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In this paper, the rolling stability of a power-generating tumbleweed rover is investigated. The nonlinear equations

of motion of the rover capture the nonholonomic nature of rolling without slipping, the external wind force, and

energy dissipation due to rolling friction and power generation. To assess stability of the system as it rolls about a

preferred axis of rotation, Lyapunov’s indirect method is employed. When the shell of the tumbleweed rover has a

uniformmass distribution,Lyapunov’s indirectmethodpredicts instability;when the inertia about a preferredaxis of

rotation is increased, Lyapunov’s indirect method predicts stability. Numerical simulation results of both the

linearized and nonlinear equations of motion confirm both the instability and stability predictions of Lyapunov’s

indirect method.

Nomenclature

A = frontal area of rover, m2

bp = damping coefficient associated with power generation,
�kg · m2�∕s

br = damping coefficient associatedwith translational rolling
friction, �kg · m2�∕s

bs = damping coefficient associated with spinning rolling
friction, �kg · m2�∕s

Cba = direction cosine matrix transforming the components of
v from F a to Fb, that is, vb equal to Cbava

Cd = drag coefficient of sphere

cPpp = first moment of mass of pendulum relative to Fp

expressed in Fp, kg · m
Fa = generic reference frame “a” associated with basis

vectors fa1;a2;a3g
fw = aerodynamic force applied on system due to wind, N
g = gravitational acceleration constant, m∕s2

JPpp = second moment of mass of pendulum relative to Fp

expressed in Fp, kg · m2

JSss = second moment of mass of sphere relative to F s

expressed in F s, kg · m2

lPR = length of pendulum rod, kg
mP = mass of pendulum, kg
mPA = mass of payload, kg
mPR = mass of pendulum rod, kg
mS = mass of sphere, kg

q = � rsii ⊤ θsii ⊤ θpii
⊤ �⊤ equal to dependent generalized

coordinates
q̂ = � θsi⊤ ϕ �⊤ equal to reduced generalized coordinates,

rad∕s

r = radius of inflated sphere, m
rsii = position of the origin of F s relative to the origin of F i

expressed in F i, m
Ssis = mapping matrix from _θsi to ωsis expressed in F s

Spip = mapping matrix from _θpi to ωpip expressed in Fp

v = geometric vector
va = � va;1 va;2 va;3 �⊤ � components of v expressed in

Fa

vwii = velocity of wind relative to F i expressed in F i, m∕s
vwsi = velocity of wind relative to the sphere expressed in

F i, m∕s
v×a = skew-symmetric cross-product matrix associated

with va
θ = angle between pendulum and vertical, rad
θpi = Euler angles used to parametrize Cpi, rad

θsi = � γ β α �⊤, equal to Euler angles used to parametrize
Csi, rad

ρ = density of surrounding air, kg∕m3

ϕ = Euler angle used to parametrize Cps, rad

ω̂ = �ωsi⊤s ωpsp;2 �⊤ equal to independent angular velocities,
rad∕s

ωpip = angular velocity of Fp relative to F i expressed in Fp,
rad∕s

ωpsp = angular velocity of Fp relative to F s expressed in Fp,
rad∕s

ωsis = angular velocity of F s relative F i expressed in F s,
rad∕s

ω� = ωsis;2 evaluated at equilibrium, rad∕s
1 = � 11 12 13 � equal to 3 × 3 identity matrix

I. Introduction

H ISTORICALLY, the exploration of the Martian surface has
been performed by stationary landers or wheeled vehicles. The

current exploration strategy adopted by space agencies is to target a
landing zone of interest, deploy a rover to conduct experiments, and
collect data in the vicinity of the targeted area. These wheeled rovers
are equipped with an impressive array of scientific instruments that
may be used to monitor the Martian climate and characterize its
geology. Wheeled vehicles are ideal for performing scientific
experiments, but present a major drawback to planetary exploration:
a slow explorationvelocity. The speed of wheeled rovers is limited by
communication and computational delays, rocker-bogie suspension
designs, and available power [1]. Because many areas of scientific
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interest may lie several kilometers away from landing sites, the
limited mobility of wheeled vehicles presents an important problem.
In an effort to address this problem, radically different rover

designs have been investigated to achieve a higher exploration ve-
locity of Mars. A design of interest that shows great promise is the
tumbleweed rover [2]. Awind-powered tumbleweed rover is a large
sphere-shaped structure that uses Martian winds as its means of
propulsion. Consider a mission scenario where a wheeled rover
equipped with one (or perhaps more) tumbleweed rovers onboard is
rather far from a site of interest. Before sending the wheeled rover to
the site, a tumbleweed rover could be deployed under favorablewind
conditions to perform a scouting mission [2]. The purpose of the
scoutingmissionwould be to collect preliminary data about the site of
interest as well as information about the route from the wheeled
rover’s current position to the site [3]. This informationwould be used
to assess the risk of the wheeled rover going to the site, as well as the
scientific interest of the site itself. In recent years, the development of
new tumbleweed rover concepts has been an active area of research.
A promising concept, detailed in [4], integrates an instrument pay-
load inside a large inflatable ball. This large inflatable ball is blownby
surface winds much like a terrestrial tumbleweed. This tumbleweed
rover concept was tested in Greenland and Antarctica, where it
successfully travelled over 100 km while transmitting temperature
and pressure information back to a base every 30 min. This tum-
bleweed design made no attempt to control the speed and trajectory
of the rover, and the onboard instruments were powered using a
battery pack.
Other researchers have favored a deployable open structure over an

