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Abstract

Significance: Diabetes and other diseases that comprise the metabolic syndrome have reached epidemic pro-
portions. Diabetic peripheral neuropathy (DPN) is the most prevalent complication of diabetes, affecting ~50%
of diabetic patients. Characterized by chronic pain or loss of sensation, recurrent foot ulcerations, and risk for
amputation, DPN is associated with significant morbidity and mortality. Mechanisms underlying DPN patho-
genesis are complex and not well understood, and no effective treatments are available. Thus, an improved
understanding of DPN pathogenesis is critical for the development of successful therapeutic options. Recent
Advances: Recent research implicates endoplasmic reticulum (ER) stress as a novel mechanism in the onset and
progression of DPN. ER stress activates the unfolded protein response (UPR), a well-orchestrated signaling
cascade responsible for relieving stress and restoring normal ER function. Critical Issues: During times of
extreme or chronic stress, such as that associated with diabetes, the UPR may be insufficient to alleviate ER
stress, resulting in apoptosis. Here, we discuss the potential role of ER stress in DPN, as well as evidence
demonstrating how ER stress intersects with pathways involved in DPN development and progression. An
improved understanding of how ER stress contributes to peripheral nerve dysfunction in diabetes will provide
important insight into DPN pathogenesis. Future Directions: Future studies aimed at gaining the necessary
insight into ER stress in DPN pathogenesis will ultimately facilitate the development of novel therapies.
Antioxid. Redox Signal. 21, 621-633.

Introduction

DISEASES THAT COMPRISE the metabolic syndrome, in-
cluding obesity, atherosclerosis, and diabetes mellitus,
have reached epidemic proportions. In 2012, the International
Diabetes Federation reported that over 370 million people
worldwide have diabetes (38). In the US, 1.9 million new
diabetes cases were diagnosed in 2010, adding to the existing
cases for a total of 25 million Americans, or over 8% of the
population (12). A further 33% of the US population is af-
fected by prediabetes, a condition characterized by elevated
glucose levels and impaired glucose tolerance, and associated
with a high risk of developing diabetes (15, 25).

Diabetes is a complex metabolic disorder affecting car-
bohydrate, lipid, protein, and electrolyte metabolism. Type 1
diabetes is due to impaired insulin signaling resulting from
pancreatic islet cell death, while type 2 diabetes is due to

insulin resistance in metabolically active tissues. Chronic
hyperglycemia in diabetes invokes the onset of macro-
vascular (heart disease, stroke, and peripheral arterial dis-
ease) and microvascular (nephropathy, retinopathy, and
neuropathy) complications. Diabetic peripheral neuropathy
(DPN) is the most prevalent microvascular complication,
affecting ~50% of diabetic patients (19). The consequences
of DPN include chronic pain or loss of sensation, recurrent
foot ulcerations, and amputation (20). Mechanisms under-
lying the pathogenesis of DPN are complex and despite over
30 years of intensive research, no mechanism-based treat-
ment has proved effective in the treatment of DPN in man
(20, 96). An improved understanding of DPN pathogenesis is
critical for the development of successful therapeutic options.
Recent research implicates endoplasmic reticulum (ER)
stress as a novel mechanism in the onset and progression of
DPN (56, 57).
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ER stress is associated with the development of various
diseases, including neurodegenerative disorders (53) and
more recently the metabolic syndrome (3, 68, 76, 80, 105). In
this review, we summarize evidence supporting the potential
role of ER stress in the pathogenesis of DPN. We first in-
troduce the ER stress response and then present evidence of
ER stress in DPN. Finally, we discuss the important inter-
section of ER stress pathways with other established signal-
ing mechanisms associated with peripheral nerve injury in
DPN. Understanding how ER stress contributes to peripheral
nerve dysfunction in diabetes will provide important insight into
DPN pathogenesis and may identify novel therapeutic targets.

The ER Stress Response

The ER is a membranous network that extends from the
nuclear envelope toward the periphery of the cell. It is re-
quired for protein packaging and lipid biosynthesis, and acts as
an intracellular calcium store and as a sensor of cellular stress.
All secreted and membrane proteins must undergo specific
post-translational modifications and appropriate protein fold-
ing within the ER before they are fully functional and targeted
to their final destination. The ER has an intricate quality
control system to ensure accuracy of protein folding and
post-translational modifications, with the capacity to adapt to
homeostatic disturbances caused during periods of cellular
stress or at times when increased demands on protein pro-
duction occur. Pathological cellular stressors that disrupt ER
homeostasis include increases in unsaturated fatty acids or
cholesterol, altered redox status, nutrient deprivation, elevated
glucose, and perturbation of calcium homeostasis. These
stressors result in the accumulation of unfolded or misfolded
proteins within the luminal space of the ER, resulting in
ER stress and activation of the unfolded protein response
(UPR), a well-orchestrated signaling cascade responsible for
relieving stress and restoring normal ER function (17). This is
accomplished by (i) attenuating protein translation, (ii) upre-
gulating the synthesis of chaperones and enzymes that assist in
protein folding, and (iii) promoting protein degradation via
ER-associated protein degradation (ERAD) (78).

Responding to stress: the UPR

The distinct signaling pathways of the UPR are mediated by
three sensors that detect disturbances in the luminal environ-
ment of the ER: protein kinase-R-like ER kinase (PERK),
activating transcription factor 6 (ATF6), and inositol-requiring
enzyme lo (IRElo) (Fig. 1). Under native conditions, the
chaperone binding immunoglobulin protein (BiP), also known
as glucose regulating protein (GRP)78, is bound to each sensor
to prevent their activity. During periods of ER stress, however,
BiP dissociates from the sensors and preferentially binds to
misfolded or unassembled proteins within the ER, resulting in
the activation of the UPR (6, 58, 79). Dissociation of BiP from
PERK results in dimerization and autophosphorylation of the
kinase to activate the PERK pathway and decrease protein
influx into the ER. This translational attenuation is achieved by
PERK-mediated phosphorylation of eukaryotic initiation fac-
tor 2o (elF2a) that in turn blocks the guanine nucleotide ex-
change activity of eIF2B that is required for e[F2« cycling and
continued protein synthesis (32, 44). Repression of global
protein synthesis resulting from limited eIlF2o activity results
in favored translation of mRNAs, including activating tran-
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scription factor 4 (A#f4) (104). Translocation of ATF4 to the
nucleus upregulates expression of proteins and chaperones
required to restore ER homeostasis (33). Dissociation of BiP
from the transcription factor ATF6 results in translocation of
ATF6 to the Golgi apparatus where it undergoes sequential
proteolysis by site 1 and site 2 proteases. The cytosolic fragment
of ATF6 translocates to the nucleus where it induces tran-
scription of molecular chaperone proteins, similar to ATF4 (34,
77). Finally, dissociation of BiP from IREl« results in IRElx
dimerization and autophosphorylation (109). Following autop-
hosphorylation, IRE1o endoribonuclease activity cleaves X-box
binding protein 1 (Xbpl) mRNA to remove a 26-nucleotide
intron. Spliced X-box binding protein 1 (sXbpl) is translated
and in turn XBP1 translocates to the nucleus to initiate tran-
scription of chaperone proteins and proteins involved in ERAD.
Together, these adaptive mechanisms of the UPR function to
attenuate mild to moderate ER stress to restore normal ER
function (78).

Responding to stress: apoptosis

During times of extreme or chronic stress, the capacity of
the UPR is overwhelmed, and the resulting failure to alleviate
ER stress triggers apoptotic processes (Fig. 2) (28). In addi-
tion to splicing XbpI mRNA, activated IRE1« is capable of
triggering cell death via its association with tumor necrosis
factor receptor-associated factor 2 (TRAF2) and apoptosis
signal-regulating kinase 1 (ASK1). During ER stress, the
adapter protein TRAF?2 is recruited to the kinase domain of
IREl«, followed by ASK1, and the formation of the IRE1a/
TRAF2/ASK1 heterooligomeric complex then recruits c-Jun-
N-terminal kinase (JNK) and activates the JNK signaling
pathway, promoting the establishment of a proapoptotic en-
vironment (93). The PERK-mediated branch of the UPR also
contributes to stress-induced apoptosis. PERK activation and
phosphorylation of elF2« leads to upregulation of Atf4,
which subsequently induces the transcription of C/EBP ho-
mologous protein (Chop). CHOP is ubiquitously expressed at
low levels during normal cellular homeostasis; however,
persistent ER stress leads to robust CHOP expression.
Chop™'~ cells are protected from ER stress-induced apo-
ptosis (113), and CHOP has been associated with inherited
demyelinating disorders, including Charcot—-Marie-Tooth
1B disease (16, 73), further highlighting the significance of
this pathway. CHOP contributes to apoptosis via upregula-
tion of ER oxidase 1o (Erola), which subsequently activates
the ER calcium channel inositol 1,4,5-triphosphate (IP3) to
trigger the release of calcium stores into the cytosol (47). This
ER stress-induced release of calcium results in inner mito-
chondrial membrane depolarization, cytochrome c release,
and initiation of cell death processes (90). CHOP also acti-
vates growth arrest and DNA damage 34 (GADD34), which
dephosphorylates elF20, thereby promoting the recovery of
protein synthesis that was repressed by PERK (16, 59). Fi-
nally, in mice, the UPR-induced activation of apoptosis is
further complimented by cleavage of procaspase-12 within
the ER to alternatively initiate the caspase signaling cascade
(66, 88).

