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Abstract
Over the past few years, an increasing number of studies have identified rare variants

that contribute to trait heritability. Due to the extreme rarity of some individual vari-

ants, gene-based association tests have been proposed to aggregate the genetic vari-

ants within a gene, pathway, or specific genomic region as opposed to a one-at-a-time

single variant analysis. In addition, in longitudinal studies, statistical power to detect

disease susceptibility rare variants can be improved through jointly testing repeatedly

measured outcomes, which better describes the temporal development of the trait of

interest. However, usual sandwich/model-based inference for sequencing studies with

longitudinal outcomes and rare variants can produce deflated/inflated type I error rate

without further corrections. In this paper, we develop a group of tests for rare-variant

association based on outcomes with repeated measures. We propose new perturbation

methods such that the type I error rate of the new tests is not only robust to misspecifi-

cation of within-subject correlation, but also significantly improved for variants with

extreme rarity in a study with small or moderate sample size. Through extensive sim-

ulation studies, we illustrate that substantially higher power can be achieved by utiliz-

ing longitudinal outcomes and our proposed finite sample adjustment. We illustrate

our methods using data from the Multi-Ethnic Study of Atherosclerosis for exploring

association of repeated measures of blood pressure with rare and common variants

based on exome sequencing data on 6,361 individuals.
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1 INTRODUCTION

Although substantial progress has been made in the discovery

of common variants associated with complex traits, much

of the genetic heritability still remains unexplained. An

increasing number of studies have now considered rare

variants to explain additional heritability. Various gene-based

association tests have been developed for cross-sectional

data to aggregate the rare variants in a gene as opposed

to a one-at-a-time single variant analysis (Lee, Abecasis,

Boehnke, & Lin, 2014). Among them, burden tests collapse

multiple genetic variants into a single genetic score, then

test the association between the score and an outcome (Li &

Leal, 2008; Madsen & Browning, 2009). They are especially

powerful under the assumption that all variants in the set are

associated with the outcome in the same direction, but viola-

tion of this assumption can lead to a loss of power. Variance

component tests or dispersion tests test for the association
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by evaluating the variation of genetic effects for a group of

variants (Li et al., 2014; Neale et al., 2011; Wu et al., 2011).

In contrast to burden tests, they are robust to genomic regions

in which variants have both positive and negative effects.

Because the underlying scenario is unknown in large-scale

agnostic exploration of the genome, several methods have

been proposed to combine these two methods, including the

Fisher's combined probability test and the optimal unified

sequence kernel association test (SKAT-O), which use data to

adaptively combine sequence kernel association test (SKAT)

and burden test statistics (Derkach, Lawless, & Sun, 2013;

Lee, Wu, & Lin, 2012; Sun, Zheng, & Hsu, 2013).

To test genetic association in longitudinal studies, investi-

gators often take a simple approach of collapsing the repeated

measurements into a single value (average, baseline, or last

observation carried forward) and hence the method is not able

to harness the power of the complete information that is con-

tained in the longitudinal trajectory (He et al., 2015; Ware

et al., 2016). For one-at-a-time single variant analysis, one

can also apply the standard methods available for correlated

outcome models to better utilize the longitudinal data, such

as mixed effect models or generalized estimating equations

(GEEs; Fan et al., 2012; Furlotte, Eskin, & Eyheramendy,

2012; Liang & Zeger, 1986). These methods are primarily

proposed for modeling and testing a modest number of vari-

ants compared to the number of subjects. For gene-based anal-

ysis, several groups have recently extended the burden and

dispersion tests to longitudinal studies through mixed effect

models or GEEs (He et al., 2015; Wang, Xu, Zhang, Wu, &

Wang, 2017). The mixed effect approaches are model-based,

which can lead to inflated type I error rate when the within

subject correlation is misspecified. Wang et al. (2017) pro-

posed a practical strategy to reduce the inflation by combin-

ing multiple working correlation structures. Although it can

work well for various scenarios, the type I error rate is not

theoretically justified to be robust. The gene-based tests using

GEE is robust to the misspecification of within-subject cor-

relation, but the use of large-sample-based inference can pro-

duce inaccurate type I errors rates when sample sizes are small

or the minor allele frequencies are very low. So far, there is no

extension of SKAT-O type tests to outcomes with repeated

measures that can adaptively combine burden and dispersion

tests. Development of such tests remains the central purpose

of the current paper.

We propose a group of generalized score type tests for rare-

variant association between a set of genetic variants and a phe-

notype measured repeatedly during the course of an observa-

tional study. The proposed tests include burden, dispersion,

and an adaptively combined test of those two based on Fisher's

and minimum P-value approaches. They are GEE-based tests

that are robust to the misspecification of within-subject cor-

relation. We also develop a perturbation method to address

the difficulty of applying GEE-based inference to rare variants

to offer better small sample inference properties. The perfor-

mance of the methods is evaluated through simulation studies

and illustrated using repeated measures data on blood pressure

measures on 6,361 individuals from the Multi-Ethnic Study of

Atherosclerosis (MESA; Bild et al., 2002).