inflated ball design and have developed many different concepts,
including box-kite, dandelion, eggbeater dandelion, and tumble-cup
configurations [5,6]. Open-structure designs were shown to have
superior aerodynamic properties over inflated sphere designs and
allow direct contact with the Martian environment for scientific
experimentation. However, a drawback of these designs is that they
offer a reduced available payload area for scientific equipment [7,8].
Open-structure tumbleweed rover designs that integrate interior sails
to capture wind forces are extensively studied in [9–11].
A power-generating tumbleweed rover, which is the focus of this

paper, was developed in [8,12]. A power-generating tumbleweed
rover is an inflated ball that integrates an internal pendulum-
generator system that converts the kinetic energy of the pendulum
into electric energy. The electric energy produced by the generator is
stored inside a battery and can either be used by the tumbleweed rover
to power the scientific equipment onboard or, if the generator is oper-
ated as a motor, to drive the vehicle forward should wind not be
available. The autonomy provided by the pendulum-generator sys-
tem along with the large available area for scientific payloads make
this design an ideal candidate for Mars exploration scouting mis-
sions. For the pendulum-generator system to produce electrical
energy in an efficient way, it is crucial that the rover rolls about
a preferred axis of rotation. However, the roll stability predicted
by previous numerical simulations [12] has not been observed in
experimental trials [8]. Field tests performed on the power-generating
tumbleweed rover of [12] have demonstrated that it rolls in an
unstable and chaotic manner, as depicted in Fig. 1. The discrepancy
between numerical simulation results and experimental results is
believed to be a result of neglecting tumbleweed rover components in
the equations of motion. These components effectively increase the
moment of inertia of the tumbleweed rover about the nonpreferred

axis of rotation. It is this discrepancy that sparked interest in better
understanding the influence of the moment of inertia of the structure
on the stability of the power-generating tumbleweed rover.
The majority of research conducted on tumbleweed rovers makes

use of simplified two-dimensional quasi-staticmodels [13] and three-
dimensionalmodelswhere the rover is assumed to be a spherical shell
[14]. With the tumbleweed rover design investigated in this paper,
these assumptions cannot be made because the pendulum system has
a large impact on the motion and stability of the system. Analytical
models for a sphere integrating a pendulum system have been studied
in [12,15–19]. The three-dimensional rover model used in this paper
is developed in [12], where the equations of motion of the rover are
derived from first principles using a Lagrangian approach.
This paper’s aim is to perform a rigorous stability analysis of the

power-generating tumbleweed rover. Although extensive work has
been performed on the modeling and control of spherical robots [20–
25], the rolling stability of these systems has not been explicitly
studied. Rolling stability is defined as asymptotically stable rolling
about the preferred axis of rotation such that the perturbations
associated with the rover’s roll, yaw, roll rate, and yaw rate decay to
zero with time. In [12], it is shown that the power-generating
tumbleweed rover is stable in the sense of Lyapunov when released
with nonzero velocity and rolling to a stop (i.e., zero velocity) when
wind is not present, but the rolling stability of the rover in the
presence of wind has yet to be considered. In this paper, Lyapunov’s
indirect method is used to investigate the stability of the tumbleweed
rover when rolling about the preferred axis of rotation. This paper
also analyzes tumbleweed rover configurations where the inertia of
the rover about the preferred axis of rotation is increased, which has
been proposed in [4,8] as a solution to the aforementioned stability
problems. Finally, the proposed stability analysis method is validated
through a numerical simulation study, where it is shown that a rover
with a spherical shell with a uniform mass distribution does not roll
stably, and that the addition of mass about the preferred axis of
rotation leads to stable rolling, as depicted in Fig. 2.

II. Preliminaries

A. Notation

A geometric vector v, which is a frame invariant entity, can be
expressed in the reference frame F a:

v � a1va;1 � a2va;2 � a3va;3

where va;1, va;2, and va;3 are scalar components of v, and a1, a2, and
a3 are the unit vectors associated with F a. Throughout this paper, a
reference frame is defined as a triad of orthogonal basis vectors ([26]
pp. 6–7) and lowercase boldface roman italic symbols are reserved
for geometric vectors. The scalar components of v expressed in Fa

can be represented as a column matrix:

va �
" va;1
va;2
va;3

#

Notice that a right subscript is used to denote what frame the geo-
metric vector is expressed in. It is possible to transform the compo-
nents of a geometric vector from F a to Fb by using the direction
cosine matrix Cba:

0 5 10 15 20 25 30
−15

−10
−5

0
50

5

x (m) y (m)

z
(m

)

Fig. 1 Unstable rolling of tumbleweed rover. Fig. 2 Stable rolling of tumbleweed rover.
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vb � Cbava

The column matrix vb contains the scalar components of v when
expressed in reference frame F b, where b

1, b2, and b3 are the unit
vectors associatedwithF b. The cross product betweenu andv can be
expressed in reference frame F a as

w � u × v
� �ua;2va;3 − ua;3va;2�|��������������{z��������������}

wa;1

a1 � �ua;3va;1 − ua;1va;3�|��������������{z��������������}
wa;2

a2

� �ua;1va;2 − ua;2va;1�|��������������{z��������������}
wa;3

a3

In component form, the cross product can be represented using a
3 × 3 skew-symmetric matrix:

wa � u×
ava

where ua � �ua;1 ua;2 ua;3 �⊤ and ([27] p. 85)

u×
a �

"
0 −ua;3 ua;2
ua;3 0 −ua;1
−ua;2 ua;1 0

#

In this paper, the terms 11 � � 1 0 0 �⊤, 12 � � 0 1 0 �⊤, and
13 � � 0 0 1 �⊤ are used to express the columns of the identity
matrix 1.

