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Abstract

Military service members frequently sustain traumatic brain injuries (TBI) while on active duty, a majority of which are

related to explosive blasts and are mild in severity. Studies evaluating the cortical gray matter in persons with injuries of

this nature remain scarce. The purpose of this study was to assess cortical thickness in a sample of military veterans with

chronic blast-related TBI. Thirty-eight veterans with mild TBI and 17 veterans with moderate TBI were compared with 58

demographically matched healthy civilians. All veterans with TBI sustained injuries related to a blast and were between 5

and 120 months post-injury (M = 62.08). Measures of post-traumatic stress disorder (PTSD) and depression were ad-

ministered, along with a battery of neuropsychological tests to assess cognition. The Freesurfer software package was used

to calculate cortical thickness of the participants. Results demonstrated significant clusters of cortical thinning in the right

hemispheric insula and inferior portions of the temporal and frontal lobe in both mild and moderate TBI participants. The

TBI sample from this study demonstrated a high incidence of comorbid PTSD and depression symptoms, which is

consistent with the previous literature. Cortical thickness values correlated with measures of PTSD, depression, and post-

concussive symptoms. This study provides evidence of cortical thinning in the context of chronic blast-related mild and

moderate TBI in military veterans who have comorbid psychiatric symptoms. Our findings provide important insight into

the natural progression of long-term cortical change in this population and may have implications for future clinical

evaluation and treatment.
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Introduction

Military service members engaged in modern conflicts fre-

quently sustain traumatic brain injury (TBI) while on active

duty. Recent studies have estimated that more than 20% of military

veterans from Operations Enduring Freedom and Iraqi Freedom

(OEF/OIF) return from combat exhibiting symptoms consistent with

TBI, the majority of which are mild in severity.1,2 The diagnosis and

management of mild TBI in the military population has been a par-

ticularly unique challenge to clinicians, because a significant portion

of these injuries occur in the context of explosive blasts, as opposed to

the traditional contact-induced TBI seen in the civilian population.3

Regardless of etiology, diagnosis of mild TBI is currently restricted to

self-reported and observed symptoms.

Blast-related TBI may occur from a combination of several in-

jury mechanisms. The detonation of an explosive device causes the

rapid expansion of a solid or liquid into the gas phase forming a

pressure wave. This wave then interacts with air- or fluid-filled

body organs, such as the brain, inducing a sudden increase in in-

tracranial pressure and resulting in penetration of brain tissue,

disruption of axonal pathways, and damage to capillaries.4–6 These

blast-induced effects are referred to as primary injury.5,7,8 The blast

wave may also propel objects toward a person causing secondary

injury or it may force the person into other solid objects (i.e., ter-

tiary injury). While secondary and tertiary injury are also consistent

with contact-induced TBI, primary injury is generally unique to

blast events and may have independent consequences on brain

tissue structure and function.

Mild TBI is thought to result from damage to both cortical tissue

and white matter tracts through a combination of direct tissue com-

pression, hemorrhage, and axonal injury.8–12 Conventional neuroi-

maging using CT or MRI is typically normal after blast-related mild

TBI, likely because of the microscopic nature of the injury.13,14

Despite the lack of positive findings, more than 50% of veterans meet
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the criteria for post-concussive disorder at long-term follow-up post-

injury, suggesting a persistent neural injury.15 Although the disrup-

tion of white matter integrity has been investigated after mild TBI

both in civilians and blast-injured veterans,3,16,17 there remains a

paucity of neuroimaging studies evaluating cortical gray matter,

especially after blast-related injury.

Surface based morphometry (SBM) is a well-established method

of evaluating the thickness of the cortical gray matter from magnetic

resonance images.18–20 SBM has detected cortical thinning in pe-

diatric patients and patients with severe TBI,21–25 although exami-

nations of mild TBI and blast-related TBI remain underrepresented

in brain morphometric research. A previous examination of cortical

thickness after blast-related TBI in the military reported thinning in

the left superior temporal and superior frontal gyri.26 This study did

not assess changes in cortical thickness beyond the acute phase of

injury and was limited by sample size. Cortical thickness mea-

surements in persons with post-acute TBI would allow for further

elucidation of the potential neuropathology associated with TBI and

to evaluate long-term cortical changes related to blast injury.

