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Abstract

Traumatic brain injury and hemorrhagic shock (TBI+HS) elicit a complex inflammatory response that contributes to

secondary brain injury. There is currently no proven pharmacologic treatment for TBI+HS, but modulation of the

epigenome has been shown to be a promising strategy. The aim of this study was to investigate whether valproic acid

(VPA), a histone deacetylase inhibitor, modulates the expression of cerebral inflammatory gene profiles in a large animal

model of TBI+HS. Ten Yorkshire swine were subjected to computer-controlled TBI+HS (40% blood volume). After 2 h of

shock, animals were resuscitated with Hextend (HEX) or HEX+VPA (300 mg/kg, n = 5/group). Six hours after resusci-

tation, brains were harvested, RNA was isolated, and gene expression profiles were measured using a porcine microarray.

Ingenuity Pathway Analysis� (IPA), gene ontology (GO), Parametric Gene Set Enrichment Analysis (PGSEA), and

DAVID (Database for Annotation, Visualization, and Integrated Discovery) were used for pathway analysis. Key mi-

croarray findings were verified using real-time polymerase chain reaction (PCR). IPA analysis revealed that VPA sig-

nificantly down-regulated the complement system ( p < 0.001), natural killer cell communication ( p < 0.001), and dendritic

cell maturation ( p < 0.001). DAVID analysis indicated that a cluster of inflammatory pathways held the highest rank and

gene enrichment score. Real-time PCR data confirmed that VPA significantly down-expressed genes that ultimately

regulate nuclear factor-kB (NF-kB)-mediated production of cytokines, such as TYROBP, TREM2, CCR1, and IL-1b. This

high-throughput analysis of cerebral gene expression shows that addition of VPA to the resuscitation protocol significantly

modulates the expression of inflammatory pathways in a clinically realistic model of TBI+HS.

Key words: genomics; inflammation; in vivo studies; therapeutic approaches for the treatment of central nervous system

injury; traumatic brain injury

Introduction

Traumatic brain injury (TBI) initiates a complex cascade of

cellular and biochemical changes that contribute to dysfunction

of neural, glial, and endothelial cells.1 Both TBI and hemorrhagic

shock (HS) modulate levels of inflammatory mediators, and inflam-

mation may play a key role in the progression of secondary brain

injury. This secondary injury includes an acute inflammatory response

with blood–brain barrier disruption, edema, activation and infiltration

of immune cells, and release of cytokines and chemokines.2–8

At present, there are no proven pharmacologic treatment options

for TBI. Such therapeutic treatment of TBI, however, has received

considerable attention in recent years.9–12 For example, a thera-

peutic strategy for modulating this neuroinflammatory response

may be at the level of the epigenome. One class of promising drugs

is histone deacetylase inhibitors (HDACI). Valproic acid (VPA) is

routinely used in low doses to manage mood disorders and seizures,

but in high doses it has been shown to act as a HDACI.

We have previously shown that VPA creates a prosurvival

phenotype via epigenetic modulation in multiple animal models of

shock, sepsis, and traumatic injury.13–17 For example, the addition

of VPA to hetastarch resuscitation significantly decreases brain

swelling and lesion size in a swine model of TBI combined with

hemorrhagic shock (TBI+HS).14

Yet, the precise mechanisms underlying these physiologic

changes remain largely unknown. We know that VPA attenuates
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peripheral and central nervous system inflammatory responses by

decreasing the production of cytokines and chemokines.13,14,18,19

This immunosuppressive effect is also observed in the specific

setting of combined TBI+HS. For example, our laboratory has

previously demonstrated that administration of VPA attenuates the

proinflammatory cytokine response by decreasing the number of

CD11b-positive cells as well as myeloperoxidase and IL-1 levels in

the brain.14 Because combined TBI and HS create tissue damage

with a subsequent immune response, the aim of the present study

was to determine whether VPA treatment affects the innate and

adaptive immune response at the level of gene transcription.

