, 1963]. In this work,66

we demonstrate that Nyquist’s method can be used to accurately and efficiently determine67

the stability of a plasma equilibrium with an arbitrary number of drifting ion and elec-68

tron populations, each with a potentially unique bi-Maxwellian velocity distribution. The69

algorithm is described in Section 2, followed by a pedagogical application of the method70

to the well known proton-temperature anisotropy instabilities in Section 3. In Section 4,71

we apply the method to six intervals measured by the Wind spacecraft, first considered by72

Gary et al. [2016], as a test of the application of this method to actual solar wind obser-73

vations. Proposed future uses of this method, including assisting event selection for data74

downloaded from Parker Solar Probe and extensions beyond the bi-Maxwellian frame-75

work, are described in Section 5.76

2 Methodology77

Nyquist’s method was initially developed to study instabilities due to feedback in78

electronic circuits [Nyquist, 1932]. This method, as well as a simplification of the method79

made by Penrose [1960], are frequently described in plasma textbooks for the cases of80

simple electrostatic and electromagnetic equilibrium [Krall and Trivelpiece, 1973; Stix,81

1992]. We therefore provide a brief review of the method, leaving aside proofs of the un-82

derlying complex analysis to other references (see §9.6 of Krall and Trivelpiece [1973] for83

further details).84

For a general linearized system, frequency and wavevectors that satisfy the disper-85

sion relation |D(ω, γ; k)| = 0 describe the system’s normal mode response to an initial86

perturbation; ω and γ are the real and imaginary components of the frequency and k is87

the wavevector. Normal modes with γ < 0 damp with increasing time, while those with88

γ > 0 are unstable and grow with time. Nyquist’s key insight into studying these systems89

was that a contour integral of |D|−1 over the upper-half complex-frequency plane will en-90

circle all modes with γ > 0, allowing a straight-forward application of the residue theorem91

to count the number of singularities, and therefore the number of unstable modes. It can92

be shown that an equivalent method of evaluating this contour integral is to map the value93

of |D|−1 along the line from (ω → −∞, γ = 0) to (ω → +∞, γ = 0) to a parametric curve94

in (|D|−1
R , |D|−1

I ) space where R and I identify the real and imaginary components of the95

complex valued |D|−1. Plots of this parametric curve are known as a “Nyquist diagram”.96

The number of times this curve encircles the origin (|D|−1
R , |D|−1

I ) = (0, 0), an integer de-97

fined as the winding number Wn, equals the number of unstable normal modes the system98

supports.99

To automate the counting of the winding number for an arbitrary parametric curve,100

we employ well-established algorithms from applied mathematics [Shimrat, 1962; Hor-101

mann and Agathos, 2001]. For a given curve, we identify all of the zeros where the curve102

crosses |D|−1
I = 0, determine the handedness of the curve at each crossing, and add to103

or subtract from the value of Wn. For each left-handed crossing, |D|−1
R < 0 and |D|−1

I104

changes from negative to positive or |D|−1
R > 0 and |D|−1

I changes from positive to neg-105

ative, we add 0.5 to Wn; For every right-handed crossing, |D|−1
R > 0 and |D|−1

I changes106

from negative to positive or |D|−1
R < 0 and |D|−1

I changes from positive to negative, we107

subtract 0.5 from Wn. To account for the behavior at large frequencies, we add 0.5 (−0.5)108

to Wn if |D|−1
I (ω → −∞) is negative (positive). We note that Wn must be an integer;109

non-integer results signify an algorithmic error. The final value of Wn including all con-110

tributions from the |DI |−1 = 0 crossings represents the number of unstable normal modes111

supported by the dispersion relation and equilibrium parameters under consideration.112

For this work, we model the solar wind as a collection of an arbitrary number of113

drifting ion and electron populations, each with potentially unique bi-Maxwellians velocity114

distributions. We use the Plasma in a Linear Uniform Magnetized Environment (PLUME)115
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Figure 1. Top row: contours of the dispersion relation and normal mode solutions as a function of com-
plex frequency (ω, γ) for a stable case, panel a, and two unstable cases, panels b and c. Bottom row: Nyquist
diagrams, parametric curves of D∗−1