A high incidence of comorbid post-traumatic stress disorder

(PTSD) has also been documented in military personnel with blast-

related injuries. A study by Hoge and colleagues2 found that 9.1%

of veterans returning from OEF/OIF met criteria for PTSD. This

incidence rose to 43.9% in those veterans who experienced mild

TBI with loss of consciousness (LOC), suggesting that physical

injury increases vulnerability to psychological stress. Further,

PTSD severity in the military population has been found to in-

versely correlate with cortical thickness independent of TBI.27 This

study also found evidence for an additive effect of comorbid mild

TBI and PTSD associated with additional areas of cortical thinning.

Blast-related TBI has been linked to a variety of cognitive and

behavioral difficulties, although the severity of these impairments

in relation to cortical changes remains unclear. Cognitive functions

such as learning, memory, attention, and executive function have

all been shown to relate with blast-related TBI.27–30 Performance

on neuropsychological measures in these domains has also been

linked to differences in neural activity in veterans with mild TBI as

measured by magnetoencephalography (MEG).16,31,32 These

changes are thought to result from disruptions in the integrity of

neural networks in both cortical and subcortical areas.32

Thus far, cortical thinning has been shown to correlate with

performance on measures of verbal memory and visuomotor speed,

which are common cognitive domains affected in persons with TBI. 33

No studies, however, have investigated these factors in relation to

each other in a sample of veterans with blast-related injuries.33

The present study sought to enhance our understanding of the

effects that TBI has on cortical gray matter by investigating

changes in cortical thickness during the chronic phase of blast-

related TBI. We further assessed the relationship between severity

of injury and cortical thickness by comparing mild and moderate

blast-related TBI groups. We expected TBI participants to exhibit

decreased cortical thickness (i.e., cortical thinning) compared with

demographically matched healthy controls. Further, it was ex-

pected that a ‘‘dose-dependent’’ relationship would exist between

injury severity and the degree of cortical thinning (moderate TBI

cortical thinning>mild TBI cortical thinning).

We also investigated the relationship between cortical thinning

and scores on neuropsychological tests, as well as measures of

PTSD and depression symptoms. Based on previous literature, it

was expected that cortical thinning would be related to poorer

performance on neuropsychological tests, as well as severity of

psychiatric symptom reporting.

Methods

Participants

Seventy-one military veterans with TBI were recruited from
primarily urban areas across the United States as part of a larger
ongoing study. Participants were excluded from the study if they
were: (1) nonfluent English speakers, (2) an undocumented alien,
incarcerated, or active duty military, (3) under age 18, (4) intel-
lectually disabled, or (5) if they had a pre-existing condition that
would preclude standard administration of study procedures, such
as deafness or blindness. All veterans had sustained a TBI at a
minimum of 5 months before enrollment in the study.

All participants signed an informed consent document and were
enrolled in the study for 2 days. On day 1, a research assistant
administered a semistructured diagnostic interview to collect de-
mographic, medical, psychiatric, and injury history information. In
addition, participants were evaluated for current level of disability
using the Disability Rating Scale (DRS) and the Community In-
tegration Questionnaire (CIQ), which were also administered by a
research assistant. Neuroimaging studies, including structural MRI,
were conducted on the second day of study participation.

The Defense and Veterans Affairs consensus definition of TBI
was used to classify injury severity based on participant injury
characteristics (duration of LOC, duration post-traumatic amnesia,
duration of confusion, initial imaging findings, and initial Glasgow
Coma Scale scores, when available).34 The injury severity data
collected during interview with the participants was verified via
review of medical records when possible. Based on these criteria,
all military veterans had sustained a nonpenetrating mild or mod-
erate blast-related TBI. Research has suggested a high comorbidity
of psychiatric and neurological disorders in patients with TBI;
therefore, these disorders were screened for but not used as ex-
clusion criteria.2

Sixty-two healthy persons were also recruited from the St. Louis
metropolitan area to create a demographically matched healthy
control group for comparison. Additional exclusion criteria for the
healthy control group included history of psychiatric or neurolog-
ical illness, substance use disorder, and other cognitive or devel-
opmental disorders.

