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In this paper, we construct active flux schemes for diffusion. Active flux schemes are
efficient third-order finite-volume-type schemes developed thus far for hyperbolic systems.
This paper extends the active flux schemes to diffusion problems by the first-order hyperbolic
system method, in which a numerical scheme is constructed based on a first-order hyperbolic
system that is equivalent to the diffusion equation in the steady state. Active flux schemes
are first developed for a generic hyperbolic system with source term, and then immediately
applied to the hyperbolized diffusion system to generate a steady-state solver. Time-accurate
schemes are constructed by implicit time integration where the steady-state solver is employed
to solve the implicit residual equations. Numerical results show that third-order accuracy is
obtained in both the solution and the gradient on irregular grids.

1. Introduction

In this paper, we construct active flux schemes for diffusion. Active flux schemes have been developed for
hyperbolic systems of conservation laws in Refs.1, 2, as a viable alternative to high-order methods. Active flux
schemes are finite-volume-based compact high-order schemes. These schemes are substantially different from
other high-order schemes and have attractive features for a practical implementation. First, active flux schemes
do not rely on a typical one-dimensional flux across a control-volume face, but incorporate multi-dimensional
physics into the residual. The numerical flux at a face is determined not by solving a one-dimensional Riemann
problem, but calculated by the method of spherical mean, which is an exact solution to a multi-dimensional
initial-value problem (it is equivalent to a solution to the characteristic equations in one dimension). Second, the
memory requirement is much reduced compared with DG schemes due to sharing of degrees of freedom among
elements. In addition to cell-averages, active flux schemes carry point-values at faces; the latter are shared by
adjacent cells, thus resulting in 2 degrees of freedom per cell (for third-order accuracy) in one dimension, and
approximately 3.5 in two and three dimensions. The active flux methodology has been developed for systems
of hyperbolic conservation laws in Refs.1, 2, but its extension to diffusive equations has not been well studied
yet. Towards the development of practical third-order active-flux schemes for viscous flow simulations, in this
paper, we focus on the construction of active-flux schemes for diffusion.

One possible approach to the construction of active flux schemes for diffusion is the recovery approach pro-
posed in Ref.3. Specifically, a quartic polynomial is constructed over two adjacent cells, based on a quadratic
polynomial defined within each cell, and a diffusive flux is directly evaluated by differentiation at the face.
However, our experience shows that the resulting explicit time-stepping scheme is subject to a severe stability
restriction, and thus limiting its potential use (an analysis is given Ref.4). In order to develop high-order diffu-
sion schemes while preserving the advantages of the active flux scheme, we consider the construction of diffusion
schemes based on the first-order hyperbolic system method where the diffusion equation is discretized in the
form of a first-order hyperbolic system. One of the advantages of this method is that schemes developed for
hyperbolic systems can be directly applied to diffusion. The method was first introduced in Ref.5, extended to
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the advection-diffusion equation in Ref.6, to the Navier-Stokes equations in Ref.7, to time-dependent advection-
diffusion problems in Ref.8, and to high-order schemes (up to 6th-order) in Ref.9. At the same time, the method
has also been employed for the development of first-, second-, and third-order edge-based finite-volume schemes
as in Refs.10–12. Through the series of papers, the method has been shown to offer a number of advantages
over conventional methods, not only the drastic simplification in discretization (i.e., advection scheme for dif-
fusion), but also significant acceleration in steady convergence by explicit and implicit solvers, and the equal
order of accuracy for the solution and the gradients (viscous/heat fluxes) on fully irregular grids. This paper
demonstrates that the active flux scheme for diffusion can be constructed by applying the active flux scheme de-
veloped for hyperbolic systems as presented in Ref.1,2 in combination with the physical time integration by the
backward difference formulas. In doing so, we have found that active flux schemes need a careful construction
for hyperbolic systems with source terms, which include the hyperbolic diffusion system. This paper shows how
to construct active flux schemes for hyperbolic systems with source terms, and then how the resulting schemes
can be immediately turned into diffusion schemes.

