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ABSTRACT 46 

Background: Twin studies have revealed a significant contribution of the fetal genome to risk of 47 

preterm birth.  Preterm premature rupture of membranes (PPROM) is the leading identifiable 48 

cause of preterm delivery. Infection and inflammation of the fetal membranes is commonly 49 

found associated with PPROM.     50 

Methods: We carried out whole exome sequencing (WES) of genomic DNA from neonates born 51 

of African-American mothers whose pregnancies were complicated by PPROM (76) or were 52 

normal term pregnancies (N=43) to identify mutations in 35 candidate genes involved in innate 53 

immunity and host defenses against microbes.   Targeted genotyping of mutations in the 54 

candidates discovered by WES was conducted on an additional 188 PPROM cases and 175 55 

controls.   56 

Results: We identified rare heterozygous nonsense and frameshift mutations in several of the 57 

candidate  genes, including CARD6, CARD8, DEFB1, FUT2, MBL2, NLP10, NLRP12, and 58 

NOD2. We discovered that some mutations (CARD6, DEFB1, FUT2, MBL2, NLRP10, NOD2) 59 

were present only in PPROM cases.   60 

Conclusions: We conclude that rare damaging mutations in innate immunity and host defense 61 

genes, the majority being heterozygous, are more frequent in neonates born of pregnancies 62 

complicated by PPROM.  These findings suggest that the risk of preterm birth in African-63 

Americans may be conferred by mutations in multiple genes encoding proteins involved in 64 
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dampening the innate immune response or protecting the host against microbial infection and 65 

microbial products. 66 

Key Words: Preterm birth, preterm premature rupture of membranes, innate immunity, anti-67 

microbial peptides, inflammasome, mannose-binding lectin protein, fucosyltransferase, 68 

defensins, chorioamnionitis 69 

 70 

 71 

INTRODUCTION 72 

Preterm birth, especially among African-Americans, has challenged the U.S. health care 73 

system for decades (Behrman & Butler, 2007; Kempe et al., 1992; Aveyard et al., 2002; Ahern 74 

et al., 2003; Shen et al., 2003). The disparities in prematurity among U.S. populations is thought 75 

to be the result of multiple biological and environmental factors (Meis et al., 2000; Anum et al., 76 

2009b; Moutquin, 2003).  Preterm premature rupture of membranes (PPROM) is the leading 77 

identifiable cause of preterm birth, and more common among African-Americans.  Our research 78 

has been focused on understanding the pathophysiology of PPROM, and the factors that 79 

contribute to population-specific risk (Parry and Strauss, 1998; Strauss, 2013). 80 

The notion that heritable factors play an important role in preterm birth is supported by 81 

studies based on twins (Boyd et al., 2009; Svensson et al., 2009; York et al., 2009; York et al. 82 

2010, 2013, 2014, 2015). These studies demonstrated that both the fetal and maternal 83 

genomes contribute to the timing of parturition. In addition, there is increasing evidence that 84 

gene-environment interactions amplify the effect of specific alleles (Anum et al., 2009b; Wang et 85 

al., 2002; Macones et al., 2004).  However, the search for maternal and fetal genes linked to 86 

preterm birth has yet to produce robust and reproducible candidates.  Although association 87 

studies have found significant relationships for some candidate genes, the primary reports and 88 

available meta-analyses indicate that these associations are weak or population specific (e.g., 89 

Genc et al., 2002; Fujimoto et al., 2002; Ferrand et al., 2002b; Lorenz et al., 2002;  Moore et al., 90 

2004; Roberts et al., 1999; Romero et al., 2010; Simhan et al., 2003; Witkin et al., 2003; Wang 91 

et al., 2004; 2006; 2008;  see Sheikh et al., 2016 for a recent review).  Moreover, attempts to 92 

identify loci contributing to prematurity through genome-wide association studies (GWAS) have 93 

not delivered strong candidates (Parets et al., 2015), prompting investigators to pursue 94 

alternative approaches to identify genes contributing to preterm birth (Brubaker et al., 2016; 95 

