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Abstract

U

Over the past fewmgears, an increasing number of studies have identified rare variants that contribute

to trait ty. Due to the extreme rarity of some individual variants, gene-based association tests

A
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have been proposed to aggregate the genetic variants within a gene, pathway or specific genomic
region as opposed to a one-at-a-time single variant analysis. In addition, in longitudinal studies,

statistical *Wer 10 detect disease susceptibility rare variants can be improved through jointly testing

repeatedly @ d outcomes, which better describes the temporal development of the trait of
interest mH oswememmusual sandwich/model-based inference for sequencing studies with longitudinal
outcomes L/ariants can produce deflated/inflated type I error rate without further corrections.

In this papet, we d@velop a group of tests for rare-variant association based on outcomes with repeated

C

measures. se new perturbation methods such that the type I error rate of the new tests is not

S

only robus specification of within-subject correlation, but also significantly improved for

variants with extr@me rarity in a study with small or moderate sample size. Through extensive

U

simulation iesy we illustrate that substantially higher power can be achieved by utilizing

N

longitudin es and our proposed finite sample adjustment. We illustrate our methods using

data from thie Ethnic Study of Atherosclerosis for exploring association of repeated measures of

a

blood pressure with rare and common variants based on exome sequencing data on 6361 individuals.

Keywords: inal studies; Multi-Ethnic Study of Atherosclerosis; sequence-based association

tests.

Introducti

hor M

[

Althoug al progress has been made in the discovery of common variants associated with

complex traits, migh of the genetic heritability still remains unexplained. An increasing number of

Gl

studies have onsidered rare variants to explain additional heritability. Various gene-based

associa have been developed for cross-sectional data to aggregate the rare variants in a gene

A

as opposed to a one-at-a-time single variant analysis (Lee, Abecasis, Boehnke and Lin, 2014). Among

them, burden tests collapse multiple genetic variants into a single genetic score, then test the
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association between the score and an outcome (Li and Leal, 2008; Madsen and Browning, 2009).
They are especially powerful under the assumption that all variants in the set are associated with the
outcomMe direction, but violation of this assumption can lead to a loss of power. Variance
componenspersion tests test for the association by evaluating the variation of genetic
effects for mmgmomp of variants (Neale, et al. 2011; Wu, et al. 2011; Li, et al. 2014). In contrast to
burden teshre robust to genomic regions in which variants have both positive and negative
effects. Si@derlying scenario is unknown in large-scale agnostic exploration of the genome,
several me ve been proposed to combine these two methods, including the Fisher’s combined
probabilitymthe optimal unified sequence kernel association test (SKAT-0O), which uses data to
adaptively combis sequence kernel association test (SKAT) and burden test statistics (Derkach,

Lawless an 13; Sun, Zheng and Hsu, 2013; Lee, Wu and Lin, 2012).

To etic association in longitudinal studies, investigators often take a simple approach
of collapsifig B‘ peated measurements into a single value (average, baseline or last observation

carried hence the method is not able to harness the power of the complete information

that is contai the longitudinal trajectory (He, et al. 2015; Ware, et al. 2016). For one-at-a-time
single variant analysis, one can also apply the standard methods available for correlated outcome

models to Stter utilize the longitudinal data, such as mixed effect models or generalized estimating

equations ( an, et al. 2012; Furlotte, Eskin and Eyheramendy, 2012; Liang and Zeger, 1986).
These met primarily proposed for modeling and testing a modest number of variants
compared ¢ number of subjects. For gene-based analysis, several groups have recently extended

the burden_and digpersion tests to longitudinal studies through mixed effect models or generalized

estimating ions (He, et al. 2015; Wang, Xu, Zhang, Wu and Wang, 2017). The mixed effect
approache el-based, which can lead to inflated type I error rate when the within subject
correlationgi sspecified. Wang et al. (2017) proposed a practical strategy to reduce the inflation by

combining m working correlation structures. Although it can work well for various scenarios,
the type I error rate is not theoretically justified to be robust. The gene-based tests using GEE is robust

to the misspecification of within-subject correlation, but the use of large-sample-based inference can
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produce inaccurate type I errors rates when sample sizes are small or the minor allele frequencies are

very low. So far, there is no extension of SKAT-O type tests to outcomes with repeated measures that

{

can adaptively combine burden and dispersion tests. Development of such tests remains the central

purpose o @ t paper.

W

P

a group of generalized score type tests for rare-variant association between a set
of genetic varianis and a phenotype measured repeatedly during the course of an observational study.

The propo nclude burden, dispersion, and an adaptively combined test of those two based on

cl

Fisher’s a iminum P-value approaches. They are GEE based tests that are robust to the

S

misspecification of within-subject correlation. We also develop a perturbation method to address the

U

difficulty g GEE based inference to rare variants to offer better small sample inference
properties. ormance of the methods is evaluated through simulation studies and illustrated
using repe ures data on blood pressure measures on 6361 individuals from the Multi-Ethnic

Study of Athe osis (MESA) (Bild, et al. 2002).