B. Model Setup

Consider the tumbleweed rover model displayed in Fig. 3a. A
central rod is fixed to the sides of the inflated sphere. Attached to the
middle of the central rod is a pendulum rod and a payload. In this
paper, the pendulum rod and the payload components will be referred
to as the pendulum system. At the central rod–connecting rod joint
is a power generator designed to harvest electric energy as the
tumbleweed rover rotates, and the pendulum induces a torque on the
generator. The external mass distribution about the preferred axis of
rotation, referred to as the spherical annulus, can be seen in Fig. 3b.
Note that the central rod component and the spherical annulus were
both neglected in themodel derived in [12]. The outside of the sphere
is assumed to have small protrusions, similar to the design described
in [4], that will prevent the rover from sliding and that will contribute
to the inertia of the spherical annulus.

C. Reference Frames

To describe the motion of the sphere and pendulum, it is useful to
define three reference frames: an inertial frame fixed to the ground,

denoted F i; a body frame fixed to the center of the rolling sphere,
denotedF s; and a body frame fixed to the pendulum, denotedFp. In
Fig. 4a, it can be seen that the s1 − s3 plane and the p1 − p3 plane are
coincident because the pendulum is constrained to rotate about the
�s2;p2� axis.
The Euler angles θsi are used to parameterize the direction cosine

matrix Csi that transforms the components of a geometric vector
resolved in F i to the components of that same geometric vector
resolved in F s, and the Euler angles θpi are used to parameterize the
direction cosine matrix Cpi that transforms the components of a
geometric vector resolved in F i to the components of that same
geometric vector resolved in Fp.

III. Equations of Motion

An overview of the derivation of the equations of motion is
presented in the Appendix (see [12] for a detailed derivation). The
equations of motion of the tumbleweed rover model depicted in
Fig. 3 are

M̂ _̂ω�τ̂non � τ̂ext (1)

with

ω̂ � �ωsi⊤s ωpsp;2 �⊤

where ωsis describes the angular velocity of F s relative to F i

expressed in F s, and ωpsp;2 is the second component of ωpsp , which
describes the angular velocity of Fp relative to F s expressed in Fp.
Additionally,

M̂ � ΔMΠ;

τ̂non � Δ�M _Π ω̂�ν×Mν� a�; and τ̂ext � Δτext

where the matrices Δ, M, Π, _Π, ν, ν× and a are given by Eqs.
(A5–A11) in the Appendix.

IV. Stability Analysis

Because the pendulum is constrained to rotate about the s2 axis, the
power generator will produce electrical energy in an efficient way
when the rover is rotating about the s2 axis, referred to as the preferred
axis. Because this configuration is desired, it is important to investi-
gate the stability of the rover rolling about the preferred axis, also
called the preferred configuration or equilibrium state. In this section,
the perturbed dynamics of the rover about the preferred configuration
will be derived and the stability of the equilibrium state will be
studied using Lyapunov’s indirect method. The stability analysis is
the main contribution of this paper and is motivated by the discrep-
ancy between the results obtained in [8] and [12]. The analysis carried

a) Internal view b) External view
Fig. 3 Tumbleweed rover model.
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out in this section is envisioned to play a major role during the design
phase of tumbleweed rovers by predicting the rolling stability
behavior of designs with different mass distributions.
At this point, it is worth pondering why the results of [8] and [12]

differ. Referring to Fig. 3a, the model developed in [12] assumed that
the mass and inertia of the central rod was small and therefore
negligible, whereas the rover built in [8] had a central rod made of
steel with nonnegligible mass and inertia. The rolling instability
documented in [8] is thought to stem from the inertia about the pre-
ferred axis being too small. To increase the inertia about the preferred
axis, the addition of a spherical annulus, as shown in Fig. 3b, is
proposed. The difficulty now lies in proving that the addition of a
spherical annulus actually leads to a stable system. Increasing the
inertia about the preferred axis seems logical given the major-
axis rule ([26] pp. 139–146). However, the major-axis rule is only
applicable to a system modeled as a single quasi-rigid body, which
the tumbleweed rover with its internal pendulum is most certainly
not. As such, rolling stability of the tumbleweed rover will be
assessed via Lyapunov’s indirect method.

A. Equilibrium State

Before deriving the perturbed dynamics, it is necessary to
determine the equilibrium state of the rover when it is subjected to
external forces.When the rover is rotating nominally about the s2 axis
along a straight line, the direction cosine matrices Csi and Cps

simplify to

C�si � C2�α�� and C�ps � C2�ϕ��

where α is the angle between F s and F i, and ϕ is the angle between
Fp and F s. At the equilibrium state, the pendulum will be tilted at a
constant angle θ� relative to the vertical axis because it is subject to
torques created by the gravity field and by the power generation unit.
This is depicted in Fig. 5. Note that the notation “�” is used to
evaluate a term at the equilibrium state.
By the geometry of the problem, the angle θ is given by

θ � α� ϕ (2)

At the equilibrium state, when the pendulum is stationary relative to
F i, it follows that

ωsi�s � ω�12 and ωps�p � −ω�12 (3)

where ω� is the angular velocity of the rolling sphere at equilibrium
about the s2 axis. The expressions in Eq. (3) are obtained using
Eq. (A1) with ωpi�p � 0. The reduced angular velocities can be
written as

ω̂� � �ωsi�s ⊤ ωps�p;2 �⊤ � �ω�1⊤2 −ω� �⊤

When the rover is rolling with a constant angular velocity, the term
M̂� _̂ω� vanishes and Eq. (1) reduces to

τ̂non� � Δ�M� _Π�ω̂�|�������{z�������}
b�
1

� Δ�ν�×M�Π�ω̂�|����������{z����������}
b�
2

� Δ�a�|{z}
b�
3

� Δ�τext� (4)