Bacelis et al., 2016).  Recently, we took a different approach based on the hypothesis that rare 96 

mutations or damaging variants in multiple genes (which might escape detection by GWAS or 97 

standard association studies, especially with small sample sizes) make significant contributions 98 
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to PPROM (Modi et al., 2017). The approach was based on mutation/damaging variant 99 

detection using whole exome sequencing (WES), which we applied in this study to explore fetal 100 

gene mutations in the innate immune system and  PPROM.  101 

Innate immunity encompasses recognition systems that detect molecules derived from 102 

bacteria and viruses (Pathogen-Associated Molecular Patterns (PAMPs)) and endogenous 103 

alarmins (Damaged-Associated Molecular Patterns (DAMPs)). Pattern recognition receptors 104 

(PRRs) responsible for the initiation of innate immune response induced by PAMPs and DAMPs 105 

include NOD-like receptor family pyrin domain containing proteins and toll-like receptors (TLR). 106 

The response triggered by the PRRs includes activation of transcription of genes that encode 107 

cytokines and factors that resolve infection/inflammation (Brubaker et al., 2015). Enhanced 108 

production of pro-inflammatory cytokines has been postulated to play a central role in preterm 109 

birth and PPROM (Parry & Strauss, 1998; Murtha & Menon, 2015;Gomez-Lopez et al., 2017).  110 

The pro-inflammatory cytokines induce expression of matrix metalloproteinases which degrade 111 

fetal membrane extracellular matrix leading to rupture (Parry and Strauss, 1998; Strauss, 2013).  112 

The innate immune system is modulated by a number of molecules that dampen/inhibit 113 

the inflammatory response triggered by “activating” toll-like receptors and inflammasomes.   114 

Bacterial lipids and proteins derived from Gram negative and Gram positive bacteria (PAMPs) 115 

reaching the fetal membranes are potent activators of the innate immune response leading to 116 

inflammation. Numerous animal studies have shown that Gram negative bacterial 117 

lipopolysaccharide (LPS) precipitates preterm birth, and that the fetal membranes possess 118 

molecules that recognize bacterial products and trigger an inflammatory response, usually 119 

involving the activation of the transcription factor, NFkB (Courtois, 2005).  Endogenous 120 

enzymes (e.g., acyloxyacyl hydrolase, alkaline phosphatase) protect the host from the potent 121 

actions of LPS by altering LPS structure.    122 

A number of endogenous proteins with anti-microbial activity like lactoferrin, mannose-binding 123 

lectin 2, and fucosyltransferase 2 help protect exposed surfaces including mucosa, and the fetal 124 

membranes. The FUT2 (OMIM: ( +182100)  and MBL2 (OMIM: * 154545)

We analyzed WES data from neonatal DNA from 76 PPROM cases and 43 term controls 129 

born of African-American mothers to identify damaging mutations in innate immunity genes and 130 

discovered that there was an overrepresentation of these damaging alleles in PPROM cases. 131 

 genes are both 125 

expressed in the fetal membranes.  The defensin family of genes expressed maternally and by 126 

the fetus probably combat bacteria ascending from the vagina, but possibly from other sources. 127 

Several defensins are known to be produced by fetal membranes including (Avila, 2016). 128 

MATERIALS AND METHODS 132 
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Study Population: WES was performed on 76 PPROM cases and 43 healthy term control 133 

neonatal DNA samples all obtained in Richmond, Virginia.  Additional genotyping of select 134 

variants was performed on an independent cohort of 188 case and 175 control fetal/neonatal 135 

DNA samples collected in Richmond, Virginia and Detroit, Michigan. DNA was isolated from 136 

cord blood or umbilical cords.  Subjects were self-reported African-American women and their 137 

neonates receiving obstetrical care at MCV Hospitals, Richmond, VA (all samples in the initial 138 