2. Hyperbolic Diffusion System

Consider the diffusion equation:

uτ = ν uxx + s1, (2.1)

where ν is a constant diffusion coefficient and s1 = s1(x) is a source term. In this section, we focus on steady
problems, and thus the variable τ is a pseudo time. Steady solutions can be obtained by solving, instead of the
diffusion equation, the following first-order hyperbolic system:

uτ + fx = s, (2.2)

where

u =

[
u

p

]
, f =

[
−νp

−u/Tr

]
, s =

[
s1
s2

]
, (2.3)

where s2 = −p/Tr. Note that the system is equivalent to the diffusion equation in the steady state for any
nonzero value of the relaxation time, Tr. The equivalence in the steady state is the key idea as first proposed
in Ref.5 for constructing diffusion schemes. Therefore, the relaxation time does not have to be determined by
any physical consideration, but can be determined solely by numerical consideration, e.g., fast convergence to
the steady state. A typical choice is the following:

Tr =
L2
r

ν
, Lr =

1

2π
, (2.4)

which can be derived by requiring Fourier modes to propagate to enhance the iterative convergence as discussed
in Ref.6. The same choice has been derived based on a similar argument applied to a first-order finite-volume
scheme as described in Ref.11.

Consider the flux Jacobian, A = ∂f/∂u,

A =

 0 −ν

−1/Tr 0

 , (2.5)

which has the following real eigenvalues:

λ1 = −λ, λ2 = λ, λ =

√
ν

Tr
=

ν

Lr
, (2.6)

and linearly independent right and left eigenvectors,

R =
1

2

[
1 −1

1/Lr 1/Lr

]
, L = R−1 =

[
1 Lr

−1 Lr

]
. (2.7)
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Therefore, the system is hyperbolic, which describes a symmetric wave. Consequently, the system can be
diagonalized by multiplying it by L from the left, which yields the set of characteristic equations:

∂τw1 + λ1 ∂xw1 = sw1 , ∂τw2 + λ2 ∂xw2 = sw2 , (2.8)

where

w1 = Lrp+ u, w2 = Lrp− u, (2.9)

sw1 = Lrs2 + s1, sw2 = Lrs2 − s1. (2.10)

Active flux schemes developed for hyperbolic systems can be directly applied to the hyperbolic diffusion
system. In the steady state, we obtain the solution to the diffusion equation. However, the hyperbolic diffusion
system has a source term; the one in the second equation of Eq.(2.3), i.e., s2, is intrinsic to the hyperbolic
diffusion system. Previous studies did not consider hyperbolic systems with source terms, and it has been
found that active flux schemes require a careful construction for such systems. Also, it has been observed that
improperly implemented boundary conditions can degrade the design accuracy of active flux schemes. In the
next section, we discuss these issues in details for a generic hyperbolic system with source terms.

3. Active Flux Scheme for Hyperbolic System with Source Terms

3.1. Hyperbolic System with Source Terms

Consider a 2×2 hyperbolic system with source terms in x ∈ (0, 1):

uτ − avx = su(x), (3.1)

vτ − aux = sv(x), (3.2)

where τ is a pseudo time, a is a positive constant, and su and sv are source terms. We are interested to compute
the steady state solution with the Dirichlet boundary conditions:

u(0) = u(1) = v(0) = v(1) = 0. (3.3)

Write the system in the vector form:

uτ + fx = s, (3.4)

where

u =

[
u

v

]
, f =

[
−av

−au

]
, s =

[
su

sv

]
. (3.5)

The flux Jacobian, A = ∂f/∂u,

A =

 0 −a

−a 0

 , (3.6)

has the following eigenvalues:

λ1 = −a, λ2 = a, (3.7)

and the right and left eigenvectors,

R =
1

2

[
1 1

1 −1

]
, L = R−1 =

[
1 1

1 −1

]
. (3.8)

The characteristic equations are obtained by multiplying the system by L from the left:

wτ +Λwx = sw, (3.9)
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where w = (w1, w2), and

w = Lu =

[
u+ v

u− v

]
, Λ =

[
−a 0

0 a

]
, sw = Ls. (3.10)

The characteristic system consists of two advection equations:

∂τ (u+ v)− a ∂x(u+ v) = sw1 , ∂τ (u− v) + a ∂x(u− v) = sw2 , (3.11)

where sw1 = su + sv and sw2 = su − sv.

