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Abstract14

We investigate the use of artificially increased ion and electron kinetic scales in global15

plasma simulations. We argue that as long as the global and ion inertial scales remain16

well separated, 1) the overall global solution is not strongly sensitive to the value of the17

ion inertial scale, while 2) the ion inertial scale dynamics will also be similar to the orig-18

inal system, but it occurs at a larger spatial scale, and 3) structures at intermediate scales,19

such as magnetic islands, grow in a self-similar manner. To investigate the validity and20

limitations of our scaling hypotheses, we carry out many simulations of a two-dimensional21

magnetosphere with the magnetohydrodynamics with embedded particle-in-cell (MHD-22

EPIC) model. The PIC model covers the dayside reconnection site. The simulation results23

confirm that the hypotheses are true as long as the increased ion inertial length remains24

less than about 5% of the magnetopause standoff distance. Since the theoretical argu-25

ments are general, we expect these results to carry over to three dimensions. The com-26

putational cost is reduced by the third and fourth powers of the scaling factor in two- and27

three-dimensional simulations, respectively, which can be many orders of magnitude. The28

present results suggest that global simulations that resolve kinetic scales for reconnection29

are feasible. This is a crucial step for applications to the magnetospheres of Earth, Saturn30

and Jupiter and to the solar corona.31

1 Introduction32

Plasma systems are often characterized by large separation of spatial and temporal33

scales. In the magnetospheres of Earth, Saturn and Jupiter, or in the solar corona, the ion34

kinetic scales characterized by the ion inertial length di are orders of magnitude smaller35

than the global scales of the system dg characterized by the magnetopause standoff dis-36

tance or some fraction of the solar radius. Electron scales characterized by the electron37

skin depth de are even smaller. Systems with a broad range of temporal and spatial dy-38

namical scales present observational, theoretical as well as computational challenges.39

In some special cases, for example shock waves in an ideal neutral gas, the global40

behavior does not depend on the details of the small scale physics, because the jump con-41

ditions across a hydrodynamic shock are fully determined by the conservation of mass,42

momentum and energy. For more complicated systems, such as magnetohydrodynamics43

with anisotropic ion pressure, the conservation laws constrain the jump conditions, but the44
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pressure anisotropy behind the shock cannot be determined without knowledge of small45

scale processes.46

Magnetic reconnection is even more complex and challenging. In general, the global47

dynamics roughly determines the possible locations where reconnection can occur, but48

reconnection is a dynamic process with complex behavior. Even for the simplest magne-49

tohydrodynamic description of plasma, the energy conservation law only tells us that the50

magnetic energy will be converted into other forms of energy, but it does not predict in51

general how fast the energy conversion will occur, or how the converted energy will be52

distributed between bulk kinetic and thermal energies. If we allow for pressure anisotropy53

and separate electron and ion temperatures, the outcome of the reconnection process is54

even less determined by simple conservation laws, and more dependent on the small scale55

processes.56

While magnetic reconnection occurs on the kinetic scales, it is well known that re-57

connection can globally affect systems of much larger size. Some typical examples are the58

magnetospheres of planets or the solar corona, where reconnection plays a crucial role in59

global phenomena, such as magnetic storms and coronal mass ejections. If we are inter-60

ested in the interplay between the global plasma system and the reconnection process, it61

is a natural question to ask how the behavior of the system depends on the ratio dg/di .62

Clearly, if dg/di is a relatively small number (order of 10 or less), the kinetic effects will63

have a direct impact on the global solution, even if no reconnection occurs. For example,64

in Ganymede’s magnetosphere dg/di ≈ 10 and indeed the ideal or resistive MHD solutions65

that neglect the Hall effect are globally different from the Hall MHD [Dorelli et al., 2015]66

or the magnetohydrodynamics with embedded particle-in-cell (MHD-EPIC) solution [Tóth67

et al., 2016]. On the other hand, if dg/di is a very large number, then the kinetic effects68

will be mostly limited to the reconnection region. There can be other kinetic effects that69

may act on a larger scale (for example, foreshock waves, energetic particles, etc.) but in70

this work we concentrate on systems, where the kinetic effects of interest are limited to71

the reconnection process.72

The main question we are going to address in this work is how the coupled global-73

kinetic system depends on the value of dg/di when it is large versus extremely large, and74

how we can change this scale separation. Let us examine the various kinetic length scales75

and see if there is a way to change them. The smallest plasma scale, where significant76
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charge separation may occur, is given by the Debye length (in SI units) as77

λD =

√
ϵ0v

2
th,e

q2
ene

=
me

qe

√
ϵ0pe
ρe

(1)

where me is the electron mass, qe > 0 is the elementary charge, ne and ρe are the electron78

number and mass densities, respectively, ϵ0 is the permittivity of vacuum, vth,e =
√

pe/ρe79

is the electron thermal velocity and pe is the electron pressure.80

The change of magnetic topology during collisionless magnetic reconnection occurs81

in the electron diffusion region [Vasyliunas, 1975]. For antiparallel reconnection the char-82

acteristic size is the electron skin depth83

de =
√

me

neq2
eµ0
=

me

qe

√
1
ρeµ0

(2)

where µ0 = 1/(c2ϵ0) is the magnetic permeability of vacuum and c is the speed of light,84

so λD = (vth,e/c)de. If the electron thermal velocity is much less than the speed of light,85

the Debye length is much smaller than the electron skin depth. A standard trick to reduce86

this separation of scales is to artificially reduce the speed of light to a value that is still87

larger than the thermal and bulk velocities, but not many orders of magnitude larger.88

When there is a significant guide field, the electron scales are determined by the89

electron gyro radius90

re =
vth,eme

qeB
=

me

qe

√
pe/ρe

B
(3)

where B is the magnetic field strength. When the electron thermal velocity vth,e equals91

the electron Alfvén speed vA,e = B/√µ0ρe, then the electron gyro radius re equals the92

electron skin depth de, so in the vicinity of reconnection sites re and de are typically com-93

parable.94

The characteristic scales for kinetic ion physics are given by the ion inertial length95

di =

√
mi

niq2
i µ0
=

mi

qi

√
1
ρiµ0

(4)

and the ion gyro radius96

ri =
vth,imi

qiB
=

mi

qi

√
pi/ρi
B

(5)

These are
√

mi/me times larger than the corresponding electron length scales de and re,97

respectively, assuming that ni = ne (which implies ρi/ρe = mi/me), qi = qe and pi = pe.98

For a proton-electron plasma di/de =
√

1836 ≈ 43. This ratio already presents a daunt-99

ing challenge to computational models, especially in three dimensions (3D), since one100
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needs to model hundreds of di in each spatial dimension. A standard trick is to artifi-101

cially reduce the mass ratio to a smaller value, anywhere from 25 and higher. Such a tech-102

nique is only allowable if using an unrealistic ion to electron mass ratio does not greatly103

change the reconnection process. There have been numerous studies [Shay and Drake,104

