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The first goal of this work was to determine the relative importance of two regions of 

flow separation that are caused by a shock wave boundary layer interaction (SBLI) in a 

rectangular duct.  Separation occurs on both the bottom wall and the sidewall;  the areas of 

these two separated regions were measured and compared. The location where separation 

first begins was also estimated.  Most previous studies of SBLI have focused only on a single 

wall and have ignored  interactions where walls meet at corners.  A challenging problem that 

arose was how to best measure separation of 3-D  flow that is  sufficiently unsteady that the 

separation has become intermittent. This required that the probability of separation be 

measured.  Two methods were applied to stereo-PIV velocity data in a SBLI occuring at a 

rectangular corner region of a Mach 2.75 wind tunnel. Method 1 is called the “h-criterion” 

and Method 2 is called the AVT (Axial velocity threshold) criterion. These methods are used 

to detect separation regions and provide a separation map at the interaction region. The 

importance of the side-wall separation regions versus the centerline separation is clearly 

evident from the results hence presented. 

Nomenclature 

x = principal flow direction 

y = direction tangent to the bottom wall pointing leftwards looking downstream 

z = direction perpendicular to x and y completing the right handed co-ordinate system 

zT = 69.85 mm, Height of the tunnel 

yT = 57.2 mm, Width of the tunnel 

ye = 10mm to 28.6mm, y-span of the dataset considered for certain analysis 

ze = 2.5mm to 27mm, z-span of the dataset considered for certain analysis 

u = principal flow velocity or flow velocity in x-direction 

v = flow velocity in y-direction 

w = flow velocity in z-direction 

h = height of separation extending towards free stream at aparticular location 

H = maximum height of separation in a particular image or separation bubble height 

xsep = separation bubble starting location 

ni = number of images in a particular data plane  

k = image no. 

t = wall tangential direction 

n = wall normal direction 

 = 99% boundary layer thickness ( ≈ 10 mm at the nominal interaction point) 
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I. Introduction 

NE of the most interesting and not yet fully understood phenomenon in the area of high speed fluid 

dynamics is that of shockwave boundary layer interactions (SBLI). Such interactions are quite common in 

the external and internal aerospace applications and a detailed understanding of physics is quite necessary for 

accurate flow field and performance predictions of high speed air vehicles.  

 It is widely believed that the dynamics of shock-boundary layer interactions are primarily governed by the axial 

pressure forces arising due to the interaction of the adverse pressure gradient with the wall located on the streamwise 

plane of symmetry of the interaction zone. This face is essentially true for an inlet with relatively large aspect ratio, 

for which a two dimensional flow assumption is appropriate. However, this common assumption places more 

analytical importance on the separation occurring on this plane of symmetry than to the separation resulting from 

interaction with the side wall boundary layer. Yet experimental evidence of surface oil flow features contradicting 

this supposition [Reda, Murphy and Bruce Babinksy, Eagle et.al 2011] demonstrates qualitatively the effects of the 

side wall on the interaction dynamics of such a region are  more prominent. This is especially important in low 

aspect ratio channels that resemble realistic air intake ducts more closely like that of a X-51 or concorde. What are 

missing are measurements, and statistical quantifications of these complex flow patterns and separation regimes in 

high speed devices which are essentially 3 dimensional. 

 In a steady, laminar flow, flow separation can be identified by using the oil film method or by using surface 

shear stress sensors.  Separation is defined to occur where the shear stress at the wall is zero.  As described by 

Surana et al.(2008), in a 3-D flow, it is the component of the shear stress vector that is perpendicular to the 

separation line that goes to zero at the wall;  the component parallel to the separation line is not necessarily zero.  If 

the flow is unsteady due to fairly intense turbulence,  oil film and shear stress sensors are not as easy to interpret as 

their useful 2-D counterparts. Surface measurements also provide no information about the flow away from the wall, 

such as the height and shape of separation regions.  Therefore in the present study we use instantaneous images of 

the velocity field near the walls that was obtained using stereo-PIV to provide a separation ‘map’ in the corner 

region where the flow is highly three dimensional.   