WES) and Hutzel Hospital in Detroit, MI. The study was approved by the Institutional Review 139 

Boards of MCV Hospitals, Richmond, VA (IRB Number: HM15009); Wayne State University 140 

(IRB Numbers: 103897MP2F (5R), 082403MP2F (5R), 110605MP4F, 103108MP2F, 141 

052308MP2F) as well as NICHD (National Institute of Child Health and Human Development) 142 

(IRB Numbers: 0H97-CH-N065, OH98-CH-N001, OH97-CH-N067, OH99-CH-N056, OH09-CH-143 

N014). Subjects from Hutzel Hospital, Detroit, MI were enrolled under both Wayne State 144 

University as well as NICHD protocols and thus respective IRB numbers for both institutes are 145 

provided. Written informed consent was obtained from mothers before sample collection. 146 

Demographic and clinical data were obtained from surveys and medical records. Control DNA 147 

samples (n = 43 + 175) were obtained from neonates of singleton pregnancies delivered at term 148 

(> 37 weeks of gestation) of mothers with no prior history of PPROM or preterm labor. Cases of 149 

PPROM (n = 76 + 188) were defined as neonates from pregnancies complicated by 150 

spontaneous rupture of membranes prior to 37 weeks of gestation. The diagnosis of membrane 151 

rupture was based on pooling of amniotic fluid in the vagina, amniotic fluid ferning patterns and 152 

a positive nitrazine test. Women with multiple gestations, fetal anomalies, trauma, connective 153 

tissue diseases and medical complications of pregnancy requiring induction of labor were 154 

excluded.  A DNA biobank at Virginia Commonwealth University and Hutzel Hospital of PPROM 155 

cases and term controls collected using the same criteria as those used for for the WES cohort 156 

was employed for subsequent genotyping of selected mutations identified by WES (Modi et al., 157 

2017). 158 

Ancestry Estimates: Genetic ancestry was estimated to investigate population structure in the 159 

cases and control cohorts. Genetic ancestry estimates were generated in a two-way model of 160 

admixture, European and West African, for the neonates of each self-reported African-American 161 

study subject using 102 ancestry informative markers (AIMs) single nucleotide polymorphisms 162 

with large allele frequency differences between ancestral populations. (Modi et al., 2017). The 163 

mean allele frequency difference between ancestral populations for the AIMs panel was delta 164 

(δ)= 0.733. The AIMs panel was derived from the overlap of the WES and the Illumina African 165 

American Admixture Mapping Panel (Illumina, San Diego, CA) and genotyped using a custom 166 
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iPLEX assay (Agena Biosciences, San Diego, CA) for study subjects who were not part of the 167 

WES discovery set (Modi et al., 2017).  Prior allele frequencies derived from the HapMap West 168 

Africans (YRI, Yoruba in Ibadan, Nigeria) and Europeans (CEU, CEPH Utah residents with 169 

ancestry from northern and western Europe) were used to estimate individual genetic ancestry 170 

estimates following a maximum-likelihood approach.  171 

Whole Exome Sequencing Analysis: Whole exome capture and sequencing was performed at 172 

BGI (BGI, Cambridge, MA) using the SureSelect Target Enrichment System Capture Process 173 

followed by high-throughput sequencing on an Illimina HiSeq2000 platform with 50-100X 174 

coverage. The bioinformatics analysis for variant discovery and annotation was performed as 175 

described earlier (Modi et al., 2017). In brief, sequences were mapped to the human reference 176 

genome (build hg19) using BWA, followed by marking PCR duplicates using Picard tools  and 177 

base quality recalibration using GATK (Modi et al., 2017) GATK-HaplotypeCaller was used to 178 

identify variants in individual sample, followed by joint genotyping of all samples in the cohort for 179 

population-level analysis. The raw SNPs and INDELs were filtered for high quality and 180 

annotated for their functional effects using SnpEff tool and known variant databases like dbSNP, 181 