Neuropsychological evaluation

The following neuropsychological tests were administered as
part of a larger battery and included in analyses: the Digit Span
subtest from Wechsler Adult Intelligence Scale Third Edition
(WAIS-III DS),35 Trail Making Test Part A (TMT A), Trail Making
Test Part B (TMT B),36 the California Verbal Learning Test Second
Edition (CVLT-II) Total Recall and Long Delay Free Recall trial
scores,37 and Condition 1 from the Verbal Fluency subtest from the
Delis Kaplan Executive Functioning System (DKEFS VF1).38 The
Neurobehavioral Symptoms Inventory (NSI)39 was administered to
assess for post-concussive symptoms.

In addition, the Patient Health Questionniare-9 (PHQ-9) was
used to assess for comorbid depression, and the PTSD Checklist
Civilian version (PCL-C) was given to assess symptoms of
PTSD.40,41 A trained research assistant administered all tests, and
raters were blind to the participants’ grouping at the time of testing.
Analysis of variance (ANOVA) statistical analyses were also per-
formed to identify differences between healthy controls and the
TBI groups on neuropsychological measures.

MRI data acquisition and cortical thickness
assessment

T1-weighted MRI data with 1-mm isotropic resolution was ac-
quired on all subjects using a Phillips Achieva 3-Telsa MRI scanner
with an 8-channel birdcage headcoil. T1 images were acquired
using a turbo field echo scan with an 8 degree flip angle and sense
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parallel acquisition of factor 2. Semiautomated cortical segmen-
tation was performed using Freesurfer v5.0.0 software (Athinoula
A. Martinos Center for Biomedical Imaging, Charlestown,
MA; http://surfer.nmr.mgh.harvard.edu) as described by Dale and
associates.18

Tissue classification into gray matter (GM), white matter (WM),
and cerebrospinal fluid (CSF) was calculated using signal intensity
differences and known previous spatial statistics.42,43 Pial and WM
surfaces were constructed using a meshing algorithm of classified
voxels.20,44 At each node, the cortical thickness was estimated from
the calculated minimal distance between the pial and WM surface
meshes.19 Automated registration of major cortical landmarks and
spatial warping was performed to optimize curvature similarities of
the cortical alignment with the surface atlas.45 Once aligned and
warped to the atlas space, the surfaces were labeled according to
known anatomical regions.46

Two independent researchers visually checked the pial and WM
surfaces created for each subject. Any errors in tissue classification
that occurred during the automated processing were manually
edited and rerun through the Freesurfer processing pipeline. In
addition, the MRIs were scored for image quality. Low image
quality scans were more likely to have poor reconstructions, and
seven subjects (two healthy controls, four mild TBI, one moderate
TBI) were removed for this reason. Two subjects (1 mild TBI and 1
moderate TBI) were removed because of uncorrectable cortical
reconstructions, and two healthy controls were removed because of
mild ventricular dilation on radiological review. A total of nine
military veteran subjects were also excluded because their primary
mechanism of injury was not blast-related (e.g., assault, motor
vehicle accident). Fifty-five military veterans with TBI (54 male, 1
female) and 58 healthy controls (54 male, 4 female) made up the
final study sample.

Cortical thickness statistics

Cortical thickness maps were convolved with a two-dimensional
15-mm Gaussian surface smoother. The data were imported into the
QDec general linear modeling interface included with Freesurfer
and analyzed using a different offset different slope model. To
address familywise error, the Monte Carlo null-Z method was used
to correct for multiple comparisons.47 A one-sided null-Z correc-
tion at p < 0.05 was used to test the hypothesis of cortical thinning in
the TBI groups.

Correlation between neuropsychological measures
and significant cortical thickness cluster

To investigate the relationship between neuropsychological
measures and cortical thickness values, the mild and moder-
ate TBI groups were combined, and statistical analyses were
performed in comparison with the healthy control group. The
resulting familywise error corrected cluster was traced and gen-
erated into a subject label in QDec. The average cortical thickness
was fit for each subject using the Freesurfer command, mris_
anatomical_fit, isolated to the p < 0.05 cluster region of interest
(ROI). The average cortical thickness over the ROI was parsed out
of each file using python and compiled into a text file, which was
imported into SPSS to calculate Pearson correlations with neu-
ropsychological test scores, as well as measures of depression and
PTSD.