II. Previous Research 

There have been numerous studies of several simple “unit physics” SBLI problems; the reader is referred to 

comprehensive reviews written by Korkegi (1975), Adamson and Messiter (1980), Panaras (1996), Delery et al. 

(2010) and Babinsky and Harvey (2011). Relatively few previous studies have focused on 3-D unit physics 

problems, instead preferring to isolate the SBLI from any of three dimensional influences which turn out to have 

leading order effects on flow separation. Representations of the proposed flowfield resulting from a 3D interaction 

are shown in fig. 1 which shows the flow 

features developed in the interaction region 

formed due to oblique shock interaction 

formed on the bottom wall. The black curve 

represents the curved shock, which causes the 

flow to separate at the side wall(dark blue 

curves) as well as the bottom wall (red 

curves). Points P indicate points of flow 

separation, points N indicate the focus of the 

recirculation zone and points R are the points 

of flow reattachment. The side wall 

separation corresponds to the unit problem of 

swept shock boundary layer interaction (Alvi 

and Settles, 1992). The bottom wall 

separation corresponds to the unit physics 

proble of an oblique incident shock (Babinsky 

and Harvey, 2009). 

   Previous investigations of a SBLI in a 

rectangular duct are limited to two component 

PIV (Helmer et al. 2012) and several papers 

that report oil film and wall pressure data 

(Bruce and Babinsky 2010, Handa et al 

2005, Doerffer & Dallmann 1989). In their 

 O 

Figure 1. Schematic diagram(top view) of near bottom wall 

flowfield resulting from a 3-D shock /boundary layer 

interaction. Core flow direction: left to right. 
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PIV work, Helmer et al. measured two velocity components on four different streamwise/wall-normal planes and all 

four of their planes were parallel. This was not sufficient to identify truly 3-D features and separation. Most recently, 

Eagle (2012) gathered stereo-PIV in an attempt to construct a comprehensive database inclusive of the three 

components of velocity along multiple orthogonal measurement planes in the three perpendicular directions. In this 

study we analyze some relavent data planes in this database to identify and investigate the regions of flow separation 

in the flow field, both on the bottom wall and side wall. The overarching objective is to develop a separation zone 

map in and around the interaction region along with quantified statistical parameters describing the unsteadiness of 

the separation. 

 

III. Experimental facilities 

The current experiments were 

performed in the low aspect ratio 

Michigan Glass Wind Tunnel 

(Lapsa and Dahm, 2011) which is a 

vacuum driven supersonic tunnel 

with a Mach 2.75 nozzle and a low 

aspect ratio (57.2 mm x 69.85 mm) 

test section. This configuraton 

generates a three-dimensional inlet 

shock wave boundary layer 

interaction. The unit Reynolds’s 

number for the experiment was 

8.9x106/m. A 6ᵒ deflection angle, 

full span shock generator was used 

to produce an oblique shock wave. 

For the work and data presented 

here, the coordinate system being used is a right handed coordinate system with the x-direction being the streamwise 

direction, x = 0 being at the leading edge of the 6ᵒ shock generator, and the z-direction being the wall-normal 

direction from the bottom wall. Following previous work on the investigation of our 3D SBLI system, (Eagle 2012; 

Eagle et al., 2012), further measurements were performed on four additional spanwise/wall-normal planes 

(Tranverse Vertical planes, TV) downstream of the primary interaction region. Only transverse vertical planes 

perpendicular to wall and the streamwise direction were considered for this analysis as they provide a better insight 

into area blocked by separation in a cross section of the tunnel. This selection was motivated with the aim of 

capturing the bottom wall and side wall separation around the interaction region. A summary of the location of all 

TV planes available is presented in Table 1, while a schematic of their orientation and location is shown in fig. 2. 