2 METHODS

2.1 Notations and Model
Assume that we have a study population of m subjects and

the ith subject has 𝑛𝑖 observations, 𝑛 =
∑

𝑖 𝑛𝑖 . Let 𝑌𝑖, 𝑗 be the

quantitative outcome for the jth observation of the ith subject;

𝑋𝑖, 𝑗 = (𝑋1
𝑖,𝑗
,… , 𝑋

𝑝

𝑖,𝑗
)𝑇 be the 𝑝 covariates that can include

time (time-varying covariate), gender, body mass index (BMI;

baseline covariate), etc.; 𝐺𝑖 = (𝐺1
𝑖
,… , 𝐺

𝑞

𝑖
)𝑇 be the 𝑞 time-

invariant genetic variants sequenced in a region. We are inter-

ested in testing the association between 𝑌𝑖,𝑗 and 𝐺𝑖, adjusting

for covariates 𝑋𝑖,𝑗 . The fixed effect model is given by:

𝜇𝑖,𝑗 = 𝐸
(
𝑌𝑖,𝑗|𝑋𝑖,𝑗 , 𝐺𝑖

)
= 𝑋𝑇

𝑖,𝑗
𝛽 + 𝐺𝑇

𝑖
𝛾,

where 𝛽 and 𝛾 are the coefficients for the covariates and

genetic variants, respectively. For simplicity, we define 𝑌𝑖 =
(𝑌𝑖,1,… , 𝑌𝑖,𝑛𝑖)

𝑇 as a vector of all observations on sub-

ject i; 𝑋𝑖, 𝐺𝑖 are defined as the matrix form of covariates

and genetic variants, that is, 𝑋𝑖 = (𝑋𝑖,1,… , 𝑋𝑖,𝑛𝑖
)𝑇 , �̃�𝑖 =

(𝐺𝑖,… , 𝐺𝑖)𝑇 . We note that 𝐺𝑖 is repeated 𝑛𝑖 times because

genotype is time invariant. The matrix representation is given

by:

𝜇𝑖 = 𝐸
(
𝑌𝑖|𝑋𝑖,𝐺𝑖

)
= 𝑋𝑖𝛽 + �̃�𝑖𝛾.

The above model gives a parameterization for testing the

association between the genetic variants and response vari-

able. When 𝛾𝑞× 1 = 0, there is no joint association. Thus, we

consider the q dimensional hypothesis:

𝐻0 ∶ 𝛾 = 0 vs. 𝐻1 ∶ 𝛾 ≠ 0.

2.2 Generalized Score Type Test
To construct a simultaneous test for 𝐻0 ∶ 𝛾 = 0, the

classical approach is a q-degree of freedom likelihood

ratio/Wald/score test. The power of such tests tends to dimin-

ish rapidly when the dimensionality q is large, which can be a

common scenario when the sequenced region consists of hun-

dreds of variants. Alternatively, we propose a score type test

statistic by simply assembling the score statistics of the above

fixed effect model. We consider the 𝑞 × 1 score vector with

respect to 𝛾 ,

𝑆𝛾 (𝛽, 𝜁 , 𝛾) =
𝑚∑
𝑖=1

𝑆𝛾,𝑖 (𝛽, 𝜁 , 𝛾) =
𝑚∑
𝑖=1

�̃�𝑇
𝑖
𝑉 −1
𝑖

(𝜁 )
(
𝑌𝑖 − 𝜇𝑖

)
,
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where 𝑉 −1
𝑖

(𝜁 ) is the working covariance matrix of subject 𝑖;

𝜁 is a vector of parameters specifying the working covariance.

Let 𝑆𝑘
𝛾
(𝛽, 𝜁 , 𝛾) be the kth element of 𝑆𝛾 (𝛽, 𝜁 , 𝛾). We define

two test statistics as:

𝑄1 = 1
𝑚

𝑞∑
𝑘 = 1

𝑤2
𝑘

[
𝑆𝑘
𝛾

(
𝛽, 𝜁 , 0

)]2
,

𝑄2 = 1
𝑚

[
𝑞∑

𝑘 = 1
𝑤𝑘𝑆

𝑘
𝛾

(
𝛽, 𝜁 , 0

)]2

,

which are two different types of aggregation of the single vari-

ant score statistics; 𝑤𝑘 is threshold indicator/weight for vari-

ant k. Specifically, we use Beta(1,25) distribution to upweight

variants with lower minor allele frequency (MAF), similar to

SKAT; 𝛽 and 𝜁 are estimated under 𝐻0 by GEE. The form of

𝑄1 is close to the dispersion tests, and 𝑄2 belongs to the class

of burden tests. Similar to SKAT-O, we can combine the two

test statistics by:

𝑄𝜌 = (1 − 𝜌) 𝑄1 + 𝜌𝑄2, 𝜌 ∈ [0, 1] .

2.3 Distribution of 𝑸𝝆 and Perturbation
Method When 𝝆 Is Fixed
For a fixed 𝜌, we show in the Supporting Information that

𝑄𝜌 follows a weighted sum of chi-square distributions under

𝐻0, where the mixture weights can be estimated by sand-

wich estimation as in GEE. However, the large-sample-based

GEE inference can produce inaccurate type I errors rates

when the sample size is small or the minor allele frequen-

cies are very low. To address this, we use a perturbation

method to approximate the distribution of 𝑄𝜌 (Wang, Lee,

Zhu, Redline, & Lin, 2013). We first generate 𝐵 samples of

perturbed scores �̃�𝑏 =
∑𝑚

𝑖=1 �̃�
𝑇
𝑖
𝑉 −1
𝑖

(𝜁)(𝑌𝑖 − �̂�𝑖) 𝑟𝑏, 𝑖 and cal-

culate the perturbed test statistic �̃�𝜌,𝑏, where 𝑏 = 1,… , 𝐵; 𝑟𝑖
is a random variable sampled from the Rademacher distribu-

tion (a discrete distribution with equal chance of being -1 and

1). Then, we calculate the sample mean �̂�𝜌,𝐵 , variance �̂�2
𝜌,𝐵

and kurtosis �̂�𝜌,𝐵 = �̂�𝜌,𝐵,4∕(�̂�2𝜌,𝐵)
2 − 3 of the perturbed test

statistic, where �̂�𝜌,𝐵,4 is the sample fourth central moments.