Results

Demographic and clinical characteristics

Of the participants with TBI, 38 had sustained mild TBI and 17

sustained moderate TBI. No significant differences were observed

between the groups for mean age, education, or frequency of sex

(Table 1). The mild TBI group was found to range from age 23 to 52

years (range 29), moderate from 25 to 62 years (range 37), and

civilian control from 18 to 54 (range 36). All veterans with TBI

sustained injuries related to a blast and were between 5 and 120

months post-injury (M = 62.08). The moderate TBI group showed

greater incidence and duration of LOC (v2 = 15.31, p < 0.01) and

post-traumatic amnesia (v2 = 1 2.29, p < 0.01) compared with the

mild TBI group.

The findings from initial neuroimaging (CT scan) were largely

unavailable or unknown. Patients with more moderate TBI had

known abnormalities on the initial CT scan compared with par-

ticipants with mild TBI. The mild and moderate TBI groups did not

show differences in the frequency of scores on the DRS nor were

there statistically significant differences between groups on the

CIQ. Both groups scored lower on the CIQ compared with the

control group, indicating that both TBI groups had a relatively

similar level of current disability. See Tables 1 and 2 for descriptive

statistics and further results from these analyses.

Table 1. Demographic and Clinical Characteristics

for the Healthy Control, Mild Traumatic Brain Injury,

and Moderate Traumatic Brain Injury Groups

Healthy
controls

Mild
TBI

Moderate
TBI

Variable (n = 58) (n = 38) (n = 17)

Sex
Male 54 37 17
Female 4 1 0

Ethnicity1

Caucasian 27 36 14
African American 24 1 1
Hispanic 1 1 1
Asian/Pacific Islander 4 0 0
Other 2 0 1

Duration LOC2

>24 h - 0 2
30 min to 24 h - 0 3
0–30 min - 22 10
Unknown/unavailable - 16 2

Duration of PTA3

>24 h - 14 14
0–24 h - 21 1
Unknown/unavailable - 3 2

Initial CT scan4

Positive - 1 7
Negative - 9 3
Unknown/unavailable - 28 7

DRS Score
0 - 23 5
0.5 - 1 1
1 - 5 2
2 - 2 3
3 - 2 3
4 - 3 2
5 - 2 1

TBI, traumatic brain injury; LOC, loss of consciousness; PTA, post-
traumatic amnesia; CT, computed tomography; DRS, disability rating
scale.

1Pearson v2 = 32.41, p < 0.001; 2Pearson v2 = 15.31; p < 0.01; 3Pearson
v2 = 12.29; p < 0.01; 4Pearson v2 = 14.24; p < 0.01.

Entries are numbers of participants, unless otherwise specified.
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Cortical thickness group analyses

Several clusters of cortical thinning were found when comparing

the healthy controls with TBI participants. The output statistical maps

are displayed in Figure 1. After null-Z familywise error rate correc-

tion, only one cluster encompassing the right inferior temporal, right

insula, and right inferior frontal areas remained statistically signifi-

cant (t[93] = 4.15, p = 0.00008; cluster size = 7844 mm2).

No areas in the left hemisphere exhibited significant cortical

thinning. The resulting clusters can be seen in Figure 2A. Null-Z

corrected statistical comparison between controls and moderate

TBI highlighted a cluster of cortical thinning in the inferior tem-

poral area (t[72] = 4.53; p = 0.00011; cluster size = 5393 mm2); see

Figure 2B. The combined grouping of mild and moderate TBI

compared with healthy controls resulted in a larger cluster over the

inferior frontal, temporal, and insula regions (t[109] = 3.84;

p = 0.0002, cluster size = 120678 mm2); see Figure 2C. Within this

cluster, mild and moderate TBI participants were compared but

were not statistically different at the significance level of p < 0.01

(t[54] = 0.37; p = 0.72). The average cortical thickness in the region

of significance for each subject group is graphically represented in

Figure 3.