At equilibrium, the term b�1 reduces to

b�1 � Δ�M�

2
664
−rω�21×3C2�α��⊤1×212

0
ω�21×2C2�ϕ��12|����{z����}

12

3
775 � 0

where _Π, Δ, andM are given in Eqs. (A7–A9), respectively. Notice
that the matrix multiplication ofC2�ϕ�with 12 reduces to 12 and that
the matrix multiplication of the cross-product matrix of a column
matrix by itself is 0 (i.e., 1×212 � 0). The term b�2 can be written as

b�2 � Δ�ν�×M�ν� � Δ�

2
664
�mS �mP�_rsi�

×

i _rsi�i

ω�21×2J
Ss
s 12

ωpi�
×

p cPp
×

p C�pi _r
si�
i

3
775 � 0 (5)

where ν � Πω̂, as shown in Eq. (A6), ν× is given in Eq. (A11), and
ωpi�p � 0. In Eq. (5), observe that the terms _rsi×i _rsii and 1×2J

Ss
s 12

reduce to 0. The term b�3 can be written as

b�3 � Δ�a� �
"
−C⊤

2 �α���C�pi13�×c
Pp
p g

−1T2 �C�pi13�×c
Pp
p g

#
(6)

where a is given by Eq. (A10). Using the relation

C�pi � C�psC
�
si � C2�ϕ� � α�� � C2�θ��

a) Side view b) Front view
Fig. 4 Reference frames.

Fig. 5 Equilibrium position of payload.
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Equation (6) can be written as

b�3 �

2
666664

0

−g1⊤3 c
Pp
p sin θ�

0

−g1⊤3 c
Pp
p sin θ�

3
777775�

2
666664

0

glPR sin θ�
�
1
2
mPR�mPA

�
0

glPR sin θ�
�
1
2
mPR�mPA

�

3
777775 (7)

where the first moment of mass of the pendulum is cPpp �
−lPR�12mPR �mPA�13. In this paper, the force that propels
the rover forward will be modeled as an aerodynamic drag force
defined as

fwi �
1

2
ρACdkvwsi k2

vwsi
kvwsi k

whereρ is the density of the surrounding air,A is the frontal area of the
rover, andCd is the drag coefficient. The term vwsi is thevelocity of the
wind relative to the sphere expressed in F i, referred to as the wind
relative velocity, and is given by

vwsi � vwii − vsii

where the term vwii is the velocity of thewind relative toF i expressed
inF i, referred to as thewind absolute velocity, and where v

si
i � _rsii is

the translational velocity of the rover. A constant wind absolute
velocity of vwii;1 m∕s acting in the i1 direction leads to an equilibrium
aerodynamic force of

fw�i �
1

2
ρACd�vwii;1 − ω�r�211

The forces associatedwith translational damping fr, spin damping ts,
and power generation tpwill also be included in the stability analysis,
as seen in Fig. 6. The translational damping and spin damping terms
are given by [12]

fr �

2
664
−br _rsii

0

0

3
775 and ts �

2
664

0

−bs�Csi131
⊤
3C

⊤
siω

si
s �

0

3
775

and the aerodynamic force and power generation terms are given by

fw �

2
664
fwi

0

0

3
775 and tp �

2
664

0

bpω
ps
p;2C

⊤
ps12

−bpω
ps
p;212

3
775

At equilibrium, the right-hand side term of Eq. (4) associatedwith the
external forces simplifies to

Δ�τext� � Δ��fr� � ts� � tp� � fw��

�
"
−r2br12ω� � 1

2
rρACd�vwii;1 − rω��212
bpω

�

#

Combining the evaluated terms b�1 , b
�
2 , b

�
3 , and Δ�τext� in Eq. (4), it

follows that

2
664

0

glPR sin θ�
�
1
2
mPR �mPA

�
0

glPR sin θ�
�
1
2
mPR �mPA

�
3
775

�

2
664

0

−r2brω� � 1
2
rρACd�vwii;1 − rω��2
0

bpω
�

3
775

(8)

Subtracting the last row from the second row in Eq. (8) and solving
the resulting quadratic equation for ω�, it follows that

ω� �
vwii;1
r
�
brr

2 � bp
ρACdr

3
	 1

r3

������������������������������������������������������������������������
r2vwii;1 �

�
brr

2 � bp
ρACd

�	
2

− r4vwi2i;1

s

(9)

There are two possible solutions for ω�. The negative solution leads
to a positivewind relative velocity, implying that the wind is pushing
the rover forward. The positive solution leads to a negative wind
relative velocity, implying that the wind acts in a way that resists the
forward motion of the rover (i.e., acts as a resistive force). In this
paper, the rolling stability of the equilibrium state is studied when the
rover is being propelled forward by wind forces, therefore, only the
negative solution is of interest. Isolating for θ� in the last row of
Eq. (8), the equilibrium angle of the pendulum can be written as a
function of ω� and the physical parameters of the rover as

θ� � sin−1
�

ω�bp
glPR�12mPR �mPA�

�
(10)

Notice that Eq. (10) corresponds to the sum of themoments acting on
the pendulum at equilibrium taken about the center of the sphere and
that Eq. (9) corresponds to the sum of the moments acting on the
sphere at equilibrium taken about the center of the sphere.