To obtain cumulative distribution function of 𝑄𝜌, we use the

moment matching approximation with estimated (�̂�𝜌,𝐵 , �̂�2
𝜌,𝐵

,

�̂�𝜌,𝐵),

𝑃𝐻0

(
𝑄𝜌 < 𝑥

)
= 𝐹

((
𝑥 − �̂�𝜌,𝐵

)√
2𝑑𝑓∕�̂�𝜌,𝐵 + 𝑑𝑓 |𝜒2

𝑑𝑓

)
,

where 𝐹 (⋅|𝜒2
𝑑𝑓
) is the distribution function of 𝜒2

𝑑𝑓
and 𝑑𝑓 =

12∕�̂�𝜌,𝐵 .

2.4 Adaptively Combined Test
When 𝜌 = 1, the test is more powerful under the assump-

tion that all variants in the set are associated with the

outcome with the same direction, but violation of this assump-

tion can lead to a loss of power. When 𝜌 = 0, the test is

robust to genome regions in which variants have both pos-

itive and negative effects. Because both scenarios can arise

and the optimal 𝜌 is unknown, we adaptively combine 𝑄1 and

𝑄2. Let 𝜌1,… , 𝜌𝐿 be 𝐿 fixed values in the interval [0, 1], and

𝑝1,… , 𝑝𝐿 be the P values of tests based on 𝑄𝜌1
,… , 𝑄𝜌𝐿

. We

define two combined test statistic as:

• Fisher's statistic: 𝑇Fisher =
𝐿∑
𝑘=1

−2 log 𝑝𝑘.

• MinP statistic: 𝑇MinP = min(𝑝1,… , 𝑝𝐿).

Because the P values, 𝑝1,… , 𝑝𝐿, are not independent, it

poses a challenge to derive the distribution of 𝑇Fisher and

𝑇MinP. We propose a resampling method to calculate the P
value as follows:

• Fisher's statistic: we calculate the P values (𝑝𝑏1, 𝑝
𝑏
2,… , 𝑝𝑏

𝐿
)

using the aforementioned perturbation method with respect

to 𝜌1,… , 𝜌𝐿, and calculate the unified test statistic:

𝑇Fisher,𝑏 =
∑𝐿

𝑘=1
−2 log 𝑝𝑏

𝑘
, 𝑏 = 1,… , 𝐵.

Note that each −2 log 𝑝𝑏
𝑘

follows a chi-square distribution

with degree of freedom one. We approximate the distribu-

tion of 𝑇Fisher by using the moment matching approxima-

tion. We estimate the moments of 𝑇Fisher using the sample

mean, �̂�Fisher, 𝐵; variance, �̂�2Fisher,𝐵; and kurtosis, �̂�Fisher,𝐵 =
�̂�Fisher,𝐵,4∕(�̂�2Fisher,𝐵)

2 − 3 of the resampling based statistic,

where �̂�𝐵,4 is the sample fourth central moments. The cumu-

lative distribution function of 𝑇Fisher is:

𝑃𝐻0

(
𝑇Fisher < 𝑥

)
= 𝐹

((
𝑥 − �̂�Fisher,𝐵

)√
2𝑑𝑓∕�̂�Fisher,𝐵

+𝑑𝑓 |𝜒2
𝑑𝑓

)
,

where 𝐹 (⋅|𝜒2
𝑑𝑓
) is the distribution function of 𝜒2

𝑑𝑓
and 𝑑𝑓 =

12∕�̂�Fisher,𝐵 .11

• MinP statistic: we define 𝛿 = (Φ−1(𝑝1),… ,Φ−1(𝑝𝐿))𝑇 .

The marginal distribution of Φ−1(𝑝𝑘) follows a normal dis-

tribution with mean 0 and variance 1 under𝐻0. We approx-

imate their joint distribution by a multivariate normal dis-

tribution, that is, 𝛿 ∼ 𝑁(0, 𝐷). To estimate D, we calculate

the P values (𝑝𝑏1, 𝑝
𝑏
2,… , 𝑝𝑏

𝐿
) using the aforementioned per-

turbation method with respect to 𝜌1,… , 𝜌𝐿, and define:

𝛿𝑏 =
(
Φ−1 (𝑝𝑏1) ,… ,Φ−1 (𝑝𝑏

𝐿

))𝑇
, 𝑏 = 1,… , 𝐵.

Then we estimate𝐷 by �̂� = 1
𝐵

∑𝐵

𝑏 = 1 𝛿𝑏𝛿
𝑇
𝑏

. The calibrated

P-value can be calculated by:

𝑃𝐻0

(
𝑇MinP < 𝑥

)
= 1 − 𝑃

(
𝛿 >

[
Φ−1 (𝑥) ,… ,Φ−1 (𝑥)

]𝑇)
.
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It is worth noting that these tests use a similar strategy as

SKAT-O. Namely, the MinP test defines the test statistic same

as SKAT-O, but use an alternative procedure for a robust infer-

ence in longitudinal studies. The Fisher's statistic is an alter-

native strategy to combine P values, which is nearly compara-

ble to the MinP statistic but slightly more powerful when the

significance is homogeneous for multiple 𝑝1,… , 𝑝𝐿 ∈ [0, 1].
Because the focus of this paper is on utilizing longitudinal

outcomes, we restrict 𝜌 = 0, 1. We note that the power dif-

ference between this simplified test and a full spectrum of

𝜌 is often negligible.