Neuropsychological analyses

Results from ANOVA with Tukey honest significant difference

(HSD) post hoc analyses involving the neuropsychological mea-

sures are provided in Table 2. Generally, results showed that the

control group scored higher than the mild and moderate TBI groups

on WAIS-III digit span and on VF1 from the DKEFS. Scores were

not significantly different between groups on other included mea-

sures of cognitive functioning. The moderate TBI group reported a

greater number of post-concussive symptoms compared with the

mild TBI group as measured using the NSI total score. Both TBI

groups reported a greater number of post-concussive symptoms

compared with the control group (moderate TBI scored higher

compared with mild TBI). With regard to symptoms of depression

and PTSD, ANOVA with Tukey HSD post hoc analyses showed

that the moderate TBI group reported the highest number of clin-

ically significant symptoms. The mild TBI group also showed

higher symptom reporting compared with the control group.

We also calculated two-tailed Pearson correlational coefficients

between neuropsychological tests scores, scores on measures of

depression and PTSD, and average cortical thickness cluster scores.

Results showed statistically significant correlations between

Table 2. Means and Standard Deviations for Demographic and Neuropsychological Measures

Healthy Controls Mild TBI Moderate TBI

Variable M SD N M SD N M SD N

Age 30.53 8.70 58 32.79 7.26 38 34.41 8.95 17
Education (years) 14.74 2.43 58 13.82 2.08 38 14.18 1.91 17
Months Post-Injury - - - 62.08 23.91 38 70.41 20.41 17
NSI1 5.14a 8.05 58 35.05b 14.96 38 49.18c 14.56 17
CIQ2 21.23a 6.29 58 17.28b 5.57 38 15.65b 5.85 17
PCL-C3 23.16a 6.34 57 48.51b 15.26 37 58.00c 16.31 17
PHQ-94 1.80a 2.03 57 9.81b 5.48 36 12.94c 6.23 17
WAIS-III Digit Span5 18.47a 3.78 58 16.16b 3.48 38 15.65b 3.92 17
TMT A 27.67 10.42 58 27.24 8.79 37 27.18 11.59 17
TMT B 67.16 37.10 58 64.57 22.78 37 75.12 25.39 17
CVLT-II 1–5 Total 46.95 7.54 58 45.35 10.80 37 45.88 11.43 17
CVLT-II LDFR 10.29 2.66 58 9.51 3.95 37 9.06 4.15 17
DKEFS VF16 43.50a 11.04 58 36.73b 11.70 37 35.00b 9.35 17

TBI, Traumatic Brain Injury; M, mean; SD, standard deviation; NSI, Neurobehavioral Symptom Inventory. CIQ, Community Integration
Questionnaire; PCL-C, Post-Traumatic Stress Disorder Checklist Civilian version; PHQ-9, Patient Health Questionniare-9; WAIS-III, Wechsler Adult
Intelligence Scale Third Edition; TMT A, Trail Making Test Part A; TMT B, Trail Making Test Part B; CVLT-II, California Verbal Learning Test Second
Edition; LDFR, Long Delay Free Recall; DKEFS, Delis Kaplan Executive Functioning System; VF1, Verbal Fluency Condition 1.

1Analysis of variance (ANOVA) F(2,109) = 127.22, p < 0.001; 2ANOVA F(2,110) = 8.23, p < 0.001; 3ANOVA F(2,108) = 84.58; p < 0.001; 4ANOVA
F(2,107) = 66.07; p < 0.001; 5ANOVA F(2,110) = 6.37; p < 0.01; 6ANOVA F(2,109) = 6.29; p < 0.01.

a,b,c Means with different superscripts are statistically significantly different, p < 0.05.

FIG. 1. T-test results between healthy controls (HC) and participants with mild traumatic brain injury (TBI) (A) and moderate TBI (B)
displayed on the Freesurfer average brain. Red represent greater thickness in HCs, and blue represents greater thickness in subjects with TBI.
Color image is available online at www.liebertpub.com/neu
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cortical thickness cluster scores and the NSI total scores (r = -
0.330, p < 0.001), DKEFS VF1 (r = 0.212, p < 0.05), PHQ-9 total

scores (r = -0.251, p < 0.01), and PCL-C total scores (r = -0.249,

p < 0.01). Correlations between cortical thickness clusters and other

neuropsychological measures were nonsignificant.