Assume tks we have a study population of m subjects and the i-th subject has n; observations,

n=y;n;. be the quantitative outcome for the j-th observation of the i-th subject; X; ; =

¢ the p covariates which can include time (time-varying covariate), gender, body

. . T o . .
(baseline covariate), etc.; G; = (Gil, ...,qu) be the g time-invariant genetic

variants seuenced in a region. We are interested in testing the association between Y; ; and G;,

adjusting for COV;;teS X; j. The fixed effect model is given by

< wij = E(Yyj1X0,G) = X{;B + Gy,

where f and y are the coefficients for the covariates and genetic variants respectively. For simplicity,

T . S
we define ¥; = (Yi,1' s Yi,ni) as a vector of all observations on subject i; X;, G; are defined as the
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. . . . . T x
matrix form of covariates and genetic variants, i.e. X; = (Xi,1» e Xing) 5 G = (G;, ...,G))T. We note

that G; is reﬁeated ii times because genotype is time invariant. The matrix representation is given by

Q 1 = EY;1X., G) = XiB + Gyy.

The abdW¥ic M@@SMGives a parameterization for testing the association between the genetic variants and
response Vbhen y2*1 = 0, there is no joint association. Thus we consider the ¢ dimensional

hypothesis

Hy:y =0wvs.Hy:y # 0.

SC

Generalized score Wpe test:

Gl

To const a simultaneous test for Hy:y = 0, the classical approach is a q-degree of freedom

n

likelihood ratio/Wald/score test. The power of such tests tends to diminish rapidly when the

dimensiona @ & large, which can be a common scenario when the sequenced region consists of
hundre s. Alternatively, we propose a score type test statistic by simply assembling the

score statisti e above fixed effect model. We consider the g X 1 score vector with respect to v,

M

S, B.57) = ) 8,(B.8.7) = Y GIVIO — )
i=1 i=1

or

where V; 1 working covariance matrix of subject i; ¢ is a vector of parameters specifying the

working cofariance. Let S{,‘ (B,{,v) be the k-th element of S,,(8,{,y). We define two test statistics as

§

1 A 1 o
V=Y WRISEBLO), = | > wisE(B., o)] ,
k=1 k=1

Ut

which are t rent types of aggregation of the single variant score statistics; wy, is threshold

indicator. or variant k. Specifically, we use Beta(1,25) distribution to up-weight variants with

A

lower minor allele frequency, similar to SKAT; f and { are estimated under H, by GEE. The form of
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Q is close to the dispersion tests, and Q, belongs to the class of burden tests.” Similar to SKAT-O,

we can combine the two test statistics by

)

Q=0—-p)Q1+pQ;, p€E[O1]

Distributio o erturbation method when p is fixed:
||

I
For a fixed®s% ow in the supplementary materials that Q, follows a weighted sum of chi-square

distributio@Ho, where the mixture weights can be estimated by sandwich estimation as in
GEE. Howgéve large-sample-based GEE inference can produce inaccurate type I errors rates
when the sample’size is small or the minor allele frequencies are very low. To address this, we use a

perturbation met;s to approximate the distribution of @, (Wang, Lee, Zhu, Redline and Lin, 2013).
We first ,ﬁa total of B samples of perturbed scores S, = X%, G/ Vi ({)(Y; — i) 1, and
calculate the perturbed test statistic Q p,p» Where b =1, ..., B; 1; is a random variable sampled from the
Rademachmution (a discrete distribution with equal chance of being -1 and 1). Then we
calcula mple mean i, g, variance 67 and kurtosis &, 5 = ¥, 54/ (67 3)2 — 3 of the perturbed

test stati where v,ljp,BA is the sample fourth central moments. To obtain cumulative distribution

function of @, we use the moment matching approximation with estimated (4, g, 65, B> Kp,B)s

L

Py, (Qp <x)=F((x- ﬁp.B)\/ de/ﬁp.B + dfl)(czif)'

where F (- |xg4 the distribution function of x3 randdf = 12/R, p.

LM@LM

When p = t is more powerful under the assumption that all variants in the set are associated
with the o ith the same direction, but violation of this assumption can lead to a loss of power.
When p = test is robust to genome regions in which variants have both positive and negative
effects. Since cenarios can arise and the optimal p is unknown, we adaptively combine Q; and

Q. Let py, ..., py, be L fixed values in the interval [0,1], and p4, ..., p;, be the p-values of tests based on

Qp,» -, Qp, - We define two combined test statistic as

This article is protected by copyright. All rights reserved.
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e  Fisher’s statistic: Trisher = Yk=1 —2 log py

° M:IP statiiic: Tyinp = min(py, ..., pp).

Since the ¢ .., p;, are not independent, it poses a challenge to derive the distribution of

Trisher and Tpyinp. We propose a resampling method to calculate the p-value as follows.
|

Fihtistic: we calculate the p-values (pf,pé’,. ,pL) using the aforementioned

pe@ method with respect to p, ..., p;,, and calculate the unified test statistic

L
w Trisherp = zk—l_z 10gp;{3, ,b=1,..,B.