1998; Hesse et al., 1999; Ricci et al., 2004; Shay et al., 2007; Lapenta et al., 2010] that105

found only a relatively weak dependence of the reconnection process on the mass ratio.106

In practice almost all numerical studies, especially in 3D, use a reduced ion-electron mass107

ratio.108

Here we propose to use a similar trick to change the ion and electron scales relative109

to the global scale dg. The kinetic length scales defined in equations 1−5 are all propor-110

tional to the mass to charge ratios me/qe and mi/qi . We will therefore increase the ion and111

electron mass to charge ratios by a kinetic scaling factor f while keeping the MHD quan-112

tities, the mass densities ρe and ρi , the pressures pe and pi , the bulk velocities ue and113

ui , the magnetic field B, and the various constants ϵ0, µ0 and c unchanged. Note that the114

characteritic speeds (bulk velocity, thermal velocity, Alfvén speed) are not affected by the115

scaling. In fact, the proposed kinetic scaling has no effect on ideal or resistive MHD.116

As long as the scaled dg/di ratio remains large enough, it is plausible that the global117

solution might not be sensitive to the actual value of di due to the separation of scales.118

We hypothesize that119

1. The solution on the global scales does not depend sensitively on f .120

2. The solution on the kinetic scales is similar for different values of f but the spatial121

and temporal scales are proportional to f .122

3. Structures forming at the kinetic scales and growing to the global scales follow a123

self-similar growth at the intermediate scales.124

In this paper we will conduct numerical experiments to see whether these statements hold125

true or not and what their limitations are. These numerical experiments require that the126

model captures both the global and the kinetic scales. With a pure kinetic code the sim-127

ulations would be computationally extremely expensive, even in two spatial dimensions128

(2D). Fortunately, the simulations can be performed with the MHD-EPIC method [Dal-129

dorff et al., 2014; Tóth et al., 2016]: the MHD model provides the global solution while130

the embedded PIC model simulates the reconnection region. The MHD model BATS-131
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R-US [Powell et al., 1999; Tóth et al., 2012] employs a block-adaptive mesh refinement132

(AMR) for sake of efficiency, while the PIC model is the implicit particle-in-cell code133

iPIC3D [Markidis et al., 2010] that uses a semi-implicit scheme [Brackbill and Forslund,134

1982] to allow larger grid cell sizes and time steps than the explicit PIC algorithms. The135

MHD and PIC models are efficiently coupled through the Space Weather Modeling Frame-136

work (SWMF) [Tóth et al., 2005, 2012, 2016].137

Independent of the numerical method employed, the ratio of the global and kinetic138

scales has a tremendous impact on the computational cost of global simulations that ac-139

count for kinetic effects. The required grid cell size is proportional to f , so the number of140

grid cells and macro-particles is proportional to f −D , where D is the number of spatial di-141

mensions. In addition, the time step limited by stability and/or accuracy constraints is also142

proportional to f , so the computational cost of advancing the simulation to a given sim-143

ulation time is reduced by a factor of f 3 in 2D and factor of f 4 in 3D. In addition to the144

theoretical interest in the scaling properties of the reconnection process, these computional145

benefits are a major motivation of our work. Using the kinetic scaling makes it possible146

to perform 3D global simulations of Earth’s magnetosphere while using a kinetic model to147

capture the reconnection process, as demonstrated in our companion paper by Chen et al.148

[2017, accepted companion paper].149

In the following sections we will briefly describe the theoertical arguments behind150

our scaling hypothesis, the numerical models, the simulation set up and then discuss the151

results of the numerical experiments.152

2 Theoretical arguments153

Here we present some theoretical arguments in support of our hypothesis. This is154

not intended to be a proof, rather, we argue that the scaling is plausible.155

2.1 Global scales: insensitivity156

The main role of magnetic reconnection in the global dynamics of Earth’s magneto-157

sphere is to drive magnetospheric convection. The aspect of reconnection that determines158

the global response is the reconnection rate. In particular, if reconnection is slow or non-159

existent, such as for due northward interplanetary magnetic field (IMF) in the absence of160

a dipole tilt, the magnetospheric response is minimal. If reconnection is present and effi-161
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cient (such as when the interplanetary magnetic field has a southward component), then162

the Dungey cycle of magnetospheric convection occurs. Thus, the bare minimum require-163

ment to capture the global scale response is an accurate representation of the reconnection164

rate. Similar arguments apply to other global systems that involve reconnecting magnetic165

fields.166

A significant amount of research has gone into determining the reconnection rate167

for collisionless plasmas. It has been established by several kinetic modeling studies of168

symmetric anti-parallel reconnection in a rectangular two-dimensional domain [Shay et al.,169

1999; Birn et al., 2001; Huba and Rudakov, 2004; Schoeffler et al., 2012] that the steady-170

state reconnection rate, quantified as the reconnection electric field E , is about 0.1 times171

the reconnecting magnetic field strength Br times the Alfvén speed vAr = Br/
√
µ0ρ out-172

side the current sheet. Insight on why the normalized reconnection rate E/(BrvAr ) ≈ 0.1173

seems to be independent of system parameters has only been achieved recently [Liu et al.,174

2017].175

At the dayside magnetopause, the reconnection is asymmetric with different mag-176

netic field strengths, densities, and temperatures on the two sides of the reconnection re-177

gion. It was shown that the asymmetric reconnection rate, in 2D anti-parallel reconnection178

in a rectangular domain, is also 0.1 when normalized to a suitably defined hybrid Alfvén179

speed and magnetic field [Cassak and Shay, 2007]. There is also observational support for180

this prediction [Mozer and Hull, 2010].181

Thus, both for symmetric and asymmetric reconnection, the reconnection rate is ex-182

pected to be of the form E ∼ 0.1vAr Br . This is important for the present study, because183

both Br and the Alfvén speed vAr are purely MHD-scale quantities that are not affected184

by the kinetic scale governed by f . In other words, the reconnection rate is not sensitive185

to f , and therefore the overall global-scale solution will be insensitve to f .186