3.2. Discretization

To discretize the system by the active flux scheme, we begin by storing the cell-averages within each cell and
the point-values at each face in a one-dimensional grid. In each cell, we construct quadratic polynomials, u(x)
and v(x), by interpolating the face values and requiring that the cell-average of the polynomial reduces to the
cell-averaged solution. Integrating the system (3.4) over a space-(pseudo-)time control volume, we obtain

(uk+1
j − uk

j )h = −∆τ
[
fj+1/2 − fj−1/2

]
+∆τ

∫ xj+h/2

xj−h/2

s dx. (3.12)

Note that fj+1/2 and fj−1/2 are time-averaged fluxes, which can be evaluated by Simpson’s rule and that the
source term is independent of time. It leads to a pseudo-time marching scheme:

uk+1
j = uk

j − ∆τ

h
Resj , (3.13)

where

Resj = fj+1/2 − fj−1/2 −
∫ xj+h/2

xj−h/2

s dx. (3.14)

At this point, the discretization of the source terms is straightforward. It is the interface flux step where a
special treatment is required.

In active flux schemes, the interface flux is computed by the solution at face obtained by integrating the
characteristic equations along the characteristics. For example, at face j + 1/2, we obtain

w1(xj+1/2) = w1(xR) +
1

λ1

∫ xj+1/2

xR

sw1 dx, w2(xj+1/2) = w2(xL) +
1

λ2

∫ xj+1/2

xL

sw2 dx, (3.15)

where xL = xj+1/2−σh is the location on the left cell at time level k found by tracing back the characteristic from
the face, and xR = xj+1/2 + σh is the location on the right cell found by tracing back the other characteristic.
See Figure 1, which illustrates the case j = 1. Note that σ = Ka∆τ/h with K ∈ (0, 1]. The source term
integration can be carried out by Trapezoidal rule:∫ xj+1/2

xR

sw1 dx =
1

2

[
sw1 (xj+1/2) + sw1 (xR)

]
(xj+1/2 − xR), (3.16)

∫ xj+1/2

xL

sw2 dx =
1

2

[
sw2 (xj+1/2) + sw2 (xL)

]
(xj+1/2 − xL). (3.17)

The system of characteristic equations (3.15) can be written in terms of the original variables as

u(xj+1/2) + v(xj+1/2) = u(xR) + v(xR) +
1

λ1

∫ xj+1/2

xR

sw1 dx, (3.18)

u(xj+1/2)− v(xj+1/2) = u(xL)− v(xL) +
1

λ2

∫ xj+1/2

xL

sw2 dx. (3.19)
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u3/2
v3/2

Left boundary

x = 0

xL xRx3/2 = h
k

k + 1

Figure 1. Finding the right face values u3/2 and v3/2
for the cell j = 1, which is the left cell.

uL
vL

ub
vb

Left boundary

x = 0

xR x3/2 = h
k

k + 1

Figure 2. Finding the boundary values ub and vb for
the cell j = 1. Boundary condition is imposed on uL

and vL

The two equations can be solved for u and v at the face (add and subtract):

u(xj+1/2) =
1

2

[
u(xR) + u(xL) + v(xR)− v(xL) +

1

λ1

∫ xj+1/2

xR

sw1 dx+
1

λ2

∫ xj+1/2

xL

sw2 dx

]
, (3.20)

v(xj+1/2) =
1

2

[
v(xR) + v(xL) + u(xR)− u(xL) +

1

λ1

∫ xj+1/2

xR

sw1 dx− 1

λ2

∫ xj+1/2

xL

sw2 dx

]
, (3.21)

which provide the solution at any time between τ and τ +∆τ by varying K. For our purpose, we take K = 0.5
to get the solution at k + 1/2 and K = 1.0 to get the solution at k + 1 (for Simpson’s rule). We remark that
the integration of the source terms along the characteristics is critical to keep the third-order accuracy of the
active flux scheme. The time-averaged interface flux is, therefore, given by

fj+1/2 =


−a

vkj+1/2 + 4v
k+1/2
j+1/2 + vk+1

j+1/2

6

−a
uk
j+1/2 + 4u

k+1/2
j+1/2 + uk+1

j+1/2

6

 . (3.22)

For steady computations, we may employ Trapezoidal rule instead of Simpson’s rule without losing accuracy:

fj+1/2 =


−a

vkj+1/2 + vk+1
j+1/2

2

−a
uk
j+1/2 + uk+1

j+1/2

2

 . (3.23)

This will simplify the algorithm and reduce the cost since the half-time solution does not need to be computed.
This completely defines the active flux scheme for the 2×2 hyperbolic system with source terms in the interior
cells.