Stereoscopic particle image velocimetry measurements were performed. Two interline transfer CCD cameras 

(resolution 1280x1024 pixel) in forward-scattering stereoscopic configuration were used for the imaging. To 

minimize particle drop-out while optimizing in plane displacement, the interframe time delay was set to 600 ns for 

all the measurements presented here. The double-pulse illumination of the flow was provided by a pair of low 

repetition rate, frequency-doubled Nd:YAG lasers timed with the pair of cameras by suitable timing units. Particle 

seeding of the flow was generated by a TDA-4B portable Laskin nozzle aerosol. The generator consists of an array 

of six Laskin nozzles that create polydispersed sub-micron particles using a Poly-Alpha Olefin (PAO) oil with 

density of 819 kg/m3. The mean particle diameter is specified to be 0.281 μm. For a M = 2.75 free stream conditions 

of this study, the corresponding Stokes number is 0.025, which is within the acceptable range(Stoke’s no. of 0.1) to 

track the large and small scale motion in the boundary layer and SBLI regions of interest as per Ragni et al[1].The 

LaVision DaVis 7.2 and DaVis 8 softwares were used for the acquisition of the measurement and processing of the 

data. The three-component velocity fields were reduced from the particle images using Davis 8. A multi-pass with 

reducing interrogation window size, window deformation and offset was used. The final size of the interrogation 

windows was 32x32 pixel, which corresponds to a projected physical size ranging from about 0.2mm x 0.2 mm to 

0.7 mm x 0.7 mm depending upon the measurement plane. A summary of the effective spatial resolution (measured 

as the size of the final interrogation window) for all planes considered here is given in Table 1. 

 

 

 

Figure 2. Schematic diagram(side view) of the tunnel showing 

various planes of measurement with respect to the wedge and 

incident shock. 
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Table 1. Location and span of transverse vertical planes. 

 

Plane x [mm] y [mm] z [mm] Spatial 

resolution 

[mm x mm] 

# images 

TV5 76 1.17-35.06 1.15-26.93 0.21 x 0.21 402 

TV6 81 1.17-35.06 1.15-26.93 0.21 x 0.21 402 

TV7 86 1.17-35.06 1.15-26.72 0.21 x 0.21 402 

TV8 91 1.17-35.06 1.15-26.72 0.21 x 0.21 402 

TV9 96 1.17-35.06 1.15-26.72 0.21 x 0.21 402 

TV10 101 1.61-44.92 1.13-41.73 0.34 x 0.34 1800 

TV11 107 1.27-44.51 1.37-35.39 0.57 x 0.57 1100 

TV12 115 1.44-44.75 1.30-41.22 0.67 x 0.67 1700 

TV13 130 1.44-44.75 1.30-41.22 0.67 x 0.67 1800 

 

IV. Separation Criteria 

Two criteria were identified and applied to determine separation and its properties. In particular, separation was 

identified by using the following two criteria as applied by Souverein et al (2010)[2] & Piponniau et al[3]:  

A. Method 1:  The “h-criterion” 

The separation height profile(hk(t)) of kth image as a function of the surface location t, is defined to be: 

                             ∫ 𝑢𝑘(t, n) ∙ 𝑑n = 0
ℎ𝑘(t)

0
                                                                (1) 

 where t is the direction tangent to the wall, n is the direction normal to the wall (i.e., t) and uk(t,n) is the local 

streamwise velocity at the (t,n) point. The quantitiy h is computed for each measurement instant k and it is denoted 

by hk. By definition, if separation is not detected, hk = 0. The ensemble average quantity, here denoted by h, is 

computed by averaging the set of local values hk. This parameter effectively tells us how much of wall normal space 

is effectively reduced because of separation. This is equivalent to that region being unavailable to the incoming flow 

but it must be noted that the current measurments don’t include the effect of density. This quantity is limited by the 

accuracy of velocity measurements near the wall and by the overall spatial resolution of the measurements. As a 

result, vector validation, interpolation and low-pass filtering was performed as described below. 

From each profile instantaneous hk profile, the maximum value of the profile is extracted and denoted by Hk. 

This quantity is simply referred to as separation bubble height and provides a global instantaneous measure of the 

wall-normal extent of separation. Unlike the quantity hk which is a function of one coordinate direction, Hk is a 

constant for a particular image. The ensemble average separation bubble height H is then computed from the set of 

instantaneous values.  