The other important product of reconnection that can affect global dynamics is the187

production of magnetic islands. This process starts with the tearing instability. The growth188

rate of the individual islands depends on the reconnection rate. In addition, the islands189

may coalesce and merge. The interaction of magnetic islands is a complex and somewhat190

chaotic process for an infinite (e.g. Harris type) current sheet, because in that system there191

is no global scale along the current sheet (other than the size of the simulation box) that192

would organize the dynamics. The situation is different when the current sheet has a finite193
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length because it is part of a global system and there is significant plasma flow along the194

current sheet.195

In the dayside magnetosphere, for example, the curvature of the magnetopause and196

the magnetosheath flows have a strong influence on the motion of the magnetic islands,197

or in magnetospheric terms, the flux transfer events (FTEs). The FTEs are swept either198

northward or southward by the bulk flow, and their growth stops when they reach the end199

of the current sheet at the cusps. Similarly, in the magnetotail, the overall plasma convec-200

tion will push the magnetic islands, often called plasmoids, either tailward or planetward,201

and their time to grow is limited by the extent of the tail current sheet.202

The reconnection rate governing the growth rate, and the plasma flow speed and the203

extent of the current sheet determining the life time of the magnetic islands are indepen-204

dent of the kinetic scaling factor f , therefore we expect the global dynamics to be insensi-205

tive to the value of f .206

2.2 Kinetic scales: proportionality207

If we place ions and electrons into a box, the spatial scale of the various structures208

formed by them will depend on the electron and ion scales (λD , de, re, di and ri) and the209

initial and boundary conditions.210

Kinetic simulations often employ periodic boundary conditions. If the computational211

domain is large enough and the initial conditions don’t have any scales, for example the212

plasma has uniform density, pressure and velocity and the magnetic field is also constant,213

then the solution will scale purely with the electron and ion length scales that are all pro-214

portional to the mass per charge ratios me/qe and mi/qi . The same holds if the initial215

conditions are not uniform, but contain a discontinuity, such as a sharp current sheet, be-216

cause a discontinuity does not introduce any length scale. In fact, most kinetic simulation217

results are presented in length units normalized to di and time normalized to the inverse218

of the ion cyclotron frequency. Of course, one may introduce a global scale into the sys-219

tem through the initial conditions, but here we are interested in structures formed sponta-220

neously by the reconnection process, and the size of those structures will scale with the221

kinetic length scales.222
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When the box is part of a global system, the boundary conditions applied to the223

box will have an influence. We assume that the boundary conditions are well described224

by MHD quantities, so the deviations from a Maxwellian distribution are relatively small225

at the boundaries. In the simplest case the boundary conditions are homogeneous (con-226

stant density, velocity, pressure and magnetic field), so no global scales are introduced into227

the system. A slightly more complicated example is when there is a discontinuity in the228

boundary conditions, for example a current sheet. Again, no global length scale is intro-229

duced. In the most general case, of course, the boundary and initial conditions will have230

gradients and higher derivatives that introduce a global scale dg. Our hypothesis states231

that as long as ε = di/dg is much smaller than 1, the spatial scales of the reconnection232

dynamics will be predominantly determined by di and de and will not be sensitive to dg.233

2.3 Intermediate scales: self-similarity234

We argued in the previous two sub-sections that the global dynamics are determined235

by MHD quantities, while the kinetic scales are proportional to f . What about structures236

that start at the kinetic scales and grow to the global scales? For example, magnetic is-237

lands (flux transfer events, plasmoids) are initiated at the kinetic scale that is proportional238

to f , and they grow in size to the global scales. Depending on f , the FTEs will be at239

different stages of their evolution (characterized by their size s relative to di) when they240

reach the global scale (s ∝ dg). The only way these structures will look similar at the241

global scale is if their evolution is self-similar at the intermediate scales.242

Self-similar solutions arise naturally for PDEs that have no inherent length and time243

scales. If the initial conditions do not define a length scale, for example it consists of two244

uniform states separated by a discontinuity (shock-tube problems), the solution will be245

self-similar. The Euler equations and the ideal MHD equations are two examples for PDEs246

without any inherent length or time scales. The Navier-Stokes equations have an inher-247

ent length scale due to viscosity, and similarly the Hall MHD equations have an inherent248

length scale of the ion inertial length. As long as these are very small, we may expect that249

the evolution will become self-similar once the size s is much larger than the kinetic scale250

di but still small relative to the global scales dg. For the Vlasov equations there are two251

inherent length scales, the ion scales characterized by di and the electron scales given by252

de, but the above argument still applies as long as the ratio di/de =
√

mi/me is kept con-253

stant while changing f , or if they are also well separated: di ≫ de.254
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In the collisionless reconnection process multiple magnetic islands of different sizes255

form near each other, they interact with each other and often merge to form larger islands.256

This is a much more complicated process than the growth of an individual island. Still, it257

is plausible to assume that the end result of these interactions at a fixed intermediate scale258

will look similar independent of the scaling of the much smaller kinetic scales. Similar259

ideas of self-similar plasmoid driven reconnection have been suggested and numerically260

studied by Shibata and Tanuma [2001], Nitta et al. [2002], Schoeffler et al. [2012], and261

Tenerani et al. [2015].262

3 MHD-EPIC model263

The magnetohydrodynamics with embedded PIC algorithm (MHD-EPIC) [Daldorff264

et al., 2014] couples an MHD and a PIC model both ways. First the MHD model pro-265

duces a solution in the full computational domain that covers the global system. Next, one266

or more PIC regions are selected based on the sites of interest, such as reconnection sites.267

The PIC model is initialized with the MHD solution in the PIC regions by generating268

macro-particles with the proper mass density, velocity and pressure assuming Maxwellian269

distribution functions. From this point on, the PIC model solves the Vlasov-Maxwell270

equations as usual, and the MHD solution is completely overwritten inside the PIC re-271

gions based on the moments of the distribution functions obtained by the PIC model. The272

boundary conditions of the PIC model are provided by the MHD model at the boundaries273

of the PIC regions that are placed far enough from the reconnection sites so that the MHD274

approximation is valid. The MHD and PIC models exchange information periodically until275

the simulation is stopped. The coupling is performed in an efficient manner using parallel276

message passing through the SWMF. The BATS-R-US grid blocks that interact with the277

PIC region(s) are distributed evenly among the processors to improve the load balance.278

Typically the coupling uses only a few percent of the total computational time.279

The original MHD-EPIC algorithm [Daldorff et al., 2014] has been extended in sev-280

eral ways:281

1. The MHD and PIC grids do not need to be aligned or have the same resolution.282

2. The MHD grid can be non-Cartesian.283

3. The MHD and PIC models may take different time steps.284

4. Multi-species and multi-ion (Hall) MHD can be coupled with the PIC model.285
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The first two improvements allow more flexibility in the choice of the spatial discretization286

for the MHD model and also in the placement of the PIC region in the global domain.287

The third improvement makes the model more robust as it allows both models to adjust288

their time steps based on their respective stability and/or accuracy conditions. In fact, the289

iPIC3D code now has the option to adjust its time step based on the electron particle ve-290

locities and the cell size as ∆tPIC = C min(∆sPIC/ve,rms) where ∆sPIC is the smallest di-291

mension of the PIC grid cells and ve,rms is the root mean square of the macro-particle292

electron velocities calculated in each PIC grid cell. The minimum is taken over all the293

PIC grid cells. The C coefficient should be less than one to maintain accuracy. We set294

C = 0.4 in all simulations. The BATS-R-US code also sets the time step based on the sta-295

bility conditions. The coupling frequency is usually set to be close to the typical value of296

the larger of the MHD and PIC time steps.297

The last improvement means that the MHD-EPIC model now allows the MHD code298

to solve the multi-species, multi-ion and two-fluid MHD equations. In this work BATS-R-299