We recently performed a high-throughput RNA microarray

analysis on brain tissue from swine subjected to combined TBI+HS

insults and resuscitated with the artificial colloid Hextend� (HEX)

with or without VPA. The resultant modeling output revealed that

more than 1600 probesets were significantly modulated in the

HEX+VPA group compared with HEX treatment alone.20 Because

of the size and complexity of this genomic dataset, we initially

needed to restrict our analysis to test the hypothesis that pathways

and genes related to cell survival and apoptosis would be signifi-

cantly different between the groups, which resulted in a previously

published study.20 For this new study, we used the same treatment

groups and array, but employed novel modeling computations and

pathway analyses that focused on inflammation. We hypothesized

that VPA would decrease brain inflammatory gene expression

profiles after TBI+HS.

Methods

This study was conducted in compliance with the Animal
Welfare Act and Federal regulations. The protocol was approved by
the Institutional Animal Care and Use Committee and adhered to
the principles of the Guide for the Care and Use of Laboratory
Animals, Institute for Laboratory Animal Research (1996). Proce-
dures were performed under the direction of an experienced sur-
geon and supervised by a veterinarian. This animal model of
TBI+HS has been described previously in the literature.21

In brief, 10 female Yorkshire swine (42–50 kg, Tufts Veterinary
School, Grafton, MA) underwent controlled cortical impact and
simultaneous volume-controlled hemorrhage. To expose the dura, a
20-mm burr hole was made on the right side of the skull, next to the
coronal and sagittal sutures over the frontal lobe. A TBI of 12 mm
penetration depth was inflicted, and 40% blood volume was with-
drawn through the femoral arterial catheter using a pump.

After the hemorrhage period, animals were kept hypotensive for
2 h by maintaining the mean arterial pressure (MAP) between 30
and 35 mm Hg. After 2 h of hypotension, animals were resuscitated
with either (1) HEX (Hospira Inc, Lake Forest, IL) or (2) HEX plus
VPA 300 mg/kg (EMD Biosciences Inc., La Jolla, CA). The vol-
ume of HEX resuscitation was equal to the volume of shed blood
for each animal. To simulate the pre-hospital use of VPA, this agent
was administered 1 h after hemorrhage and 1 h before fluid resus-
citation at a rate of 100 mg/kg per hour intravenously. HEX was
infused at a rate of 50 mL/min in all animals.

Tissue sampling and RNA preparation

The tissue sampling and RNA preparation methods have been
described previously by our laboratory.20 Briefly, the brain was
harvested after 6 h of post-resuscitation monitoring. The 30 mg of
brain tissue immediately inferior to the primary TBI lesion was ho-
mogenized, and RNA was extracted using a RNeasy mini kit (Qia-
gen, Valencia, CA). The RNA was prepared for microarray
hybridization with the GeneChip� WT Plus Reagent Kit (Affymetrix
Inc., Santa Clara, CA) according to manufacturer instructions.22

Briefly, the RNA was purified and reverse transcribed to synthe-
size complimentary DNA (cDNA) strands. Amplified RNA was
subsequently synthesized, purified, quantitated, and normalized be-
fore the second cycle of cDNA synthesis. After RNAse H digestion
of template RNA, the remaining cDNA was purified, quantitated,
normalized, and then fragmented and hybridized to the array.

Gene expression analysis

Gene expression profiles were measured by the University of
Michigan DNA Sequencing Core Facility (Ann Arbor, MI) using a
Porcine Gene ST 1.1 microarray (Affymetrix, CA; 394,580 probes,
19,212 genes). The gene expression analysis has been described
previously by our team.20 Briefly, expression values for each gene
were calculated using a robust multiarray average,23 and microarray-
specific weighted linear models were fitted to the data24 to compute
the contrasts between HEX and HEX+VPA. Samples were weighted
based on a gene-by-gene update algorithm.25

Probesets with a fold change of two or greater or below 0.5 with
adjusted p values of 0.05 or less were selected. Probesets with a
variance over all samples less than 0.1 were not included.26 The p
values were adjusted for multiple comparisons using false dis-
covery rate (FDR).26 Gene expression profiles were analyzed using
oligo and limma packages in R. Probesets with more than a two-
fold change in expression with a FDR-adjusted p £ 0.05 were
considered statistically significant.