ClinVar and the 1000 Genomes Project. Damaging missense variants were selected on the 182 

basis of most deleterious predictions in both Polyphen2 (HumDiv - probably damaging) as well 183 

as SIFT (damaging) platforms.  PCR and Sanger sequencing was used to validate mutations 184 

detected by WES (Supplemental Table 1) or mutations were confirmed by custom genotyping. 185 

Custom Genotyping: The variants identified and selected for further analysis from Whole Exome 186 

Sequencing were validated and additional samples (an independent cohort of additional 188 187 

cases and 175 controls) were genotyped for the selected variants. Genotyping was performed 188 

on the Agena (previously Sequenom) MassArray iPLEX platform following manufacturer’s 189 

instructions at the University of Minnesota Genomics Center (Modi et al., 2017).  The primer 190 

sets used for iPlex genotyping are presented in Supplemental Table 2.  191 

Statistical analysis:  Mean levels of demographic variables were tested using a 2-tailed 192 

Student’s t-test. Count data (for gravidity and parity) was square root transformed before 193 

performing tests. P-values < 0.05 were considered statistically significant. The paired Wilcoxon 194 

rank-sum test were used to assess significant differences in minor allele frequencies. 195 

 196 

RESULTS 197 

WES was performed on 76 PPROM and 43 healthy term control neonatal DNA samples.  198 

The demographic characteristics of the WES study population is presented in Table 1. The 199 

characteristics of the follow-up cohort have been previously reported (Modi et al., 2017).  With 200 
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152 chromosomes, the probability of detecting a variant with an allele frequency of 0.005 was 201 

78%. 202 

 The WES PPROM cases and term controls had similar West African and European 203 

ancestry based on genotyping of 102 ancestry informative markers (Means + S.D.; West African 204 

ancestry: PPROM cases: 0.695 + 0.073 (mean + S.D.); Term controls 0.698 + 0.087 (p>0.10)).  205 

A total of 35 candidate genes were selected for investigation of nonsense mutations and 206 

insertions/deletions causing damaging frameshift mutations (Table 2) based on their 207 

involvement in the innate immune response and host defense against microbes.  Mutations 208 

identified through WES were validated by direct sequence analysis or specific genotyping 209 

assays. The mutations were evaluated in an independent cohort of an additional 188 PPROM 210 

cases and 175 controls.  211 

Mutations in genes negatively regulating innate immunity:  We detected mutations in the 212 

CARD6, CARD8, NLRP10, NLRP12, NOD2, and TLR10 genes (Table 3).  Several of these 213 

were only found in PPROM cases (CARD6, NLRP10, and NOD2) in both WES and the follow-214 

up genotyping cohorts.  The SNP for the CARD6 nonsense mutation has two alternative alleles 215 

C or G.  We confirmed by DNA sequence analysis that the PPROM case had the G allele 216 

creating the stop codon TAG, which truncates the 1037 amino acid protein at position 560, 217 

which retains the caspase activation and recruitment (CARD) domain, but deletes the IMPDH 218 

(inosine 5'-monophosphate dehydrogenase/GMP reductase) domain and C-terminal proline-rich 219 

domain.  This nonsense mutation was detected in 2 PPROM cases (combined WES and follow-220 

up genotyping) and none of the combined term pregnancy controls. The one heterozygous 221 

NLRP10 nonsense mutation detected only in a PPROM case truncates the 655 amino acid 222 

protein at position 103.  The NOD2 frameshift mutation truncates the C-terminal 33 amino acids 223 

from the 1040 amino acid protein, disrupting a leucine-rich repeat. Mutations in CARD8, 224 

NLRP12 and TLR10 were found in both PPROM cases and controls. 225 

Mutations in LPS detoxifying enzymes: A nonsense mutation was found in AOAH, which 226 

encodes an enzyme that catalyzes the hydrolysis of acyloxylacyl-linked fatty acyl chains from 227 