 

B. Method 2:  The AVT (Axial Velocity Threshold) criterion: 

The probability of separated flow at each point in the measurement domain was defined and computed as the 

fraction of the total number of realization where the local instantaneous streamwise velocity was less than a 

threshold value, here taken as 20 m/s. The quantity thus computed represents the probability of the local velocity to 

be less than the threshold value at a particular location in a data plane. A threshold value of 20 m/s is chosen to 
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make the method resistant to errors arising from the PIV dynamic resolution. As a consequence, this definition 

identifies regions where both reverse and low-velocity regions exist. Thus, it tends to overestimate the distribution 

and size of the region where reverse flow might exist. In any case, this definition is used to identify the regions that 

are most affected by the shock interaction process and we loosely refer to them as regions of probable separation. 

All points with a probability greater than 50% were said to lie near a separated zone. The isoconotur line of 50% 

probability, denoted as hAVT, was chosen as the dividing line between disturbed and undisturbed flow . The area 

under the dividing line hAVT  can be understood as the separation or blockage area similar to hk. . This definition of 

separated flow is more robust than the corresponding one that could be defined from the separation profile h because 

it is less prone to the experimental limitations near the wall as a low velocity region resulting from separation can 

extend towards the core flow away from the wall, where the accuracy of PIV is sufficent. However, it incorporates 

an arbitrary parameter (50% intermittency) that hinders identification of highly unsteady separation. To address this 

latter issue, different threshold values were considered and similar conclusion were made with the value shown here. 

V. Results 

In order to detect separation, the above metrics and methods were applied to transverse/vertical measurement 

planes around the interaction zone (TV5 to TV13 planes). The data was pre-processed using PIVMAT,a PIV 

toolbox for MATLAB developed by F. Moisy[4]. All the data for the h-criterion analysis was filtered using the 

smoothing and interpolating method developed by D. Garcia[5], which is based on a penalized least square 

regression. A smoothing parameter value of 1.25 was used. In case of TV planes the corner region from (y = 0, z = 

0) to (y = 10 mm, z = 2.5 mm)  has been deleted from statistical analyses to avoid the mathematical complexity of 

defining the separation area as the corner region was approached (h-criterion). However, the corner region has been 

considered in analyses of hAVT. The incident shock wave impinges on the bottom wall boundary layer at  x = 95mm 

on the centerplane of the tunnel (y = 28.6 mm). Owing to curvature of shock, the location of incident shock 

impingement moves upstream as we move off centerline. Results corresponding to two representative planes, one 

upstream (TV5) and one downstream (TV11) of the interaction zone are presented below to demonstrate the spatial 

distribution of the separated flow region. 

A. h-criterion 

  

Figure 3. A single image from TV5(x=76mm) dataset 

showing the separation profile,hk, superimposed over 

instantaneous streamwise velocity(m/s) 

Figure 4. A single image from TV11(x=107mm) dataset 

showing the separation profile,hk, superimposed over 

instantaneous streamwise velocity(m/s) contours 

Fig. 3 and fig. 4 show a representative instantaneous view of the separation profile hk (white solid line) 

superimposed to the streamwise (out-of-plane) velocity color contour for a transvserse/vertical plane at 76 mm 

(TV5, before the incident shock impingement) and 107 mm (TV11, after the incident shock impingement). Using 

the definition of equation (1) the profile h was computed for the bottom-wall according to: 

∫ 𝑢𝑘(y, z) ∙ 𝑑z = 0
ℎ𝑘(y)

0
                                                              (2) 

And for the side-wall according to: 

∫ 𝑢𝑘(y, z) ∙ 𝑑y = 0
ℎ𝑘(z)

0
                                                              (3) 

Centerline 

 
Centerline 
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 We define separation to pertain to side-wall if it occurrs below  y < 10 mm otherwise it is attributed to the 

bottom wall. The total area under the hk profile is refered to as the total separation area.  