R,I = sign(|D|−1
R,I ) log10(1 + abs|D |−1

R,I ) evaluated along the γ = 0 line in
complex frequency space, for the same three cases, with arrows indicating the handedness of the curve as it
crosses |D |−1

I = 0 and the associated Wn. Plasma parameters for the three cases are given in the text.
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dispersion relation to supply values for |D| [Klein and Howes, 2015]. PLUME numeri-116

cally evaluates the plasma dispersion relation as derived in Chapter 10 of Stix [1992].117

The dispersion relation depends on four global dimensionless parameters; the wavevec-118

tors parallel and perpendicular to the mean magnetic field k⊥ρR and k ∥ρR, the refer-119

ence plasma β∥R, and the relativistic factor w | |R/c, as well as six dimensionless param-120

eters for each species; the density ratio ns/nR, the temperature ratio T∥s/T∥R, the tem-121

perature anisotropy T⊥s/T∥s , the mass ratio ms/mR, the charge ratio qs/qR, and the drift122

velocity in the reference species center of mass frame Vs/vAR. The thermal gyroradius123

of species s, ρs = w⊥s/Ωs , is defined as the ratio of the perpendicular thermal speed124

w⊥s =
√

2kBT⊥s/ms over the species gyrofrequency Ωs = qsB/msc and the Alfvén ve-125

locity of species s is defined as vAs = B/
√

4πnsms . Terms with the subscript R identify126

quantities calculated using the reference species, which is user-defined but typically se-127

lected to be the most abundant ion species in a system. For a plasma modeled with N128

components, the dispersion relation depends on 4 + 6 × N − 5 parameters. For all systems129

but the simplest isotropic proton-electron plasma, stability depends on complicated inter-130

actions between a large number of energy sources and sinks, motivating our automated131

treatment of stability analysis.132

We illustrate in Fig. 1 three examples of the typical normal mode identification138

process as well as our Nyquist method algorithm. For the first example, we consider an139

isotropic proton-electron plasma with βp = 1.0, Tp = Te and (k⊥, k ∥)ρp = (10−3, 10−2). For140

the second example, we consider a proton-electron plasma with β∥p = 1.5, T∥p = T∥e,141

T⊥p/T∥p = 2.0, T⊥e/T∥e = 1.0 and (k⊥, k ∥)ρp = (10−1, 2 × 10−2), the parameters142

for case c in Section 3. For the final example, we consider the four component plasma,143

comprised of proton core, proton beam, He2+ (α), and electron populations, with plasma144

parameters taken from Event 1 in Gary et al. [2016], described further in Section 4, and145

(k⊥, k ∥)ρp = (10−3, 4 × 10−1).146
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In the top row of Fig. 1, we present the contours |D|R = 0 and |D|I = 0 as a func-147

tion of complex frequency. Intersections of these contours, where |D| = 0, locate normal148

mode solutions, which are indicated by black dots. By inspection, we see that panel a only149

has solutions with γ < 0, while panels b and c each have one solution with γ > 0, for150

the range of complex frequencies illustrated. Typical instability analysis using dispersion151

relations will identify an unstable mode in the (ω, γ) plane, and use that frequency as an152

initial guess as system parameters, such as k or T⊥p/T∥p , are varied in a nearly contin-153

uous fashion. This type of analysis can be very insightful, but it relies on either a good154

initial guess for the normal mode frequency, or the application of a root-finding routine155

over some range of user-defined frequencies, and can be susceptible to misidentification of156

roots or to root-jumping if the variation of system parameters for a scan is too large.157

In the bottom row of Fig. 1, we present Nyquist diagrams for same three examples158

as an illustration of our instability identification method. For each case, we calculate the159

parametric curve [|D|−1
R , |D|−1

I ](ω, γ0 = 0). The large frequency limit of |ω| = ωmax is160

selected so that ξs = (ω − Vs)/k ∥w∥s is larger than 10 for all plasma components. 1 Val-161

ues for the parametric curve are calculated for log-spaced frequencies between −ωmax and162