LPS.  The nonsense mutation disrupts the 688 amino acid protein at position 556, retaining the 228 

lipase consensus sequence.  This mutation was found in both PPROM cases and term controls. 229 

Mutations in anti-microbial protein genes: A heterozygous nonsense mutation was found in  230 

DEFB1, which encodes beta-defensin 1, an anti-microbial factor that is produced by amnion 231 

epithelial cells. The rs5743490 SNP reference allele is C with two reported alternatives: T, which 232 
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results in a synonymous codon change that is functionally not significant,  and A which creates 233 

a stop codon (TGA).  We sequence verified that the allele in our PPROM cases was an A.  This 234 

stop codon truncates the mature beta defensin 1 peptide sequence after 4 amino acids, so no 235 

active peptide made (Porto et al., 2016).  Additionally, the translated truncated N-terminal 236 

peptide could serve as a dominant negative, competing for the intact signal peptide or 237 

processing protease of intact beta-defensin 1 peptide encoded by the other DEFB1 allele.  The 238 

heterozygous DEFB1 mutation was found in 6 PPROM cases (WES and follow-up genotyping 239 

combined) and no term controls.  240 

A heterozygous nonsense mutation in MBL2 was identified which deletes the 38 terminal 241 

amino acids in the C-type lectin carbohydrate recognition domain of the 248 amino acid protein.  242 

The reference allele of this SNP is a G, with alternate alleles of C, producing a benign missense 243 

variant or a T, creates a TAG stop codon. We confirmed by DNA sequence analysis that the 244 

minor allele in our PPROM cases was a T.  This nonsense mutation was detected in 6 of the 245 

total PPROM  cases  and none of the total term controls.  Using RT-PCR, we demonstrated that 246 

the MBL2 gene is expressed in fetal membranes (Supplemental data Figure 1).  247 

Three mutations were discovered in the FUT2 gene, which encodes a fucosyltransferase 248 

involved in protecting epithelium from bacterial infection.  One of the nonsense mutations 249 

(rs143482452) was found in one PPROM case (combined WES and follow-up genotyping 250 

cohort) only and not in the combined term controls.   Another one (rs601338) has a relatively 251 

high minor allele frequency and was detected in PPROM cases and term controls.  The FUT2 252 

gene is expressed in amnion epithelial cells, and mutations that disrupt the protein cause the 253 

“non-secretor” phenotype, which is associated with absent ABH blood groups (Goto et al., 254 

2016). 255 

All of the mutations described above were heterozygous, except for FUT2 rs601338.  In 256 

the case of this common mutation, there were 16 homozygous PPROM cases (21%) out of the 257 

76 cases, and 4 homozygous controls (9.3%) out of the 43 term pregnancies.  Among this 258 

cohort, 7 subjects had di-genic mutations, two with TLR10 rs62617795 mutation and the 259 

CARD8 mutation; 2 with AOAH mutations, one with a TLR10 rs62617795 mutation, and one 260 

with the CARD8 mutation; and 3 with the FUT2 rs601338 mutation in combination with either 261 

the CARD6 mutation, MBL2 mutation, and NLRP12 nonsense mutation. 262 

We found no nonsense or damaging frameshift mutations in ALPP, BPI, CAMP, DEFA1, 263 

DEFB4A, DEFB103A, IL10, IL10RA, IL10RB, LBP, LTF, LYZ, NLRP3, SOCS1, SOCS2, 264 

SOCS3, SOCS4, SOCS5, SOCS6, NFKBIA, NFKBIB, NFKBID, NFKBIE, NFKBIZ and NOD1 265 

Therefore, these genes did not undergo further interrogation.   266 
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Of the 14 mutations identified through WES, 10 had minor allele frequencies in the 267 

combined WES and follow-up genotyping cohort that were nominally greater in PPROM cases 268 

than term controls.  The allele frequency of two mutant alleles were similar in cases and 269 

controls, and two mutations were more frequent in controls than PPROM cases.  A paired 270 