The first observation to be made from the examples of Fig. 3 and 4 is that the side-wall separation is larger than the 

bottom-wall separation and it is most prominent near the corner of the tunnel. Plane TV5 (Fig. 3) is located at 76 

mm, which corresponds to about 2 upstream of the centerline interaction ( being the boundary layer thickness at 

the interaction point for the undisturbed flow). At this location and instant, the side-wall separation close to the 

corner is already developed while the bottom-wall boundary layer near the centerplane of the tunnel (28 mm) isn’t 

strongly influenced by the incident shock. It is apparent from comparing Figs 3 and  4 that the side-wall separation 

region in TV11 stretches further into the free stream region than TV5 indicating growth of the separation through  

the SBLI. 

 

The ensemble average separation profiles h corresponding to the planes of Figs. 3 and 4 are shown in Figs. 5 and 

6. The quantity h(y) represents the mean bottom-wall separation while h(z) represents the mean side wall-separation 

profile. The area under these curves is a representation of the region in the wind tunnel where there is no net flow on 

  

Figure 5. Mean separation profile superimposed 

over mean streamwise velocity in TV5 

plane(x=76mm) computed using h-criterion 

Figure 6. Mean separation profile superimposed 

over mean streamwise velocity in TV11 

plane(x=107mm) computed using h-criterion 

  

Figure 7. Histogram of side wall separation area in 

TV5 plane(x=76mm) 

Figure 8. Histogram of side wall separation area in 

TV11 plane(x=107mm) 

Centerline 

 

Centerline 
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average. Comparing Figs. 5 and 6, flow blockage is stronger in the TV11, which is downstream of the interaction 

than in TV5 plane. Also, most of the contribution to the blockage comes from the side-wall separation in both 

planes. The bottom wall separation is nearly non-existant in the mean at these two specific locations only appearing  

in the immediate vicinity of the predicted centerline interaction. This behavior is ascribed to the significant three-

dimensional effects arising due to the low aspect ratio wind tunnel and the complex shock structure of the incident 

shock as the corner is approached (Helmer et al, 2012)[6]. 

Figures 7 and 8 show the probability density function (PDF) distribution of side-wall separation area compiled 

over all instants for the TV5 and TV11 planes, respectively. The upstream plane (TV5) has a smaller side-wall 

separation and it is more intermittent than side-wall separation at the downstream location (TV11). The PDF of fig. 

7 shows that the most probable flow state at TV5 is attached flow. However, note that the finite resolution of the 

measurement and practical limitations in measuring the flow velocity as the wall is approached could also be 

responsible for the lack of separation detection.  

Further downstream the most probable value of the side-wall separation area in TV11 plane is about 27.5 mm2 

and there is no case of non-separated flow as seen in fig. 8. For comparison, assuming that separation is symmetric 

relative to the centerplane, quarter of the windtunnel corresponds to 1000 mm2. Therefore, the fractional area of 

separation can be a significant fraction of the available channel area; at the most, the side-wall separation on the 

TV11 plane amounts  up to 6% of the quarter area. 

PDF distributions of the bottom-wall separation area for the TV5 and TV11 planes are shown in figs. 9 and 10, 

respectively. It is evident that the bottom-wall separation is more probable at the upstream location of TV5, although 

at both locations the predominant state is attached flow. The proposition by J. Délery in the book by Babinsky & 

Harvey[7] which may explain this behavior is that the incident shock impinges on the flow around separation bubble, 

which acts as a free boundary causing an expansion wave to reflect off in the downstream direction. The expansion 

wave curves the detached shear layer towards the wall eventually reattaching it downstream of the interaction. At 

the same time, the influence of high pressure developed behind the shock is propagated upstream through the 

viscous boundary layer. This smears the adverse pressure gradient upstream of the point where the shock impinges 

the boundary layer on the bottom wall which causes a tendency for the flow to separate. In Figs. 7 through 10 we 

show that most of the flow separation in our low aspect ratio supersonic duct 3D SBLI comes from the interaction of 

the shock with the side-wall boundary layer and not from interaction with the bottom-wall. 