−|ωmin | = −10−6Ωp and between ωmin and ωmax at a total of 4000 points. A bisection163

algorithm is employed to identify all |D|−1
I = 0 crossings, which may fall between the164

initially-selected frequency points. The handedness of the curve, as described earlier in165

this section, is also calculated at each crossing and used in calculating Wn. In panels d-f,166

we plot the contours of D∗−1
j = sign(|D|−1

j ) log10(1 + abs|D|−1
j ). The color of the con-167

tour changes for each crossing of |D|−1
I = 0. To help elucidate these examples, a black168

arrow is drawn near each crossing with the same sign of |D|−1
R and same handedness as169

the parametric curve. Each black arrow with |D|−1
R < 0 pointed upward or |D|−1

R > 0170

pointed downward adds 0.5 to Wn, while each black arrow with |D|−1
R < 0 pointed down-171

ward or |D|−1
R > 0 pointed upward subtracts 0.5 from Wn. 2 As the parametric curve172

does not cross zero for ω → ±∞, we illustrate with red arrows the behavior of the curve173

for the two large frequency limits. For all three cases shown, |D|−1
I (ω → −∞) < 0 and174

|D|−1
I (ω → ∞) > 0, resulting in a left-handed encirclement, adding 0.5 to Wn. Accounting175

for the handedness of zero-crossings and large ω limits produces a winding number of 0,176

1, and 1 respectively for the three examples, which is identical to the number of unstable177

modes supported by each equilibrium.178

Unlike typical dispersion relation analysis, the winding number calculation does not179

provide any information about the normal modes, such as their frequency, growth rate,180

or eigenfunction polarizations. It simply identifies the number of unstable modes sup-181

ported by a particular system. However, the winding number calculation can be applied182

generally and automatically, without any intelligent selection of modes that are or will be-183

come unstable due to parameter variation, and without the concern of mode misidentifica-184

tion or the solution jumping to a different normal mode. Additionally, the Nyquist curve185

can be calculated using any constant value of γ; that is, instead of calculating the wind-186

ing number from the [|D|−1
R , |D|−1

I ](ω, γ0 = 0) curve, and thus how many normal modes187

have a growth rate greater than γ = 0, we can calculate the winding number from the188

[|D|−1
R , |D|−1

I ](ω, γ0 , 0) curve, yielding the number of normal modes that have a growth189

rater greater than γ = γ0. As we will see in the following section, this allows us to high-190

1 The term ξs is the argument of the plasma dispersion function Z used to evaluate the Landau integrals in the dispersion
relation [Fried and Conte, 1961]. The large values of ion to electron mass ratios ensure that for ξe = 10, we will resolve
ion-cyclotron resonant behavior. For future studies of instabilities involving electron-cyclotron behavior, larger values of ξe
must be considered.

2 The complementary function D∗−1
j is necessary to illustrate these curves due to the large range of values for |D |−1

natural to our systems; the structure of D∗−1
j preserves the zero crossings and signs of both components of |D |, making it

ideal for visualizing the Nyquist diagram.
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205

206

207

light unstable modes which will grow fast enough to affect the dynamics of our systems of191

interest.192

3 A Pedagogical Example193

As a first test of our algorithm, we consider the well-known proton-temperature194

anisotropy driven instabilities. We calculate Wn at six points in (β∥p,T⊥p/T∥p) space for195

a proton-electron plasma, with T∥p = T∥e and T⊥e = T∥e. The six points, illustrated in196

the left panel of Fig. 2, are selected so that we consider a stable case, and a case beyond197

each of the five marginal stability thresholds. We use values from Table 1 in Verscharen198

et al. [2016] with a threshold value of γth = 10−3Ωp for the mirror, ion cyclotron, parallel199

firehose, and Alfvén firehose instabilities; the CGL (or fluid) firehose threshold is simply200

T⊥p/T∥p = 1 − 2β−1
∥p . For each value of (β∥p,T⊥p/T∥p), we calculate Wn over a 1282 point201

wavevector grid with k⊥ρp and k ∥ρp ranging from 10−2 to 101. For comparison, we draw202

the reader’s attention to Fig. 2 in Klein and Howes [2015], which plots the growth rate of203

unstable modes as a function of k in a similar fashion to Fig. 2.204

For the stable equilibrium, case a, Wn is zero over the entire wavevector plane, as208

expected for a system with no unstable modes. For case b, with (β∥p,T⊥p/T∥p) = (0.15, 3.0),209

Wn is zero for most kρp , but is equal to 2 over a narrow band of parallel wavevectors.210

This is the wavevector region where the proton-cyclotron instability arises. An increase in211