Note that ;ch —2log p? follows a chi-square distribution with degree of freedom one. We

apg the distribution of Tgisper by using the moment matching approximation. We

moments of Trispe, using the sample mean figisperp, variance G,Eisher,B and

(¢}
wn
aﬁ

— 3 of the resampling based statistic, where

- R 2
ku sher,B — wFisher,BA/(o-Igisher,B)

s the sample fourth central moments. The cumulative distribution function of Trisper 1S
O(TFisher < x) = F((x - .aFisher,B)V de/ﬁFisher,B + dfl)(czif)'
wl-Se F( |)(¢21f) is the distribution function of)(ﬁf and df = 12/1€Fisher,3.”

e M tic: we define 5=(Cb_l(pl),...,cb_l(pL))T. The marginal distribution of

ot llows a normal distribution with mean O and variance 1 under Hy,. We
i their joint distribution by a multivariate normal distribution, i.e. §~N(0,D). To

We calculate the p-values (pl, p2, .. ,pL) using the aforementioned perturbation

method W:SI respect to py, ..., pr., and define

b b T
& = (272 @}), ., @7 (pF)) b =1,...B.

Then we estimate D by D = %Z‘g:l 8,67 . The calibrated p-value can be calculated by

Pyy(Tyinp < %) =1 =P(8 > [@71(x), ..., 271 (0)]")
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It is worth noting that these tests use a similar strategy as SKAT-O. Namely, the MinP test defines the

test statistic same as SKAT-O, but use an alternative procedure for a robust inference in longitudinal

{

studies. ¢ Fisher’s statistic is an alternative strategy to combine p-values, which is nearly

comparablé inP statistic but slightly more powerful when the significance is homogeneous for

D

multiplesp [0,1]. Since the focus of this paper is on utilizing longitudinal outcomes, we

I

I

restrict p note that the power difference between this simplified test and a full spectrum of

p is often nggligible.

C

T rétical aspects of these score based tests for rare-variants have been discussed in

S

many exist, s for cross-sectional data (Wu, et al. 2011; Lee, et al. 2012; Derkach, et al. 2013;

U

Lee, et al. The novelty of our proposed tests lies in their robustness to within-subject

correlation, ¢ small sample adjustment. The proposed perturbation procedure to calculate the

n

analytical p-values of MinP and Fisher’s test statistics is also new. The algorithm efficiently estimates

moments of t statistics, such that extreme p-values at genome-wide level can be computed.

a

Traditi ling procedure usually does not guarantee the robustness to within-subject
correlation, uires large number of replicates to achieve the correct p-values at genome-wide
level.

Numericawions

Since ther @ 1daptively combined test developed for rare-variant association in longitudinal
studies, we amaimigmcompared the performance of the proposed methods using longitudinal data with
SKAT- average/baseline value of the repeated measures. We also considered alternative

methods !lr longltudinal studies, such as dispersion/burden test using sandwich/model-based

inference. The tegls using model-based inference assume a compound-symmetry/auto-regressive

U

within-subjec lation structure in a mixed model, but violation of this assumption can lead to

inflated error rate. We note that this model-based inference is similar to the longitudinal

A

sequence kernel association test (LSKAT) and longitudinal burden test (LBT) proposed by Wang et

al. (2017), where they assume the within-subject correlation to be a mixture of compound-symmetry

This article is protected by copyright. All rights reserved.
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and auto-regressive structure. Their method practically reduces the type I error inflation and have

equivalent power as model-based inference when the within-subject correlation is correctly specified,

{

although ype [ error rate is not theoretically justified to be robust.

Se ta were generated from 10,000 haplotypes over 200k regions (3845 genetic

P

Variant#u calibration coalescent model (COSI), with mimicking the linkage disequilibrium
(LD) structure of European ancestry samples (Schaftner, et al. 2005). The simulation studies focus on

the varian i inor allele frequency (MAF) <0.05. We randomly selected 3kb regions (38.3

*f

MAF<0.05fvaiant§ on average) and form a sample with 500, 1000, 2000 and 5000 individuals for

S

each replicate, We first simulated the complete data with four repeated measurements, and then

U

applied a ss indicator with 4% fixed drop-out rate at each exam assuming data missing

completely

To examine e I error rate of the proposed methods, we simulated continuous phenotypes from

the followin

\Y{

Yl] = bi + .Btimetij + 0'5X1,i + 0'5X2,ij + Eij!

where t;; X (j —1) (0, 2, 4, 6 standing for years since the initiation of the study), Brime = 3; X1

£

and X5 ;; invariant and time-varying covariates respectively; b;~N(0,1), €;;~N(0,1) and

0O

they are a pendent (estimated within-subject correlation ~ 0.46); j = 1,2,3,4. The simulation

h

setting is §imilar to Lee et al. (2012). We simulated 10° replicates to examine the type I error rate at

a=0. d 0.0001 as the sample size varies from 500 to 5000. We also examine the type |

!

error rate when thigwithin-subject correlation follows an auto-regressive model of order 1. Results are

-

presented in Table 1 and 2.

simulations

To evaluate the power, the continuous phenotype was simulated from

This article is protected by copyright. All rights reserved.
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Yij = bi + Brimetij + 0.5X1; + 0.5X;5 + B1g1 + - + Bsgs + €ij,

where (Mere selected causal variants; by, t;j, Btime, X1,; and X, ;; are defined same as the
type I erro jon. Similar to Lee et al. (2012), we considered simulations in which 10%, 20% or

50% of variants were causal, and set 8, = c|log;o my|, where m; is the MAF if the j-th variant. We
I I

setc = 0'Ssi4 and 0.2 when 10%, 20% and 50% of the rare variants were causal to compensate for
the increasgd nuner of causal variants. We allow the sample size to vary as m = 500,1000, 2000
and 5000. The power was estimated as the proportion of p-values less than & = 0.001. Results are
presented m

3. We additionally present results when 20%/50% of causal variances have

negative Bs in lable S1 and S2.