US solves the two-fluid equations, i.e. the Hall MHD equations together with a separate300

electron pressure equation:301

∂ρ

∂t
+ ∇ · (ρu) = 0 (6)

∂ρu
∂t
+ ∇ ·

[
ρuu + I

(
p + pe +

B2

2µ0

)
− BB
µ0

]
= 0 (7)

∂B
∂t
+ ∇ × E = 0 (8)

∂e
∂t
+ ∇ ·

[
u
(
1
2
ρu2 +

γp
γ − 1

)
+ uepe +

E × B
µ0

]
= pe∇ · ue (9)

∂pe
∂t
+ ∇ · (peue) = −(γ − 1)pe∇ · ue (10)

where I is the identity matrix, γ = 5/3 is the adiabatic index both for ions and electrons,302

ρ, u and p are the mass density, bulk velocity and pressure of ions,303

ue = u − J
qene

= u − mi

qi

J
ρ

(11)

is the electron velocity, J = ∇ × B/µ0 is the current density,304

E = −ue × B − ∇pe
neqe

+ ηJ = −u × B +
mi

qi

J × B − ∇pe
ρ

+ ηJ (12)

is the electric field, η is the resistivity, and305

e =
p
γ − 1

+
ρu2

2
+

B2

2µ0
(13)

is the total ion plus magnetic energy density. Note that the electron thermal energy is not306

included, which explains the source term on the right hand side of equation 9. This choice307
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does not affect the energy conservation properties, since the sum of the energy equation 9308

and 1/(γ − 1) times the electron pressure equation 10 gives the total energy conserva-309

tion law with no source terms both analytically and in the discretized form. Note that the310

electron-ion energy exchange term is ignored for this collisionless plasma. In fact, colli-311

sional resistivity is also zero in reality, and we only use it for setting up the initial condi-312

tions as discussed in the next section.313

4 Numerical Schemes314

In the simulations presented here, BATS-R-US uses the second order total variation315

diminishing scheme [van Leer, 1979] with Rusanov flux function [Rusanov, 1961] and Ko-316

ren’s limiter [Koren, 1993] with the parameter β = 1.2. The initial conditions are obtained317

with BATS-R-US only by solving the resistive MHD equations with a constant magnetic318

diffusivity η/µ0 = 1010 m2/s applied in the induction equation. The only goal of using re-319

sistivity is to make the current sheets smooth and stable (no islands); therefore the Joule320

heating and the heat exchange terms between the electrons and ions are switched off to321

avoid unwanted heating of the electrons and thermal equilibration between the ions and322

electrons. We run BATS-R-US in local time stepping mode [Tóth et al., 2012] for 10,000323

iterations to reach the steady state.324

The time dependent simulations start from this initial steady state solution. BATS-325

R-US solves the two-fluid MHD equations with the Hall and electron pressure gradient326

terms in the induction eqution, but no resistivity. To avoid the time step limitation due327

to the whistler waves, a semi-implicit time discretization is used for the Hall term. The328

numerical diffusion due to the whistler speed is reduced by a factor of ten similar to the329

reduction used in the fully implicit Hall MHD scheme [Tóth et al., 2008].330

We use the 8-wave scheme [Powell, 1994] in combination with hyperbolic/parabolic331

cleaning [Dedner et al., 2003] to control the numerical divergence of the magnetic field.332

Usually the 8-wave scheme is sufficient in pure MHD and Hall-MHD simulations, but333

for MHD-EPIC there is a problem: the divergence error (that is advected by the 8-wave334

scheme together with the plasma) cannot propagate through the PIC region, since iPIC3D335

does not use the 8-wave scheme. As a result, the divergence errors can accumulate at the336

boundary of the PIC region. Using the hyperbolic/parabolic cleaning helps, because it can337

dissipate the divergence error in all directions, not only along stream lines. We set the hy-338
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perbolic speed parameter to ch = 400 km/s and the parabolic decay parameter to cp = 0.1339

(see Dedner et al. [2003] and Tóth et al. [2012]).340

The iPIC3D code solves the Maxwell equations for the electric and magnetic fields341

and the equations of motion for the particles as usual [Markidis et al., 2010]. It uses an342

implicit scheme [Brackbill and Forslund, 1982] to solve for the electric field to avoid the343

numerical stability issues that restrict the cell size ∆x to be less than the Debye length λD344

and the time step ∆t to be smaller than ∆x/c (the time it takes for light wave to cross a345

grid cell) in explicit PIC codes. Even for a semi-implicit PIC code, using the true speed346

of light, while possible, is computationally expensive, because it makes the linear prob-347

lem to be solved stiffer, requiring more iterations. It is therefore standard practice to ar-348

tificially lower the speed of light c to a reduced value c′ that is still large relative to the349

flow speeds. This trick, also used in MHD codes (named the semi-relativistic or Boris350

correction [Boris, 1970; Gombosi et al., 2002]) exploits the separation of scales between351

the speed of light and the speed of the plasma flow speeds. In these simulation we used352

c′ = 3000 km/s. To reduce the scale separation of the electron skin depth and ion inertial353

length, the ion-electron mass ratio is set to mi/me = 100. In all simulations each PIC grid354

cell is initialized with 225 ion and 225 electron macro-particles, and the same number of355

particles are generated in the PIC grid ghost cells during the MHD-EPIC coupling.356

We also find it useful to suppress some short wavelength oscillations that are gen-357

erated in the PIC region. These oscillations appear to be related to Langmuir waves, and358

they reach significant amplitudes in 2D simulations (the issue seems to be less significant359

in 3D simulations). A relatively simple way to suppress these waves is the smoothing of360

the electric field at short wavelengths. After the electric field is obtained by the implicit361

solver, we apply the following smoothing operator for each grid node indexed by i, j:362

E′
i, j = αEi, j +

1 − α
4

∑
4 neighbors

Ei′, j′ (14)

where the averaging is done over the 4 immediate neighbors of the cell, while in 3D the363

averaging is done for 6 neighbors. In most of the presented simulations we use α = 1/2364

and apply 5 smoothing iterations. In one particular simulation we found that the smooth-365

ing caused an instability at the boundary of the PIC domain. To avoid this issue, we have366

implemented the option to set α = 1 at the few cells near the boundary of the PIC region367