ER Stress in Disease

Dysregulated ER stress responses have been implicated in
various degenerative disorders, such as Parkinson’s disease,
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FIG. 1. The UPR signaling pathway. During normal cellular homeostasis, the ER chaperone BiP, also known as GRP78,
is associated with the ER transmembrane sensors PERK, elF2«, and ATF6. The ER stress response is activated when BiP
dissociates from the ER stress sensors and binds to misfolded proteins, thus activating the three arms of the UPR.
Dimerization and autophosphorylation of PERK phosphorylates elF2¢, which halts protein synthesis and activates ATF4
translocation to the nucleus, where ATF4 initiates the transcription of genes involved in restoring homeostasis. IREla
autophosphorylation promotes the splicing of XbpI. Once spliced and activated, sXBP1 translocates to the nucleus where it
initiates transcription of genes leading to the expression of molecular chaperones and components of the ERAD system.
Following dissociation from BiP, ATF6 translocates to the Golgi apparatus where it is cleaved by specific proteases, after
which, fragmented ATF6 moves to the nucleus and initiates transcription of molecular chaperone proteins. Together, these
pathways alleviate stress and restore homeostasis by halting protein translation, upregulating synthesis of molecular
chaperones, and activating ERAD. ATF4, activating transcription factor 4; ATF6, activating transcription factor 6; BiP,
binding immunoglobulin protein; elF2¢, eukaryotic initiation factor 2¢; ER, endoplasmic reticulum; ERAD, ER-associated
protein degradation; GRP, glucose regulating protein; IRElw, inositol-requiring enzyme lo; PERK, protein kinase-R-like
ER kinase; XBP1, X-box binding protein 1; UPR, unfolded protein response. To see this illustration in color, the reader is
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Alzheimer’s disease, multiple sclerosis, Charcot—Marie—
Tooth 1B, and amyotrophic lateral sclerosis (53, 73, 80,
83). In recent years, a large body of literature has also been
documented linking ER stress to diseases of the metabolic
syndrome, thus supporting the premise that ER stress may
be a critical player in DPN pathogenesis (Table 1) (3, 68,
76, 105).

ER stress in the metabolic syndrome

Diseases of the metabolic syndrome include obesity, ath-
erosclerosis, and diabetes. Obesity-induced ER stress has
been identified in mice with diet-induced obesity, a model of
prediabetes, and in type 2 diabetes leptin-deficient ob/ob
mice, as evidenced by elevated levels of phosphorylated
PERK and elF2¢ in liver and adipose tissue compared with
lean controls (68). This association was further confirmed in
man. Reductions in Bip and sXbpl as well as increases in
phosphorylated elF2« and JNK are present in adipose tissue
of obese patients (29), and increased elF2« phosphorylation,

ATF4, and CHOP are evident in liver tissue of obese patients
(74). Increased ER stress is also manifest in diabetic patho-
physiology. Pancreatic f§ cells undergo UPR-induced apo-
ptosis due to sustained insulin signaling (21), UPR-dependent
insulin resistance in liver and muscle is associated with ac-
tivation of the JNK signaling pathway (24), and diabetes-
induced ER stress has been linked to diabetic nephropathy,
retinopathy, and cognitive decline (14, 80, 89, 112). More
recently, however, evidence has arisen implicating a role for
ER stress in peripheral nerve injury and DPN (56, 57).

ER stress in DPN

DPN is primarily a sensory polyneuropathy. Despite being
described as the most common and devastating complication
associated with diabetes, there are no effective therapies. The
main reason for lack of treatment options is an incomplete
understanding of disease pathogenesis. DPN development
and progression occur within the heterogeneous environment
of the peripheral nerve and involve a complex interplay
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FIG. 2. ER stress-associated apoptosis. Under conditions of unresolvable ER stress, apoptotic pathways are activated.
IREl« forms a multioligomer complex with TRAF2 and ASK1, and in turn recruits and activates JNK, which promotes cell
death by establishing a proapoptotic environment. The PERK/eIF2« pathway is also capable of activating apoptosis via
ATF4-mediated upregulation of CHOP, which activates expression of proapoptotic genes and downregulates the expression
of antiapoptotic genes. CHOP also induces the expression of ERO1«, which activates the ER calcium release channel, IP3,
resulting in increased cytosolic calcium that triggers mitochondrial-associated cell death. Alternatively, activation and
cleavage of ER-bound caspase-12 can trigger apoptosis via UPR-independent mechanisms. ASK1, apoptosis signal-regulating
kinase 1; CHOP, C/EBP homologous protein; EROla=ER oxidase la; IP3, inositol 1,4,5-triphosphate; JNK, c-Jun-N-
terminal kinase; TRAF2, tumor necrosis factor receptor-associated factor 2. To see this illustration in color, the reader is
referred to the web version of this article at www.liebertpub.com/ars

between the nerve and surrounding cells and tissues. A de-
creased blood flow to the nerves (108), hyperglycemia (35,
99, 101), dyslipidemia (98, 99), and a lack of insulin sig-
naling (42) contribute to DPN pathogenesis. These factors
induce multiple pathogenic processes, such as low-grade
inflammation, elevated sorbitol aldose reductase signaling,
protein kinase C activation, advanced glycated end products,
oxidative stress, and mitochondrial dysfunction (96), which
culminate in the physiologic and morphologic changes as-
sociated with DPN.

A role of ER stress in DPN is being increasingly consid-
ered based on in vivo evidence supporting ER stress in-
volvement in the initiation and progression of DPN in both
type 1 and type 2 diabetic rodent models. Furthermore,
studies using ER chaperone proteins, which assist protein
folding in the ER by preventing newly synthesized poly-
peptide chains and assembled subunits from aggregating
into nonfunctional structures, is an emerging therapeutic
approach aimed at restoring ER function (22). Oral ad-
ministration of trimethylamine oxide (TMAO), a chemical
chaperone known to alleviate ER stress, to Zucker fatty (fa/
fa) rats decreased protein expression of BiP/GRP78 in the
sciatic nerve, and improved nerve conduction velocities and
behavioral responses to mechanical and thermal stimuli (56).
C57B6 mice fed a high-fat diet (HFD) also displayed an
improved neuronal phenotype when treated with salubrinal, a
compound that enhances elF2o phosphorylation (56). Neu-
ropathy severity was also attenuated in streptozotocin (STZ)-

treated rats treated with TMAO (57). Finally, C57B6
Chop™'~ mice injected with STZ displayed improved nerve
function and increased expression of the folding proteins BiP/
GRP78 and GRP94 in peripheral nerves compared with wild-
type STZ-injected mice, further suggesting a role for ER
signaling in DPN development (57). Together, these data
support a link between ER stress and DPN, as restoration of
ER function by administration of chemical chaperones or ER
stress inhibitors alleviates ER stress and improves peripheral
nerve function (56, 57).

Although these studies confirm the role of ER stress in
DPN, certain considerations must be made when evaluating
outcomes following systemic administration of chemical
chaperones. As both hyperglycemia and dyslipidemia are
known contributors to DPN (10, 96, 98), improved neuronal
phenotypes could be attributed to enhanced UPR function in
pancreatic f§ cells rather than direct effects on the UPR in the
peripheral nerve. Administration of the chemical chaperone
phenyl butyric acid (PBA) or overexpression of oxygen
regulated protein 150 (ORP150) improves pancreatic f§ cell
function and enhances insulin secretion, which in turn im-
proves the metabolic profile of the animal (67, 69). Similarly,
insulin sensitivity in adipose and hepatic tissue may be
restored following chaperone treatment (24). This must also
be considered in DPN studies. TMAO treatment in Zucker
fa/fa rats improved blood glucose and triglyceride levels,
and impaired glucose tolerance was attenuated in high
fat-fed mice treated with salubrinal (56). Thus, systemic
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TABLE 1. ER STRESS IN DISEASES RELATED TO THE METABOLIC SYNDROME
Tissue/cell Disease model ER stress response Ref.
Obesity/atherosclerosis
Liver Prediabetic HFD-fed ER stress promotes JNK-induced phosphorylation (68)
mice; type 2 of IRS1 and a resulting decrease in insulin
diabetic ob/ob mice gene expression
HFD-fed Lcat™'~ mice Cholesterol contributes to diet-induced obesity (31, 49)
and insulin resistance through an ER
stress-mediated pathway
Macrophage =~ Mouse peritoneal Cholesterol loading depletes calcium stores and (23, 74)
macrophages activates ER-dependent apoptosis
Adipose HFD-fed mice; Hypoxia increases the expression of Bip and (36)
tissue 3T3-L1 preadipocytes Chop mRNA
Diabetes
Pancreas INS-1 and rat High glucose treatment increases Chop and Bip (29, 103)
pancreatic islet cells mRNA expression
Pancreatic f§ cells Chronic high glucose exposure causes ER stress, 54)
hyperactivation of IREla, and suppression of insulin
expression; pancreatic islets show increased IRE1a
phosphorylation and increased sXbpl
mRNA expression
db/db pancreatic islets; type 2 ER stress identified in palmitate-treated MING cells (46)
diabetic patient pancreatic and islets from db/db mice; elevated BiP and CHOP
sections; insulin secreting are evident in pancreatic sections from
MING cells type 2 diabetic patients
Diabetic complications
Kidney Type 1 diabetic STZ rats Elevated BiP, CHOP, JNK, and caspase-12 is (55)
evident in kidney homogenates
Human diabetic Diabetic nephropathy patients exhibit increased (52)
nephropathy kidney BiP and sXbp1; hyperglycemia induces Xbpl
biopsies; renal and Bip in renal epithelial cells
epithelial cells
Cultured murine podocytes Palmitate-induced lipotoxicity increased BIP (89)
and CHOP levels, and decreased levels of
the antiapoptotic protein Bcl-2
Eye Akita mice; oxygen-induced Increased levels of Bip, mRNA; elF2o, and ATF4 (48)
retinopathy mice protein present in mouse retina; tunicamycin
increased BiP and ATF4 in mouse retina
Type 1 diabetic STZ mice; rat ~ STZ-treated mice exhibit elevated ATF4 in Muller (112)
Muller retinal cells cells of the retina; high glucose induces ATF4 in
cultured rat retinal Muller cells
Nerve Immortalized Schwann cells Palmitate-induced lipotoxicity upregulates Chop, (70)
Bip, and Xbp1; ER stress response is magnified
with increasing levels of glucose
Zucker fa/fa rats Elevated BiP and GRP94 protein expression (56)
in sciatic nerve
Type 1 diabetic STZ rats; Phosphorylated PERK, elF2«, IRE1«, BiP, 57