U

To C the use of longitudinal information, we evaluate a spectrum of S, from 0 to 3,

reflecting from no time effect to a strong time effect; b;~N(0,5?) where 6 =0.25, 1,

(estimated @bject correlation ~ 0.2, 0.5 respectively); 20% variants were causal, and set

Br = 0. , where m; is the MAF if the j-th variant. The power was estimated as the
proportion of p-valiies less than & = 0.001. Results are presented in Table 4.
Results

Simulationgl Error Rate

The empir@l error rates are presented in Table 1 and 2 for a = 0.01,0.001 and 0.0001 and

sample si W1000, 2000 and 5000. The results show that the tests using sandwich-based
inferen 1 GEE suffer from significantly conservative type I error rate, especially for small

the correlation strd€ture is compound symmetry). In addition, the tests using model-based inference

sample siz!i sandwich dispersion: 0.0001, sandwich burden: 0.0005 at « = 0.001 when m = 500 and

suffer fro icantly inflated type I error rate when the working correlation structure is
misspecifie wich dispersion: 0.006, sandwich burden: 0.0033 at « = 0.001 when m = 500,

where the working correlation is compound symmetry but the underlying within-subject correlation is

auto-regressive). We note that directly applying SKAT-O to the average of repeated measurements

This article is protected by copyright. All rights reserved.
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leads to slightly inflated type I error rate because both the mean model and homogenous assumption

are not valid due to missing data.

Whi dwich/model-based inference can lead to either deflated/inflated type I error rates,
the type 1 Q the proposed tests based on the perturbation approach are preserved for all «
levels and mizes. The type I error rates are well controlled even if the working correlation is
misspecifie e 2, the working correlation is compound symmetry but the underlying within-

subject co ig/is auto-regressive). In the genome-wide analysis of the MESA blood pressure

measures iffasgpci@tion with the exome-chip data, the QQ-plots show that the distribution of p-values

3

generally fi global null (Figures S1-S4). The results illustrate that the proposed tests are valid

U

methods fi e-wide analysis of rare variants in longitudinal studies.

Power Gaifilfrom Utilizing Longitudinal Information

fi

We comp roposed tests with SKAT-O using the average/baseline value of the repeated

d

measures b . The proposed adaptively combined tests using longitudinal data have higher
power tha T-O using average/baseline of the repeated measurements (e.g. Fisher: 0.61; MinP:

0.59; S age: 0.19; SKAT-O-baseline: 0.50 when m = 2000 and causal proportion is 0.2).

M

We also observed that the adaptively combined test generally achieve the maximum power of

[

dispersion en tests, which is a desired property as the underlying causal scenario (causal

proportion @ of effects) is usually unknown. Additional simulation studies with bi-direction

effects are i in Table S1 and S2. The results show similar pattern.

nvestigate the improved power due to using longitudinal outcomes, we evaluated

{

the methods over a spectrum of time effect, from no effect to a strong effect. The results are
summarized in TaSe 4. We observed that power of SKAT-O using average of repeated measurements
substantiall ses as the time effect increases. We additionally evaluated the methods when
complete imulated and observed there is no such power loss (data not shown). This shows that
the misspecified mean model and heterozygosity in variance due to missing data not only cause
inflated type I error rate (Table 1), but also reduce power. Since missing data commonly exists in

This article is protected by copyright. All rights reserved.
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longitudinal studies over a period of time, directly applying methods for cross-sectional study to the

average of longitudinal outcomes is less than optimal.

=

Application Multi-Ethnic Study of Atherosclerosis (MESA)

We illustral

I
MESA. SA is a collaborative longitudinal study initiated in July 2000 to investigate the

the method by applying it to exome-chip data and blood pressure measures in

prevalence ggorr@lgtes, and progression of subclinical cardiovascular disease.'® From 2000 to 2007,

four examiQ)f blood pressure were conducted over 18- to 24- month periods. A total of 6361

subjects cw of 2526 European Americans (EUR), 1611 African Americans (AFA), 1449

Hispanics 775 Asian of Chinese descent (CHN) with genome-wide genotype data, systolic
-

blood pre ) and diastolic blood pressure (dBP) outcomes were considered in the current

analysis. Vg adjusted the actual blood pressures for participants taking antihypertensive medications

blood presse§Cui, Hopper and Harrap, 2003). Genetic variants were genotyped using the Illumina

Human Chip 12-vl. We annotated variants to genes using Annovar (Wang, Li and
Hakonarson, 2010). We conducted ethnicity-specific analysis of the association between systolic and
e—

diastolic blood pressures and genetic variants adjusting for age, gender, BMI and the leading four

using the sﬁrocedure of adding 10 mmHg to systolic blood pressure and 5 mmHg to diastolic

ethnicity-s&iﬁc %enetic principal components (PCs). Ethnicity-specific PCs are estimated using
genome-wi typing data from the Affymetrix HumanGenome SNP Array 6.0. Then the
ethnicity-sp -values were combined using Fisher’s method for a meta-analysis (Fisher, 1925).
We presenfithe top three genes for systolic and diastolic blood pressures in Table S3. We also present
the resuWes around index SNPs that were significant (p-value < 10~°) in the International
Consortiunﬁlood Pressure genome-wide association studies in Table S4 (International