3.3. Boundary Conditions

In the cells adjacent to boundaries, the active flux scheme involves interface fluxes across boundaries. Consider
the cell j = 1 adjacent to the left boundary (x = 0). The steady residual is given by

Res1 = f3/2 − fb −
∫ h

0

s dx = 0, (3.24)

where fb is the boundary flux on the left of the cell. The flux f3/2 is computed as described in the previous
section (see Figure 1). If the boundary flux is fixed by the boundary condition, fb = 0, then we are left with

Res1 = f3/2 −
∫ h

0

s dx = 0. (3.25)

This equation cannot be solved for the cell-averages, u1 and v1, because it involves only the combination u1−v1

(see Eqs.(3.20) and (3.21) with j = 1). In other words, it vanishes for infinitely many solutions that differ by a
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constant. Consequently, the scheme admits infinitely many solutions. A solution to the non-uniqueness problem
is to specify the boundary conditions on the outer side of the boundary face (see Figure 2): set u(xL) = v(xL) = 0
and get the boundary values from the characteristic equations Eqs.(3.20) and (3.21):

ub =
1

2

[
u(xR) + v(xR) +

1

λ1

∫ xj+1/2

xR

sw1 dx

]
, (3.26)

vb =
1

2

[
v(xR) + u(xR) +

1

λ1

∫ xj+1/2

xR

sw1 dx

]
, (3.27)

where the source term integration has been ignored on the left cell that does not exist, and R denotes the cell
j = 1 that is on the right side of the boundary face. In fact, this is a widely-used boundary procedure in
finite-volume methods: specify the outer value and let a numerical flux determine the boundary solution. The
boundary flux fb evaluated by these values will provide coupling between u1 and v1 in the residual equation:

Res1 = f3/2 − fb −
∫ h

0

s dx = 0, (3.28)

which can now be solved to uniquely determine u1 and v1.
The same procedure can be applied to the cell adjacent to the right boundary. This method gives third-

order accurate face values (including boundary values) as well as cell-averages in the steady state for any initial
solution. It is simple to implement especially because we can use the same algorithm at all faces.

4. Active Flux Scheme for Diffusion

The hyperbolic diffusion system is a 2×2 hyperbolic system with a source term. Therefore, it can be
discretized in the same way as described in the previous section. Simply following the steps illustrated by
Equations (3.15)-(3.21), we obtain

u(xj+1/2) =
1

2

[
u(xR) + u(xL) + Lr(p(xR)− p(xL)) +

1

λ1

∫ xj+1/2

xR

sw1 dx+
1

λ2

∫ xj+1/2

xL

sw2 dx

]
, (4.1)

p(xj+1/2) =
1

2

[
p(xR) + p(xL) +

1

Lr

(
u(xR)− u(xL) +

1

λ1

∫ xj+1/2

xR

sw1 dx− 1

λ2

∫ xj+1/2

xL

sw2 dx

)]
, (4.2)

which are used to compute the face values, uk+1
j+1/2 and pk+1

j+1/2. The steady solution is computed by marching in

the pseudo time:

uk+1
j = uk

j − ∆τ

h
Resj , (4.3)

where

Res = fj+1/2 − fj−1/2 −
∫ xj+h/2

xj−h/2

sk+1 dx, (4.4)

fj+1/2 =

 −ν pj+1/2

−uj+1/2

 =


−ν

pkj+1/2 + pk+1
j+1/2

2

−
uk
j+1/2 + uk+1

j+1/2

2Tr

 . (4.5)

The source term integration in the residual can be evaluated by Simpson’s rule for s1 and exactly for p that is
quadratic:

∫ xj+h/2

xj−h/2

sk+1 dx =

 s1j

−pk+1
j h/Tr

 , (4.6)

6 of 11

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
13

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
4-

20
92

 



where

s1j =
s1(xj+1/2) + 4s1(xj) + s1(xj−1/2)

6
h. (4.7)

The resulting time-marching scheme is

uk+1
j = uk

j +
∆τ

h

(
νpj+1/2 − νpj−1/2 + s1jh

)
, (4.8)

pk+1
j = pkj +

∆τ

h

(
uj+1/2 − uj−1/2 − pk+1

j h
)
/Tr. (4.9)

The second equation may be arranged into a point-implicit form by taking the source term on the right hand
side to the left hand side.