The theoretical aspects of these score-based tests for rare-

variants have been discussed in many existing papers for

cross-sectional data (Derkach et al., 2013; Lee et al., 2012;

Li et al., 2014; Wu et al., 2011). The novelty of our pro-

posed tests lies in their robustness to within-subject correla-

tion and the small sample adjustment. The proposed perturba-

tion procedure to calculate the analytical P values of MinP and

Fisher's test statistics is also new. The algorithm efficiently

estimates moments of the test statistics, such that extreme P
values at genome-wide level can be computed. Traditional

resampling procedure usually does not guarantee the robust-

ness to within-subject correlation, and requires large number

of replicates to achieve the correct P values at genome-wide

level.

3 NUMERICAL SIMULATIONS

Because there is no adaptively combined test developed for

rare-variant association in longitudinal studies, we mainly

compared the performance of the proposed methods using

longitudinal data with SKAT-O using the average/baseline

value of the repeated measures. We also considered alter-

native methods for longitudinal studies, such as disper-

sion/burden test using sandwich/model-based inference. The

tests using model-based inference assume a compound-

symmetry/autoregressive within-subject correlation structure

in a mixed model, but violation of this assumption can lead to

inflated type I error rate. We note that this model-based infer-

ence is similar to the longitudinal sequence kernel association

test (LSKAT) and longitudinal burden test (LBT) proposed by

Wang et al. (2017), where they assume the within-subject cor-

relation to be a mixture of compound-symmetry and autore-

gressive structure. Their method practically reduces the type

I error inflation and have equivalent power as model-based

inference when the within-subject correlation is correctly

specified, although the type I error rate is not theoretically jus-

tified to be robust.

Sequencing data were generated from 10,000 haplotypes

over 200kb regions (3,845 genetic variants) using the cali-

bration coalescent model (COSI), with mimicking the linkage

disequilibrium (LD) structure of European ancestry samples

(Schaffner et al., 2005). The simulation studies focus on the

variants with MAF< 0.05. We randomly selected 3 kb regions

(38.3 MAF < 0.05 variants on average) and form a sample

with 500, 1,000, 2,000, and 5,000 individuals for each repli-

cate. We first simulated the complete data with four repeated

measurements, and then applied a missingness indicator with

4% fixed drop-out rate at each examination assuming data

missing completely at random.

3.1 Type I Error Simulations
To examine the type I error rate of the proposed methods, we

simulated continuous phenotypes from the following model:

𝑌𝑖𝑗 = 𝑏𝑖 + 𝛽𝑡𝑖𝑚𝑒𝑡𝑖𝑗 + 0.5𝑋1,𝑖 + 0.5𝑋2,𝑖𝑗 + 𝜖𝑖𝑗 ,

where 𝑡𝑖𝑗 = 2 × (𝑗 − 1) (0, 2, 4, 6 standing for years because

the initiation of the study), 𝛽𝑡𝑖𝑚𝑒 = 3; 𝑋1,𝑖 and 𝑋2,𝑖𝑗 are

time invariant and time-varying covariates, respectively; 𝑏𝑖 ∼
𝑁(0, 1), 𝜀ij ∼ N(0,1), and they are all independent (estimated

within-subject correlation ∼ 0.46); 𝑗 = 1, 2, 3, 4. The simu-

lation setting is similar to Lee et al. (2012). We simulated 106
replicates to examine the type I error rate at 𝛼 = 0.01, 0.001,

and 0.0001 as the sample size varies from 500 to 5,000. We

also examine the type I error rate when the within-subject cor-

relation follows an autoregressive model of order 1. Results

are presented in Tables 1 and 2.

3.2 Empirical Power Simulations
To evaluate the power, the continuous phenotype was simu-

lated from:

𝑌𝑖𝑗 = 𝑏𝑖%+ 𝛽𝑡𝑖𝑚𝑒𝑡𝑖𝑗 + 0.5𝑋1,𝑖 + 0.5𝑋2,𝑖𝑗 + 𝛽1𝑔1 +… + 𝛽𝑠𝑔𝑠

+𝜖𝑖𝑗 ,

where (𝑔1,… , 𝑔𝑠) were selected causal variants; 𝑏𝑖, 𝑡𝑖𝑗 , 𝛽𝑡𝑖𝑚𝑒,

𝑋1,𝑖, and 𝑋2,𝑖𝑗 are defined same as the type I error simula-

tion. Similar to Lee et al. (2012), we considered simulations

in which 10%, 20%, or 50% of variants were causal, and set

𝛽𝑘 = 𝑐|log10𝑚𝑘|, where 𝑚𝑗 is the MAF if the jth variant. We

set 𝑐 = 0.8, 0.4, and 0.2 when 10%, 20%, and 50% of the rare

variants were causal to compensate for the increased num-

ber of causal variants. We allow the sample size to vary as

𝑚 = 500, 1, 000, 2,000, and 5,000. The power was esti-

mated as the proportion of P values less than 𝛼 = 0.001.