Consortium for Blood Pressure Genome-Wide Association Studies, 2011).

the longitudinal trajectory, we identified a protein-coding gene, ZNF473 that
exhibits suggestive association with systolic blood pressure in Hispanics (p-value = 2.4 X 107° for

Fisher’s test, 1.8 X 107° for MinP test). The corresponding p-values for diastolic blood pressure are

This article is protected by copyright. All rights reserved.
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also suggestive (p-value = 0.0016 for Fisher’s test, 0.0013 for MinP test). The significance is more
pronounced for the burden test than the dispersion test (9.2 X 1077 vs. 8.1 X 107° for systolic blood
pressure,.M4 vs. 0.0045 for diastolic blood pressure). We present the detailed results in Table
5. The ider @ ne ZNF473 encodes a member of the Krueppel C2H2-type zinc-finger family of
proteingia @@mpenent of the U7 snRNP complex. The encoded protein plays a role in histone 3'-end
pre—mRNA%ing and may be required for cell cycle progression to S phase. Bone mineral
density mi@nelated with the expression level and methylation status of this gene (O'Leary, et
al. 2015). ionally perform the single SNP analysis in gene ZNF473. We present the results in
Table S5. obServed that exm1493401 at position 50545025 (hgl9) is the SNP that exhibits the

smallest p-value (p-value = 2.6 x 107°) associated with systolic blood pressure, and there are

multiple S hly correlated to exmi493401. Another suggestive SNP is exm[493479 at
50549462 0.0013). We also present the genome-wide meta-analysis p-values and ethnicity
specific p-yal Hispanics in Figures S1-S4. Although the QQ-plots do not show inflation due to
populati ification, we note that the sample size of Hispanics (1449 subjects with several

repeated measu nts per subject) is relatively small for the identification of rare-variant association
and the as not observed in MESA Europeans, African-Americans or Chinese. Therefore,

future repligation studies with a larger sample size will be needed to verify this association.

M ples are collected from six study sites (Table S6). Since the association presented
in this papbntiﬁed in Hispanics, we characterize the amount of admixture due to European,
African ﬂAmerican (NA) in MESA Hispanic samples. The MESA Hispanic samples consist
of indiVid}ils fro, Central America, Cuba, Dominican Republic, Mexico, Puerto Rico and South
America. nt of admixture in each group has been extensively evaluated by Manichaikul et
al., 2012. Si focus of this paper is on the development of new association tests for longitudinal
study, v{lycite the existing results in Table S7. We also calculate the amount of admixture
within each st ite, and present the results in Table S8. We present a plot of the PCs versus the
self-reported Hispanic origins in Figure S5. Then we identify the two subpopulations (Mexicans and

Caribbean). The classification is mainly based on self-reported origin, with reclassification of some

This article is protected by copyright. All rights reserved.
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individuals based on the leading four PCs. We present the results in Figure S6 and Table S9. We
observe that the resulting clusters of ancestry showed good agreement with self-reported
countrywrigin. In addition to adjusting for the top four ethnicity-specific PCs, we further
conducted @ y analysis of ZNF473 to evaluate how different adjustments of population
stratificatiommafifeetathe results: a. Since Hispanics are an admixed population with European, African
and Native igan ancestries, we applied LAMP to the variants that can be matched with reference
samples fr@daﬁ and HGDP in a 10Mb window around gene ZNF473. African (AFR) and
European mples are from HapMap3 (African ancestry: YRI, ASE and LWK, European
ancestry: afid TSI); Native American samples are from HGDP (Colombian, Karitiana, Maya,

Pima, and Surui).iNe present the LAMP results in Table S10. We observed that overall African,

European a @ye American ancestries account for 29.7%, 52.5%, 17.8% of the local ancestry in
this region ively. These local ancestry effects are then included as covariates in the sensitivity
analysis; luded self-reported Hispanic origins as covariates (Figure S5); c. We included

classification of Hispanics (Mexican vs Caribbean) as a covariate. The classification is mainly based
on self repor igin, and we reclassified some individuals based on the leading four PCs (Figure
S6, Fig response letter). d. We conducted stratified analysis within Mexicans/Caribbean.

We present! ihe results in Table S11. The results show that the significance remains similarly.

Discussion

In this paper, we propose a group of rare-variant association tests that can utilize the longitudinal

outcomes. The new tests include burden, dispersion, and an adaptively combined test of
those th isher’s and Minimum P-value approaches. The tests can incorporate time varying
covariates as fixg@ effects and are robust to misspecification of the within subject correlation

structure. Using extensive simulation studies, we illustrate that substantial power gain can be achieved

@ pling the repeated measurements and using the complete information, compared to
simple approaches of collapsing the repeated measurements into a single average/baseline value. The

analysis of blood pressure measures of 6361 individuals in MESA in association with exome

This article is protected by copyright. All rights reserved.
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sequencing data further illustrates the use of the methods and identified a protein-coding gene,

ZNF473, suggestively associated with systolic blood pressure in Hispanics.