  

Figure 9. Histogram of bottom wall separation area 

in TV5 plane(x=76mm) 

Figure 10. Histogram of bottom wall separation area 

in TV11 plane(x=107mm) 

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
13

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
4-

11
38

 



 

American Institute of Aeronautics and Astronautics 
 

 

8 

  

Figure 11. Histogram of total separation area in TV5 

plane(x=76mm) 

Figure 12. Histogram of total separation area in 

TV11 plane(x=107mm) 

  

  

Figure 13. Histogram of side wall separation bubble 

height in TV5 plane(x=76mm) 

Figure 14. Histogram of side wall separation bubble 

height in TV11 plane(x=107mm) 

PDF distributons computed for the total separation area from all the images of the TV5 and TV 11 planes are 

shown in fig. 11 and fig. 12, respectively. For the most part, these PDF distributions follow the profiles for the 

corresponding side-wall separation areas. Separation is more probable and stronger in the region downstream of the 

interaction than the upstream plane. 

Figures 13 and 14 show the PDF distribution of side-wall separation bubble height Hk for the two planes 

considered here. This quantity represents how far the separation profile stretches into the undisturbed flow. A value 

of Hk equal to 0 mm corresponds to a non-separated case. . The peak at separation bubble height of 0mm in TV5 

which is an outlier to the bell curve profile may be the result of lack of PIV resolution near wall and the way 

separation profile hk is defined in that case. It is worth noting that past the interaction zone, the separation bubble is 

more likely to stretch towards the core flow than in the upstream region. On the upstream plane, separation bubble 

height extends up to 1/2, whereas on the downstream plane it reaches one boundary layer thickness. PDF 

distributions of the bottom-wall separation bubble height were also compiled and they further indicated that the the 

flow is hardly separated at the location of the TV11 plane but it is weakly separated at TV5. 
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Figure 15. Mean Separation area vs x as computed using true separation profile (green lines are the linear 

extrapolation of the data) 

 

The h-criterion analysis presented above was repeated for the planes around the interaction region to obtain the 

variation of separation properties with respect to the streamwise direction x. The streamwise variations of the 

ensemble averaged total, bottom- and side-wall separation areas (computed over all instances) are shown in Fig. 15. 

Since the relevant measurements started after a streamwise location of 70 mm, the data were linearly extrapolated to 

zero (green lines) to obtain the upstream point of separation, which is found to be around x = 70 mm. 

It can be seen from the graph in Fig. 15 that most of the contribution to the total separation area comes from the 

side-wall separation as compared to that from bottom-wall separation zone in almost all the streamwise locations 

around the nominal interaction location (x=95mm). This is particularly true past the nominal interaction location 

where all of the separated area is due to side-wall separation. The bottom-wall separation grows from x = 70 mm, 

peaks around the nominal interaction location (x = 95 mm) and then decreases to zero immediately after the 

interaction. On the other hand, the side-wall separation increases above the bottom-wall separation in the region 

leading to the nominal interaction region, drops at a local minimum value around the nominal interaction region, and 

then further increases (and dominates) past the nominal interaction location. At the nominal interaction location, 

where the bottom wall separation is the strongest, the bottom-wall separation area accounts for  about 35% of the 

total separation area. The authors note that this result could impact the placement and testing of various boundary 

layer control devices, which have typically been installed only on the bottom walls of test inlet geometries. 

The dominance of the side-wall separation is attributed to the highly three-dimensionality of the flow and of the 

SBLI. In the region just before the nominal interaction location, the bottom-wall separation zone strengthens due to 

the adverse pressure gradient from the shock felt upstream, which may cause the side-wall separation zone to 

weaken (relative to the incoming state) in the same zone; nevertheless, the contribution of side-wall separation to the 

total separation remains greater than the contribution of bottom-wall separation. After the nominal interaction 

location, the bottom-wall separation zone reattaches due to the expansion fan reflected from the incident shock. 

However, at this position, the 3D effects of the interaction resulting from the low aspect ratio of the tunnel dominate. 