Pathway analyses

Inflammation-specific molecular pathways that were associated
with altered gene expression in the brain were analyzed between
HEX and HEX+VPA groups. Several new network analysis tools
were used to test the hypothesis that VPA treatment would attenuate
the inflammatory response: Gene Ontology (GO),27 Ingenuity�

Pathway Analysis (IPA; Ingenuity Systems, Redwood City, CA),
Parametric Gene Set Enrichment Analysis (PGSEA; Broad Institute,
Cambridge, MA),28 and DAVID (Database for Annotation, Visua-
lization, and Integrated Discovery; v6.7, National Institute of Allergy
and Infectious Diseases, National Institutes of Health, Bethesda,
MD).29,30 Inflammation-specific parameters and annotation terms
were input into each pathway analysis tool, which resulted in unique
modeling outputs that revealed the effect of VPA on inflammatory
gene expression and pathways.

Real-time polymerase chain reaction (PCR)

Key microarray findings were verified using real-time PCR
(Table 1). Briefly, a High-Capacity Reverse Transcription Kit
(Applied Biosystems, Carlsbad, CA) was used to convert RNA
from each sample into cDNA. A reaction mixture consisting of
equal quantities of cDNA, SYBR Green Master Mix, and forward
and reverse primers was incubated and analyzed using an ABI
PRISM 7300 Real-Time PCR instrument. Porcine-specific primers
were custom-made by Real Time Primers (Elkins Park, PA).

Table 1. Selected Genes that Were Analyzed Using

Real-Time Polymerase Chain Reaction

Gene name Forward primer (5¢ – 3¢) Reverse primer (5¢ – 3¢)

CCR1 tgccagaaggtacaggagag gaggtagatggtggtcatgc
IL-1b ctttgaagaagagcccatca tgctatcatctccttgcaca
TYROBP caacacatcgctgagacaga gtcctgatttgggctcattt
TREM2 cctcttgaatcccagtccaa gggaagtcctctgtttgtgc

CCR1, chemokine receptor 1; IL-1b, interleukin-1 beta; TYROBP,
tyrosine kinase binding protein; TREM2, triggering receptor expressed on
myeloid cells 2.
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Samples were normalized using the difference in critical threshold
(ct) between the target gene and actin (delta-ct) and then converted
to fold-change. T-tests on PCR data were performed using IBM
SPSS Statistics version 20 (IBM, New York).

Results

IPA

We previously reported an in-depth analysis of genes and path-

ways related to apoptosis and cell survival from this dataset.20 In the

present study on inflammation, IPA analysis revealed that the addi-

tion of VPA to HEX treatment significantly downregulated the ge-

netic pathway encoding for the complement system ( p < 0.001),

natural killer cell communication ( p < 0.001), and dendritic cell

maturation ( p < 0.001) (Table 2). Significantly modulated molecules

involved in these pathways included toll-like receptor 3 (TLR3),

complement component 1, q subcomponent B- and C-chains (C1QB

and C1QC, respectively), high affinity immunoglobulin epsilon re-

ceptor subunit-alpha and -gamma (FCER1A and FCER1G, respec-

tively), as well as tyrosine kinase binding protein (TYROBP) and

triggering receptor expressed on myeloid cells 2 (TREM2) ( p < 0.05).

GO and PGSEA

GO analysis indicated that the expression of more than 40 known

genes associated with immune system processes were significantly

different between the groups ( p = 0.005, Fig. 1A). PGSEA results re-

vealed significant changes in the expression of genes involved in the

immune response (Fig. 1B). Specifically, genes such as interleukin-1

beta (IL-1 beta), TREM2, TYROBP, and chemokine receptor 1

(CCR1) were significantly downexpressed in the HEX+VPA group.

DAVID

The suite of DAVID tools was used to identify relationships

among significantly modulated genes, pathways, and clusters of

functionally related pathways. Preliminary analysis using functional

annotation clustering on all significantly modulated genes resulted in

a group of four GO inflammation annotations as having the highest

rank-importance with an enrichment score of 5.51. To better deter-

mine the directionality of this enrichment, we reran the DAVID

analysis but restricted the gene input list to either significantly up-

regulated or downregulated genes. The analysis of downregulated

genes revealed a cluster of the same four GO inflammation annota-

tions as in the initial analysis, with a rank-importance of 1 and an

increased enrichment score of 8.13 (Table 3).