STZ-treated ChoP ™'~ mice

and ERO1« identified in sciatic nerve, and
increased CHOP, ERO1«, and BiP identified
in spinal cord of STZ-treated rats; Chop
knockout in STZ diabetic mice

improves DPN phenotypes

ATF4, activating transcription factor 4; BiP, binding immunoglobulin protein; CHOP, C/EBP homologous protein; DPN, diabetic
peripheral neuropathy; elF20, eukaryotic initiation factor 2¢; ER, endoplasmic reticulum; ERO1o, ER oxidase 1o; GRP, glucose regulating
protein; HFD, high-fat diet; IRE1«, inositol-requiring enzyme 1o; IRS1, insulin receptor substrate 1; JNK, c-Jun-N-terminal kinase; PERK,
protein kinase-R-like ER kinase; STZ, streptozotocin; XBP1, X-box binding protein 1; sXBP1, spliced X-box binding protein 1.

administration or overexpression of chaperones may mask
the beneficial effects on the nerve by indirectly improving the
metabolic profile. To circumvent these issues, direct neuronal
delivery of chaperones without impacting systemic glycemia

may be warranted to elucidate the role of ER stress on nerve nerve.

function in DPN. However, TMAO treatment in STZ-
injected rats improved DPN phenotypes despite maintained
hyperglycemia (57), suggesting that therapies targeting ER
stress responses may have direct efficacy in the peripheral
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Molecular Mechanisms of ER Stress and DPN

Although the previous studies validate the contention that
ER stress is present in DPN, mechanistic studies are required
to elucidate the involvement and implications of ER stress in
DPN development and progression. Given the heterogeneous
environment of the peripheral nerve, vascular endothelial
cells, macrophages, glial cells, and nerve cells may all po-
tentially contribute to DPN pathogenesis (Fig. 3B). There-
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fore, determining the precise localization of ER stress in
peripheral nerve and characterization of UPR pathways in
these cells is necessary to comprehend what role ER stress
plays in DPN. Furthermore, the multitude of physiological
mechanisms that are potentially involved in DPN pathogen-
esis, including hyperglycemia, dyslipidemia, inflammation,
oxidative stress, and altered calcium signaling (Fig. 3A), all
add a level of complexity to studies aimed at understanding
the connections between ER stress and DPN. In this review,
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FIG. 3. Mechanisms of diabetic neuropathy. Factors linked to type 1 diabetes (orange), type 2 diabetes (blue), and both
(green) cause DNA damage, ER stress, mitochondrial complex dysfunction, apoptosis, and loss of neurotrophic signaling
(A). This cell damage can occur in neurons, glial cells, and vascular endothelial cells, as well as triggering macro-
phage activation, all of which can lead to nerve dysfunction and neuropathy (B). The relative importance of the pathways in
this network will vary with the cell type, disease profile, and time. AGE, advanced glycation end products; LDL, low-
density lipoprotein; HDL, high-density lipoprotein; FFA, free fatty acids; ROS, reactive oxygen species (red star); PI3K,
phosphatidylinositol-3-kinase; LOX1, oxidized LDL receptor 1; RAGE, receptor for advanced glycation end products;
TLR4, Toll-like receptor 4. Reprinted from: The Lancet Neurology, Vol. 11, Callaghan et al., Diabetic neuropathy: clinical
manifestations and current treatments, Pages 521-534, Copyright (2012), with permission from Elsevier. To see this
illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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we discuss evidence demonstrating how ER stress intersects
with these pathways to provide insight into the possible in-
volvement of ER stress in DPN pathogenesis.

Hyperglycemia

Evidence from studies examining ER stress in diabetic
complications-prone tissues supports the contention that
hyperglycemia can impact ER stress and the integrated stress
response (14, 45). Diabetic retinopathy studies demonstrate
that high-glucose treatment of retinal endothelial cells results
in increased levels of CHOP, ATF4, and phosphorylated
PERK and elF2c, upregulation of inflammatory cytokines,
including tumor necrosis factor o (TNFa), and increased
expression of vascular endothelial growth factor (VEGF)
(14). This link is further supported by studies demonstrating
improvements in retinal inflammation and vascular leakage
with Atf4 knockdown in STZ-injected mice (14). Markers of
UPR signaling are also significantly upregulated in diabetic
cardiomyopathy. Increased expression of phosphorylated
PERK and elF2u, ATF4, CHOP, and ATF6 is observed in the
myocardium of spontaneous diabetic Torii rats, a model of
nonobese type 2 diabetes (45). Finally, lipotoxicity-induced
ER stress responses, including decreases in ER calcium
levels and expression of CHOP, XBP1, and BiP/GRP78, are
exacerbated in immortalized Schwann cells (iSCs) in the
presence of high glucose (70); however, glucose exposure in
the absence of lipotoxicity did not affect cell viability or ER
calcium levels. In addition, along these lines, diabetic pa-
tients with DPN who receive intensive glucose therapy do
not show favorable improvements in nerve function (10),
suggesting that glucose-independent processes also contrib-
ute to DPN.

Dyslipidemia

Dyslipidemia is strongly associated with DPN patho-
physiology by both epidemiological and basic research (2,
98,99, 105), and elevated levels of fatty acid and cholesterol-
induced ER stress have been implicated in metabolic diseases
(37, 46, 50, 65, 89). Therefore, it is important to understand
how abnormal lipid content can provoke ER stress in DPN.
Cell-based approaches have determined that elevated con-
centrations of free fatty acids (FFA) can trigger the UPR in
supporting cells of the peripheral nerve. Using iSCs, inves-
tigators have demonstrated that lipotoxicity associated with
the saturated fatty acid palmitate (PA) promotes iSC dys-
function and cell death via the UPR signaling pathway, as
evidenced by increased expression of BiP, CHOP, and XBP1
(70). These studies also demonstrated that activation of the
UPR precedes the generation of reactive oxygen species
(ROS), mitochondrial depolarization, and apoptosis, sug-
gesting that the ER stress response occurs upstream of these
processes (70). Interestingly, oleate, a monounsaturated fatty
acid, abolishes PA-induced ER stress and lipotoxicity in
C2C12 myoblasts, indicating that the composition of fatty
acid-derived phospholipids within the ER is an important
determinant of UPR activation (72).

Cholesterol has also been implicated in ER stress, as the
ER is incredibly sensitive to perturbations in free cholesterol
levels given its particularly low native cholesterol content
(8). In macrophages, cholesterol loading depletes ER luminal
calcium stores and triggers UPR activation, the expression of
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CHOP, and caspase-3-mediated apoptosis (23). Moreover,
unlike esterified cholesterol, the insertion of free cholesterol
into the lipid bilayer of macrophages can cause disturbances
in the physical properties of the membrane, which may in
turn activate the UPR. Along these lines, Schwann cells play
a significant role in myelination and are incredibly sensitive
to perturbation in membrane composition, suggesting that
dyslipidemia-induced ER stress in Schwann cells may play a
role in DPN pathogenesis. ER stress is involved in multiple
myelin-related disorders (16, 51, 73, 83), and recent evidence
has identified abnormalities in the sciatic nerve of STZ-
treated rats that include imbalances in myelin’s phospholipid,
fatty acid, and cholesterol content (13). Thus, an altered lipid
profile brought on by disturbances in lipid homeostasis has
important consequences in Schwann cell biology by affecting
membrane fluidity and function (1, 13). This may be espe-
cially important during remyelination following nerve injury
in diabetes if myelin generation is compromised due to ele-
vated/abnormal lipid substrates. However, the role of lipid
homeostasis and ER stress in DPN remains relatively unex-
plored and further studies addressing this relationship are
warranted.

Insulin signaling

Although hyperglycemia resulting from dysfunctional in-
sulin signaling in pancreatic /3 cells and metabolically active
tissues is a key contributor to nerve injury in DPN, recent
evidence also suggests that impaired insulin signaling in
peripheral neurons may also be an important factor in nerve
degeneration. The insulin receptor (IR) and insulin receptor
substrate 1 (IRS1) are widely expressed in cell bodies and
axons of peripheral neurons (30, 86, 87), where they are ac-
tivated by insulin to provide vital neurotrophic support to the
nerve (9, 91, 107). In STZ-injected rats, intrathecal low-dose
insulin treatment attenuated DPN-associated reductions in
nerve function and reversed atrophy of myelinated sural
nerve sensory axons (9). Similarly, insulin resistance has
been observed in dorsal root ganglia from db/db type 2 dia-
betic mice (42) and in hypothalamic neurons in response to
PA-induced lipotoxicity (62). Whereas the exact mechanisms
linking ER stress and insulin resistance in peripheral nerves
must still be elucidated, several mechanisms linking ER
stress and hepatic and adipose insulin resistance have been
proposed (24). One theory suggests that UPR signaling di-
rectly suppresses IR signaling through hyperactivation of
JNK and subsequent phosphorylation of IRS1 (39, 62, 93).
Alternatively, induction of lipogenic and glyconeogenic
genes downstream of UPR signaling could result in abnormal
activation of these pathways and ultimately promote insulin
resistance (24). Further studies are required to comprehend
how ER stress contributes to insulin resistance in DPN.