Results are presented in Table 3. We additionally present

results when 20%/50% of causal variances have negative 𝛽s

in Tables S1 and S2.

To evaluate the use of longitudinal information, we

evaluate a spectrum of 𝛽𝑡𝑖𝑚𝑒 from 0 to 3, reflecting scenarios

from no time effect to a strong time effect; 𝑏𝑖 ∼ 𝑁(0, 𝜎2)
where 𝜎2 = 0.25, 1 (estimated within-subject correlation

∼ 0.2, 0.5, respectively); 20% variants were causal, and set
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T A B L E 1 Type I Error Estimates of the Proposed Tests Based on 1,000,000 Replicates

Sample
Size Level 𝜶 S-Dispersion S-Burden M-Dispersion M-Burden P-Dispersion P-Burden P-Fisher P-MinP

SKAT-O
Average

500 0.01 0.0029 0.0080 0.0098 0.0099 0.0110 0.0107 0.0105 0.0105 0.0170

0.001 0.0001 0.0005 0.0008 0.0009 0.0010 0.0010 0.0011 0.0010 0.0036

0.0001 1.31 × 10−6 2.89 × 10−5 6.96 × 10−5 1.04 × 10−4 8.60 × 10−5 9.70 × 10−5 1.19 × 10−4 9.30 × 10−5 8.62 × 10−4

1000 0.01 0.0055 0.0091 0.0097 0.0100 0.0106 0.0107 0.0104 0.0103 0.0144

0.001 0.0003 0.0007 0.0009 0.0010 0.0011 0.0011 0.0012 0.0010 0.0025

0.0001 1.46 × 10−5 5.47 × 10−5 6.92 × 10−5 9.84 × 10−5 1.11 × 10−4 9.00 × 10−5 1.23 × 10−4 9.40 × 10−5 5.20 × 10−4

2000 0.01 0.0074 0.0095 0.0096 0.0101 0.0101 0.0104 0.0102 0.0099 0.0127

0.001 0.0005 0.0008 0.0009 0.0010 0.0011 0.0011 0.0011 0.0011 0.0018

0.0001 3.92 × 10−5 7.29 × 10−5 7.29 × 10−5 1.06 × 10−4 1.30 × 10−4 9.07 × 10−5 1.27 × 10−4 1.08 × 10−4 3.22 × 10−4

5000 0.01 0.0086 0.0101 0.0096 0.0102 0.0100 0.0102 0.0100 0.0097 0.0118

0.001 0.0008 0.0013 0.0009 0.0013 0.0011 0.0010 0.0011 0.0011 0.0014

0.0001 2.12 × 10−5 1.27 × 10−4 2.12 × 10−5 1.27 × 10−4 1.13 × 10−4 1.23 × 10−4 1.20 × 10−4 1.23 × 10−4 2.00 × 10−4

The within-subject correlation structure is compound symmetry. S/M/P-Dispersion/Burden, dispersion/burden test using sandwich/model-based/perturbation inference;

SKAT-O-average, SKAT-O using the average value of the repeated measures.

T A B L E 2 Type I Error Estimates of the Proposed Tests Based on 1,000,000 Replicates

Sample
Size Level 𝜶 S-Dispersion S-Burden M-Dispersion M-Burden P-Dispersion P-Burden P-Fisher P-MinP

SKAT-O
Average

500 0.01 0.0029 0.0081 0.0373 0.0218 0.0110 0.0110 0.0105 0.0104 0.0174

0.001 0.0001 0.0006 0.0059 0.0034 0.0010 0.0011 0.0011 0.0010 0.0037

0.0001 1.02 × 10−6 3.58 × 10−5 8.03 × 10−4 5.60 × 10−4 7.00 × 10−5 1.06 × 10−4 1.10 × 10−4 8.30 × 10−5 9.08 × 10−4

1000 0.01 0.0052 0.0093 0.0376 0.0225 0.0106 0.0107 0.0104 0.0103 0.0144

0.001 0.0003 0.0007 0.0059 0.0036 0.0011 0.0011 0.0012 0.0010 0.0026

0.0001 2.05 × 10−5 7.06 × 10−5 8.40 × 10−4 5.83 × 10−4 1.07 × 10−4 1.09 × 10−4 1.32 × 10−4 1.06 × 10−4 5.15 × 10−4

2000 0.01 0.0074 0.0091 0.0376 0.0215 0.0103 0.0105 0.0102 0.0101 0.0127

0.001 0.0006 0.0009 0.0060 0.0033 0.0012 0.0011 0.0012 0.0011 0.0018

0.0001 4.44 × 10−5 1.48 × 10−4 9.39 × 10−4 5.84 × 10−4 1.34 × 10−4 9.37 × 10−5 1.35 × 10−4 1.12 × 10−4 3.02 × 10−4

5000 0.01 0.0089 0.0090 0.0373 0.0210 0.0099 0.0105 0.0102 0.0099 0.0116

0.001 0.0007 0.0009 0.0061 0.0034 0.0011 0.0011 0.0012 0.0011 0.0015

0.0001 4.96 × 10−5 1.49 × 10−4 7.94 × 10−4 4.96 × 10−4 1.30 × 10−4 1.32 × 10−4 1.37 × 10−4 1.24 × 10−4 1.93 × 10−4

The within-subject correlation structure follows an auto-regressive model of order 1. S/M/P-Dispersion/Burden, dispersion/burden test using sandwich/model-

based/perturbation inference; SKAT-O-average, SKAT-O using the average value of the repeated measures.