As the centerline interaction is diminishing the side-wall boundary layer separation continues to grow.The 

increasing of one separation strength and weakening of the other seemed to indicate existence some connection 

between side-wall and bottom-wall separation areas. Analysis of the separation size among instantaneous images did 

not yield any correlation between sizes. Another behavior worth noticing from the green exterpolated curves is that 

the side wall separation bubble seems to start much upstream at around x = 68 mm of the central interaction (x = 

95mm) whereas the bottom wall separation bubble starts at around x=72mm. It is postulated that this may be caused 

by the curved shape of the shock near the side-walls along with the viscous side wall boundary layer carrying the 

effect of pressure rise due to this curved shock further upstream resulting in adverse pressure gradient even on the 

side wall causing separation further upstream. 

Plots for the streamwise variation of the ensemble average separation bubble height H defined from the set of 

instantaneous values showed a behavior similar to that of fig.15 with approximately similar start points. 
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B. Probability of separated flow 

The separation profile hAVT (black solid line) superimposed to the probability of separation (defined based on the 

streamwise velocity being less than 20 m/s) for the TV5 and TV 11 planes, is shown in Fig.s 16 and 17 respectively. 

The separation profile hAVT was defined as the isocontour of 50% probability to observe a streamwise velocity below 

the threshold. The outline of the separation profile extracted from the intermittency map of separated flow is 

qualitatively similar to that obtained by the h-criterion (Figs. 5 and 6). The region between the walls (axes) and the 

separation profiles represent the zone along the wall where the flow is most likely to be separated. Greater the 

distance of this profile from the wall, higher the probability of separation at that location. The bottom-wall 

separation which was detected using the h-criterion, is not detected using this method since the probability of flow to 

be separated on the bottom wall is nearly absent in TV11 and is well below 50% on TV5. 

The area under the separation profile hAVT gives a measure of likeliness of the flow to be separated. Similarly to 

the other method, the area of separted flow was computed for all available transverse/vertical planes and it is plotted 

as a function of streamwise direction in Fig. 18. The green line is a linear extrapolation of the available data to zero. 

The area of separted flow of Fig. 18 can also be interpreted as an overall probability of separation at a particular x-

location (i.e., on the particular measurement plane) due to the way it is defined. It can be seen that the probability of 

separation on the bottom wall is 0 upstream of about x = 81 mm, it then increases and peaks around x = 90 mm due 

to the adverse pressure gradients imposed by the shock which impinges on the boundary layer downstream at about 

x = 95mm on the horizontal streamwise centerline of the tunnel. The area of separated flow then decreases and the 

flow reattaches near x = 107 mm. Similar behavior can be observed for side-wall and total separation. The side-wall 

separation begins upstream of the location where bottom-wall separation is observed first, which is consistent with 

the behavior extracted from the h-critereon analysis. The results corresponding to the side wall separation start point 

seem to match fairly well with those obtained from the h-criterion. Note that this method shows a higher probability 

of flow to be separated at the bottom wall than the side wall at around x=90mm. 

Since the h-criterion method computes the separation area by averaging over all the events, it will be highly 

biased towards the most probable value in case of distributions with lower variance (note that the spread of the 

histogram of bottom wall separated area is thinner that that of the side wall separated area), which means that the 

value of the average separation area is biased towards 0 at locations well upstream of the nominal interaction point. 

On the other hand, the AVT method essentially filters out regions of low probability of separation because a 

probability value of 50% is used in the analysis; thus, this second method identifies the bottom wall separation start 

point to be located further downstream than that calculated from the h-criterion method if the flow is less than 50% 

separated. 

  

Figure 16. Probable separation region outline(hAVT)  

superimposed on the mean intermittency map of TV5 

(x = 76mm) 

Figure 17. Probable separation region outline(hAVT)  

superimposed on the mean intermittency map of 

TV11 (x = 107mm) 
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Figure 18. Separation area vs x as computed from the separation profiles characterized by regions 

showing  50% probability of having streamwise velocities less than 20m/s (green lines are the linear 

exterpolation of the data) 

C. Three-dimensional view of regions of probable separation 

A three-dimensional view of the system of interests and of the regions of most probably flow separation is 

shown in Fig. 19. The figure is a compilation of the probability of separated flow for each of the transverse/vertical 

planes located around the nominal shock interaction region (x = 95 mm). The figure also includes a schematic 

representation of the inviscid incident and reflected shock waves (green semi-transparent surface) for reference only, 

and a representation of the compression surface generating the incident shock on the top surface of the windtunnel. 