The DAVID output produced additional inflammation clusters,

some of which contained Kyoto Encyclopedia of Genes and Gen-

omes (KEGG)31 pathways that showed a downregulation of major

immune response pathways. One highly significant pathway was

annotated as the systemic lupus erythematosus pathway. Sig-

nificant mechanisms involved in this pathway include B- and T-cell

receptor signaling, antigen processing and presentation, cytokine-

cytokine receptor interaction, complement and coagulation cas-

cades, and adhesion molecules involved in leukocyte transen-

dothelial migration (Fig. 2).

No inflammation annotation clusters as defined by DAVID were

found in the analysis of upregulated genes. We found among others

the following annotations being upregulated in the VPA treatment

group, however: neuron development and differentiation, synaptic

transmission, regulation of neurotransmitter transport and secre-

tion, cell junctions, and negative regulation of apoptosis.

Real-time PCR

Real-time PCR was used to verify inflammation genes that were

identified by the microarray studies as being differentially modulated

by VPA. CCR1 was significantly downregulated in the HEX+VPA

group compared with HEX alone (RQ = 0.705, p < 0.01). Likewise,

VPA significantly downregulated the cytokine IL-1b (RQ = 0.293,

p < 0.01). Expression of the membrane proteins TREM2 and TYR-

OBP were both significantly decreased by VPA (RQ = 0.079,

RQ = 0.503, p < 0.02 and p < 0.05, respectively) (Fig. 3).

Discussion

In this high-throughput analysis of cerebral gene profiling, we

investigated whether VPA treatment would affect inflammatory

responses after TBI combined with HS. The current study dem-

onstrates that VPA modulates inflammatory genes and genes re-

lated to immune regulation, resulting in an overall attenuation of

the inflammatory drive. Of interest, pathways involved in wound

repair were also induced by VPA, illustrating the broad and pro-

tective effect of VPA treatment. A striking reduction of gene

Table 2. Ingenuity Pathway Analysis Output of Inflammatory Pathways with the Greatest Downregulation

in the Hextend+Valproic Acid Group

Pathway Ratio -log(p value) Genes

Complement system 0.185 3.47 CD59, C1QC, C1QB
Crosstalk between dendritic cells and natural killer cells 0.163 3.25 TYROBP, TLR3, TREM2, ACTC1
Dendritic cell maturation 0.154 3.17 TYROBP, FCER1G, TLR3,

TREM2, FCGR1A
Altered T cell and B cell signaling in rheumatoid arthritis 0.118 2.27 SPP1, FCER1G, TLR3
Role of pattern recognition receptors in recognition

of bacteria and viruses
0.107 2.19 C1RC, C1QB, TLR3

Fcc receptor-mediated phagocytosis in macrophages
and monocytes

0.105 2.12 ACTC1, FCGR1A, PLD1

Role of PKR in interferon induction and antiviral response 0.094 1.87 TLR3, FCGR1A
TREM1 signaling 0.083 1.60 TYROBP, TLR3
NF-jB signaling 0.075 1.43 BMP2, FCER1G, TLR3
Communication between innate and adaptive immune cells 0.069 1.38 FCER1G, TLR3

Ratio indicates the number of genes in each group that were altered out of the total number of genes in that specific pathway. The p values indicate
significance of mapping to the pathway. Genes that were significantly downgregulated are listed for each pathway.
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expression associated with inflammation was observed. Because

inflammation may play a key role in the progression of secondary

brain injury and associated edema, our findings may in part explain

why VPA treatment is associated with a decrease in brain lesion

size and brain swelling after combined TBI and HS.14

Several studies have described the benefits of VPA treatment

and its role in attenuating inflammatory responses.13,14,18,19,32 This

is the first study, however, that investigates a number of the un-

derlying genes responsible for this effect. Our study uses several

lines of evidence to demonstrate that VPA treatment attenuates the

FIG. 1. Heat maps generated from gene ontology and parametric gene set enrichment analysis. (A) Gene ontology heat map based on
terms involved in inflammation. A group of nonmodulated genes were omitted for brevity and presentation. (B) Representative PGSEA
heat map that was significantly modulated because of valproic acid (VPA). Original annotation data are from Brown and colleagues.39

Red, significantly upregulated, and blue, significantly downregulated, for both maps at p £ 0.05. HEX, Hextend. Color image is available
online at www.liebertpub.com/neu