After applying Bonferroni correction to the significant correla-

tions to control for familywise error (significant threshold of

p < 0.005), only the NSI total score correlated significantly with the

cortical thickness cluster values. These results suggest that cortical

thickness values had limited low magnitude inverse correlation with

post-concussive syndrome symptoms and other aspects of emotional

and behavioral functioning, as well as a possible direct relationship

with a cognitive measure. The exact implications of these findings

are unclear, however, because of their statistical nonsignificance

when using the most conservative interpretive criterion.

Discussion

In the current study, healthy civilian controls were compared

with military veterans with mild or moderate blast-related TBI

using the SBM method. To our knowledge, this is the first such

study to examine cortical thickness in a sample of veterans with

chronic blast-related TBI. As expected, we found statistically sig-

nificant cortical thinning in multiple areas, including the right in-

ferior temporal, right insular, and right inferior frontal gyrus,

associated with blast-related mild TBI. The moderate TBI groups

showed similar localized findings in the right inferior temporal

lobe, but to a smaller spatial extent. Our findings showed no dif-

ferences in cortical thickness between mild and moderate TBI

groups; thus, we were unable to detect a linear dose-response re-

lationship as originally hypothesized.

Our results showed areas of significant cortical thinning that

were lateralized and localized in nature. Based on the literature to

date, it has been suggested that primary blast injury results in

traumatic axonal injury and punctate microvascular disruptions.46–48

Because primary blast injury may also be accompanied by sec-

ondary and tertiary contact-based injury, however, it is possible that

variations in injury mechanism are responsible for the lateralization

and localization that was observed. There have been several articles

in contact-based TBI that show injury in the orbitofrontal and an-

terior temporal lobe associated with the brain colliding with the

sphenoid ridge and the free-edge of the tentorium cerebelli.9,45.46

As mentioned, despite a lack of positive findings on traditional

neuroimaging studies, more than 50% of veterans meet the criteria

for post-concussive disorder at long-term follow up.15 In the present

study, TBI participants reported a greater number of post-

concussive symptoms based on NSI total scores, which is consistent

with the previous TBI literature.49,50 Further, the area of significant

cortical thinning in the TBI population positively correlated with

NSI scores, suggesting that post-concussive symptoms are related to

right frontotemporal dysfunction. The NSI scale is not specific to

TBI, however, because persons with affective disorders (i.e., PTSD)

have been found to endorse higher symptom severity compared with

persons with TBI alone.

Based on previous studies showing that cortical thinning is as-

sociated with several cognitive functions, we also examined rela-

tionships between cortical thickness values and neuropsychological

measures.51,52 Our findings showed a low magnitude correlation

between average cortical thickness values and a measure of verbal

fluency skills (DKFEFS Verbal Fluency Condition 1); however,

this finding was not statistically significant after Bonferroni cor-

rection. Other cognitive variables that were examined did not

correlate significantly with cortical thickness in our sample.

These findings suggest that there are limited relationships between

cortical thickness and cognitive functioning in this sample of veter-

ans with chronic TBI. A possible explanation for this is that neuro-

psychological tests often assess cognitive functions requiring complex

cortical and subcortical networks that may be disrupted differentially

by a heterogeneous injury such as TBI. If present, cortical alterations

that correspond to the neurocognitive measures used may have been

too subtle to detect through the current SBM technique.

FIG. 2. Cortical thickness comparison between healthy controls (HC) and blast-induced participants with traumatic brain injury (TBI).
Display of the resulting threshold corrected clusters to the familywise error rate of p < 0.05 the using null-Z method. The group comparisons
are HC versus mild TBI (A), HC versus moderate TBI (B), and HC versus mild + moderate TBI (C). Color image is available online at
www.liebertpub.com/neu

FIG. 3. Cortical thickness averaged over the region of interest
defined by the statistically significant cluster between healthy
controls (HC) and mild + moderate participants with traumatic
brain injury (TBI). Each blue dot represents a subject and the
average cortical thickness over this region. The mean and standard
deviation error bars are displayed in black.
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The TBI groups demonstrated a high incidence of PTSD and

depression symptoms, which is consistent with the previous liter-

ature.2,53 The moderate TBI group had significantly higher scores

on PCL-C and PHQ-9 compared with the mild TBI participants,

suggesting a higher level of psychological stress. We also saw low

magnitude correlations between cortical thickness and scores on

measures of depression and PTSD symptoms; however, these

correlations also were nonsignificant after Bonferroni correction.