B. Perturbed Dynamics

In this section, the perturbed dynamics of the tumbleweed rover
about the equilibrium statewill be derived and studied. The equations
ofmotion of the tumbleweed rover given in Eq. (1) can also bewritten
in terms of the augmented velocities ν as

ϒ⊤ �S⊤�M_ν� ν×Mν� a� � ϒ⊤ �S⊤τext (11)

where the matrices ϒ and �S are given by Eqs. (A4) and (A5) in the
Appendix. From Eq. (11), the equations of motion can be expressed
in terms of the reduced coordinates _̂q � � _θsi⊤ _ϕ �⊤ using the
transformation

ν � Ψ _̂q and _ν � Ψ �̂q� _Ψ _̂q (12)

where

Ψ � �Sϒ �

2
664
−r1×3Ssii 0

Ssii 0

CpsS
si
i 12

3
775

⊤

Using a 3-1-2 Euler angle parameterization for Csi, that is,
Csi � C2�α�C1�β�C3�γ�, the matrix Ssis is given by ([26] pp. 26–28)Fig. 6 External forces.
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Ssis � �C2�α�C1�β�13 C2�α�11 12 �

and the term Ssii is given by

Ssii � C⊤
siS

si
s � � 13 C⊤

3 �γ�11 C⊤
3 �γ�C⊤

1 �β�12 �

The time derivative of Ψ is given by

_Ψ �

2
4 −r1×3 _S

si
i 0

_Ssis 0
_CpsS

si
s �Cps

_Ssis 0

3
5

where

_Ssis � � � _C2�α�C1�β� �C2�α� _C1�β��13 _C2�α�11 0 �

and

_Ssii � � 0 _C⊤
3 �γ�11 � _C⊤

3 �γ�C⊤
1 �β� �C⊤

3 �γ� _C
⊤
1 �β��12 �

where the time derivatives of the direction cosine matrices are
obtained using Poisson’s equation:

_C⊤
1 �β� � _βC⊤

1 �β�1×1 ;
_C⊤
2 �α� � _αC⊤

2 �α�1×2 and _C⊤
3 �γ� � _γC⊤

3 �γ�1×3

Combining Eq. (11) and Eq. (12), the equations of motion in terms of
the reduced coordinates can be written as

Ψ⊤MΨ|��{z��}
�M

�̂q � Ψ⊤�τext −M _Ψ _̂q−ν×MΨ _̂q − a�|���������������������������{z���������������������������}
f�q̂; _̂q�

(13)

To obtain the perturbed dynamics of the tumbleweed rover about the
equilibrium state, the linearized equations of motions of the
tumbleweed rover are obtained by performing a first-order Taylor
series expansion on Eq. (13), resulting in

�M�δ �̂q � ∂f
∂q̂






�q̂�; _̂q��

δq̂� ∂f
∂ _̂q






�q̂�; _̂q��

δ _̂q (14)

where the equilibrium states q̂� and _̂q
�
are given by

q̂� �
�
θsi�

ϕ�

	
�
�
12α
�

ϕ�

	
and

_̂q
� �

�
_θsi�

_ϕ�

	
�
�
12 _α
�

− _α�

	
�
�
12ω

�

−ω�

	

When evaluating _̂q
�
, the term _ϕ� is replaced with − _α� following a

time differentiation of Eq. (2). Because the sphere is rolling in the
s1 − s3 plane, the rate of change of the Euler angle α� is _α�, which is
equivalent to the angular velocity term ω�.

C. Lyapunov’s Indirect Method

Equation (14) can be transformed into the first-order form

�
δ _̂q

δ �̂q

	
|{z}

δ _x

�
� 0 1

�M�
−1 ∂f

∂q̂






�q̂�; _̂q��

�M�
−1 ∂f

∂ _̂q






�q̂�; _̂q��

	
|����������������������������{z����������������������������}

A

�
δq̂

δ _̂q

	
|{z}

δx

(15)

where the term δx is an augmented column matrix of the reduced
coordinates and the rates of change of the reduced coordinates. The
stability of the equilibrium state of the tumbleweed rover is studied
using Lyapunov’s indirect method ([27] pp. 356–359). The following

well-known theorem establishes a relationship between the stability
of the linearized system and the stability of the nonlinear system.
Theorem 4.1: Consider the linear approximation

δ _x � Aδx

to the nonlinear system _x � f�x�, where

A � ∂f�x�
∂x






x�

and the eigenvalues of A are

λifAg � σi � jωi; i � 1; : : : ; n

Let �σ � maxi�1; : : : ;nfσig. If the linear system is asymptotically stable
(i.e., �σ < 0), then the equilibrium point of the nonlinear system is
locally asymptotically stable. If the linear system is unstable (i.e.,
�σ > 0), then the equilibriumpoint of the nonlinear system is unstable.
If all eigenvalues ofA are in the left-half plane, but at least one is on
the jω axis, then one cannot conclude if the nonlinear system if stable
or unstable.
To ensure that the tumbleweed rover is rolling stably about the

equilibrium state, the real part of the eigenvalues of A must all be
strictly negative.

V. Numerical Results

In this section, the nonlinear and perturbed equations of motion
described earlier will be implemented in a MATLAB numerical
simulation for validation. The second-order system given by Eq. (1)
is transformed into state-space form as

�
_̂q
_̂ω

	
�
�

Ŝ−1ω̂
M̂−1�τ̂ext − τ̂non�

	
(16)

where

Ŝ �
�
Ssis 0

0 1

	

Equations (15) and (16) are solved in MATLAB using the integrator
ode45 with an absolute and relative tolerance of 10−6. The simu-
lations are performed in terrestrial conditions with the physical
parameters of the tumbleweed rover given in Table 1. The stability
of the tumbleweed rover with and without the spherical annulus
component will be studied using the linearized equations of motion
and later validated through both linear and nonlinear simulations.