Only one half of the windtunnel span is shown for clarity. The contours in the figure identify the regions where the 

flow is more likely to separate. The bottom wall separation occurs only around the nominal interaction region, while 

the side-wall separation begins well upstream and persists downstream. Because of the low-aspect ratio of the 

tunnel, the incident shock is strongly deformed, and the impact of the side-wall boundary layer, and the dynamics of 

the ‘fin-wall’ interaction appears to dominate the flowfield. Furthermore, separation remains confined near the 

corner, and the geometric center of the area of probable separation does not vary much from the bottom wall-normal 

height of about 10 mm. 

In our configuration (but in reality in any SBLI configuration), we can identify two separate SBLI events: near 

the centerplane of the windtunnel, where the SBLI resembles the classical two-dimensional incident shock 

interaction, and near the side wall, where a sharp-fin SBLI is propagating towards the corner. The proposed structure 

of the three-dimensional interaction that result in bottom- and side-wall interaction is shown in detail in Figure 20. 

The structure shown in the figure is inferred from combining the general structure of the 2-D incident shock 

interaction and the structure of a fin-induced swept shock interaction as proposed by Alvi and Settles (1992)[13]. 

Because of the importance of the side-wall separation, we will here focus on the swept-shock interaction component. 

In the swept shock interaction configuration, the strength of the interaction is governed by the component of the 

Mach number of the incoming flow normal to the invisicid shock wave (Mn). For sufficiently large values of Mn, the 

flow separates, and different separation structures are observed based on the strength of the interaction (Mn). For 

weak interactions, a single separation region is observed (this is the case indicated in Figure 20), while a second 

separation region arises for stronger interactions. One peculiar characteristic of swept shock interaction is its quasi-

conical symmetry with the origin of the conical flow located somewhat upstream of the leading edge of the fin. As a 

result, the flow field in a conical system of reference (, ) is self-similar. The general flow structure that evolves 

around the region of flow separation consists of bifurcated -shock originated by the invisicid shock wave which 

induces flow separation. A forward and rearward separation shock waves are generated around the separation 

region. A slip line originates from the triple point of the -shock. For the case of this study, Mn ≈1.2. This case 

corresponds to a relatively weak interaction that results in incipient separation[18]. Thus, only a single separation 

region might be expected[13]. In Figure 20, the separation is bounded by the separation point S and reattachment point 

A. Point U is the upstream point of influence. The region bounded by the slip line and the outer boundary of the 
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separation region defines what is referred to as “impinging jet”. In this region, the flow curves around the separation 

bubble through a set of expansion waves. The separation bubble is dominated by a vortex  

existing in the core of the separation region. The results of the current study are consistent with the view of Figure 

20 and identify the region where separation is more likely. Because PIV measurements are taken on planes 

perpendicular to the streamwise flow direction and not on planes that capture the conical symmetry of the flow, it is 

difficult at this time to describe the flowfield using this conical frame of reference. Despite the progress here-in, 

more work is needed to  assess these aspects of side-wall separation, its structure, and its dependence and relation to 

the bottom-wall separation. 

VI. Conclusion 

From the analysis conducted, it can be concluded that the side wall separation is stronger than bottom wall 

separation in the three-dimensional SBLI in a low aspect ratio duct. Our results indicate the side wall separated cross 

sectional area averages 2-3 times larger than the bottom wall. Also the flow separation is less intermittent (more 

likely to be separated) on the side wall than on the bottom wall. And the curved nature of shock in such an 

interaction causes the flow to separate on the side wall upstream of where it begins to separate on the bottom wall. 

Both the h-criteron and the ATV methods produced similar results for the separation point and separated area. 

The axial velocity threshold method was better at filtering out noise in the PIV data but filtered out the low 

probability events, while the h-critereon was sensitive to noise arising from experimental limitations. On the other 

hand the h-critereon method made it possible to obtain a detailed picture about the statistical properties of the 

separation at a particular location. 
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