Inflammation

ER stress-induced UPR signaling is associated with the
production of numerous proinflammatory cytokines (50). In
macrophages, excess free cholesterol induces TNFo and
interleukin-6 (IL-6) production via activation of INK/NFxB
and CHOP, respectively (37, 110). Recent studies also pro-
vide evidence that inflammation-mediated ER stress is im-
portant in Schwann cell-based nerve injury. Studies
investigating spinal cord injury in rats demonstrate that
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upregulation of TNFo, following sciatic nerve crush injury,
effectively triggers the UPR in Schwann cells (61). Along
with increased BiP/GRP78 expression, TNFo induction of
CHOP expression led to Schwann cell apoptosis, demyelin-
ation, and nerve degeneration (61), suggesting that inflam-
matory mediators may play an important role in DPN disease
progression via ER stress pathways. Upregulation of low-
grade inflammation (41, 81) and elevation of cytokines, such
as TNFu (26, 106), in patients with DPN further emphasize
the importance of additional studies focused on determining
whether these inflammatory factors contribute to ER stress-
induced nerve pathology.

Oxidative stress

Oxidative stress is a major mechanism of hyperglycemia-
induced DPN in humans and rodents (97, 99, 102). During
normal cellular metabolism in mitochondria, ROS are formed
as by-products of electron transfer to molecular oxygen and are
important signaling molecules in biological processes such as
autophagy, phagocytosis, and inflammation (95). However,
increased ROS production and compromised endogenous an-
tioxidant defenses in diabetes lead to oxidative stress, a pro-
oxidant state resulting in injurious oxidation of proteins and
lipids (97, 99, 102). Indeed, hyperglycemia leads to increased
ROS and cellular apoptosis in cultured dorsal root ganglia
neurons (102). Furthermore, the ER is both a source of in-
creased ROS generation and is affected by increased cellular
ROS (4). Although it is less well characterized than in mito-
chondria, the ER has its own electron transport system that
traffics reducing equivalents within the lumen of the ER and
transfers electrons to molecular oxygen, resulting in con-
comitant ROS production (60). Thus, ROS generation is a
natural by-product of ER oxidative protein folding and ac-
counts for ~25% of the total cellular ROS generation (92).
Under times of increased protein load, ER ROS generation can
significantly increase (60). Given the potential for high levels
of ROS in the cell and ER, oxidative stress may significantly
impact the ER stress response in DPN.

During normal physiological conditions, endogenous an-
tioxidant mechanisms are upregulated to scavenge free rad-
icals and prevent cellular injury (4). During ER stress,
activation of PERK signaling increases NF-E2-related factor
2 (NRF2) activation and subsequent transcription of antiox-
idant and detoxification enzyme genes. This response is ev-
ident in cultured dorsal root ganglion neurons and in
Schwann cells in response to acute hyperglycemic and oxi-
dative (hydrogen peroxide) stress (100). Prolonged hyper-
glycemia, on the other hand, attenuates dorsal root ganglion
neuron antioxidant levels and activities (100), increasing the
significance of ER ROS generation under disease conditions.
Similarly, the glutathione antioxidant activity in the ER is
impacted by oxidative stress. During normal ER protein
folding (4, 60) and during the UPR response to correct mis-
folded proteins (60), glutathione is converted from its re-
duced form (GSH) to an oxidized form (GSSG); however,
excessive UPR activation can deplete the GSH:GSSG ratio,
decreasing its antioxidant capacity. Chronic stress-induced
UPR-mediated CHOP elevation also depletes the glutathione
antioxidant capacity and increases ROS production, further
escalating cellular oxidative stress levels (5, 63). Along these
lines, decreasing ER stress and CHOP expression with
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TMAO chaperone protein treatment for 12 weeks following
STZ-induced diabetes in rats attenuates lipid and protein
oxidation in the sciatic nerve, and is coincident with im-
provements in electrophysiological, behavioral, and struc-
tural neuropathy parameters in treated diabetic animals (57).
Further work from the same group using Chop knockout
mice confirmed that a CHOP-mediated ER stress response is
involved in sciatic nerve oxidative stress and the develop-
ment of DPN (57), and is consistent with reports that pan-
creatic f§ cell CHOP deletion decreases oxidative damage in a
number of mouse models of diabetes (82).

In addition to normal protein folding and the UPR, sources
of ROS outside the ER may also trigger the ER stress re-
sponse (i.e., the mitochondrial respiratory chain, increased
NADPH oxidase activity, and inflammatory processes). Al-
though these sources of ROS in diabetes and their contribu-
tion to peripheral nerve dysfunction are relatively well
characterized, their interactions with the ER remain largely
unexplored (60) and require future attention.

Calcium signaling

The ER is a major store for intracellular calcium, and cal-
cium levels are three- to four-times greater in the ER lumen
than in the cytosol (85); thus, factors that perturb calcium
homeostasis activate the UPR. Experimentally, calcium stores
in the ER can be depleted using the calcium ionophore A23167
or thapsigargin to block uptake of calcium from the cytosol (7,
18). This depletion impairs calcium-dependent chaperones and
folding enzymes and results in the accumulation of misfolded
proteins and subsequent activation of the UPR (11, 27,75, 84).
Disruptions of ER calcium homeostasis are involved in various
forms of neuropathology (94), and evidence for disrupted ER
calcium homeostasis is evident in diabetic animal models.
Dorsal root ganglia sensory neurons from type 1 diabetic STZ-
injected rats exhibit reduced calcium levels and diminished
calcium uptake by the ER (111). Similarly, comparison of
lumbar and cervical dorsal root ganglia neurons from diabetic
STZ rats revealed that altered calcium dynamics are more
prominent in lumbar neurons, the ganglia that are affected first
in DPN (40, 43). Additional implications for a role of ER
calcium homeostasis in DPN stems from the recent microarray
analysis of peripheral nerve tissue from diabetic mice. Dif-
ferentially expressed genes (DEGs) related to Ca®* transport
are highly downregulated in 24-week db/db mice; however, no
significant increase is observed in UPR-related DEGs despite
large changes in calcium (71). Experimental validation is re-
quired to confirm these data, but it is plausible that calcium-
induced ER stress may induce UPR-independent cellular
stress. Studies in human and mouse macrophages demonstrate
that ER stress activates the NOD-like receptor family, pyrin
domain containing 3 (NLRP3) inflammasome, and subsequent
inflammatory responses independent of the UPR (64), and
calcium release from the ER can impact mitochondrial
membrane depolarization and increase oxidative stress, which
could contribute to neuronal injury (27). Further examination
into the relationship between calcium signaling in DPN is
required.

Conclusion

Despite recent advances in our understanding of DPN
pathophysiology, few therapies exist for the management of
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DPN. Given the recent association of ER stress with DPN in
diabetic animal models, the association of ER stress with
pathways involved in DPN pathogenesis and the insight
gained from studies examining interventions that target ER
stress pathways, the development of therapeutic approaches
that enhance ER function (i.e., increase chaperone avail-
ability) and decrease UPR-activated cell death should be
considered. The role of ER stress in DPN, however, remains
largely unexplored and several key questions must still be
answered. For instance, what induces ER stress in the diabetic
milieu of the peripheral nerve? What cells in the peripheral
nerve are affected by ER stress, and are all affected cells
equally susceptible to ER stress? Furthermore, which UPR
pathways are implicated in DPN? Finally, what is the inter-
play between ER stress and other components of DPN
pathogenesis, such as calcium storage and transport, oxida-
tive stress, myelination and insulin signaling? As an abun-
dance of information on other signaling pathways in DPN
etiology exists, it is crucial to understand these interactions
with the ER and elucidate how they contribute to disease.
With additional insight into cell-specific contributions of the
UPR to DPN pathogenesis, we hope to ultimately discover
mechanism-based therapies that can prevent this injury cas-
cade and ameliorate the signs and symptoms of DPN.

Acknowledgments

The authors would like to thank Mrs. Judith Bentley for
excellent administrative support during the preparation of
this article. Funding support is provided by the Program for
Neurology Research & Discovery and the A. Alfred Taub-
man Medical Research Institute. L.M.H. is funded by a fel-
lowship from the Juvenile Diabetes Research Foundation.

References

1. Anitei M and Pfeiffer SE. Myelin biogenesis: sorting out
protein trafficking. Curr Biol 16: R418-R421, 2006.

2. Ansquer JC, Foucher C, Aubonnet P, and Le Malicot K.
Fibrates and microvascular complications in diabetes—
insight from the FIELD study. Cyzr Pharm Des 15: 537-
552, 2009.

3. Back SH and Kaufman RJ. Endoplasmic reticulum stress
and type 2 diabetes. AuuuReyv Rigchem 81: 767-793,
2012.

4. Bashan N, Kovsan J, Kachko I, Ovadia H, and Rudich A.
Positive and negative regulation of insulin signaling by
reactive oxygen and nitrogen species. Physiol Rev 89: 27—
71, 2009.

5. Bek MF, Bayer M, Muller B, Greiber S, Lang D, Schwab
A, August C, Springer E, Rohrbach R, Huber TB, Benzing
T, and Pavenstadt H. Expression and function of C/EBP
homology protein (GADD153) in podocytes. Am J Pathol
168: 20-32, 2006.

6. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, and
Ron D. Dynamic interaction of BiP and ER stress trans-
ducers in the unfolded-protein response. Nat Cell Biol 2:
326-332, 2000.

7. Booth C and Koch GL. Perturbation of cellular calcium
induces secretion of luminal ER proteins. Cell 59: 729-
737, 1989.

8. Bretscher MS, and Munro S. Cholesterol and the Golgi
apparatus. Science 261: 1280-1281, 1993.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

629

. Brussee V, Cunningham FA, and Zochodne DW. Direct

insulin signaling of neurons reverses diabetic neuropathy.
Diabetes 53: 1824—-1830, 2004.