A. Equilibrium State

For a tumbleweed rover with the physical parameters given in
Table 1, the equilibrium angular velocity ω�, given by Eq. (9), is

ω� �
vwii;1
r
�
brr

2 � bp
ρACdr

3
−

1

r3

�����������������������������������������������������������������������
r2vwii;1 �

�
brr

2 � bp
ρACd

�	
2

− r4vw2

1;i

s

� 2.627 rad∕s

and the pendulum equilibrium angle θ�, obtained using
Eq. (10), is

θ� � sin−1
�

ω�bp
glPR�12mPR �mPA�

�
� 0.0425 rad � 2.44 deg

A numerical simulation of the nonlinear system is performed in
MATLAB with the initial conditions θsi � � 0 0 0 �⊤ deg, ωsis �
� 0 5 0 �⊤ rad∕s, ϕ � 0 deg, and _ϕ � 0 rad∕s. Recall that the
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direction cosine matrix Csi is parameterized by the Euler sequence
Csi � C2�α�C1�β�C3�γ� and that θsi � � γ α β �⊤. Figure 7
shows that only the anglesα andϕ changewith time because the rover
is rolling nominally about the s2 axis. It takes the rover approximately
30 s for the statesωsis;2 and _ϕ to converge to the calculated equilibrium

values of ωsis;2 � ω� � 2.63 and _ϕ � −ω� � −2.63 rad∕s, thus
numerically validating Eqs. (9) and (10). In Fig. 8, the pendulum
angle θ is obtained by the addition of α and ϕ. As time increases, the
angle θ converges to the calculated equilibrium angle of θ� �
2.44 deg.

Table 1 Physical properties of the tumbleweed rover

Property Symbol Value

Drag coefficient of sphere Cd 0.1
Mass of inflated sphere, kg mIS 5
Mass of central rod, kg mCR 5
Mass of spherical annulus, kg mSA 8
Mass of pendulum rod, kg mPR 1
Mass of payload, kg mPA 10
Mass of pendulum, kg mP mPR �mPA
Mass of sphere, kg mS mIS �mCR �mSA
Length of pendulum rod, m lPR 0.9
Length of central rod, m lCR 1
Width of pendulum rod, m wPR 0.025
Width of central rod, m wCR 0.025
Width of spherical annulus, m wSA 0.2
Height of payload, m hP 0.1
Radius of inflated sphere, m r 1
Sphere rolling damping coefficient, kg · m2∕s br 3.5
Sphere spin damping coefficient, kg · m2∕s bs r2br
Pendulum damping coefficient, kg · m2∕s bp 1.5
Wind absolute velocity, m∕s vwii 10.711
First moment of mass of pendulum, kg · m cPpp −lPR�12mPR �mPA�13
Second moment of mass of inflated sphere, kg · m2 JISss

2
3
mISr

31

Second moment of mass of spherical annulus, kg · m2 JSAss diag�1
6
mSA�3r2 � 2h2SA�; mSAr

2; �1
6
mSA�3r2 � 2h2SA��

Second moment of mass of central rod, kg · m2 JCRss diag� 1
12
mCR�l2

CR �w2
CR�; 16mCRw

2
CR;

1
12
mCR�l2

CR �w2
CR��

Second moment of mass of pendulum rod, kg · m2 JPRpp diag� 1
12
mPR�4lPR �w2

PR�; 1
12
mPR�4l2

PR �w2
PR�; 16mPRw

2
PR�

Second moment of mass of payload, kg · m2 JPApp diag�1
6
mPA�h2PA � 6l2

PA�; 16mPA�h2PA2 � 6l2
PA�; 16mPAh

2
PA�

Second moment of mass of pendulum, kg · m2 JPpp JPRpp � JPApp

Second moment of mass of sphere, kg · m2 JSss JISss � JCRss � JSAss
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Fig. 7 Equilibrium state of the tumbleweed rover.
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B. Rover Instability

The eigenvalues of A, given in Eq. (15), are

Λ� diag�0.0152�3.5929j;0.0152−3.5929j;−0.7601;−0.3396;

−0.3029;−0.1669�4.4222j;−0.1669−4.4222j;0�

where Λ is a diagonal matrix containing the eigenvalues of A. The
Jacobians in Eq. (15) are computed using the symbolic toolbox in
MATLAB due to the complex nature of the f�q̂; _̂q� term. When
evaluating the terms �M� and

∂f
∂ _̂q






�q̂�; _̂q��

it is necessary to substitute the addition (α� � ϕ�) with the term θ�,
given by Eq. (10). The matrix Λ contains eigenvalues located in the
open right-half plane, and by Theorem 4.1, the equilibrium state of
the nonlinear system is unstable.
The response of the perturbed dynamics described by Eq. (14) [or

equivalently given by Eq. (15)] from a set of initial conditions is
shown in Fig. 9. Notice that the initial perturbations associated with

the states δγ, δ_γ, δβ, and δ_β are amplified as time increases, indicating
that the rover is unstable.
In Fig. 10, the nonlinear equations of motion of the tumbleweed

rover are perturbed about the equilibrium state to verify that the
tumbleweed rover behaves according to the predictions made using
Lyapunov’s indirect method. The initial angular velocities used are
ωsis � � 0.1 2.8 0.1 �T and _ϕ � −2.8 rad∕s, and the initial Euler
angles are θsi � � 0.1 0.1 0.1 �⊤ and ϕ � 0.1 deg. In Fig. 10, the
perturbations associated with the states γ and β increase with time,
causing the states ωsis;2 and _ϕ to start to shift away from the equilib-
rium configuration at 50 s. Note that, in reality, the tumbleweed rover
will be exposed to much larger perturbations and can be expected
to diverge from the equilibrium configuration much faster. The
results obtained in field tests agreewell with these predictions, where
the tumbleweed rover rapidly transitioned from rolling about the
preferred axis to an unstable configuration [8].