{

One ctive feature of the proposed tests is that they are theoretically robust to
misspecifi ithin-subject correlation by using a GEE based inference with a novel
perturb&o . Unlike model-based inference that can lead to inflated/deflated type I error rate

*|

when the working correlation structure is misspecified, the proposed tests have much improved type I
error contr so developed a novel perturbation method to address the difficulty of applying

robust varidfic ence to rare variants, especially when the sample size is relatively small.

S

Th to adaptively combine dispersion and burden tests in longitudinal studies, and

obtain an

u

p-value is another attractive feature. Unlike usual permutation/perturbation based

methods tgfcombine multiple p-values or statistics, the proposed method only uses the resampling

N

technic to ¢ moments of the test statistics so that the p-value is still calculated analytically,

which ena ect calculation of p-value at genome-wide significance level (2.5 X 107°). This

a.

feature cally reduced the required number of resampling replicates. In addition, we only need to

sample t ampling replicates once for a genome-wide analysis of approximately 20,000 genes.

M

These features make the proposed methods more suitable to large-scale genome-wide analysis.

Why evaluated various factors that may influence the power of gene-based tests in

longitudina g8, namely, magnitude of time effect on the outcome variables, percentage of

missing dat trength of within-subject correlation. We observed that association tests using
longitudi jectory have more pronounced power improvement over tests using average/baseline
value owmeasurements in the presence of larger time effect and missing data. In a
longitudinal studyWiike MESA, not only the longitudinal outcomes precisely describe the phenotype
progression, the tigh information on time varying exposures and their interactions with genotype may
also 1 he discovery process. However, an analysis using the average of repeated
measurements of an exposure will reduce the variation in the exposure and substantially reduce the

power. We expect that a potential future extension of the proposed methods towards separately testing
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gene-time or gene-environment interaction in longitudinal studies with time dependent covariates may

enhance the discovery process.

Supplemen ta Description

Suppleme ude 6 figures and 11 tables.
I

Web Reso&es

SKAT: https:// .hsph.harvard.edu/skat/

C

Annovar: : var.openbioinformatics.org/en/latest/

S

LAMP: htt icsi.berkeley.edu/lamp/

Software Package: the methods are implemented in R package LGEWIS to facilitate the analysis

using longtfudinal outcomes. The package is available on CRAN: https://cran.r-

[

project.org/; ages/LGEWIS/index.html.
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Tables

Table 1. Type I error estimates of the proposed tests based on 1,000,000 replicates. The within-subject correlation structure
is compound@symmetry. S/M/P-Dispersion/Burden: Dispersion/Burden test using Sandwich/Model-based/Perturbation

inference. S age: SKAT-O using the average value of the repeated measures.
S- M- M- P- P- . . SKAT-O
Burden Dispersion Burden Dispersion Burden P-Fisher  P-MinP Average
0.0080 0.0098 0.0099 0.0110 0.0107 0.0105 0.0105 0.0170
0.0005 0.0008 0.0009 0.0010 0.0010 0.0011 0.0010 0.0036

2.89E-05 6.96E-05 1.04E-04 8.60E-05 9.70E-05  1.19E-04  9.30E-05  8.62E-04

0.0091 0.0097 0.0100 0.0106 0.0107 0.0104 0.0103 0.0144

0.0007 0.0009 0.0010 0.0011 0.0011 0.0012 0.0010 0.0025

5.47E-05 6.92E-05 9.84E-05 1.11E-04 9.00E-05 1.23E-04  9.40E-05  5.20E-04

0.0095 0.0096 0.0101 0.0101 0.0104 0.0102 0.0099 0.0127

0.0008 0.0009 0.0010 0.0011 0.0011 0.0011 0.0011 0.0018

7.29E-05 7.29E-05 1.06E-04 1.30E-04 9.07E-05 1.27E-04 1.08E-04  3.22E-04

.0086 0.0101 0.0096 0.0102 0.0100 0.0102 0.0100 0.0097 0.0118

0.0008 0.0013 0.0009 0.0013 0.0011 0.0010 0.0011 0.0011 0.0014

2.12E-05 1.27E-04 2.12E-05 1.27E-04 1.13E-04 1.23E-04 1.20E-04 1.23E-04 2.00E-04

Table 2. Type I error estimates of the proposed tests based on 1,000,000 replicates. The within-subject correlation structure
follows an auto-regressive model of order 1. S/M/P-Dispersion/Burden: Dispersion/Burden test using Sandwich/Model-
based/Perturbation inference. SKAT-O-average: SKAT-O using the average value of the repeated measures.
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Sample Level S- S- M- M- P- P- P-Fisher  P-MinP SKAT-O

Size a Dispersion  Burden Dispersion Burden Dispersion Burden Average
500 0.01 0.0029 0.0081 0.0373 0.0218 0.0110 0.0110 0.0105 0.0104 0.0174
0.001 0.0001 0.0006 0.0059 0.0034 0.0010 0.0011 0.0011 0.0010 0.0037