𝛽𝑘 = 0.4|log10𝑚𝑘|, where 𝑚𝑗 is the MAF if the jth variant.

The power was estimated as the proportion of P values less

than 𝛼 = 0.001. Results are presented in Table 4.

4 RESULTS

4.1 Simulation of Type I Error Rate
The empirical type I error rates are presented in Tables 1 and

2 for 𝛼 = 0.01, 0.001, and 0.0001 and sample sizes 500,

1,000, 2,000, and 5,000. The results show that the tests using

sandwich-based inference as in usual GEE suffer from sig-

nificantly conservative type I error rate, especially for small

sample size (sandwich dispersion: 0.0001, sandwich burden:

0.0005 at 𝛼 = 0.001 when 𝑚 = 500 and the correlation

structure is compound symmetry). In addition, the tests using

model-based inference suffer from significantly inflated type I

error rate when the working correlation structure is misspeci-

fied (sandwich dispersion: 0.006, sandwich burden: 0.0033 at

𝛼 = 0.001 when 𝑚 = 500, where the working correlation

is compound symmetry but the underlying within-subject

correlation is autoregressive). We note that directly applying

SKAT-O to the average of repeated measurements leads to

slightly inflated type I error rate because both the mean model

and homogenous assumption are not valid due to missing

data.

Although sandwich/model-based inference can lead to

either deflated/inflated type I error rates, the type I error rates

of the proposed tests based on the perturbation approach are



806 HE ET AL.

T A B L E 3 Power Evaluation When All Causal Variants Have Positive Effects at 𝛼 = 0.001 Based on 1,000 Replicates

Causal Proportion m P-Dispersion P-Burden P-Fisher P-MinP SKAT-O Average SKAT-O Baseline
0.1 500 0.29 0.15 0.29 0.28 0.07 0.26

0.1 1000 0.42 0.26 0.43 0.42 0.21 0.44

0.1 2000 0.50 0.37 0.49 0.48 0.34 0.47

0.1 5000 0.65 0.59 0.67 0.67 0.49 0.64

0.2 500 0.15 0.13 0.17 0.15 0.03 0.12

0.2 1000 0.36 0.28 0.38 0.36 0.09 0.29

0.2 2000 0.58 0.48 0.61 0.59 0.19 0.50

0.2 5000 0.74 0.70 0.77 0.76 0.48 0.72

0.5 500 0.11 0.17 0.18 0.15 0.03 0.12

0.5 1000 0.26 0.37 0.40 0.36 0.07 0.28

0.5 2000 0.52 0.69 0.71 0.68 0.20 0.53

0.5 5000 0.87 0.93 0.94 0.94 0.50 0.88

m, sample size; P-dispersion/burden, dispersion/burden test using the proposed perturbation method; SKAT-O average/baseline, SKAT-O using the average/baseline value

of the repeated measures.

T A B L E 4 Power Evaluation for the Use of Longitudinal Information at 𝛼 = 0.001 Based on 1,000 Replicates

Correlation Time Effect P-Dispersion P-Burden P-Fisher P-MinP SKAT-O Average SKAT-O Baseline
0.2 0 0.84 0.84 0.88 0.88 0.91 0.79

1 0.84 0.84 0.89 0.88 0.83 0.79

2 0.84 0.84 0.88 0.88 0.69 0.79

3 0.85 0.85 0.89 0.88 0.52 0.79

0.5 0 0.74 0.71 0.78 0.77 0.79 0.72

1 0.74 0.71 0.77 0.76 0.75 0.72

2 0.74 0.71 0.78 0.77 0.63 0.72

3 0.74 0.70 0.77 0.77 0.48 0.72

The sample size is 5,000 and 20% genetic variants are causal with all positive effects. There is 4% missing data at each examination. SKAT-O-average/baseline, SKAT-O

using the average/baseline value of the repeated measures.

preserved for all 𝛼 levels and sample sizes. The type I error

rates are well controlled even if the working correlation is

misspecified (Table 2, the working correlation is compound

symmetry but the underlying within-subject correlation is

autoregressive). In the genome-wide analysis of the MESA

blood pressure measures in association with the exome-chip

data, the QQ-plots show that the distribution of P values

generally follows a global null (Figs. S1–S4). The results

illustrate that the proposed tests are valid methods for

a genome-wide analysis of rare variants in longitudinal

studies.

4.2 Power Gain from Utilizing Longitudinal
Information
We compare the proposed tests with SKAT-O using the aver-

age/baseline value of the repeated measures (Table 3). The

proposed adaptively combined tests using longitudinal data

have higher power than SKAT-O using average/baseline of

the repeated measurements (e.g., Fisher: 0.61; MinP: 0.59;

SKAT-O-average: 0.19; SKAT-O-baseline: 0.50 when 𝑚 =
2, 000 and causal proportion is 0.2). We also observed that

the adaptively combined test generally achieve the maximum

power of dispersion and burden tests, which is a desired prop-

erty as the underlying causal scenario (causal proportion,

direction of effects) is usually unknown. Additional simula-

tion studies with bidirection effects are included in Tables S1

and S2. The results show similar pattern.