Typically, two values are specified at the boundaries, e.g., u(0) = α and u(1) = β or ux(0) = γ and u(1) = β,
etc., where α, β, and γ are constants. In the hyperbolic method, all conditions are of Dirichlet type because
the condition on the gradient, such as ux(0) = γ, can be imposed via the variable p as p(0) = γ. In any case,
there will always be one condition per boundary, which fixes one of the two variables. The other variable is
then determined by the scheme, and may involve the solution at the previous time step. For example, on the
left boundary face, we specify u(xL) = α as a boundary condition, and set

p(xL) = pkb , (4.10)

where pkb is the variable p at the face obtained at the previous time step.

5. Physical Time Integration

In the hyperbolic method, time-accurate computation is possible by implicit time integration schemes as
demonstrated in Ref.8 for residual-distribution schemes. Here, we follow Ref.8 and employ the backward dif-
ference formulas (BDF) with the steady solver described in the previous section to solve the unsteady residual
equations. It results in the following dual-time scheme:

uk+1
j = uk

j +
∆τ

h

(
νpj+1/2 − νpj−1/2 − ∂tu

k+1h
)
, (5.1)

pk+1
j = pkj +

∆τ

h

(
uj+1/2 − uj−1/2 − pk+1

j h
)
/Tr. (5.2)

where k is the inner iteration counter, and the physical time derivative is given by the BDF formula:

∂tu
k+1 =

αuk+1
j + αn−1u

n
j + αn−1u

n−1
j + αn−2u

n−2
j

∆t
, (5.3)

for a constant physical time step ∆t. The first-order accurate BDF (BDF1) is given by

α = 1, αn = −1, αn−1 = 0, αn−2 = 0, (5.4)

the second-order BDF (BDF2) is given by

α = 3/2, αn = −2, αn−1 = 1/2, αn−2 = 0, (5.5)

and the third-order BDF (BDF3) is given by

α = 11/6, αn = −3, αn−1 = 3/2, αn−2 = −1/3. (5.6)

The pseudo time step is defined by

∆τ = CFL
hmin

λ
= CFL

hmin√
ν/Tr

, (5.7)
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where hmin is the minimum cell volume. Once the inner iteration converges, i.e., uk+1
j = uk

j and pk+1
j = pkj , we

obtain the solution at the next physical time level, n+ 1,

un+1
j = uk+1

j , (5.8)

pn+1
j = pk+1

j . (5.9)

Note that the physical time derivative term can be treated as a source term to the first equation. Therefore,
the computation of the face values can be performed exactly as described in the previous section if the physical
time derivative is added to the source term.

s1 → s1 − ∂tu
k+1. (5.10)

It is well known since Ref.13 that the inner iteration should be performed by treating the cell-averages on the
right hand side implicitly (point implicit) for stability if the explicit time-marching is employed. The source
term in the second equation can also be treated point-implicitly. The sub-iteration is, therefore, performed
actually in the following form:

uk+1
j =

1

1 + α∆τ/∆t

[
uk
j +∆τ

(
νpj+1/2 − νpj−1/2

h
−

αn−1u
n
j + αn−1u

n−1
j + αn−2u

n−2
j

∆t

)]
(5.11)

pk+1
j =

1

1 +∆τ/Tr

[
pkj +∆τ

(
uj+1/2 − uj−1/2

hTr

)]
. (5.12)

Experimentally, we found that time accuracy is obtained by two orders of magnitude reduction in the unsteady
residuals (i.e., the quantities in the parenthesis on the right hand side of Equations (5.1) and (5.2) ).

6. Results

6.1. Steady Problem

We consider a steady diffusion problem with s1 = νu0ω
2 sin(ωx), so that the exact solution is given by

u = u0 sin(ωx), (6.1)

and the exact gradient p is given by the derivative of u. The parameters are set as u0 = 1.531, ω = 2.423,
ν = 2.123, Lr = 1/(2π), CFL = 0.95. The boundary condition is imposed on u by the exact solution at both
ends and p is determined by the scheme as described in Section 3.3. Steady convergence is taken to be achieved
when the L1 norm of the residual is reduced by 10 orders of magnitude. The initial solution is set by a randomly
perturbed exact solution. Computations have been performed for a series of randomly perturbed irregular grids:
32, 64, 128, 256, 512, 1024 cells.