Callaghan BC, Little AA, Feldman EL, and Hughes RA.
Enhanced glucose control for preventing and treating
diabetic neuropathy. Cochrane Database Syst Rev 6:
CD007543, 2012.

Cao SS and Kaufman RJ. Targeting endoplasmic reticu-
lum stress in metabolic disease. Expert Opin Ther Targets
17: 437448, 2013.

Centers for Disease Control and Prevention. National di-
abetes fact sheet: national estimates and general infor-
mation on diabetes and prediabetes in the United States A.
Georgia: U.S. Department of Health and Human Services,
Centers for Disease Control and Prevention, 2011.
Cermenati G, Abbiati F, Cermenati S, Brioschi E, Vo-
lonterio A, Cavaletti G, Saez E, De Fabiani E, Crestani M,
Garcia-Segura LM, Melcangi RC, Caruso D, and Mitro N.
Diabetes-induced myelin abnormalities are associated
with an altered lipid pattern: protective effects of LXR
activation. J Lipid Res 53: 300-310, 2012.

Chen Y, Wang JJ, Li J, Hosoya KI, Ratan R, Townes T,
and Zhang SX. Activating transcription factor 4 mediates
hyperglycaemia-induced endothelial inflammation and
retinal vascular leakage through activation of STAT3 in a
mouse model of type 1 diabetes. Digbetologig 55: 2533—
2545, 2012.

Cowie CC, Rust KF, Ford ES, Eberhardt MS, Byrd-Holt
DD, Li C, Williams DE, Gregg EW, Bainbridge KE,
Saydah SH, and Geiss LS. Full accounting of diabetes and
pre-diabetes in the U.S. population in 1988-1994 and
2005-2006. DRigbetes Care 32: 287-294, 2009.
D’Antonio M, Musner N, Scapin C, Ungaro D, Del Carro
U, Ron D, Feltri ML, and Wrabetz L. Resetting transla-
tional homeostasis restores myelination in Charcot-Marie-
Tooth disease type 1B mice. J Exp Med 210: 821-838,
2013.

Dorner AJ, Wasley LC, and Kaufman RJ. Increased
synthesis of secreted proteins induces expression of
glucose-regulated proteins in butyrate-treated Chinese
hamster ovary cells. J Biol Chem 264: 20602-20607,
1989.

Drummond IA, Lee AS, Resendez E Jr., and Steinhardt
RA. Depletion of intracellular calcium stores by calcium
ionophore A23187 induces the genes for glucose-regulated
proteins in hamster fibroblasts. J Biol Chem 262: 12801—
12805, 1987.

Dyck PJ, Kratz KM, Karnes JL, Litchy WJ, Klein R, Pach
JM, Wilson DM, O’Brien PC, Melton LJ 3rd, and Service
FJ. The prevalence by staged severity of various types of
diabetic neuropathy, retinopathy, and nephropathy in a
population-based cohort: the Rochester Diabetic Neuro-
pathy Study. Neurology 43: 817-824, 1993.

Edwards JL, Vincent AM, Cheng HT, and Feldman EL.
Diabetic neuropathy: mechanisms to management. Phar-
macol Ther 120: 1-34, 2008.

Eizirik DL, Miani M, and Cardozo AK. Signalling danger:
endoplasmic reticulum stress and the unfolded protein
response in pancreatic islet inflammation. Digbetologia
56: 234-241, 2013.

Engin F and Hotamisligil GS. Restoring endoplasmic re-
ticulum function by chemical chaperones: an emerging
therapeutic approach for metabolic diseases. Diabetes
QObes Metab 12 Suppl 2: 108-115, 2010.


http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=8362242&crossref=10.1126%2Fscience.8362242&citationId=p_21
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=23547100&crossref=10.1084%2Fjem.20122005&citationId=p_29
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=16753556&crossref=10.1016%2Fj.cub.2006.05.010&citationId=p_14
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=2511206&citationId=p_30
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=3114264&citationId=p_31
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=19199980&crossref=10.2174%2F138161209787315701&citationId=p_15
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=8469345&crossref=10.1212%2FWNL.43.4.817&citationId=p_32
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=22443930&crossref=10.1146%2Fannurev-biochem-072909-095555&citationId=p_16
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=8469345&crossref=10.1212%2FWNL.43.4.817&citationId=p_32
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=18616962&crossref=10.1016%2Fj.pharmthera.2008.05.005&citationId=p_33
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=19126754&crossref=10.1152%2Fphysrev.00014.2008&citationId=p_17
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=22158827&crossref=10.1194%2Fjlr.M021188&citationId=p_26
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=16400006&crossref=10.2353%2Fajpath.2006.040774&citationId=p_18
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=23132339&crossref=10.1007%2Fs00125-012-2762-3&citationId=p_34
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=23132339&crossref=10.1007%2Fs00125-012-2762-3&citationId=p_34
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=22660795&crossref=10.1007%2Fs00125-012-2594-1&citationId=p_27
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=10854322&crossref=10.1038%2F35014014&citationId=p_19
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=2510935&crossref=10.1016%2F0092-8674%2889%2990019-6&citationId=p_20
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=19017771&crossref=10.2337%2Fdc08-1296&citationId=p_28

630

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Feng B, Yao PM, Li Y, Devlin CM, Zhang D, Harding
HP, Sweeney M, Rong JX, Kuriakose G, Fisher EA,
Marks AR, Ron D, and Tabas I. The endoplasmic retic-
ulum is the site of cholesterol-induced cytotoxicity in
macrophages. Nat Cell Biol 5: 781-792, 2003.
Flamment M, Hajduch E, Ferre P, and Foufelle F. New
insights into ER stress-induced insulin resistance. Trends
Ludocrinol Mergh 23: 381-390, 2012.

Geiss LS, James C, Gregg EW, Albright A, Williamson
DF, and Cowie CC. Diabetes risk reduction behaviors
among U.S. adults with prediabetes. ApJ Prey Med 38:
403409, 2010.

Gonzalez-Clemente JM, Mauricio D, Richart C, Broch M,
Caixas A, Megia A, Gimenez-Palop O, Simon I, Martinez-
Riquelme A, Gimenez-Perez G, and Vendrell J. Diabetic
neuropathy is associated with activation of the TNF-alpha
system in subjects with type 1 diabetes mellitus. Clin
Ludocrinol (Qxf) 63: 525-529, 2005.

Gorlach A, Klappa P, and Kietzmann T. The endoplasmic
reticulum: folding, calcium homeostasis, signaling, and
redox control. Autigxid Redax Siongl 8: 1391-1418, 2006.
Gorman AM, Healy SJ, Jager R, and Samali A. Stress
management at the ER: regulators of ER stress-induced
apoptosis. Phgrmacol Ther 134: 306-316, 2012.

Gregor MF, Yang L, Fabbrini E, Mohammed BS, Eagon
JC, Hotamisligil GS, and Klein S. Endoplasmic reticulum
stress is reduced in tissues of obese subjects after weight
loss. Diabetes 58: 693-700, 2009.

Grote CW, Morris JK, Ryals JM, Geiger PC, and Wright
DE. Insulin receptor substrate 2 expression and involve-
ment in neuronal insulin resistance in diabetic neuropathy.
Lap Digheres Res 2011: 212571, 2011.

Hager L, Li L, Pun H, Liu L, Hossain MA, Maguire GF,
Naples M, Baker C, Magomedova L, Tam J, Adeli K,
Cummins CL, Connelly PW, and Ng DS. Lecithin:
cholesterol acyltransferase deficiency protects against
cholesterol-induced hepatic endoplasmic reticulum stress
in mice. J Biol Chem 287: 20755-20768, 2012.

Harding HP and Ron D. Endoplasmic reticulum stress and
the development of diabetes: a review. Diabetes 51 Suppl
3: S455-S461, 2002.

Harding HP, Zhang Y, Bertolotti A, Zeng H, and Ron D.
Perk is essential for translational regulation and cell sur-
vival during the unfolded protein response. Mol Cell 5:
897-904, 2000.

Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon
M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell
JC, Hettmann T, Leiden JM, and Ron D. An integrated
stress response regulates amino acid metabolism and re-
sistance to oxidative stress. Mol Cell 11: 619-633, 2003.
Hinder LM, Vincent AM, Burant CF, Pennathur S, and
Feldman EL. Bioenergetics in diabetic neuropathy: what we
need to know. LPexpher Nexp Sust 17 Suppl 2: 10-14, 2012.
Hosogai N, Fukuhara A, Oshima K, Miyata Y, Tanaka S,
Segawa K, Furukawa S, Tochino Y, Komuro R, Matsuda
M, and Shimomura I. Adipose tissue hypoxia in obesity
and its impact on adipocytokine dysregulation. Diabetes
56: 901-911, 2007.

Hotamisligil GS. Endoplasmic reticulum stress and the
inflammatory basis of metabolic disease. Cell 140: 900-
917, 2010.

International Diabetes Federation. IDF Diabetes Atlas
6th Edition. Brussels, Belgium: International Diabetes
Federation, 2013. http://www.idf.org/diabetesatlas

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

O’BRIEN ET AL.

Hu P, Han Z, Couvillon AD, Kaufman RJ, and Exton JH.
Autocrine tumor necrosis factor alpha links endoplasmic
reticulum stress to the membrane death receptor pathway
through IRElalpha-mediated NF-kappaB activation and
down-regulation of TRAF2 expression. Mol Cell Biol 26:
3071-3084, 2006.

Huang TJ, Sayers NM, Fernyhough P, and Verkhratsky A.
Diabetes-induced alterations in calcium homeostasis in sen-
sory neurones of streptozotocin-diabetic rats are restricted
to lumbar ganglia and are prevented by neurotrophin-3.
Diabetologig 45: 560-570, 2002.