To further investigate the improved power due to using lon-

gitudinal outcomes, we evaluated the methods over a spec-

trum of time effect, from no effect to a strong effect. The

results are summarized in Table 4. We observed that power

of SKAT-O using average of repeated measurements substan-

tially decreases as the time effect increases. We additionally

evaluated the methods when complete data are simulated and

observed there is no such power loss (data not shown). This

shows that the misspecified mean model and heterozygos-

ity in variance due to missing data not only cause inflated
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type I error rate (Table 1), but also reduce power. Because

missing data commonly exists in longitudinal studies over a

period of time, directly applying methods for cross-sectional

study to the average of longitudinal outcomes is less than

optimal.

4.3 Application to the Multi-Ethnic Study of
Atherosclerosis
We illustrate the use of the method by applying it to exome-

chip data and blood pressure measures in MESA. MESA is

a collaborative longitudinal study initiated in July 2000 to

investigate the prevalence, correlates, and progression of sub-

clinical cardiovascular disease.16 From 2000 to 2007, four

examinations of blood pressure were conducted over 18-

to 24-month periods. Six thousand three hundred sixty-one

subjects consisting of 2,526 European Americans (EUR),

1,611 African Americans (AFA), 1,449 Hispanics (HIS),

and 775 Asian of Chinese descent (CHN) with genome-

wide genotype data, systolic blood pressure (sBP), and dias-

tolic blood pressure (dBP) outcomes were considered in

the current analysis. We adjusted the actual blood pressures

for participants taking antihypertensive medications using

the standard procedure of adding 10 mmHg to sBP and

5 mmHg to dBP (Cui, Hopper, & Harrap, 2003). Genetic

variants were genotyped using the Illumina HumanExome

BeadChip 12-v1. We annotated variants to genes using

Annovar (Wang, Li, & Hakonarson, 2010). We conducted

ethnicity-specific analysis of the association between sys-

tolic and dBPs and genetic variants adjusting for age, gender,

BMI, and the leading four ethnicity-specific genetic princi-

pal components (PCs). Ethnicity-specific PCs are estimated

using genome-wide genotyping data from the Affymetrix

HumanGenome SNP Array 6.0. Then the ethnicity-specific

P values were combined using Fisher's method for a meta-

analysis (Fisher, 1992). We present the top three genes for

systolic and dBPs in Table S3. We also present the results for

18 genes around index SNPs that were significant (P value

< 10−9) in the International Consortium for Blood Pressure

genome-wide association studies in Table S4 (International

Consortium for Blood Pressure Genome-Wide Association

Studies, 2011).

Utilizing the longitudinal trajectory, we identified a

protein-coding gene, ZNF473 that exhibits suggestive asso-

ciation with sBP in Hispanics (P-value = 2.4 × 10−6 for

Fisher's test, 1.8 × 10−6 for MinP test). The corresponding

P values for dBP are also suggestive (P-value = 0.0016

for Fisher's test, 0.0013 for MinP test). The significance is

more pronounced for the burden test than the dispersion test

(9.2 × 10−7 vs. 8.1 × 10−6 for sBP, 7.1 × 10−4 vs. 0.0045

for dBP). We present the detailed results in Table 5. The

identified gene ZNF473 encodes a member of the Krueppel

C2H2-type zinc-finger family of proteins, a component of

the U7 snRNP complex. The encoded protein plays a role in

histone 3′-end pre-mRNA processing and may be required

for cell cycle progression to S phase. Bone mineral density

might be correlated with the expression level and methylation

status of this gene (O'Leary et al., 2015). We additionally

perform the single SNP analysis in gene ZNF473. We present

the results in Table S5. We observed that exm1493401
at position 50545025 (hg19) is the SNP that exhibits the

smallest P value (P-value = 2.6 × 10−5) associated with

sBP, and there are multiple SNPs highly correlated to

exm1493401. Another suggestive SNP is exm1493479 at

50549462 (P-value = 0.0013). We also present the genome-

wide meta-analysis P values and ethnicity specific P values

in Hispanics in Figures S1–S4. Although the QQ plots

do not show inflation due to population stratification, we

note that the sample size of Hispanics (1,449 subjects with

several repeated measurements per subject) is relatively

small for the identification of rare-variant association and

the association was not observed in MESA Europeans,

African Americans, or Chinese. Therefore, future replication

studies with a larger sample size will be needed to verify this

association.

MESA samples are collected from six study sites (Table

S6). Because the association presented in this paper is iden-

tified in Hispanics, we characterize the amount of admix-

ture due to European, African, and Native American (NA)

in MESA Hispanic samples. The MESA Hispanic samples

consist of individuals from Central America, Cuba, Domini-

can Republic, Mexico, Puerto Rico, and South America.

The amount of admixture in each group has been exten-

sively evaluated by Manichaikul et al. (2012). Because the

focus of this paper is on the development of new associa-

tion tests for longitudinal study, we directly cite the exist-

ing results in Table S7. We also calculate the amount of

admixture within each study site, and present the results in

Table S8. We present a plot of the PCs versus the self-

reported Hispanic origins in Figure S5. Then we identify the

two subpopulations (Mexicans and Caribbean). The classifi-

cation is mainly based on self-reported origin, with reclas-

sification of some individuals based on the leading four

PCs. We present the results in Figure S6 and Table S9.