β∥p for case c, to (β∥p,T⊥p/T∥p) = (1.5, 2.0), both expands the proton-cyclotron unstable212

wavevector region and drives the mirror instability for more oblique wavevectors. We can213

distinguish between the two types of instabilities based upon the number of modes driven214

unstable; the proton-cyclotron instability drives both a forward and backward propagating215

Alfvén wave, resulting in Wn = 2, while only one non-propagating mode is driven by the216

mirror instability, resulting in Wn = 1 for modes with k⊥ > k ∥ . The small region with217

Wn = 3 indicates wavevectors unstable to both the mirror and proton-cyclotron instabili-218

ties.219
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247

248

For the three T⊥p < T∥p cases, cases d-f, we keep T⊥p/T∥p = 0.5 constant and vary220

β∥p from 2.0 to 3.0 to 6.0. For case d, we find Wn = 2 over the wavevector region where221

the parallel firehose instability is known to drive unstable forward and backward propa-222

gating magnetosonic waves. For case e, the Wn = 2 parallel firehose region is expanded,223

and we also recover the Alfvén firehose instability, which drives a single non-propagating224

Alfvén mode at oblique wavevectors. For the highest β∥p case, case f, both the parallel225

and Alfvén firehose unstable regions have expanded to include nearly all wavevectors with226

|k |ρp < 1. This (β∥p,T⊥p/T∥p) point satisfies the CGL instability criteria, and thus in the227

large wavevector limit, the Vlasov solution agrees with instability predictions from MHD.228

For all six cases, our algorithm is able to correctly calculate both where in wavevector229

space unstable modes are driven and the number of unstable modes.230

As previously noted, the Nyquist method does not produce any characteristics of231

the unstable modes; values of Wn as a function of wavevector do not distinguish between232

slowly and quickly growing instabilities. However, we are able to calculate Wn(k⊥ρp, k ∥ρp)233

using a contour integral with any arbitrary value of γ = γ0, with the resulting integer re-234

porting the number of modes with γ > γ0. In Fig. 3, we repeat the winding number cal-235

culations at the same six points in (β∥p,T⊥p/T∥p) space used for Fig. 2, replacing γ0 = 0236

with γ0 = 10−2Ωp . The stable case, case a, has Wn = 0 for all wavevectors. Cases b237

and c have significant reductions in the wavevector regions which have non-zero Wn. By238

comparing the γ0 = 0 and γ0 = 10−2Ωp cases, we see that a significant fraction of the239

wavevectors unstable to the mirror mode, especially with large wavevectors, have weak240

growth rates. This is not a novel finding, but a novel means of identifying regions of un-241

stable modes with sufficiently large growth rates.242

We see similar reductions for the T⊥p < T∥p cases. The parallel firehose instability243

is relatively weak for case d, with no wavevectors having growth rates larger than 10−2Ωp .244

For cases e and f, there are some reductions in the extent of the unstable wavevector re-245

gions, especially for case f in the small k ∥ , or large wavevector, limit.246

As this method is intended for eventual application to analysis of a large number249

of observations, we would like to calculate Wn at fewer than 1282 = 16384 wavevectors250
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259

260

and still determine if the system supports any unstable modes. We take advantage of the251

preference for unstable modes to occur for wavevectors satisfying k⊥ ≪ k ∥ , k⊥ ≈ k ∥ , and252

k⊥ ≫ k ∥ and calculate Wn along seven paths; constant k⊥ρp = 10−3, constant k ∥ρp =253

10−3, and θ = atan
(
k⊥/k ∥

)
∈ [5, 25, 45, 65, 85]◦. The paths of constant θ are illustrated254

in Figs. 2 and 3 as grey dashed lines. In Fig. 4, we plot Wn calculated for 128 points in255

|k |ρp along the seven paths for the six (β∥p,T⊥p/T∥p) cases. The results are consistent256

with the full wavevector scans, and illustrate that we are able to capture the presence and257

structure of these temperature anisotropy instabilities with significantly fewer calculations.258

4 Application to WIND Observations261

We next turn to an application of the Nyquist method to in situ solar wind observa-262

tions. Gary et al. [2016] selected six intervals from the Wind measurements from March263