(no smoothing) and only apply the smoothing in the inside:368

α = min(1, α0 + (A − α0)max(0, 1 − d/D)) (15)
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where α0 is the internal smoothing parameter, d is the distance of the cell from the bound-369

ary and A and D are two constants (we use A = 2 and D = 8∆x). For sake of consistency,370

we also smooth the current densities used in the Maxwell solver. We carefully checked371

that the overall solution is not affected significantly by the smoothing operation other than372

eliminating the Langmuir patterns.373

5 Two-dimensional Magnetosphere Problem374

Our goal is to study the interaction of global and micro scales in a relatively sim-375

ple system. The two-dimensional (2D) magnetosphere problem [Daldorff et al., 2014] is376

well-suited: the global scale is set by the interaction of the intrinsic line dipole field and377

the incoming plasma flow (that we will call the solar wind). A 2D simulation can be run378

much faster than a 3D problem, so we can do a more extended parameter study. In addi-379

tion, visualization of the 2D results is much simpler and comprehensive. Of course, the380

3D reconnection dynamics is somewhat different from the 2D case, but the scaling argu-381

ments apply to both. For sake of easier interpretation, the values are set to be similar to382

those typical for Earth’s magnetosphere. Note, however, that the 2D simulations are in the383

magnetic meridional plane, so the Y axis is aligned with the dipole and the Z direction is384

normal to the plane of the simulation, which is the opposite of the usual 3D case.385

The 2D domain extends from x = −480 RE to x = 32 RE and y = −128 RE to386

y = 128 RE (where RE = 6380 km is the radius of the Earth) with the magnetized planet387

at the origin. The inner boundary condition is set at a circle of radius 2.5 RE with a fixed388

plasma density of 10 amu/cm3 and zero velocity. The radial component of the magnetic389

field is set to the line dipole value. The tangential components of the magnetic field and390

the ion and electron pressures have zero gradient boundary conditions. The line dipole is391

aligned with the Y axis and its strength is set to −3, 110 nT at the magnetic equator. This392

is ten times weaker than the 3D dipole strength of the Earth, but the line dipole field de-393

cays with r−2 instead of the r−3 of the 3D dipole, so the magnetopause ends up to be at394

about the same distance (10 RE ) as for Earth’s magnetosphere.395

The solar wind enters from the +X direction with mass density 5 amu/cm3, speed396

−400 km/s, and total pressure 0.031 nPa, of which the electrons have 0.0248 nPa. The397

electron pressure dominates the pressure of the incoming plasma, but behind the bow398

shock the ion pressure becomes dominant (by about a factor of 2), because the bow shock399
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is modeled with the MHD code, so the heating of the electrons and ions is determined by400

the MHD conservation laws. The shock predominantly heats the ions as the bulk kinetic401

energy is transformed into ion thermal energy (see equations 9 and 13), while the elec-402

trons only heat up adiabatically according to equation 10.403

The boundary conditions at y = ±128 are also set to the fixed solar wind parame-404

ters. At this distance the solar wind is only slightly perturbed by the interaction with the405

magnetosphere, so fixed boundary conditions work well. Finally, a zero gradient outflow406

boundary condition is applied at x = −480 RE . The outflow boundary has to be placed far407

away to avoid numerical problems due to the sub-fast magnetosonic flow behind the bow408

shock.409

The interplanetary magnetic field (IMF) carried by the solar wind is either set to410

B = (−0.1,−0.5, 0) nT or B = (−0.1,−0.5,−3) nT. The Y component is the most important,411

as it reconnects with the dipole field of the body, which is aligned with the Y axis. In 2D412

the IMF cannot slip around the magnetosphere, so the magnetic field has to reconnect at413

the same average rate as it enters into the system. The By = −0.5 nT value is selected to414

yield (a slowly decreasing) magnetopause distance at around 10 RE . The Bx component415

is small, but it is set to a non-zero value to break the “north-south” symmetry. If it is set416

to zero, the Hall MHD simulations produce very large islands at the subsolar point of the417

magnetopause that can grow to unreasonable size before finally starting to move to the ±Y418

direction. Finally, the Bz component controls the amount of guide field at the reconnec-419

tion site. The Bz = 0 choice produces pure anti-parallel reconnection with no guide field,420

while the Bz = −3 nT value creates a moderate guide field. Although the IMF magnitude421

of |Bz | = 3 nT is much larger than the IMF magnitude of |By | = 0.5 nT, near the magne-422

topause they become comparable. This happens because of the 2D geometry. At the bow423

shock both components get amplified by the shock compression ratio, which is close to 4424

for this strong shock, so |By | and |Bz | become about 2 nT and 12 nT, respectively. In the425

magnetosheath, however, |By | gets further amplified to about 15 nT due the deceleration in426

the X direction, while Bz is simply advected around the obstacle. The reason is that the427

flow deflects from the −X to the ±Y direction in an approximately incompressible manner,428

which enhances By but not Bz . In the end, the guide field Bz becomes comparable to the429

reconnecting field By on the sheath side of the reconnection.430
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Figure 1. Overview of the initial state after the first 10,000 iterations. Only a part of the computational do-

main is shown. The colors show density in units of amu/cm3. The white lines are magnetic field lines, while

the black lines represent the grid resolution changes. The red box shows the boundaries of the PIC region.

431

432

433

With these parameters, the dayside reconnection site is at the nose of the magne-434

topause centered at around x = 10 RE and y = 0 as shown in Figure 1. In BATS-R-435

US we solve for the Hall term in the “Hall region” placed at 5 RE < x < 20 RE and436

−15 RE < y < +15 RE with a smooth tapering at the edges. Limiting the region where the437

Hall term is used improves computational efficiency without any significant effect on the438

results around the reconnection site.439

In the MHD-EPIC simulations, the PIC region (indicated by the red rectangle in440

Figure 1) is positioned at 6 RE < x < 12 RE and −6 RE < y < +6 RE , which covers the441

reconnection site but avoids getting very close either to the body where the plasma beta442

is very low, or to the bow shock. Note that the PIC region is fully covered by the Hall443

region, so the Hall effect is taken into account on both sides of the boundaries of the PIC444

region.445
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Figure 2. The base 10 logarithm of the inertial length measured in RE for protons.446

To assess the required grid resolution, we plot the base 10 logarithm of the proton447

ion inertial length di,p in units of RE in Figure 2 for the initial conditions. Near the day-448

side reconnection site di,p ≈ 0.01 RE , which means that de ≈ 0.001 RE for the mi/me =449

100 mass ratio. Resolving the electron scales at least marginally would require ∆x ≈ de450

which would make the PIC region resolved by 6, 000 × 12, 000 = 72 million grid cells451

and 450 times that many macro-particles, or about 32 billion in total. While this is still452

doable in 2D, it is a very expensive calculation and in fact the electron scales are still only453

marginally resolved. In three spatial dimensions things get clearly unfeasible.454

Our numerical experiments require that di/dg be a small number, but it is not neces-455

sary to start from di = di,p corresponding to f = 1. To make the computations affordable,456

the smallest scaling factor will be set to f = 8, which makes di/dg = f ∗ di,p/dg ≈ 0.008,457

clearly still much less than unity. Correspondingly, the finest grid resolution in the PIC re-458

gion will be set to ∆x = 1/128 RE . The corresponding PIC grid is 768 × 1536 with about459