Table 3. Database for Annotation, Visualization, and Integrated Discovery Functional Annotation Clustering

Results from Downregulated Gene List in the Hextend+Valproic Acid Group (Enrichment Score 8.13)

Term Percent
Fold

Enrichment P FDR Genes

GO:0009611
Response to
wounding

21.6 6.38 4.26 · 10-10 6.98 · 10-7 BMP2, GATM, AIF1, CCR1, TLR3, C1QC, CD180,
S100A12, C1QB, CXCR4, CD59, IL1B, VCAN, VSIG4,
THBS1, SELE, PLAU, IL1A, SPP1

GO:0006952
Defense
response

22.7 5.79 6.26 · 10-10 1.03 · 10-6 BMP2, PLD1, NCF2, AIF1, CCR1, TLR3, C1QC, CD180,
S100A12, C1QB, CXCR4, FCGR1A, IL1B, VSIG4,
THBS1, MX2, SELE, IL1A, SPP1, TYROBP

GO:0006954
Inflammatory
response

17.0 8.22 2.41 · 10-9 3.96 · 10-6 BMP2, AIF1, CCR1, TLR3, C1QC, CD180, S100A12, C1QB,
CXCR4, IL1B, VSIG4, THBS1, SELE, IL1A, SPP1

GO:0006955
Immune
response

18.2 4.13 4.62 · 10-6 7.58 · 10-3 AQP9, NCF2, CCR1, TLR3, C1QC, CD180, PDCD1LG2,
C1QB, CXCR4, FCGR1A, IL1B, FCER1G, VSIG4,
TREM2, THBS1, IL1A

Percent represents the number of genes involved of the total number of genes in the input gene list. Fold enrichment is the magnitude of enrichment
relative to the normal expression in the genome. The p value indicates the significance of gene-term enrichment of the annotation term groups.
Calculation is based on a modified Fisher exact test (EASE score), with smaller values indicating greater significance. FDR (false discovery rate) is a
testing correction technique that globally corrects enrichment p values to control family-wide FDR £0.05. GO, gene ontology.
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transcription of genes related to both innate and adaptive immune

responses. For example, GO analysis showed that the expression of

more than 40 known genes associated with the immune system

were significantly different between the HEX and HEX-VPA

groups. Likewise, PGSEA results showed significant changes in the

expression of genes involved in the immune response (Fig. 1).

Some of the genes that were significantly downregulated in the

VPA group were, among others, IL-1 beta, TREM2, TYROBP, and

CCR1. IPA results supported the GO and PGSEA datasets by

demonstrating that VPA significantly downregulated the innate and

adaptive immune responses (Table 2). Not surprisingly, TYROBP

and TREM2 are key players in these pathways as well.

A suite of related genes were common among the pathway an-

alyses. While unknown for their roles in trauma and shock, both

TREM2 and TYROBP (alternatively referred to as DAP12 or

KARAP) serve important roles in inflammation. These cell surface

receptors comprise a signaling complex that has been found in a

variety of cells involved in the immune response, such as granu-

locytes, macrophages, and microglia.33–37 Expression and activa-

tion of the TYROBP-TREM2 complex may be intrinsic or

extrinsic. Briefly, rapid TREM2 translocation to the cell surface has

been reported because of cytokine-mediated activation in macro-

phages38 and on microglia after an infiltration of macrophages into

the central nervous system.40 The extrinsic pathway requires acti-

vation via a wide variety of ligands that are still poorly described.34

Ligand binding to TREM2 stimulates phosphorylation of TYR-

OBP, which in turn activates a variety of downstream cellular

pathways, such as the phosphatidylinositol 3-kinase-Akt pathway.

TYROBP activation of zeta-chain-associated protein kinase 70

(ZAP70) causes the phosphorylation of Akt, which in turn may

regulate nuclear factor-kB (NF-kB)-mediated production of cyto-

kines.34 In addition, activation of ZAP70 kinase regulates NF-kB

and mitogen-activated protein kinase activity via the second mes-

senger diacylglycerol.34,41–43 This effect on the Akt pathway sup-

ports our previous work, which showed that VPA treatment

activates the Akt pathway in a rodent model of HS.44

CCR1 and IL-1b are also known to direct the activity of NF-kB.