Although blast exposure is considered to be the main contributor

to initial injury, PTSD and depression may play a role in long-term

cortical changes. Other studies have also suggested that PTSD af-

fects cortical thickness independently of blast exposure.27,54 This is

particularly pertinent in clinical evaluation and treatment of combat

veterans, because PTSD has been shown to occur at a rate of more

than four times as often in those with blast-related TBI compared

with non-TBI veterans.2

It is clear that the impact of blast-related TBI versus comorbid

psychiatric symptoms on cortical thickness represents an area for

subsequent research and that the affected brain regions identified in

this study may offer insights into this complex relationship. For

example, the right inferior frontal, inferior temporal, and insular

lobe have been shown to have strong connections to subcortical

structures involved in PTSD, such as the amygdala and hippo-

campus, and thus may partially explain the relationship between

TBI and PTSD in affecting cortical thickness.55

It is important to add that this study extends the investigation of

Tate and coworkers,26 which analyzed mild blast-related TBI

participants who were an average of 1 month post-injury. The re-

sults from Tate and associates26 showed left hemispheric regions of

thinning in the superior temporal lobe and superior frontal lobe,

which is clearly different from our findings of inferior temporal,

right insular, and right inferior frontal gyrus thinning.

There are multiple reasons why variable results may have been

obtained between our study and that of Tate and colleagues.26

These differences include: mean time since injury (1 month vs.

5 years), the number of subjects analyzed (22 vs. 113), and the

designation of healthy controls (non-TBI veterans vs. healthy ci-

vilians). Our study also extended the work performed by Tate and

coworkers,26 since they did not examine correlations between

cortical thickness and measures of neuropsychological and psy-

chological functioning.

Limitations

There are several limitations of this study that merit discussion.

The SBM method only looks at cortical thickness and does not assess

subcortical structures, some of which are expected to be associated

with PTSD and TBI (e.g., amygdala and hippocampus).55 Another

limitation is that blast-induced TBI is likely to be a heterogeneous

injury and may not fully be elucidated by aggregated group differ-

ence studies. The participants recruited in this study included healthy

controls and persons with blast-related TBI, but we did not assess

military personnel having experienced combat without incurring a

TBI. We cannot assess the effect of military training and combat on

cortical thickness and how it affects the resulting regions of statistical

significance. Further, we did not assess for duration or number of

deployments in the military veteran group.

It also has recently been shown that early life interpersonal

trauma positively correlated with both PTSD and cortical thinning

in combat veterans.56 Early life trauma was not assessed in the

present study, and therefore it is unclear how early life trauma

contributes to our findings In addition, our assessment of post-

concussive, PTSD, and depression symptoms was limited because

we relied on retrospective self-report questionnaires, as opposed to

evaluation and diagnosis by a clinician or using a structured in-

terview format. Future research endeavors likely should use more

thorough methods for evaluating PTSD and depression and their

impact on cortical thickness in the context of brain injury.

Conclusion

This study provides evidence of cortical thinning after chronic

blast-related mild or moderate TBI in military veterans and provides

important insight into the natural progression of long-term cortical

change after blast-related injury. We also found relationships be-

tween cortical thinning and aspects of cognitive and psychiatric

functioning, including PTSD symptoms. Because of the high inci-

dence of PTSD and depression symptoms in our sample, we cannot

exclusively attribute cortical thinning to blast-related TBI. This

sample, however, is highly representative of veterans with blast-

related injury, who often have comorbid psychiatric issues.

Our findings provided added insight into the potential factors

affecting their symptom presentation, which has implications for

diagnosis and treatment of this patient group. Future studies should

be pursued to further examine the isolated effects of blast-induced

TBI and PTSD on cortical thinning in comparison with healthy

controls.
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