530 million macro-particles.460
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6 Simulations461

We perform two-fluid and MHD-EPIC simulations with grid resolutions ∆x var-462

ied from 1/128 RE to 1/16 RE and scaling factors f varied between 8 and 128. For the463

two-fluid simulations ∆x refers to the MHD grid resolution around the reconnection site464

and f is the ion mass per charge mi/qi in the Hall term in Ohm’s law (equation 12). In465

the MHD-EPIC simulations ∆x is the grid resolution of the PIC model and f is the scal-466

ing factor applied to the ion and electron mass per charge ratios. The only other quantity467

that is varied is the out-of-plane Bz component of the solar wind that is either 0 (no guide468

field) or −3 nT (guide field). We will present results from the simulations with the guide469

field unless otherwise noted.470

All simulations are initialized with a steady state solution obtained with the resistive471

MHD equations, however, the grid resolution around the dayside reconnection site varies472

from ∆x = 1/16 to 1/128 RE , which means that the initial conditions are similar but not473

necessarily identical. All simulations are run for 2 hours, which is sufficient to reach the474

quasi-periodic formation of magnetic islands, also called flux transfer events (FTEs).475

6.1 Global scales476

One of the most characteristic length scales of a magnetosphere is the standoff dis-483

tance. This is usually estimated to be a position along the +X axis where the magnetic484

pressure of the (compressed) dipole field balances the ram pressure of the solar wind. The485

issue is more complicated in 2 spatial dimensions, because the Y component of the mag-486

netic field entering with the solar wind has no other way to get to the other side of the487

planet than magnetic reconnection. If the reconnection rate is too slow, the field will pile488

up outside the magnetopause. If the reconnection rate is too fast, it will erode the magne-489

topause too quickly.490

We selected the line dipole strength and BY to form a magnetopause with about the491

same standoff distance as found in Earth’s 3D magnetosphere. During the time dependent492

simulation the standoff distance is slowly decreasing on average. In addition, there are os-493

cillations related to the large scale dynamics of the reconnection process. Comparing the494

time variation of the standoff distance for the simulations using different kinetic scaling495

factors provides a simple quantitative assessment of their similarities and differences. We496

use the following simple formula to calculate the standoff distance automatically from the497
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Figure 3. Time series of the standoff distance and the volume fraction of the magnetosphere inside the

PIC region for several MHD-EPIC and Hall MHD simulations. The kinetic scaling factors (f) and the grid

resolutions (Dx) are indicated in the figure legend. All simulations used IMF BZ = −3 nT.

477

478

479

solution on the discrete grid:498

S = max
{i, j:BY, i j>3 nT }

xi j (16)

where i, j are the indexes of the grid cells. This works well, since BY < 0 in the solar499

wind and behind the bow shock, and it is positive inside the magnetopause near the sub-500

solar point. The threshold value of 3 nT was selected so that small BY perturbations up-501

stream of the magnetopause are ignored.502

Another simple measure for the size of the dayside magnetosphere is the fraction of503

volume where BY is positive around the dayside magnetopause. For the sake of simplicity504

we use the grid cells inside the PIC region (6 RE < x < 12 RE and −6 RE < y < 6 RE ) and505
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Figure 4. Time series of the standoff distance and the volume fraction of the PIC region occupied by mag-

netospheric plasma for several MHD-EPIC and Hall MHD simulations smoothed with a 30-minute boxcar

averaging. The simulations used IMF BZ = −3 nT.

480

481

482

define506

F =
1
A

∑
{i, j:BY, i j>3 nT }

∆Ai j (17)

where ∆A is the size of the grid cell and A = 72 R2
E is the total area of the region. This507

measure is less sensitive to the local variations than the standoff distance, but for the sake508

of simplicity we use the same threshold value 3 nT.509

Figures 3 and 4 show the time series of the standoff distance S and the volume frac-510

tion of the magnetosphere inside the PIC region F. Figure 3 provides the values with a511

1-minute cadence between t = 0.3 and t = 2 hours. Figure 4 shows the same quantities512

smoothed with a 30-minute wide boxcar averaging. Both quantities get smaller with time,513
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which means that the reconnection is eroding the magnetopause and the magnetosphere514

slowly shrinks. Simulations with f = 128 are clearly different from the others in both fig-515

ures. This is expected, since in this case the separation of kinetic and global scales is not516

large anymore: ε = f di,p/dg ≈ 128 ∗ 0.01/10 = 0.128.517

At first glance, the rest of the simulations with f ≤ 64 look similar when the un-518

smoothed curves are compared. The smoothed magnetosphere fraction curves (bottom519

panel of Figure 4), however, clearly reveal that the Hall MHD simulations (dashed lines)520

and the MHD-EPIC simulation with f = 64 (orange line) significantly deviate from the521

three MHD-EPIC simulations with f = 8, 16 and 32 (black, cyan and green solid lines)522

which are quite similar to each other overall.523

The standoff distance varies more, even with smoothing (top panel of Figure 4), but524

the trends are the same: the MHD-EPIC simulations with kinetic scaling factor f ≤ 32 are525

closer to each other than the rest of the simulations.526

Figures 5 and 6 show results from several simulations with no guide field, i.e. the533

IMF BZ = 0. In these simulations the grid resolution is kept constant at ∆x = 1/64 RE534

while the kinetic scaling factor is varied between 8 and 32, so all simulations start from535

the same initial condition. The standoff distance and the magnetosphere fraction without536

smoothing and with 30-minute boxcar smoothing are shown in the figures, respectively.537

Overall, the decay rates of the standoff distances are similar, but the Hall MHD sim-538

ulations show some sharp spikes corresponding to By > 3 nT spots produced by very large539

FTEs. In contrast the MHD-EPIC simulations show less variation. The volume fraction540

of the magnetosphere shows smoother variation, as expected. Still, it is clear that the Hall541

MHD simulations show larger oscillations than the MHD-EPIC solutions. The smoothed542

curves on Figure 6 show similar trends for all six simulations, although both the standoff543

distance and the magnetosphere fraction is somewhat larger for the Hall MHD simulations544

(dashed curves) than for MHD-EPIC (solid curves).545

We now focus on the phenomena causing the fluctuations: the large scale magnetic550

islands, or FTEs. Figure 7 compares FTEs produced by two MHD-EPIC runs. The simu-551

lation shown on the left uses f = 8 for the kinetic scaling factor with a ∆x = 1/128 RE552

grid resolution in the PIC domain, while the one on the right uses f = 32 and ∆x =553

1/32 RE . The three rows correspond to times separated by 3 minutes. The initial times554
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527

528

529

(29 and 55 minutes, respectively) are selected so that the FTEs moving towards the +Y di-555

rection are roughly at the same stage of evolution. In the top row the center of the FTEs556

are roughly at Y = 3 RE , then 3 minutes later (middle row) they get to about Y = 5 RE557

and another 3 minutes later (bottom row) the centers move to about Y = 8 RE . Over-558

all the size and shape of these flux ropes are very similar. The propagation speed in the559