0.0001 1J2E-06  3.58E-05 8.03E-04 5.60E-04 7.00E-05 1.06E-04 1.10E-04  8.30E-05  9.08E-04

1000 0.0 0.0052 0.0093 0.0376 0.0225 0.0106 0.0107 0.0104 0.0103 0.0144

0.0007 0.0059 0.0036 0.0011 0.0011 0.0012 0.0010 0.0026

E-05  7.06E-05 8.40E-04 5.83E-04 1.07E-04 1.09E-04 1.32E-04 1.06E-04 5.15E-04

2000 0.01 0.0074 0.0091 0.0376 0.0215 0.0103 0.0105 0.0102 0.0101 0.0127

0. 0006 0.0009 0.0060 0.0033 0.0012 0.0011 0.0012 0.0011 0.0018

0.0001 4.44E-05 1.48E-04 9.39E-04 5.84E-04 1.34E-04 9.37E-05 1.35E-04 1.12E-04  3.02E-04

0.0090 0.0373 0.0210 0.0099 0.0105 0.0102 0.0099 0.0116

0.0009 0.0061 0.0034 0.0011 0.0011 0.0012 0.0011 0.0015

1.49E-04 7.94E-04 4.96E-04 1.30E-04 1.32E-04 1.37E-04 1.24E-04 1.93E-04

92,

Table 3. Po:on when all causal variants have positive effects at & = 0.001 based on 1000 replicates. m: sample

size. P-Dispers en: Dispersion/Burden test using the proposed perturbation method. SKAT-O average/baseline:

SKAT-O usi ¢ average/baseline value of the repeated measures.

P-Dispersion P-Burden P-Fisher P-MinP SKAT-O SKAT-O
Average Baseline

0.29 0.15 0.29 0.28 0.07 0.26

0.42 0.26 0.43 0.42 0.21 0.44

0.50 0.37 0.49 0.48 0.34 0.47

0.65 0.59 0.67 0.67 0.49 0.64

0.15 0.13 0.17 0.15 0.03 0.12

0.36 0.28 0.38 0.36 0.09 0.29

0.58 0.48 0.61 0.59 0.19 0.50

0.74 0.70 0.77 0.76 0.48 0.72

0.5 500 0.11 0.17 0.18 0.15 0.03 0.12

0.5 1000 0.26 0.37 0.40 0.36 0.07 0.28
0.5 L iOOO 0.52 0.69 0.71 0.68 0.20 0.53
0.5 000 0.87 0.93 0.94 0.94 0.50 0.88
Table 4. PovOon for the use of longitudinal information at & = 0.001 based on 1000 replicates. The sample size

is 5000 and 20% ¢ variants are causal with all positive effects. There is 4% missing data at each exam. SKAT-O-

average/baseliific: SKAT-O using the average/baseline value of the repeated measures.

Correlati Timae Effect  P-Dispersion P-Burden P-Fisher P-MinP SKAT-O SKAT-O
Average Baseline

#0 0.84 0.84 0.88 0.88 0.91 0.79

1 0.84 0.84 0.89 0.88 0.83 0.79

2 0.84 0.84 0.88 0.88 0.69 0.79

3 0.85 0.85 0.89 0.88 0.52 0.79

0.5 0 0.74 0.71 0.78 0.77 0.79 0.72

1 0.74 0.71 0.77 0.76 0.75 0.72

2 0.74 0.71 0.78 0.77 0.63 0.72

3 0.74 0.70 0.77 0.77 0.48 0.72

Table 5. Analysis of gene ZNF473, the most significant gene in the genome-wide longitudinal data analysis of MESA
exome-chip data. Each cell presents the p-value. P-values below the gene-based genome-wide significance level 2.5 x 1076
are bolded.
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Systolic Blood Pressure Diastolic Blood Pressure

# Variants  Dispersion  Burden Fisher MinP Dispersion  Burden  Fisher  MinP
Longitudinal Measures
EUR 19 0.6828 0.8087  0.7978  0.8225 0.8281 03476 05852 0.5135
C 11 0.9419 0.5907  0.8855  0.7884 0.7143 07122 0.7657 0.8715
—F 24 06313 0.1823 03360 _ 0.3082 03784 03812  0.3883 0.5388
16 8.1E-06  9.2E-07 2.4E-06 1.8E-06 0.0045  7.1E-04 0.0016 0.0013
- 0.0014  7.0E-05 3.5E-04 2.4E-04 0.0873 0.0137  0.0378  0.0395
19 0.3747 07303 05710 0.5431 0.6836 03310 05129 0.5101
CHN 11 1.0000 0.6355  1.0000  0.8257 0.6786 0.8258  0.8216 0.8438
LN 0.4689 10000 0.7671 __ 0.6704 05764 0.5560  0.6229  0.7459
H 16 42E-04 10E-04 18E-04 19E-04 0.0031  7.3E-04 0.0014  0.0013
M - 0.3747 0.7303 05710  0.5431 0.6836 03310 05129 0.5101
Sample S- M- M- P- P- . . SKAT-O
. Burden Dispersion Burden Dispersion Burden P-Fisher P-MinP Average
0.0080 0.0098 0.0099 0.0110 0.0107 0.0105 0.0105 0.0170
0.0005 0.0008 0.0009 0.0010 0.0010 0.0011 0.0010 0.0036