19, 2005 which were associated which enhanced magnetic fluctuations. Using data from264

the magnetometer [Lepping et al., 1995], the SWE Faraday cup [Ogilvie et al., 1995] and265

electrostatic analyzer [Lin et al., 1995], bi-Maxwellian fits of a proton core and beam, al-266

pha particles, and electrons were constructed, with parameters given in their Table 1. Us-267

ing the fit parameters of the four plasma populations, they performed a normal mode anal-268

ysis of the six intervals, and found parallel propagating instabilities associated with five269

of the intervals. In this section, we repeat their normal mode analysis, as well as calculate270

the winding number associated with the observed equilibrium.271

In the top row of Fig. 5, we plot the imaginary component of the normal mode fre-277

quency of the fast/magnetosonic and Alfvén waves associated with the six selected events278

as a function of k ∥ρp for constant k⊥ρp = 10−3. The drifting proton beam and α particles279

break the ω = −ω symmetry found in systems with no drifts, leading to different disper-280

sion relations for Sunward and anti-Sunward propagating waves. Stable damping rates are281

plotted as dashed lines, while unstable growth rates are plotted with solid lines. As was282

reported in Gary et al. [2016], no unstable mode was identified for Event # 3, and the in-283

stabilities we find for Events # 1, 2, 6, and 7 are the same as described in the previous284

work. For Event # 4, we located one of the two instabilities reported in Gary et al. [2016].285
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273
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276

The anti-sunward propagating magnetosonic mode is stable for the reported values in their286

Table 1; after correspondence with the authors, we believe an artificially large drift veloc-287

ity for the α population was used in the calculation of their Fig. 7.288

In the central row of Fig. 5, we plot Wn(k ∥ρp), calculated using the same bi-Maxwellian289

fits for the four plasma populations used for the normal mode analysis. We see that Wn =290

0 for all wavevectors with no unstable mode, and when one or more unstable mode is291

supported, the winding number matches the number of unstable modes; e.g. Wn = 2 for292

wavevectors for which both the anti-sunward propagating Alfvén and fast modes are un-293

stable in Event # 7. This comparison demonstrates that calculation of Wn can determine if294

particular intervals of solar wind observations, and not just idealized systems with single295

sources of free energy, are linearly unstable.296

As seen in Section 3, not all instabilities arise for wavevectors satisfying k⊥ ≪ k ∥ .300

In an attempt to determine if any of the observed events have instabilities with oblique301

wavevectors, we calculate Wn for the six events over a grid in (k⊥ρp, k ∥ρp), illustrated302

in Fig. 6. For the five unstable events, Wn , 0 only for the parallel wavevectors already303

identified in the scan of k ∥ presented in Fig. 5, and for Event # 3 no oblique instability304

is identified. Our algorithm for calculating Wn has allowed us to verify that only parallel305

instabilities are driven for the observed equilibrium.306

We lastly consider how variations in the plasma equilibrium, introduced either through307

changes in the solar wind or errors in observation, may affect the stability of the sys-308

tem. For the six events, we perform a Monte Carlo variation of the observed dimensional309

quantities, namely population density, drift velocity, parallel and perpendicular tempera-310

ture, as well as magnetic field amplitude. For each quantity F0, we vary the quantity to311

a value randomly drawn from a Gaussian distribution centered at F0 with standard devia-312

tion 0.1 × F0. To ensure quasineutrality and zero-net current are maintained, the electron313

density and drift velocity are set using the values from the ion variation. For each instan-314

tiation of this procedure, Wn(k ∥ρp) is recalculated. This procedure is repeated 1000 times315
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297

298

299

for each event, and the probability distribution function of Wn is displayed in the bottom316

row of Fig. 5.317

We see that for Events # 1, 2 and 7, more than 90 % of the considered equilibrium318

are unstable, with the peak of the ensemble instability arising for the same wavevectors319

driven unstable for the observed equilibrium. The PDF of Wn for Event # 4 has a bi-320

modal distribution, with ≈ 60% of the ensemble unstable around k ∥ρp = 0.1 and ≈ 40%321

unstable around 0.4, a region of probable instability much wider than the relatively narrow322

observed region of instability. Further analysis calculating the energy transfer between the323

individual plasma components and the electromagnetic wave on selected unstable instances324

from the ensemble, not shown, finds that the two unstable regions are associated with res-325

onant energy transfer from either the alpha or proton beam populations respectively. For326