Y direction is about 2 RE/3 min≈ 71 km/s between the initial and midpoint times, and560

3 RE/3 min≈ 106 km/s between the midpoint and final times. These velocities are close to561

the Y component of the plasma velocity shown by the colors in the figure.562
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530

531

532

The fluxropes moving in the −Y direction also show similar sizes and shapes, al-563

though at this particular time there are multiple flux ropes on the left, and only one dom-564

inant flux rope on the right, so their evolution is different. The total number and size dis-565

tribution of flux ropes is also very similar. Looking at animations of multiple simulations566

side by side indicates that the large scale FTE dynamics is quite insensitive to the value of567

the scaling factor f .568
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6.2 Kinetic scales569

Figure 8 shows the simulation result near the dayside reconnection sites in three574

simulations with different scaling factors and grid resolutions. The times shown are se-575

lected so that the reconnection sites are near the subsolar point of the magnetopause. The576

Y component of the electron velocity (left column) shows the reconnection jets, while the577

Z (out-of-plane) component of the electron and ion velocities (middle and right columns)578

show the current carried by the electrons and ions, respectively. Although the three re-579

connection sites are from different simulations at different times, the similarities are quite580

clear. The two simulations with f = 32 (middle and bottom rows) are on the same spa-581

tial scale, but the grid resolutions are a factor of 4 different. Still, the width of the current582

sheet near the reconnection site, as indicated by the maxima (red color) of the Z compo-583

nent of the electron velocity are quite similar, around 0.1 RE or about 3 to 4 de, where the584

electron skin depth is measured on the sheath side of the reconnection site. The width of585

the ion diffusion regions (shown by the blue regions in the right column) is about 1 RE586

wide in both cases, which is 10 times wider than the electron diffusion region as expected587

for the mi/me = 100 mass ratio. The electron exhaust jets (left column), although differ-588

ent in detail, also show similar spatial structures and the exhaust velocities have similar589

values. This suggests that the reconnection dynamics is not dominated by grid resolution590

effects.591

The spatial scales shown for f = 8 (top row) are 4 times smaller than the spatial592

scales shown for the two simulations with f = 32. After this visual rescaling the solutions593

look remarkably similar. The width of the current sheet near the reconnection site (red594

area in the top middle panel) is about 0.025 RE that is indeed 4 times thinner than the595

current sheets obtained with f = 32. The width of the ion diffusion region (blue region in596

the top right panel) also scales approximately with f . The overall structure and velocity of597

the reconnection jets is also similar (left column) after the spatial rescaling. These results598

support the arguments made in subsection 2.2: the kinetic scales are proportional to f .599

In contrast to the PIC solution, in Hall MHD there is no electron scale, so the solu-604

tion depends, to some extent, on the grid resolution, which determines the numerical dissi-605

pation. Figure 9 demonstrates this by comparing two Hall MHD simulations that used the606

same kinetic scaling factor but grid resolutions differing by a factor of four. The snapshots607

are selected to capture magnetic islands of similar sizes and shapes at the same location608
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and time (t = 76 min) in the two simulations. While the qualitative pictures are similar,609

and in fact the magnetic fields are very comparable, there are significant quantitative dif-610

ferences. In Hall MHD the width of the current sheet is determined by the grid resolution,611

so it is much thinner on the ∆x = 1/128 RE grid than on the ∆x = 1/32 RE grid. Con-612

sequently, the out-of-plane component of the current (determined from ∇ × B) is much613

stronger for the higher resolution run.614

6.3 Intermediate scales615

We argued in subsection 2.3 that the solution should be self-similar at the interme-621

diate scales. Indeed, Figure 10 demonstrates that the growth of an FTE is approximately622

self-similar. The top and bottom rows show the same FTE at two different times. The623

panel sizes are 0.7 × 1.5 RE for time t = 16 m and 1.4 × 3 RE for t = 20 m. The simula-624

tion uses f = 8 for the scaling factor, so the kinetic scales are quite small (di ≈ 0.08 RE ).625

The grid resolution is ∆x = 1/128 RE , so the intermediate and global scales are very626

well resolved. The FTE was selected based on its formation near the sub-solar point, so it627

stayed roughly at the same place while growing in size. The quantities shown are electron628

pressure, the out-of-plane component of the electron velocity and the Y component of the629

magnetic field. We checked that all other quantities show the same behavior.630

Comparing the solution at these two times demonstrates that the evolution of an iso-631

lated FTE is approximately self-similar at the intermediate scales, which supports our the-632

oretical arguments presented in subsection 2.3.633

7 Conclusions634

In many space plasma systems global and kinetic scales are separated by many or-635

ders of magnitude, nevertheless the global system has a major influence on the kinetic636

processes, and vice versa, the kinetic processes, especially magnetic reconnection, has a637

major impact on the global dynamics. This scale separation presents a challenge to theo-638

retical, observational and modeling investigations. The kinetic scales, such as the Debye639

length, electron skin depth, electron gyro radius, ion inertial length and ion gyro radius640

are all proportional to the mass to charge ratio of electrons and ions. We showed that one641

can artificially change the kinetic scales by changing the ion and electron mass to charge642

–25–This article is protected by copyright. All rights reserved.



ratios by a scaling factor f while keeping the MHD quantities, such as mass density, pres-643

sure, bulk velocity and magnetic field the same.644

We presented a number of theoretical arguments suggesting that as long as the sepa-645

ration between global and kinetic scales remains large enough:646

1. The solution of the equations is insensitive to the scaling at global scales.647

2. The solution at kinetic scales will look the same but spatially proportional to the648

scaling factor.649

Our numerical experiments conducted with the MHD-EPIC code show not only that these650

theoretical expectations are fulfilled, but also that the required separation of scales is rela-651

tively modest. For the dayside reconnection process the global scale can be characterized652

by the magnetopause stand-off distance that is dg ≈ 10 RE . We found that scaling factors653

f ≤ 32 corresponding to the scaled inertial length di ≤ 0.32 RE and ε = di/dg ≤ 0.032654

give very comparable solutions. Further increasing the ion inertial length to di ≥ 0.64 RE655

and ε ≥ 0.064, however, produces significantly different results. The simulations also con-656

firmed that the scaled MHD-EPIC simulations provide very similar solutions at the kinetic657

scales when distance is measured in the ion inertial length di that is proportional to the658

scaling factor f .659

In principle the scaling arguments apply to Hall MHD as well, but in this case the660

electron scale processes are replaced by numerical and/or some ad hoc resistivity. Assum-661

ing that these resistive effects are kept proportional to the grid resolution ∆x in a Hall662