Wilcoxon rank sum test estimated that across loci, variants were overrepresented at PPROM 271 

case loci were compared to term controls (Empirical P-value from 10K permutations = 0.0416). 272 

  In addition to nonsense and damaging frameshift mutations, a number of rare predicted 273 

damaging or known pathogenic missense mutations (e.g., NOD2 rs34936594) were identified 274 

through WES in the candidate genes (Supplemental Table 3).  The allele frequencies of these 275 

missense mutations were higher in the 76 PPROM cases than the 43 term controls.  The 276 

association of these predicted rare missense variants with PPROM needs to be replicated with 277 

a larger sample size.  278 

DISCUSSION 279 

Our working hypothesis of whether neonatal genes that negatively regulate innate 280 

immunity or help the host combat microbes and their noxious products would be more likely to 281 

harbor rare, damaging mutations in PPROM cases was supported by our findings.  Interestingly, 282 

there were a number of important negative regulators of innate immunity and the host defense 283 

system that were not mutated (e.g., IL10, IL10RA, IL10RB NLRP3, SOCS1, SOCS2, SOCS3, 284 

SOCS4, SOCS5, SOCS6, NFKBIA, NFKBIB, NFKBID, NFKBIE, NFKBIZ, and NOD1).  Of 285 

course, the limited WES sample size may have precluded the detection of very rare alleles in 286 

these genes. 287 

Inflammasomes and toll-like receptors are critical to host defense mechanisms during 288 

the physiological and pathological inflammatory processes in the chorioamniotic membranes 289 

that accompany labor. Thus, it is not unexpected that mutations in genes that negatively 290 

regulate the inflammasome as well as the toll-like receptors were detected in PPROM cases 291 

(Gotsch et al., 2008; Eisenbarth et al., 2012; Oosting et al., 2014). 292 

Mutations in genes encoding host defense mechanisms against microbes had been 293 

anticipated based on studies documenting differential expression of the proteins in fetal 294 

membranes associated with labor with ruptured and non-ruptured membranes (Erez et al., 295 

2009)  Notable in this regard are the rare heterozygous damaging mutations in DEFB1, FUT2 296 

and MBL2 that were found only in PPROM cases.  Variation in these genes have been 297 

previously associated with increased risk of infection and in some cases preterm birth (Annells 298 

et al., 2005; Gibson et al., 2011; Jaffe et al., 2013).    299 
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The discovery of a rare nonsense mutation in the DEFB1 gene is of interest in that 300 

variation in this gene (rs1047031, a SNP in the 3’-UTR) has been associated with chronic and 301 

aggressive periodontitis, a condition associated with preterm birth (Schaefer et al., 2010).  302 

However, the functional significance of the rs1047031 minor allele has not been established.  303 

Polymorphisms in the MBL2 gene are more frequent in African-Americans and multiple 304 

studies have suggested an association between MBL2 genetic variants that result in dimished 305 

MBL2 protein levels and preterm birth, and conditions commonly found in preterm pregnancies 306 

including chorioamnionitis (Annells et al., 2004; Annells et al., 2005; Capece et al., 2014; 307 

Gibson et al., 2011; Jaffe et al., 2013; Nedovic et al., 2014).   Our discovery of a nonsense 308 

mutations that significantly truncates the MBL2 protein is thus consistent with the notion that 309 

loss of this anti-microbial protein increases risk of prematurity. 310 

Given the distribution of allele frequencies of FUT2 mutations we identified, we 311 

speculate that the “non-secretor” type is not a strong risk factor for PPROM since the more 312 

common mutation was found at allele frequencies that were similar in PPROM cases and 313 

controls.  It is possible, however, that if both mother and fetus harbor mutations in FUT2 that 314 

there could be an increased risk of PPROM, a possibility that we did not explore. 315 