CCR1 is a chemokine receptor on macrophages and lymphocytes

that has been shown to regulate NF-kB.45 Similarly, IL-1b is a well

known proinflammatory cytokine that induces the transcription of

other cytokines via NF-kB regulation.46 Collectively, CCR1, IL-

1b, and the TYROBP-TREM2 complex each regulate NF-kB

FIG. 2. Kyoto Encyclopedia of Genes and Genomes (KEGG) inflammatory pathway describing modulation of gene expression from the
underlying dataset of downregulated genes. The original pathway is annotated for systemic lupus erythematosus (KEGG HSA05322). Red
arrows have replaced KEGG asterisks for clarity of presentation. Color image is available online at www.liebertpub.com/neu

FIG. 3. Real-time polymerase chain reaction (PCR) data
showing changes in inflammatory gene expression. Hextend +
valproic acid (HEX+VPA) expression was computed relative to
HEX alone, which served as the control. Data are shown as mean
– standard error of the mean. IL-1b, interleukin 1-beta; CCR1,
chemokine receptor 1; TREM2, triggering receptor expressed on
myeloid cells 2; TYROBP, tyrosine kinase binding protein.
*p £ 0.05 compared with HEX.
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activity and the subsequent production of proinflammatory genes.

Although some reports suggest that TYROBP-TREM2 may be

involved in the inhibition of the immune response,47,48 our mod-

eling and validation data suggest that decreased expression of this

complex, as well as CCR1 and IL-1b, may have played a key role in

attenuating the inflammatory response. This is a unique new find-

ing, because the effect of VPA on this pathway has yet to be de-

scribed in the literature.

DAVID analysis revealed a downregulation of functionally re-

lated inflammation pathways with an enrichment score of 8.13

(Table 3), as well as significantly decreased expression of major

immune response pathways such as the KEGG lupus inflammation

pathway, which includes numerous genes associated with immune

regulation (Fig. 2). Yet, the DAVID modeling output revealed

several other alterations in gene expression that may work in tan-

dem with inflammation. For example, several nervous system

pathways involving neuronal development and differentiation,

synaptic transmission, and neurotransmitter regulation showed an

increase in expression from VPA. Thus, upregulation of these

neuroprotective pathways may also in part underlie the observed

beneficial effects of VPA. Together these data highlight that VPA is a

potentially promising new treatment strategy for TBI and HS, not

only because of its anti-inflammatory effects but also because of its

neuroprotective properties.

Our data illustrate that combined TBI and HS induce a profound

inflammatory response, and subsequent inflammation may play a

key role in the progression of secondary brain injury and associated

edema. The exact mechanism of how the interplay of TBI and HS

affect the inflammatory response remains unclear, however. HS and

TBI may exert different and even opposing effects on the immune

system. A recent study described the inflammatory response when

adding HS to a murine model of TBI.49 TBI alone elicited a

proinflammatory cytokine response, but the addition of HS shifted

the cytokine profile to a more anti-inflammatory state. This re-

duction in proinflammatory response was associated with increased

IL-10 serum levels in these animals, suggesting that neuroin-

flammation may also exert beneficial effects after trauma. For ex-

ample, inflammation may positively influence the outcome in the

more long-term, chronic post-injury recovery period. Scherbel and

associates49 demonstrated that TNF-alpha may be deleterious in the

acute post-TBI period, whereas this cytokine may facilitate long-

term behavioral recovery and histological repair after neurotrauma.50

Interestingly, the brain has been shown to regionally alter TNF

mRNA gene expression.51 Moreover, Sinz and colleagues52 sug-

gested that inducible nitric oxide synthethase (iNOS), which is in-

duced in both secondary damage and in recovery from brain injury,

may have a positive effect on long-term outcome after TBI.

Yet, the time course of inflammation after injury must be con-

sidered. Acute phase inflammation in the hours immediately after

injury generates rapid lesion formation and edema. In the confined

volume of the skull, such changes in intracranial pressure may

have severe and even deadly consequences. In contrast, chronic,

long-term inflammation may be beneficial by attenuating edema,

clearing cellular debris by activated microglia and infiltrated

macrophages, and promoting fibrosis and scar formation of the

lesion in the longer term.