2.89E-05 6.96E-05 1.04E-04 8.60E-05 9.70E-05  1.19E-04  9.30E-05  8.62E-04

0.0091 0.0097 0.0100 0.0106 0.0107 0.0104 0.0103 0.0144

0.0007 0.0009 0.0010 0.0011 0.0011 0.0012 0.0010 0.0025

5.47E-05 6.92E-05 9.84E-05 1.11E-04 9.00E-05 1.23E-04 9.40E-05  5.20E-04

0.0095 0.0096 0.0101 0.0101 0.0104 0.0102 0.0099 0.0127

0.0008 0.0009 0.0010 0.0011 0.0011 0.0011 0.0011 0.0018

7.29E-05 7.29E-05 1.06E-04 1.30E-04 9.07E-05  1.27E-04  1.08E-04  3.22E-04

0.0101 0.0096 0.0102 0.0100 0.0102 0.0100 0.0097 0.0118

0.001 0.0008 0.0013 0.0009 0.0013 0.0011 0.0010 0.0011 0.0011 0.0014

“12E-05 1.27E-04 2.12E-05 1.27E-04 1.13E-04 1.23E-04 1.20E-04 1.23E-04  2.00E-04

Sample Level S- S- M- M- P- P- P-Fisher  P-MinP SKAT-O
Size Dispersion ~ Burden Dispersion Burden Dispersion Burden Average
500 OMOOE 0.0081 0.0373 0.0218 0.0110 0.0110 0.0105 0.0104 0.0174

0. .0001 0.0006 0.0059 0.0034 0.0010 0.0011 0.0011 0.0010 0.0037

3.58E-05 8.03E-04 5.60E-04 7.00E-05 1.06E-04 1.10E-04  8.30E-05  9.08E-04

0.0093 0.0376 0.0225 0.0106 0.0107 0.0104 0.0103 0.0144

0.0007 0.0059 0.0036 0.0011 0.0011 0.0012 0.0010 0.0026

7.06E-05 8.40E-04 5.83E-04 1.07E-04 1.09E-04 1.32E-04 1.06E-04  5.15E-04

0.0091 0.0376 0.0215 0.0103 0.0105 0.0102 0.0101 0.0127

0.0009 0.0060 0.0033 0.0012 0.0011 0.0012 0.0011 0.0018

1.48E-04 9.39E-04 5.84E-04 1.34E-04 9.37E-05 1.35E-04 1.12E-04  3.02E-04

0.0090 0.0373 0.0210 0.0099 0.0105 0.0102 0.0099 0.0116

0.0009 0.0061 0.0034 0.0011 0.0011 0.0012 0.0011 0.0015

1.49E-04 7.94E-04 4.96E-04 1.30E-04 1.32E-04 1.37E-04 1.24E-04 1.93E-04

Causal m P-Dispersion ~ P-Burden P-Fisher P-MinP SKAT-O SKAT-O
Proportion Average Baseline
0.1 500 0.29 0.15 0.29 0.28 0.07 0.26
0.1 1000 0.42 0.26 0.43 0.42 0.21 0.44
0.1 2000 0.50 0.37 0.49 0.48 0.34 0.47
0.1 5000 0.65 0.59 0.67 0.67 0.49 0.64
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0.15 0.13 0.17 0.15 0.03 0.12
0.36 0.28 0.38 0.36 0.09 0.29
0.58 0.48 0.61 0.59 0.19 0.50
0.74 0.70 0.77 0.76 0.48 0.72
0.11 0.17 0.18 0.15 0.03 0.12
0.26 0.37 0.40 0.36 0.07 0.28
0.52 0.69 0.71 0.68 0.20 0.53
0.87 0.93 0.94 0.94 0.50 0.88
I
m Effect  P-Dispersion P-Burden P-Fisher P-MinP SKAT-O SKAT-O
Average Baseline
0.2 0 0.84 0.84 0.88 0.88 091 0.79
1 0.84 0.84 0.89 0.88 0.83 0.79
2 0.84 0.84 0.88 0.88 0.69 0.79
3 0.85 0.85 0.89 0.88 0.52 0.79
0.5 0 0.74 0.71 0.78 0.77 0.79 0.72
1 0.74 0.71 0.77 0.76 0.75 0.72
2 0.74 0.71 0.78 0.77 0.63 0.72
3 0.74 0.70 0.77 0.77 0.48 0.72
Systolic Blood Pressure Diastolic Blood Pressure
# Variants  Dispersion  Burden Fisher MinP Dispersion  Burden  Fisher  MinP
Longitudinal
19 0.6828 0.8087  0.7978  0.8225 0.8281 0.3476  0.5852  0.5135
11 0.9419 0.5907 0.8855 0.7884 0.7143 0.7122  0.7657  0.8715
AFA 24 0.6313 0.1823 0.3360  0.3082 0.3784 0.3812  0.3883  0.5388
HIS 16 8.1E-06 9.2E-07 24E-06 1.8E-06 0.0045 7.1E-04 0.0016 0.0013
- 0.0014 7.0E-05 3.5E-04 2.4E-04 0.0873 0.0137  0.0378  0.0395
Base
EUR 19 0.3747 0.7303 0.5710  0.5431 0.6836 0.3310  0.5129  0.5101
CHN 11 1.0000 0.6355 1.0000  0.8257 0.6786 0.8258  0.8216  0.8438
AN 24 0.4689 1.0000  0.7671 0.6704 0.5764 0.5560  0.6229  0.7459
H]J 16 4.2E-04 1.0E-04 1.8E-04 1.9E-04 0.0031 7.3E-04  0.0014 0.0013
Meta - 0.3747 0.7303 0.5710  0.5431 0.6836 0.3310  0.5129  0.5101

Autho
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