C. Rover Stability

In this section, the rolling stability of a tumbleweed rover that
integrates a spherical annulus component, as seen in Fig. 3b, is stud-
ied. For the tumbleweed rover with a spherical annulus, the termA of
Eq. (15) can be written as
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Fig. 8 Pendulum angle at equilibrium state.
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Fig. 9 Response from initial conditions of the perturbed dynamics without the spherical annulus component.
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A �

2
66666666664

0 0 0 0 1.0000 0 0 0

0 0 0 0 0 1.0000 0 0

0 0 0 0 0 0 1.0000 0

0 0 0 0 0 0 0 1.0000

−0.0039 −1.1449 0 0 −0.3280 −3.7730 0 0

0.6608 −3.5136 0 0 3.0809 −0.1880 0 0

0 0 −3.5101 −3.5101 0 0 −0.2274 −0.0064
0 0 −11.4852 −11.4852 0 0 −0.0286 −0.1797

3
77777777775

(17)

with eigenvalues
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Fig. 10 Nonlinear system response without the spherical annulus component.

0 30 60 90
−0.5

0

0.5

0 30 60 90
−0.2

0

0.2

0 30 60 90
0

0.2

0.4

0 30 60 90
−0.5

0

0.5

0 30 60 90
−5

0

5
x 10

−3

0 30 60 90
−5

0

5
x 10

−3

0 30 60 90
−5

0

5
x 10

−3

0 30 60 90
−0.02

0

0.02

Fig. 11 Response from initial conditions of the perturbed dynamics with the spherical annulus component.
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Λ � diag�−0.1012� 3.8710j;−0.1012 − 3.8710j;−0.3094;−0.2047; −0.1645;−0.0210� 3.8900j;−0.0210 − 3.8900j; 0�

where Λ is a diagonal matrix containing the eigenvalues of A. Here,
the matrix Λ contains an eigenvalue located on the imaginary axis
and, by Theorem 4.1, the stability analysis of the nonlinear system is
inconclusive. However, notice from Eqs. (15) and (17) that δα, δ _α,
δϕ, and δ _ϕ can be decoupled from δγ, δ_γ, δβ, and δ_β. As such, it is
possible to eliminate the rows and columns associated with these
states and write a reduced form of Eq. (15):

δ _̂x � Âδx̂ (18)

where

δx̂ � � δγ δβ δ_γ δ_β �⊤

and

Â �

2
664

0 0 1.0000 0

0 0 0 1.0000

−0.0039 −1.1449 −0.3280 −3.7730
0.6608 −3.5136 3.0809 −0.1880

3
775

The states δα and δϕ that are eliminated are associated with the
forward and backward motion of the sphere and the pendulum, and
they are of no interest when studying the rolling stability of the
tumbleweed rover. For the rover to roll stably about the s2 axis, only
the states δγ, δ_γ, δβ, and δ_β, associatedwith the yaw and the roll of the
sphere, must converge to zero. A similar approach is used to assess
stability of a rolling coin in [28]. Therefore, the analysis of the
eigenvalues of Â is sufficient to conclude on the rolling stability of the
rover. The eigenvalues of Â are

Λ̂ � diag�−0.0210� 3.8900j;−0.0210

− 3.8900j;−0.3094;−0.1645�

where Λ̂ is a diagonal matrix containing the eigenvalues of Â. The
equilibrium state of the reduced system is said to be locally

asymptotically stable by Theorem 4.1 because all of the eigenvalues
lie in the open left-half complex plane.
In Fig. 11, the perturbations associated with the states δγ, δ_γ, δβ,

and δ_β decay to zero with time, confirming that, when the tumble-
weed rover is equipped with the spherical annulus, the equilibrium
state of the reduced system is locally asymptotically stable.
To validate the conclusion drawn based on the linearized system,

the nonlinear system with the spherical annulus component is
simulated with initial angular velocities of ωsis � � 0.1 2.8 0.1 �⊤
and _ϕ � −2.8 rad∕s and the initial Euler angles of θsi �
� 0.1 0.1 0.1 �T and ϕ � 0.1 deg. The nonlinear simulation,
shown in Fig. 12, converges to the equilibrium state as predicted by
Lyapunov’s indirect method. The addition of the spherical annulus
leads to a system that is stable about the equilibrium state.
To ensure that the results are not sensitive to the physical param-

eters used in the numerical simulations, the mass of the spherical
annulus was increased and decreased by 10%, yielding unchanged
stability conclusions.

VI. Conclusions

In this paper, a procedure to analyze the rolling stability of a power-
generating tumbleweed rover was formulated and later validated
through numerical simulations. Using Lyapunov’s indirectmethod, it
was rigorously shown that the mass needs to be distributed in a
particular way for the tumbleweed rover to be dynamically stable
about the s2 axis. It was concluded that a rover with a spherical shell
with a uniform mass distribution leads to rolling instabilities. More-
over, the addition of externalmass about the preferred axis of rotation
leads to stable rolling of the rover and is a simple solution to the
stability issues raised in [8]. An important observation made in this
study was that the use of Euler angles greatly facilitated the lineari-
zation of the equations of motion of the tumbleweed rover by decou-
pling the dynamics of the states of interest from the overall system. If
the equations of motion had been linearized using angular velocities
instead of Euler angle rates, it is not clear how Lyapunov’s indirect
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Fig. 12 Nonlinear system response with the spherical annulus component.
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method would be applied. The methods described in this paper to
investigate the dynamic stability of equilibrium configurations can
be applied to a wide variety of spherical robots with different mass
distributions.