In the present study, the changes in gene expression were mea-

sured 8 h after the TBI insult (6 h after treatment). Because of this

short time frame, it is likely that we only captured the acute phase of

the inflammatory response to TBI+HS. In this context, our obser-

vation that VPA-treated animals experienced a decrease in in-

flammatory gene expression may suggest that VPA is attenuating

excessive neuroinflammation. Moreover, VPA induced the ex-

pression of genes involved in wound repair and tissue remodeling.

Because VPA resuscitation was associated with decreased brain

lesion size and improved neurologic recovery,14 we speculate that

this attenuation of the inflammatory response may be one of the

possible positive effects of VPA.

Our group and others have demonstrated that the choice of re-

suscitation fluid plays an important role in the severity of secondary

brain injury.21,53,54 Compared with crystalloids, artificial colloids

(e.g. HEX), and fresh frozen plasma (FFP) have shown an increased

ability to limit the extent of brain lesion size and swelling.21,53

While fluids do influence gene expression, such effects are likely

minor compared with epigenetic modulators such as VPA, a known

HDACI.

Accordingly, the goal of this study was to describe the specific

changes after VPA treatment. Because of the severity of this model,

however, fluid resuscitation was necessary to increase the likelihood

of animal survival to the 6 h post-resuscitation (8 h post-TBI) time of

sacrifice. Our choice of HEX reflects the United States military’s

interest in this resuscitation fluid. First, as an artificial colloid, HEX

possesses a volume-sparing effect relative to physiologic saline.

Second, the military is interested in battlefield-ready, shelf-stable

resuscitation fluids, which would make blood products such as FFP

logistically unfeasible. We should note that VPA-induced changes in

gene expression are likely to differ when given in combination with

other crystalloids, colloids, or blood products. Such different com-

binations may serve as an important focus of future research.

While this study suggests that VPA may modulate some path-

ways involved in the inflammatory response, it did have several

important limitations. One major limitation of this study is the lack

of controls to clearly elucidate both the consequences of the insults

as well as the effect of VPA on inflammatory gene expression. As

indicated earlier, hemorrhage may evoke complex effects on brain

and systemic inflammation after TBI, which may lead to an at-

tenuated neuroinflammatory response compared with TBI alone.48

Incorporating additional control and sham groups (e.g., naive, an-

esthesia, HS alone, TBI alone) could improve our understanding of

neuroinflammation and the effect of VPA. Financial and logistical

limitations, ethical considerations, as well as the tremendous size

and complexity of genomic studies, however, necessarily restricted

our ability to include additional groups. As such, our results should

be considered as exploratory and descriptive, rather than a defini-

tive investigation of neuroinflammation and VPA after TBI+HS.

Moreover, many variables in the model are likely to alter gene

expression, including anesthesia, instrumentation, shock, TBI, and

resuscitation. We therefore controlled for these variables by using

VPA administration as our only independent variable.

Further, this study only focused on the effects of VPA on in-

flammatory responses after TBI and HS insults. We chose to focus

on genes that were common between GO, IPA, PGSEA, and DA-

VID, such as TYROBP, TREM2, CCR1, and IL-1b. It is very

likely, however, that numerous other inflammatory and nonin-

flammatory mechanisms play a role in explaining the benefits of

VPA treatment as well. Moreover, our study did not elucidate the

relationship between alterations in gene expression, as measured by

RNA expression, and protein levels and functional outcome. Our

lab is currently conducting TBI+HS long-term survival experi-

ments to fill this gap between modulation of gene expression and its

translation to chronic neuroinflammatory processes and functional

outcome.

Finally, a shortcoming of this study is the poor annotation of the

porcine genome relative to human and rodent. While the expression
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of more than 1600 genes was altered by VPA, only a fraction of

these have been completely described. Selecting a different model

organism with a completely annotated genome could improve our

understanding of the beneficial effects of VPA, yet it may sacrifice

the considerable clinical realism of this model.

Conclusion

This is the first high-throughput analysis of cerebral inflamma-

tory gene profiling after TBI+HS. We found that VPA modulates

genes and pathways related to inflammation. This modulation of

the inflammatory response after TBI+HS may partly explain the

reduction in brain lesion size and brain swelling that we observed in

VPA treated animals. VPA may serve as a promising pharmaco-

logic agent for the management of combined TBI+HS.
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