It is noteworthy that genes associated with inflammatory bowel disease also appear to 316 

have an association with PPROM, including CARD and NLRP genes, NOD2 and BRIC2 (Hugot 317 

et al., 2001; Andreoletti et al., 2017).  Although not included in the 35 candidate genes, a novel 318 

heterozygous nonsense mutation in BIRC2 (NC_000011.10: g.102248476T>G), creating a stop 319 

codon at position 539 in this 618 amino acid protein, which deletes the C-terminal zinc finger 320 

domain), a gene that negatively regulates the NOD1/NOD2 signaling pathway, and has been 321 

recently found to be associated with pediatric inflammatory bowel disease, was discovered in 322 

the WES of one PPROM case and no term controls (Andreoletti et al., 2017).  A heterozygous 323 

damaging frameshift mutation (rs779381525, NC_000010.10 g.49440248_49440249insA) was 324 

detected in FRMPD2, another gene associated with the NOD2 pathway, in one WES PPROM 325 

case.  326 

Chorioamnionitis is often found in PPROM fetal membrane specimens, and the 327 

pathways that lead to an accentuated bowel inflammation in Crohn’s disease and ulcerative 328 

colitis may also contribute to the severity of chorioamnionitis and therefore risk of PPROM.  329 

Preterm birth is associated with maternal inflammatory bowel disease but there are no reports 330 

that we are aware of that link inflammatory disease in offspring to increased risk of preterm birth 331 

and PPROM (Broms et al., 2016; Caruso et al., 2014; Getahun et al., 2014; Palomba et al., 332 

2014; Shand et al., 2016).  333 
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We previously examined the association between 2936insC (rs2066847) in the 334 

CARD15/NOD2 gene and PPROM in African-Americans and reported that this frameshift 335 

mutation was only found in term controls (Ferrand et al., 2002). This study used genotyping by 336 

restriction length polymorphism (RFLP) with digestion with Nla IV which cuts the sequence: 337 

GGNNCC.  We re-evaluated the putative mutations in the control samples previously analyzed 338 

using DNA sequencing and discovered that none of them harbored the frameshift mutation, 339 

indicating that the RFLP genotyping was flawed. The genotyping methods employed in the 340 

present study can distinguish these frameshift mutations, and therefore provides evidence that 341 

2936insC is a risk allele for PPROM. 342 

The mutations that we identified could be spontaneous, or inherited from the father or 343 

mother (Li et al., 2017).  We speculate that maternal inheritance may be most likely in the 344 

setting of PPROM, since an enhanced maternal reproductive tract inflammatory response to 345 

bacteria or viruses, or deficiency in endogenous anti-microbial defenses would presumably act 346 

in synergy with similar defects in the fetus when both mother and fetus are heterozygous for 347 

damaging mutations  (Plunkett et al., 2009). 348 

In conclusion, our WES studies, supplemented with additional target genotyping, 349 

revealed a number of rare damaging mutations, the majority being heterozygous, that are more 350 

frequent in neonates born of pregnancies complicated by PPROM.  These findings suggest that 351 

the increased risk of preterm birth in African-Americans may be conferred by mutations and 352 

damaging missense variants in genes encoding proteins involved in dampening the innate 353 

immune response and protecting the host against microbial infection. 354 
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Table 1: Study subject characteristics for WES 

 

PPROM cases, N=76; Term controls, N=43 

Characteristic Cases Mean (SD) 

 

Controls Mean (SD) 

 

 

p-value 

 

 

Maternal Age (years) 

 

27.18 (5.33) 
26.02 (5.32) 

 

0.256 

Gestational Age at Delivery (weeks) 30.05 (4.17) 38.93 (1.16) <0.001 

Neonatal Weight (kgs) 1.69 (1.59) 3.14 (0.46) <0.001 

Gravidity 3.53 (2.04) 3.25 (2.57) 0.555 

Parity 1.47 (1.57) 1.35 (1.41) 0.657 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



 

This article is protected by copyright. All rights reserved 

Table 2. Candidate genes selected for analysis 

 