Hur J, Sullivan KA, Pande M, Hong Y, Sima AA, Ja-
gadish HV, Kretzler M, and Feldman EL. The identifica-
tion of gene expression profiles associated with
progression of human diabetic neuropathy. Brain 134:
3222-3235, 2011.

Kim B, McLean LL, Philip SS, and Feldman EL. Hy-
perinsulinemia induces insulin resistance in dorsal root
ganglion neurons. Endocrinology 152: 3638-3647, 2011.
Kostyuk E, Voitenko N, Kruglikov I, Shmigol A, Shishkin
V, Efimov A, and Kostyuk P. Diabetes-induced changes in
calcium homeostasis and the effects of calcium channel
blockers in rat and mice nociceptive neurons. Diabetolo-
gia 44: 1302-1309, 2001.

Krishnamoorthy T, Pavitt GD, Zhang F, Dever TE, and
Hinnebusch AG. Tight binding of the phosphorylated al-
pha subunit of initiation factor 2 (elF2alpha) to the reg-
ulatory subunits of guanine nucleotide exchange factor
elF2B is required for inhibition of translation initiation.
Mol Cell Biol 21: 5018-5030, 2001.

Lakshmanan AP, Harima M, Suzuki K, Soetikno V, Na-
gata M, Nakamura T, Takahashi T, Sone H, Kawachi H,
and Watanabe K. The hyperglycemia stimulated myo-
cardial endoplasmic reticulum (ER) stress contributes to
diabetic cardiomyopathy in the transgenic non-obese type
2 diabetic rats: a differential role of unfolded protein re-
sponse (UPR) signaling proteins. [teleRigebdoimtallRial
45: 438-447, 2013.

Laybutt DR, Preston AM, Akerfeldt MC, Kench JG,
Busch AK, Biankin AV, and Biden TJ. Endoplasmic re-
ticulum stress contributes to beta cell apoptosis in type 2
diabetes. DRigbetologig 50: 752-763, 2007.

Li G, Mongillo M, Chin KT, Harding H, Ron D, Marks
AR, and Tabas 1. Role of ERO1-alpha-mediated stimula-
tion of inositol 1,4,5-triphosphate receptor activity in en-
doplasmic reticulum stress-induced apoptosis. J Cell Biol
186: 783792, 2009.

Li J, Wang JJ, Yu Q, Wang M, and Zhang SX. En-
doplasmic reticulum stress is implicated in retinal in-
flammation and diabetic retinopathy. FEBS Lett 583:
1521-1527, 2009.

Li L, Hossain MA, Sadat S, Hager L, Liu L, Tam L,
Schroer S, Huogen L, Fantus IG, Connelly PW, Woo M,
and Ng DS. Lecithin cholesterol acyltransferase null mice
are protected from diet-induced obesity and insulin re-
sistance in a gender-specific manner through multiple
pathways. JBiol Chem 286: 17809-17820, 2011.

Li Y, Schwabe RF, DeVries-Seimon T, Yao PM, Gerbod-
Giannone MC, Tall AR, Davis RJ, Flavell R, Brenner DA,
and Tabas I. Free cholesterol-loaded macrophages are
an abundant source of tumor necrosis factor-alpha
and interleukin-6: model of NF-kappaB- and map kinase-
dependent inflammation in advanced atherosclerosis.
LBiol Chem 280: 21763-21772, 2005.


http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=22770719&crossref=10.1016%2Fj.tem.2012.06.003&citationId=p_37
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=19364508&crossref=10.1016%2Fj.febslet.2009.04.007&citationId=p_61
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=12032634&crossref=10.1007%2Fs00125-002-0785-x&citationId=p_53
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&crossref=10.2337%2Fdiabetes.51.2007.S455&citationId=p_45
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=21454561&crossref=10.1074%2Fjbc.M110.180893&citationId=p_62
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=21926103&crossref=10.1093%2Fbrain%2Fawr228&citationId=p_54
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=10882126&crossref=10.1016%2FS1097-2765%2800%2980330-5&citationId=p_46
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=20307809&crossref=10.1016%2Fj.amepre.2009.12.029&citationId=p_38
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=20307809&crossref=10.1016%2Fj.amepre.2009.12.029&citationId=p_38
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=21810948&crossref=10.1210%2Fen.2011-0029&citationId=p_55
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=12667446&crossref=10.1016%2FS1097-2765%2803%2900105-9&citationId=p_47
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=16268804&crossref=10.1111%2Fj.1365-2265.2005.02376.x&citationId=p_39
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=21810948&crossref=10.1210%2Fen.2011-0029&citationId=p_55
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&system=10.1089%2Fars.2006.8.1391&citationId=p_40
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&crossref=10.1111%2Fj.1529-8027.2012.00389.x&citationId=p_48
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=11692179&crossref=10.1007%2Fs001250100642&citationId=p_56
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=22387231&crossref=10.1016%2Fj.pharmthera.2012.02.003&citationId=p_41
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=11438658&crossref=10.1128%2FMCB.21.15.5018-5030.2001&citationId=p_57
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=17395738&crossref=10.2337%2Fdb06-0911&citationId=p_49
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=19066313&crossref=10.2337%2Fdb08-1220&citationId=p_42
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=23032698&crossref=10.1016%2Fj.biocel.2012.09.017&citationId=p_58
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&crossref=10.1111%2Fj.1463-1326.2010.01282.x&citationId=p_35
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=17268797&crossref=10.1007%2Fs00125-006-0590-z&citationId=p_59
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=16581782&crossref=10.1128%2FMCB.26.8.3071-3084.2006&citationId=p_52
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=22500017&crossref=10.1074%2Fjbc.M112.340919&citationId=p_44
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=12907943&crossref=10.1038%2Fncb1035&citationId=p_36
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=19752026&crossref=10.1083%2Fjcb.200904060&citationId=p_60
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=12907943&crossref=10.1038%2Fncb1035&citationId=p_36

ER STRESS IN DIABETIC NEUROPATHY

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

Lin W and Popko B. Endoplasmic reticulum stress in
disorders of myelinating cells. Nat Neurosci 12: 379-385,
20009.

Lindenmeyer MT, Rastaldi MP, Ikehata M, Neusser MA,
Kretzler M, Cohen CD, and Schlondorff D. Proteinuria
and hyperglycemia induce endoplasmic reticulum stress.

LAm Soc Nephral 19: 2225-2236, 2008.
Lindholm D, Wootz H, and Korhonen L. ER stress and

neurodegenerative diseases. Cell Degrh Differ 13: 385-
392, 2006.

Lipson KL, Fonseca SG, Ishigaki S, Nguyen LX, Foss E,
Bortell R, Rossini AA, and Urano F. Regulation of insulin
biosynthesis in pancreatic beta cells by an endoplasmic
reticulum-resident protein kinase IRE1. Cell Metab 4:
245-254, 2006.

Liu G, Sun Y, Li Z, Song T, Wang H, Zhang Y, and Ge Z.
Apoptosis induced by endoplasmic reticulum stress in-
volved in diabetic kidney disease. BigeheuRignbyuc Res
Commun 370: 651-656, 2008.

Lupachyk S, Watcho P, Obrosov AA, Stavniichuk R, and
Obrosova IG. Endoplasmic reticulum stress contributes to
prediabetic peripheral neuropathy. Exp Neurol 247: 342—
348, 2013.

Lupachyk S, Watcho P, Stavniichuk R, Shevalye H, and
Obrosova IG. Endoplasmic reticulum stress plays a key
role in the pathogenesis of diabetic peripheral neuropathy.
Diabetes 62: 944-952, 2013.

Ma K, Vattem KM, and Wek RC. Dimerization and re-
lease of molecular chaperone inhibition facilitate activa-
tion of eukaryotic initiation factor-2 kinase in response to
endoplasmic reticulum stress. J Biol Chem 277: 18728-
18735, 2002.

Ma Y and Hendershot LM. Delineation of a negative
feedback regulatory loop that controls protein translation
during endoplasmic reticulum stress. J Biol Chem 278:
34864-34873, 2003.

Malhotra JD and Kaufman RJ. Endoplasmic reticulum
stress and oxidative stress: a vicious cycle or a double-
edged sword? Agtiguid Redax Siopgl 9: 2277-2293, 2007.
Mantuano E, Henry K, Yamauchi T, Hiramatsu N, Ya-
mauchi K, Orita S, Takahashi K, Lin JH, Gonias SL, and
Campana WM. The unfolded protein response is a major
mechanism by which LRP1 regulates Schwann cell sur-
vival after injury. J Neurosci 31: 13376-13385, 2011.
Mayer CM and Belsham DD. Palmitate attenuates insu-
lin signaling and induces endoplasmic reticulum stress
and apoptosis in hypothalamic neurons: rescue of resis-
tance and apoptosis through adenosine 5" monophosphate-
activated protein kinase activation. Eudocrinology 151:
576-585, 2010.

McCullough KD, Martindale JL, Klotz LO, Aw TY, and
Holbrook NJ. Gadd153 sensitizes cells to endoplasmic
reticulum stress by down-regulating Bcl2 and perturbing
the cellular redox state. Mol Cell Biol 21: 1249-1259,
2001.

Menu P, Mayor A, Zhou R, Tardivel A, Ichijo H, Mori K,
and Tschopp J. ER stress activates the NLRP3 in-
flammasome via an UPR-independent pathway. Cell
Death Dis 3: €261, 2012.

Musso G, Gambino R, and Cassader M. Cholesterol me-
tabolism and the pathogenesis of non-alcoholic steatohe-
patitis. Prog Lipid Res 52: 175-191, 2013.

Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner
BA, and Yuan J. Caspase-12 mediates endoplasmic-

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

82.

631

reticulum-specific apoptosis and cytotoxicity by amyloid-
beta. Nature 403: 98-103, 2000.

Ozawa K, Miyazaki M, Matsuhisa M, Takano K, Nakatani
Y, Hatazaki M, Tamatani T, Yamagata K, Miyagawa J,
Kitao Y, Hori O, Yamasaki Y, and Ogawa S. The endo-
plasmic reticulum chaperone improves insulin resistance
in type 2 diabetes. Diabetes 54: 657-663, 2005.

Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Oz-
delen E, Tuncman G, Gorgun C, Glimcher LH, and Ho-
tamisligil GS. Endoplasmic reticulum stress links obesity,
insulin action, and type 2 diabetes. Science 306: 457-461,
2004.

Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt
E, Smith RO, Gorgun CZ, and Hotamisligil GS. Chemical
chaperones reduce ER stress and restore glucose homeo-
stasis in a mouse model of type 2 diabetes. Science 313:
1137-1140, 2006.

Padilla A, Descorbeth M, Almeyda AL, Payne K, De and
Leon M. Hyperglycemia magnifies Schwann cell dys-
function and cell death triggered by PA-induced lipo-
toxicity. Brain Res 1370: 64-79, 2011.

Pande M, Hur J, Hong Y, Backus C, Hayes JM, Oh SS,
Kretzler M, and Feldman EL. Transcriptional profiling of
diabetic neuropathy in the BKS db/db mouse: a model of
type 2 diabetes. Diabetes 60: 1981-1989, 2011.

Peng G,LiL, Liu Y, PuJ, Zhang S, YuJ, Zhao J, and Liu
P. Oleate blocks palmitate-induced abnormal lipid distri-
bution, endoplasmic reticulum expansion and stress, and
insulin resistance in skeletal muscle. Endocrinology 152:
2206-2218, 2011.

Pennuto M, Tinelli E, Malaguti M, Del Carro U, D’An-
tonio M, Ron D, Quattrini A, Feltri ML, and Wrabetz L.
Ablation of the UPR-mediator CHOP restores motor
function and reduces demyelination in Charcot-Marie-
Tooth 1B mice. Neuron 57: 393405, 2008.

Puri P, Mirshahi F, Cheung O, Natarajan R, Maher JW,
Kellum JM, and Sanyal AJ. Activation and dysregulation
of the unfolded protein response in nonalcoholic fatty li-
ver disease. ggsiroenteralooy 134: 568-576, 2008.
Sambrook JF. The involvement of calcium in transport of
secretory proteins from the endoplasmic reticulum. Cell
61: 197-199, 1990.

Scheuner D and Kaufman RJ. The unfolded protein re-
sponse: a pathway that links insulin demand with beta-cell
failure and diabetes. Endocr Rev 29: 317-333, 2008.
Schindler AJ and Schekman R. In vitro reconstitution of
ER-stress induced ATF6 transport in COPII vesicles. Proc
Natl Acad Sci IZS A 106: 17775-17780, 2009.

Schroder M and Kaufman RJ. ER stress and the unfolded
protein response. Mutat Res 569: 29-63, 2005.

Shen J, Chen X, Hendershot L, and Prywes R. ER stress
regulation of ATF6 localization by dissociation of BiP/
GRP78 binding and unmasking of Golgi localization
signals. Dev Cell 3: 99-111, 2002.

Sims-Robinson C, Zhao S, Hur J, and Feldman EL.
Central nervous system endoplasmic reticulum stress in a
murine model of type 2 diabetes. DRigbetologia 55: 2276—
2284, 2012.

Sjoholm A and Nystrom T. Inflammation and the etiology
of type 2 diabetes. RigheleeldeiabResRey 77: 4-10,
2006.

Song B, Scheuner D, Ron D, Pennathur S, and Kaufman
RJ. Chop deletion reduces oxidative stress, improves beta
cell function, and promotes cell survival in multiple



http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=12110171&crossref=10.1016%2FS1534-5807%2802%2900203-4&citationId=p_92
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=21617178&crossref=10.2337%2Fdb10-1541&citationId=p_84
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=11158311&crossref=10.1128%2FMCB.21.4.1249-1259.2001&citationId=p_76
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=18420027&crossref=10.1016%2Fj.bbrc.2008.04.031&citationId=p_68
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=11158311&crossref=10.1128%2FMCB.21.4.1249-1259.2001&citationId=p_76
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=22581041&crossref=10.1007%2Fs00125-012-2573-6&citationId=p_93
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=21505048&crossref=10.1210%2Fen.2010-1369&citationId=p_85
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=22278288&crossref=10.1038%2Fcddis.2011.132&citationId=p_77
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=23142188&crossref=10.1016%2Fj.expneurol.2012.11.001&citationId=p_69
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=23364451&crossref=10.2337%2Fdb12-0716&citationId=p_70
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=23206728&crossref=10.1016%2Fj.plipres.2012.11.002&citationId=p_78
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=18255032&crossref=10.1016%2Fj.neuron.2007.12.021&citationId=p_86
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=15826936&crossref=10.1074%2Fjbc.M501759200&citationId=p_63
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=11907036&crossref=10.1074%2Fjbc.M200903200&citationId=p_71
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=18082745&crossref=10.1053%2Fj.gastro.2007.10.039&citationId=p_87
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=10638761&crossref=10.1038%2F47513&citationId=p_79
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=15734840&crossref=10.2337%2Fdiabetes.54.3.657&citationId=p_80
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=12840028&crossref=10.1074%2Fjbc.M301107200&citationId=p_72
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=19287390&crossref=10.1038%2Fnn.2273&citationId=p_64
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=2184940&crossref=10.1016%2F0092-8674%2890%2990798-J&citationId=p_88
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=15486293&crossref=10.1126%2Fscience.1103160&citationId=p_81
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&system=10.1089%2Fars.2007.1782&citationId=p_73
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=18776125&crossref=10.1681%2FASN.2007121313&citationId=p_65
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=18436705&crossref=10.1210%2Fer.2007-0039&citationId=p_89
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=18436705&crossref=10.1210%2Fer.2007-0039&citationId=p_89
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=16931765&crossref=10.1126%2Fscience.1128294&citationId=p_82
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=21940431&crossref=10.1523%2FJNEUROSCI.2850-11.2011&citationId=p_74
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=16397584&crossref=10.1038%2Fsj.cdd.4401778&citationId=p_66
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=19822759&crossref=10.1073%2Fpnas.0910342106&citationId=p_90
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=16950141&crossref=10.1016%2Fj.cmet.2006.07.007&citationId=p_67
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=15603751&crossref=10.1016%2Fj.mrfmmm.2004.06.056&citationId=p_91
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=21108938&crossref=10.1016%2Fj.brainres.2010.11.013&citationId=p_83
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=19952270&crossref=10.1210%2Fen.2009-1122&citationId=p_75
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=16950141&crossref=10.1016%2Fj.cmet.2006.07.007&citationId=p_67

632

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

mouse models of diabetes. J Clin Invest 118: 3378-3389,
2008.

Southwood CM, Garbern J, Jiang W, and Gow A. The
unfolded protein response modulates disease severity in
Pelizaeus-Merzbacher disease. Neuron 36: 585-596,
2002.

Stevens FJ and Argon Y. Protein folding in the ER. Semin
Cell Dey Biol 10: 443-454, 1999.

Stutzmann GE, and Mattson MP. Endoplasmic reticulum
Ca(2+) handling in excitable cells in health and disease.
Pharmacol Rey 63: 700-727, 2011.

Sugimoto K, Murakawa Y, and Sima AA. Expression and
localization of insulin receptor in rat dorsal root gan-
glion and spinal cord. L Perpher Nerp Sust 7: 44-53,
2002.

Sugimoto K, Murakawa Y, Zhang W, Xu G, and Sima
AA. Insulin receptor in rat peripheral nerve: its localiza-
tion and alternatively spliced isoforms. Righetes Metah
Res Rev 16: 354-363, 2000.

Szegezdi E, Fitzgerald U, and Samali A. Caspase-12 and
ER-stress-mediated apoptosis: the story so far. Ann N Y
Acad Sci 1010: 186-194, 2003.

Tao JL, Wen YB, Shi BY, Zhang H, Ruan XZ, Li H, Li
XM, Dong WJ, and Li XW. Endoplasmic reticulum stress
is involved in podocyte apoptosis induced by saturated
fatty acid palmitate. Chip Med J (Fueol) 125: 3137-3142,
2012.

Timmins JM, Ozcan L, Seimon TA, Li G, Malagelada C,
Backs J, Backs T, Bassel-Duby R, Olson EN, Anderson
ME, and Tabas I. Calcium/calmodulin-dependent pro-
tein kinase II links ER stress with Fas and mitochondrial
apoptosis pathways. J Clin [nvest 119: 2925-2941, 2009.
Toth C, Brussee V, Martinez JA, McDonald D, Cun-
ningham FA, and Zochodne DW. Rescue and regeneration
of injured peripheral nerve axons by intrathecal insulin.
Neuroscience 139: 429—449, 2006.

Tu BP and Weissman JS. Oxidative protein folding in
eukaryotes: mechanisms and consequences. J_Cell Biol
164: 341-346, 2004.

Urano F, Wang X, Bertolotti A, Zhang Y, Chung P,
Harding HP, and Ron D. Coupling of stress in the ER to
activation of JNK protein kinases by transmembrane
protein kinase IRE1. Science 287: 664—-666, 2000.
Verkhratsky A. Physiology and pathophysiology of the
calcium store in the endoplasmic reticulum of neurons.
Physiol Rev 85: 201-279, 2005.