MHD simulation, one would expect that keeping the ratio di/∆x constant and/or very663

large is analogous to keeping di/de =
√

mi/me constant and/or large in the PIC simula-664

tions. Our results suggest that this is approximately true, so Hall MHD simulations can665

also benefit from the kinetic scaling. We expect that the same is true for hybrid simula-666

tions that include the Hall effect.667

The scaling of kinetic effects is interesting from a theoretical point of view. The668

scaling reduces the number of free parameters that enter the system, therefore results ob-669

tained for a given inertial length will have more general applicability. In addition, the scal-670

ing and self-similarity may provide insight into the generic properties of collisionless re-671

connection: distribution of magnetic island sizes, for example, is likely to follow some672

power laws. Investigating these theoretical consequences is left for future work.673
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The scaling also has a very practical application, which in fact motivated our re-674

search in the first place: increasing the ion inertial length makes kinetic simulations em-675

bedded into a global system possible. Resolving the real ion inertial length in three-dimensional676

simulations of Earth’s magnetosphere is extremely difficult even on the largest available677

computers. Doing the same in the solar corona is essentially hopeless. To put some num-678

bers behind these statements, let us consider a 3D global magnetosphere simulation box of679

100 × 100 × 100 R3
E . An explicit kinetic simulation has to resolve the Debye length that is680

about 100 meters or ∆x = 1/64000 RE . The required number of grid cells would be order681

3 × 1020, the number of macroparticles would be about 1023 and the time step would be682

limited to ∆x/c = 0.3 microseconds. Doing one hour of simulation would require 1033
683

particle pushes. Each particle push requires order of 100 floating point operations (includ-684

ing the interpolation of the fields to the particle positions), so even on a future exascale685

computer which can do 1018 operations per second, this single simulation would take 1017
686

seconds wall clock time or about 3 billion years. Clearly, waiting for faster computers will687

not make such a simulation possible. One can switch to an implicit PIC code that requires688

resolving the electron skin depth (instead of the Debye length) that is about 1.5 km and689

the time step is restricted by the cell crossing time at the electron thermal speed instead of690

the speed of light. Reducing the ion-electron mass ratio from 1836 to 100 results in an-691

other factor of ≈ 4 increase in the cell size to ∆x = 6 km ≈ 1/1000 RE , while the time692

step increases by a factor of about 6000 relative to the explicit PIC code with realistic693

electron mass to ∆t ≈ 2 milliseconds, which in turn reduces the computational cost by a694

factor of 109 to 3 years on the future exascale machine. The MHD-EPIC algorithm allows695

restricting the PIC code to the vicinity of the reconnection region(s), while one can use696

an adaptive grid for the global MHD code. The speed up is approximately the ratio of the697

volume of the PIC region relative to the whole domain, which is about 103. This reduces698

the computational cost to 1 day on a future exascale computer, which is promising, or699

about 3 years on a current petascale machine, still out of reach for now. With the kinetic700

scaling presented in this paper, however, the simulation becomes feasible. Using a scaling701

factor f = 32 allows 32 times coarser grid size of about ∆x = 200 km = 1/32 RE and 32702

times larger time step ∆t ≈ 0.06 second. This saves f 4 ≈ 106, which makes the simulation703

doable in a few days using a few thousand cores (instead of a full petascale machine) with704

a code that in practice can only achieve a fraction of the peak performance. Our compan-705

ion paper by Chen et al. [2017, accepted companion paper] does in fact present a 1-hour706
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long 3D magnetosphere simulation using the MHD-EPIC model with kinetic scaling that707

was obtained with 6400 cores of the Blue Waters computer running for a week.708

In general, with proper kinetic scaling, the cost of the computation depends on the709

smallest global scales rather than on the true kinetic scales. Our simulations suggested710

that one can get reasonably accurate results with a scaled up inertial length di that is711

about 3% of the global scale dg. Resolving the increased ion inertial length scale requires712

a grid resolution ∆x ≈ di/10 ≈ dg/300. This is much finer than the typical grids used in713

global MHD simulations that typically resolve the global scale with order 20 to 50 cells,714

but still achievable on current computers. Roughly speaking, kinetic simulations will re-715

quire a grid resolution that is about 10 times finer than the grids used in MHD simula-716

tions, and the time step will also be about 10 times smaller. The computational cost of a717

3D simulation is proportional to ∆x−3∆t−1, so this a factor of 10,000 increase. In two spa-718

tial dimensions the cost is proportional to the 3rd power, or about factor of 1000. In addi-719

tion, kinetic simulations are more expensive than MHD simulations on the same grid. The720

use of adaptive mesh refinement can reduce this cost substantially, because the high reso-721

lution is only needed in a relatively small region. Further efficiency gain can be achieved722

by using the MHD-EPIC algorithm, so that the PIC model is limited to the vicinity of the723

reconnection site. In summary, even with the scaling, kinetic simulations are much more724

expensive than ideal or resistive MHD simulations, but much more affordable than trying725

to resolve the true kinetic scales that may be many orders of magnitude smaller.726

In contrast with pure MHD or pure PIC models, the MHD-EPIC approach combined727

with the kinetic scaling allows studying728

1. kinetic dynamics embedded into a realistic and possibly time-dependent global en-729

vironment, and730

2. the self-consistent feedback of the kinetic solution on the global dynamics.731

Studying collisionless reconnection in global systems allows, for example, direct compar-732

ison of full electron and ion distribution functions with observations, such as those pro-733

vided by the MMS mission. Self-consistent MHD-EPIC simulations can get correct colli-734

sionless reconnection rates and global dynamics based on electron physics instead of nu-735

merical resistivity. This may lead to a better understanding of the mechanisms producing736

magnetospheric substorms and solar eruptions, for example.737
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This paper focused on the kinetic scaling and demonstrated it with 2D simulations.738

We have already performed 3D MHD-EPIC simulations for Earth’s magnetosphere using739

scaling factors f = 16 and f = 32. The results of these simulations are discussed in an740

accompanying paper by Chen et al. [2017, accepted companion paper] showing several ki-741

netic effects predicted and observed in the dayside magnetosphere including flux transfer742

events, Larmor electric field, the lower hybrid drift instability (LHDI) and crescent shape743

velocity distribution functions. Our 2D and 3D simulations focused on various aspects744

of the reconnection process at the dayside magnetopause and found that the kinetic scal-745

ing works for these. It will require further research to examine if these results generalize746

to other aspects (like particle acceleration), other parameter regimes (reconnection in so-747

lar flares) and other type of kinetic processes (for example kinetic instabilities at parallel748

shocks).749
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Figure 7. Time series of flux transfer events for two runs: the left column is for kinetic scaling factor f = 8

and grid resolution ∆x = 1/128 RE , while the right column is with f = 32 and ∆x = 1/32 RE . The simula-

tion times are shown in minutes above each plot with a 3 minute cadence. The colors show the Y component

of the velocity in km/s units. The white lines are magnetic field line traces.
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