                              Category Gene IDs and (OMIM number)  
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Innate immune response modulators 

CARD6  (* 609986), CARD8 (* 609051)  

 

IL10 ( * 124092), IL10RA (* 146933)  

 

IL10RB  (* 123889), NFKBIA (* 164008) 

 

NFKBIB ( * 604495), NFKBID,  

 

 NFKBIE ( * 604548), NFKBIZ (* 608004)  

 

   

NLRP3 ( * 606416), NLRP10 (* 609662) 

  

NLRP12 ( * 609648), NOD1(* 605980)  

  

NOD2 (* 605956), TLR10 (* 606270)  

  

 SOCS1( * 603597), SOCS2 (* 605117)  

  

 SOCS3 ( * 604176), SOCS4  (* 616337)  

 

 SOCS5 ( * 607094), SOCS6 (* 605118)  

  

  

                          LPS detoxification 

 

ALPP ( * 171800), AOAH (* 102593)  
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 Table 3. Damaging mutations identified in genes involved in modulation of the innate immune response in PPROM cases. 

 

Mutations identified through WES (76 PPROM, 43 term controls) were validated by direct sequence analysis or genotyping using 

TaqMan reagents.  The mutations were evaluated in an independent cohort of an additional 188 PPROM cases and 175 controls. 

Genotyping was performed on the Agena MassArray iPLEX platform. All allele frequencies were based on called genotypes 

excluding missing samples or those samples without a genotype call.  MAF=minor allele frequency.  

Gene ID Chromosome Position   SNP ID Ref- 

Allele 

Alternate- 

Allele 

Effect               Minor Allele AA 

Position  

(residue 

change) 

Minor Allele  

Frequency 

Cases/Controls 

Sequence Variant 

AOAH   7p14.2 36514524 rs145455591 C T Nonsense                T    556 0.036/0.026 NC_000007.14:g.36514524C>T  

CARD6   5p13.1 40853011 rs150487186 T G Nonsense                G    560 0.004/0.000 NC_000005.10:g.40853011T>G 

CARD8 19q13.33 48231760 rs140826611 - AA Frameshift               AA    148 0.016/0.006 NC_000019.10:g.48231760_48231761insAA  

DEFB1   8p23.1 6870777 rs5743490 C A Nonsense                A       37 0.011/0.000 NC_000008.11:g.6870777C>A  

FUT2 19q13.3 48703417 rs601338 G A Nonsense                A    154 0.374/0.376 NC_000019.10:g.48703417G>A 

FUT2 19q13.3 48703041 rs143482452 C T Nonsense                T      29 0.002/0.000 NC_000019.10:g.48703041C>T 

FUT2 19q13.3 48703767 rs1799761 C - Frameshift               C      271 0.007/0.012 NC_000019.10:g.48703767delC 

MBL2 10q21.1 52768256 rs74754826 G T Nonsense                T     210 0.011/0.000 NC_000010.11:g.52768256G>T  

NLRP10 11p15.4 7961305 

 

rs765522475 C T Nonsense                T    103 0.002/0.000 NC_000011.10:g.7961305C>T 

NLRP12 19q13.42 53795911 rs35064500 C T Nonsense                T  1017 0.021/0.007 NC_000019.10:g.53795911C>T   

NLRP12 19q13.42 53795917 rs776426826     

                     

AG - Frameshift                -  1015 0.002/0.003 NC_000019.10:g.53795917_53795918delAG   

NOD2 16q12.1 50729867 rs2066847 - C Frameshift               C  1007 0.004/0.000 NC_000016.10:g.50729867_50729868insC 

TLR10   4p14 38774483 rs62617795 C T Nonsense                T   370 0.020/0.016 NC_000004.12:g.38774483C>T  

TLR10   4p14 38775590 rs140873456 A G Start loss                 G       1 0.003/0.003 NC_000004.12:g.38775590A>G  
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