Vernon PJ and Tang D. Eat-me: autophagy, phagocytosis,
and reactive oxygen species signaling. Antioxid Redox
Signal 18: 677-691, 2013.

Vincent AM, Callaghan BC, Smith AL, and Feldman EL.
Diabetic neuropathy: cellular mechanisms as therapeutic

targets. Nat Rev Newrol 7: 573-583, 2011.
Vincent AM and Feldman EL. New insights into the

mechanisms of diabetic neuropathy. Rey Eudocr Meigh
Disord 5: 227-236, 2004.

Vincent AM, Hayes JM, McLean LL, Vivekanandan-Giri
A, Pennathur S, and Feldman EL. Dyslipidemia-induced
neuropathy in mice: the role of oxLDL/LOX-1. Diabetes
58: 2376-2385, 2009.

Vincent AM, Hinder LM, Pop-Busui R, and Feldman EL.
Hyperlipidemia: a new therapeutic target for diabetic
neuropathy. LPerinher Nery Sust 14: 257-267, 2009.
Vincent AM, Kato K, McLean LL, Soules ME, and
Feldman EL. Sensory neurons and schwann cells respond

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

O’BRIEN ET AL.

to oxidative stress by increasing antioxidant defense
mechanisms. Aatigxd Redox Sicpgl 11: 425-438, 2009.
Vincent AM, McLean LL, Backus C, and Feldman EL.
Short-term hyperglycemia produces oxidative damage and
apoptosis in neurons. FASEB J 19: 638-640, 2005.
Vincent AM, Russell JW, Low P, and Feldman EL. Oxi-
dative stress in the pathogenesis of diabetic neuropathy.
Endocr Rey 25: 612-628, 2004.

Wang H, Kouri G, and Wollheim CB. ER stress and
SREBP-1 activation are implicated in beta-cell glucoli-
potoxicity. J Cell Sci 118: 3905-3915, 2005.

Wek RC and Cavener DR. Translational control and the
unfolded protein response. AgtigxdRedar Siongl 9:
2357-2371, 2007.

Wiggin TD, Sullivan KA, Pop-Busui R, Amato A, Sima
AA, and Feldman EL. Elevated triglycerides correlate
with progression of diabetic neuropathy. Diabetes 58:
1634-1640, 2009.

Wilson NM, and Wright DE. Inflammatory mediators in
diabetic neuropathy. LDRighetes Metah S5: 004, 2011.
Xu QG, Li XQ, Kotecha SA, Cheng C, Sun HS, and
Zochodne DW. Insulin as an in vivo growth factor. Exp
Neurol 188: 43-51, 2004.

Ylitalo KR, Sowers M, and Heeringa S. Peripheral vas-
cular disease and peripheral neuropathy in individuals
with cardiometabolic clustering and obesity: National
Health and Nutrition Examination Survey 2001-2004.
Digberes Care 34: 1642-1647, 2011.

Yoshida H, Matsui T, Yamamoto A, Okada T, and Mori
K. XBP1 mRNA is induced by ATF6 and spliced by IRE1
in response to ER stress to produce a highly active tran-
scription factor. Cell 107: 881-891, 2001.

Zhang K and Kaufman RJ. From endoplasmic-reticulum
stress to the inflammatory response. Nature 454: 455-462,
2008.

Zherebitskaya E, Schapansky J, Akude E, Smith DR, Van
der Ploeg R, Solovyova N, Verkhratsky A, and Ferny-
hough P. Sensory neurons derived from diabetic rats have
diminished internal Ca2+ stores linked to impaired re-
uptake by the endoplasmic reticulum. ASN Neuro 4:
e00072, 2012.

Zhong Y, Li J, Chen Y, Wang JJ, Ratan R, and Zhang SX.
Activation of endoplasmic reticulum stress by hyperglyce-
mia is essential for Muller cell-derived inflammatory cyto-
kine production in diabetes. Diabetes 61: 492-504, 2012.
Zinszner H, Kuroda M, Wang X, Batchvarova N, Light-
foot RT, Remotti H, Stevens JL, and Ron D. CHOP is
implicated in programmed cell death in response to im-
paired function of the endoplasmic reticulum. Genes Dev
12: 982-995, 1998.

Address correspondence to:
Dr. Eva L. Feldman
Department of Neurology
University of Michigan

109 Zina Pitcher Place
5017 AAT-BSRB

Ann Arbor, MI 48109

E-mail: efeldman @umich.edu

Date of first submission to ARS Central, December 18, 2013;
date of acceptance, January 1, 2014.


http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=19592619&crossref=10.2337%2Fdb09-0047&citationId=p_111
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=19741297&crossref=10.1172%2FJCI38857&citationId=p_103
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=15191801&crossref=10.1016%2Fj.expneurol.2004.03.008&citationId=p_120
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=20021567&crossref=10.1111%2Fj.1529-8027.2009.00237.x&citationId=p_112
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=16529870&crossref=10.1016%2Fj.neuroscience.2005.11.065&citationId=p_104
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=21593304&crossref=10.2337%2Fdc10-2150&citationId=p_121
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=15991254&crossref=10.1002%2Fdmrr.568&citationId=p_94
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&system=10.1089%2Fars.2008.2235&citationId=p_113
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=14757749&crossref=10.1083%2Fjcb.200311055&citationId=p_105
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=11779464&crossref=10.1016%2FS0092-8674%2801%2900611-0&citationId=p_122
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=18776938&crossref=10.1172%2FJCI34587&citationId=p_95
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=15677696&citationId=p_114
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=10650002&crossref=10.1126%2Fscience.287.5453.664&citationId=p_106
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=18650916&crossref=10.1038%2Fnature07203&citationId=p_123
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=12441049&crossref=10.1016%2FS0896-6273%2802%2901045-0&citationId=p_96
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=15294884&crossref=10.1210%2Fer.2003-0019&citationId=p_115
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=15618481&crossref=10.1152%2Fphysrev.00004.2004&citationId=p_107
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=12441049&crossref=10.1016%2FS0896-6273%2802%2901045-0&citationId=p_96
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=15618481&crossref=10.1152%2Fphysrev.00004.2004&citationId=p_107
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=11025559&crossref=10.1002%2F1520-7560%28200009%2F10%2916%3A5%3C354%3A%3AAID-DMRR149%3E3.0.CO%3B2-H&citationId=p_100
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=11025559&crossref=10.1002%2F1520-7560%28200009%2F10%2916%3A5%3C354%3A%3AAID-DMRR149%3E3.0.CO%3B2-H&citationId=p_100
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&crossref=10.1042%2FAN20110038&citationId=p_124
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&system=10.1089%2Fars.2012.4810&citationId=p_108
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=10597627&crossref=10.1006%2Fscdb.1999.0315&citationId=p_97
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=16091421&crossref=10.1242%2Fjcs.02513&citationId=p_116
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=15033718&crossref=10.1196%2Fannals.1299.032&citationId=p_101
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=22228718&crossref=10.2337%2Fdb11-0315&citationId=p_125
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=21737534&crossref=10.1124%2Fpr.110.003814&citationId=p_98
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&system=10.1089%2Fars.2007.1764&citationId=p_117
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=21912405&crossref=10.1038%2Fnrneurol.2011.137&citationId=p_109
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=21912405&crossref=10.1038%2Fnrneurol.2011.137&citationId=p_109
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=15211094&crossref=10.1023%2FB%3AREMD.0000032411.11422.e0&citationId=p_110
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=22932195&citationId=p_102
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=19411614&crossref=10.2337%2Fdb08-1771&citationId=p_118
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=11939351&crossref=10.1046%2Fj.1529-8027.2002.02005.x&citationId=p_99
http://online.liebertpub.com/action/showLinks?doi=10.1089%2Fars.2013.5807&pmid=11939351&crossref=10.1046%2Fj.1529-8027.2002.02005.x&citationId=p_99

ER STRESS IN DIABETIC NEUROPATHY

633

Abbreviations Used

AGE = advanced glycation end products
ASKI1 = apoptosis signal-regulating kinase 1
ATF4 = activating transcription factor 4
ATF6 = activating transcription factor 6

BiP = binding immunoglobulin protein
CHOP = C/EBP homologous protein

DEG = differentially expressed gene

DPN = diabetic peripheral neuropathy
elF2a = eukaryotic initiation factor 2o

ER =endoplasmic reticulum
ERAD = ER-associated protein degradation
ERO1la=ER oxidase 1o
FFA = free fatty acid
GRP = glucose regulating protein
GSH, GSSG = glutathione (reduced, oxidized)
HDL = high-density lipoprotein
HFD = high-fat diet
IL-6 = interleukin-6
IP3 =inositol 1,4,5-triphosphate
IR = insulin receptor
IRE1a = inositol-requiring enzyme 1o

IRS1 =insulin receptor substrate 1

iSCs = immortalized Schwann cells

JNK = c-Jun-N-terminal kinase
LCAT = lecithin-cholesterol acyltransferase
LDL = low-density lipoprotein
LOXI1 = oxidized LDL receptor 1
NLRP3 = NOD-like receptor family, pyrin
domain containing 3
NRF2 = NF-E2-related factor 2
ORP150 = oxygen regulated protein 150
PA = palmitate
PBA = phenyl butyric acid
PERK = protein kinase-R-like ER kinase
PI3K = phosphatidylinositol-3-kinase
RAGE =receptor for advanced glycation
end products
ROS =reactive oxygen species
STZ = streptozotocin
sXBP1 =spliced X-box binding protein 1
TLR4 = Toll-like receptor 4
TMAO = trimethylamine oxide
TNFo = tumor necrosis factor o
TRAF2 = tumor necrosis factor receptor-
associated factor 2

UPR =unfolded protein response
XBP1 = X-box binding protein 1
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