Event # 3, only ≈ 20% of the ensemble is unstable, indicating that neither observational327

error in measuring the plasma nor small changes in the equilibrium are likely obscuring328

instabilities in the system. The efficient and automated nature of our Nyquist method al-329

gorithm allows for an assessment of the effects of measurement error on our ability to330

observe instabilities; for three of the events, the observed region of instability matches ex-331

actly with the probable region, for one event the same lack of instabilities is found, and332

for two events, a broader range of probable instabilities is identified.333

5 Discussion and Conclusion334

In this work, we provided a review of Nyquist’s method for stability determination,335

with particular emphasis on its application to hot, diffuse, magnetized plasmas. Using the336

PLUME numerical dispersion relation solver, we implemented an efficient and automated337

algorithm for evaluating Nyquist’s method, outputting an integer known as the winding338
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number Wn which corresponds to the number of unstable modes supported by the system339

for an selected plasma equilibrium. This algorithm was tested against well known proton-340

temperature anisotropy instabilities as well as in situ observations of instabilities in the341

solar wind, and was found in agreement with the typical normal mode instability analysis.342

One intended use for this algorithm is for NASA’s Parker Solar Probe Mission (PSP),343

scheduled to launch in late 2018, that will make the first in situ measurements of solar344

wind plasma in the near-Sun environment [Fox et al., 2015]. One of the key science ques-345

tions for PSP is to “[d]etermine the structure and dynamics of the plasma and magnetic346

fields at the sources of the solar wind”; instabilities are likely to play a role in the dy-347

namic phenomena of interest. The thermal plasma instruments on PSP which comprise348

the Solar Wind Electrons Alphas Protons (SWEAP) instrument suite consist of 4 sensors,349

a Faraday cup, two electron electrostatic analyzers and an ion electrostatic analyzer[Kasper350

et al., 2015]. These instruments will measure the thermal plasma of the solar wind from351

10 eV - 20 keV for protons and 5 eV - 30 keV for electrons. The data collected from this352

instrument suite will be down-linked in two parts. The first part will be a survey data that353

will sample the solar wind plasma at a 56 second cadence. These data will then be uti-354

lized to select full resolution data with a maximum cadence of 0.5 seconds to study the355

solar wind plasma in detail. To select an hours worth of data from over 10 days at closest356

approach to the Sun, the survey data will need to be examined to find the most scientifi-357

cally relevant intervals. The method described in this paper will be utilized to help guide358

scientists in their identification of the data to select.359

The survey data will be processed from raw form into a higher-level set that will360

include three species, protons, alphas, and electrons, and will provide the density, veloc-361

ity and temperature for each. Using the SWEAP data combined with measurements of362

electric and magnetic fields from the Fields instrument suite [Bale et al., 2016], other aux-363

iliary data will be calculated including Alfvén speed, plasma β, and sound speed. The364

Nyquist method will then be run on the survey data, calculating the winding number using365

the 56 second survey data along the seven paths in wavevector space illustrated in Fig. 4.366

The winding number will be plotted with the observed plasma parameters and other de-367

rived quantities to allow scientists a way to identify the best high-cadence data to select368

for download.369

Within this work, we have restricted ourselves to a bi-Maxwellian description of the370

plasma equilibrium. The Nyquist method does not generally have this restriction, and fu-371

ture studies will consider other dispersion relations with more accurate descriptions of the372

velocity distribution of the plasma. In particular, we intend to apply the Nyquist method373

to the numerical dispersion relation solver ALPS, the Arbitrary Linear Plasma Solver [Ver-374

scharen et al., 2017], which produces a dispersion relation from direct numerical integra-375

tion rather than the approximation of a particular analytic form of the velocity distribution.376

Differences between applications of the Nyquist method using PLUME and ALPS may377

help elucidate where departures from a Maxwellian description significantly affect the sta-378

bility of a plasma.379

The technique presented in this work will be useful for the study of the stability of380

a large number of plasma systems, in particular expanding our understanding of stability381

of plasmas within the canonical (β∥p,T⊥p/T∥p) plane and exploring the impact of other382

sources of free energy and may be applied to measurements of the solar wind and plan-383

etary magnetospheres, as well as data sets derived from multi-fluid or kinetic numerical384

simulations. These applications will be considered in future work.385
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