Appendix A: Derivation of Equations of Motion

The material presented in this Appendix is a brief review of the
work presented in [12]. This review is necessary to properly derive
the perturbed dynamics of the tumbleweed rover, as is done in Sec. IV.
This Appendix introduces the generalized and the reduced coordi-
nates of the system, the kinematic system constraints, and the expres-
sions for the kinetic energy and the potential energy of the system.
Also, several useful kinematic relations are defined that greatly
simplify the derivation.
The generalized coordinates used to describe the motion of the

rover are

q � � rsii ⊤ θsi⊤ θpi⊤ �⊤

where the term rsii relates the position of the origin of F s relative to
the origin of F i expressed in the inertial frame F i. The angular
velocities of the system are given by

ωsis � Ssis _θ
si

and ωpip � Spip _θpi

where Ssis and Spip are the mapping matrices between the Euler angle
rates and the angular velocities ([26] pp. 26–28). Here, the term ωsis
describes the angular velocity of F s relative to F i expressed in F s,
and the term ωpip describes the angular velocity of Fp relative to F i

expressed inFp. The angular velocity ofω
pi
p can also be expressed as

ωpip � ωpsp �Cpsωsis (A1)

where ωpsp describes the angular velocity of Fp relative to F s

expressed inFp andCps � CpiC
⊤
si. When studying the dynamics of

the tumbleweed rover, two kinematic constraints are present: the no-
slip rolling constraint and the pendulum and central rod constraint.
The no-slip criterion for the rolling sphere can be expressed as

_rsii � −r1×3Csiωsis � −r1×3C⊤
siS

si
s
_θsi (A2)

Because the pendulum is constrained to rotate about the s2 axis,
Eq. (A1) reduces to

ωpip � 12 _ϕ�Cpsωsis

using ωpsp � 12 _ϕ, where the angle ϕ describes the orientation
between Fp and F s. Because the pendulum is rotating about the s2

axis, the direction cosine matrix describing the orientation of Fp

relative to F s isCps � C2�ϕ�, where the direction cosine matrixC2

is associated with a principal rotation about the 2 axis ([26] p. 15). In
terms of the Euler angle rates, the preceding can be written as

_θpi � Spip
−112 _ϕ� Spip

−1Cps
_θsi (A3)

where it is assumed that singularities associated with Spip are avoided.
Equations (A2) and (A3) can be combined in a matrix form as2

664
_rsii
_θsi

_θpi

3
775

|��{z��}
_q

�

2
664

−r1×3C⊤
siS

si
s 0

1 0

Spip
−1CpsS

si
s Spip

−112

3
775

|���������������������{z���������������������}
ϒ

"
_θsi

_ϕ

#
|�{z�}

_̂q

(A4)

where the matrix ϒ is the augmented constraint matrix mapping the
reduced coordinates _̂q to the dependent generalized coordinates _q. In
an effort to keep the dynamic derivation concise, it will be useful to
define various kinematic relations. First, the augmented matrix of
velocities is defined as

ν �

2
664

_rsii

ωsis

ωpip

3
775 �

2
664
1 0 0

0 Ssis 0

0 0 Spip

3
775

|�����������{z�����������}
�S

2
664

_rsii
_θsi

_θpi

3
775

|��{z��}
_q

(A5)

where �S is the augmented mapping matrix between the Euler angle
rates and the angular velocities. It will also be useful to describe the
augmented velocities in terms of the independent angular velocities
using

ν �

2
664
−r1×3C⊤

si 0

1 0

Cps 12

3
775

|������������{z������������}
Π

"
ωsis

ωpsp;2

#
|���{z���}

ω̂

(A6)

where Π is a mapping matrix between the independent angular
velocities ω̂ and the augmented velocities ν. Notice that, because the
pendulum is constrained to rotate about s2 axis, the termωpsp;2 is equal
to _ϕ. To describe the equations of motion of the rover, the time
derivative of Π, given by

_Π �

2
4−r1×3C⊤

siω
si×
s 0

0 0
−ωpsp;21×2Cps 0

3
5 (A7)

will be required. Finally, it will prove helpful to expand and rewrite
the term ϒ⊤ �S⊤ as

ϒ⊤ �S⊤ �
�
Ssi

⊤
s 0

0 1

	�
rCsi1

×
3 1 C⊤

ps

0 0 1⊤2

	
|���������������{z���������������}

Δ

(A8)

The kinetic energy of the system is given by

T � 1

2
� _rsi⊤i ωsi

⊤
s ωpi

⊤

p �

2
664
�mS �mP�1 0 −C⊤

pic
Pp×

p

0 JSss 0

cPp
×

p Cpi 0 JPpp

3
775

|������������������������������{z������������������������������}
M

×

2
664

_rsii

ωsis

ωpip

3
775 � 1

2
ν⊤Mν (A9)

where M �M⊤ > 0 is the total mass matrix of the system. The
potential energy associated with the rolling tumbleweed rover can be
expressed as

U � gmP1
⊤
3 r
si
i � g1⊤3C⊤

pic
Pp
p

Recall Lagrange’s Equation ([27] p. 250):

d

dt

�
∂L
∂ _q

�⊤
−
�
∂L
∂q

�⊤
� Ξ⊤λ� f

where the Lagrangian is defined as L � T −U, Ξ is a constraint
matrix satisfying Ξ _q � 0, λ is a column matrix of the Lagrange
multiplier terms, and f is a column matrix of the generalized forces
and torques acting on the system. The equations ofmotion in terms of
the angular velocities are

M̂ _̂ω�τ̂non � τ̂ext

where
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M̂ � ΔMΠ;

τ̂non � Δ�M _Π ω̂�ν×Mν� a�; and τ̂ext � Δτext

The term τext contains the external forces and torques applied on the
system, as described in Sec. IV.A. The matrix a is given by

a �

2
4−C⊤

piω
pi×
p cPp

×

p ωpip � gmP13 � _rsi
×

i C⊤
pic

Pp×

p ωpip
0

−ωpi
×

p cPp
×

p Cpi _r
si
i − �Cpi13�×cPpp g

3
5 (A10)

and the term ν× is defined as

ν× �

2
4 _rsi

×

i 0 0
0 ωsi

×

s 0
0 0 ωpi

×

p

3
5 (A11)

This concludes the review of the equations of motion of the
tumbleweed rover (for more details, see [12]).
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