We observe that the resulting clusters of ancestry showed

good agreement with self-reported country/region of ori-

gin. In addition to adjusting for the top four ethnicity-

specific PCs, we further conducted sensitivity analysis of

ZNF473 to evaluate how different adjustments of popula-

tion stratification affect the results: (a) because Hispanics are

an admixed population with European, African, and Native

American ancestries, we applied LAMP Sankararaman

et al. (2008) to the variants that can be matched with ref-

erence samples from HapMap3 and HGDP in a 10Mb win-

dow around gene ZNF473. African (AFR) and European

(EUR) samples are from HapMap3 (African ancestry: YRI,
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T A B L E 5 Analysis of Gene ZNF473, the Most Significant Gene in the Genome-Wide Longitudinal Data Analysis of MESA Exome-Chip Data

Systolic Blood Pressure Diastolic Blood Pressure
No. of Variants Dispersion Burden Fisher MinP Dispersion Burden Fisher MinP

Longitudinal measures

EUR 19 0.6828 0.8087 0.7978 0.8225 0.8281 0.3476 0.5852 0.5135

CHN 11 0.9419 0.5907 0.8855 0.7884 0.7143 0.7122 0.7657 0.8715

AFA 24 0.6313 0.1823 0.3360 0.3082 0.3784 0.3812 0.3883 0.5388

HIS 16 8.1 × 10−6 9.2 × 10−7 2.4 × 10−6 1.8 × 10−6 0.0045 7.1 × 10−4 0.0016 0.0013

Meta - 0.0014 7.0 × 10−5 3.5 × 10−4 2.4 × 10−4 0.0873 0.0137 0.0378 0.0395

Baseline Measure

EUR 19 0.3747 0.7303 0.5710 0.5431 0.6836 0.3310 0.5129 0.5101

CHN 11 1.0000 0.6355 1.0000 0.8257 0.6786 0.8258 0.8216 0.8438

AFA 24 0.4689 1.0000 0.7671 0.6704 0.5764 0.5560 0.6229 0.7459

HIS 16 4.2 × 10−4 1.0 × 10−4 1.8 × 10−4 1.9 × 10−4 0.0031 7.3 × 10−4 0.0014 0.0013

Meta - 0.3747 0.7303 0.5710 0.5431 0.6836 0.3310 0.5129 0.5101

Each cell presents the P-value. P values below the gene-based genome-wide significance level 2.5 × 10−6 are bolded.

ASE and LWK, European ancestry: CEU and TSI); Native

American samples are from HGDP (Colombian, Karitiana,

Maya, Pima, and Surui). We present the LAMP results in

Table S10. We observed that overall African, European, and

Native American ancestries account for 29.7%, 52.5%, 17.8%

of the local ancestry in this region, respectively. These local

ancestry effects are then included as covariates in the sensitiv-

ity analysis; (b) we included self-reported Hispanic origins as

covariates (Fig. S5); (c) we included classification of Hispan-

ics (Mexican vs. Caribbean) as a covariate. The classification

is mainly based on self-reported origin, and we reclassified

some individuals based on the leading four PCs (Fig. S6). (d)

We conducted stratified analysis within Mexicans/Caribbean.

We present the results in Table S11. The results show that the

significance remains similarly.

5 DISCUSSION

In this paper, we propose a group of rare-variant asso-

ciation tests that can utilize the longitudinal trajectory

of outcomes. The new tests include burden, dispersion,

and an adaptively combined test of those two based on

Fisher's and minimum P-value approaches. The tests can

incorporate time varying covariates as fixed effects and are

robust to misspecification of the within subject correlation

structure. Using extensive simulation studies, we illustrate

that substantial power gain can be achieved by jointly

modeling the repeated measurements and using the complete

information, compared to simple approaches of collapsing

the repeated measurements into a single average/baseline

value. The analysis of blood pressure measures of 6,361

individuals in MESA in association with exome sequencing

data further illustrates the use of the methods and identified a

protein-coding gene, ZNF473, suggestively associated with

sBP in Hispanics.

One attractive feature of the proposed tests is that they are

theoretically robust to misspecification of within-subject cor-

relation by using a GEE-based inference with a novel pertur-

bation method. Unlike model-based inference that can lead to

inflated/deflated type I error rate when the working correla-

tion structure is misspecified, the proposed tests have much

improved type I error control. We also developed a novel per-

turbation method to address the difficulty of applying robust

variance inference to rare variants, especially when the sam-

ple size is relatively small.

The ability to adaptively combine dispersion and bur-

den tests in longitudinal studies, and obtain an analytical

P value is another attractive feature. Unlike usual permuta-

tion/perturbation based methods to combine multiple P values

or statistics, the proposed method only uses the resampling

technic to estimate moments of the test statistics so that the

P-value is still calculated analytically, which enables a direct

calculation of P-value at genome-wide significance level

(2.5 × 10−6). This feature drastically reduced the required

number of resampling replicates. In addition, we only need to

sample those resampling replicates once for a genome-wide

analysis of approximately 20,000 genes. These features make

the proposed methods more suitable to large-scale genome-

wide analysis.

We carefully evaluated various factors that may influence

the power of gene-based tests in longitudinal studies, namely,

magnitude of time effect on the outcome variables, percentage

of missing data, and strength of within-subject correlation.

We observed that association tests using longitudinal tra-

jectory have more pronounced power improvement over

tests using average/baseline value of repeated measurements

in the presence of larger time effect and missing data. In
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a longitudinal study like MESA, not only the longitudinal

outcomes precisely describe the phenotype progression,

the rich information on time varying exposures and their

interactions with genotype may also improve the discovery

process. However, an analysis using the average of repeated

measurements of an exposure will reduce the variation in the

exposure and substantially reduce the power. We expect that

a potential future extension of the proposed methods toward

separately testing gene-time or gene-environment interaction

in longitudinal studies with time dependent covariates may

enhance the discovery process.
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