The solution and gradient obtained on the coarsest grid are shown in Figure 3. The error and iterative
convergence results are plotted in Figure 4. The left figure shows that the scheme is third-order accurate for
both the solution u and the gradient p, including p on the boundaries. Third-order accuracy is achieved for
both the cell-averages and the face-values. The right figure shows the number of pseudo time steps (iterations)
required to reduce the residual by 10 orders of magnitude. Clearly, it increases linearly with the grid size
(just like advection schemes), not quadratically as typical for conventional diffusion schemes. This O(1/h)
acceleration in iterative convergence is one of the advantages of the hyperbolic method.

6.2. Unsteady Problem

We consider an unsteady diffusion problem, ∂tu = ν ∂xxu, with the following boundary conditions:

u(0) = 0, (6.2)

u(1) = U cos(ωt). (6.3)

The exact solution is given by

u(x, t) = Q [sinh(kx) cos(kx) sinh(k) cos(k) + cosh(kx) sin(kx) cosh(k) sin(k)] cos(ωt)

+Q [sinh(kx) cos(kx) cosh(k) sin(k)− cosh(kx) sin(kx) sinh(k) cos(k)] sin(ωt), (6.4)
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Figure 3. Steady solution on the 32-cell grid. (uc, pc) are
the cell-averaged values, and (uf, pf) are the point values
at the face. The grid is irregular with the minimum mesh
spacing 0.001.
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Figure 4. L1 Error and iterative convergence results for a
steady problem. (uc, pc) are the cell-averaged values, and
(uf, pf) are the point values at the face. h is the average
mesh spacing, and hmin is the minimum mesh spacing.

where

k =

√
ω

2ν
, Q =

U

cosh2(k)− cos2(k)
, (6.5)

and U and ω are arbitrary constants. See Ref.14 for the derivation. For numerical results, the parameters have
been set as follows:

ν = 2.123, U = 2.0, ω = 2π, . (6.6)

The boundary condition is imposed on u by Equation (6.3), and p is determined by the scheme as described
before. The CFL number for the sub-iteration is set to be 0.96. The sub-iteration is taken to be converged
when the L1 norm of the unsteady residual is reduced by two orders of magnitude. At every physical time step,
the initial solution is set as the solution at the previous physical time step. To start up the computation, we
use BDF1 over the first step, BDF2 in the next step, and BDF3 thereafter. Ideally, it would be best to perform
the first two steps with a small enough time step not to introduce large errors, but numerical results show that
the low-order errors in the first two steps do not greatly impact the accuracy of the solution at a later time.

First, we tested the time accuracy for a given grid of 64 cells with randomly distributed nodes by refining
the time step: 0.75/2m, where m = 0, 1, 2, 3. The final time is 6.0, i.e., 6 periods in the unsteady boundary
condition. Results are shown for BDF2 and BDF3 in Figures 5 and 6, respectively. These figures show that
the formal time accuracy has been confirmed. The accuracy deteriorates for BDF3 in the finest grid apparently
because the spatial error begins to dominate. The number of sub-iterations increases with the physical time
step as expected. It appears to reach the limit of steady convergence.

Second, we performed a time-accurate computation with ∆t = 0.025 and the grid of 24 cells. The grid is,
again, irregular with the nodes randomly distributed. The final time is 10.0, i.e., 10 periods, which is reached
at 400 time steps. The cell-averaged solution and gradient at t = 8.0, 8.25, 8.5, 8.75 are plotted in Figures 7, 8,
9, 10, respectively. These results show that the active-flux hyperbolic diffusion scheme enables highly accurate
unsteady simulations on a rather coarse grid even for irregular grids. For this case, the average number of
sub-iterations was 60 (hmin = 0.0192). The number of sub-iterations depends on the minimum cell volume,
which is randomly small in these tests. For uniform grids, the sub-iteration converges much faster, e.g., 36 on
average for the second test.

7. Concluding Remarks

In this paper, we constructed active-flux schemes for diffusion. The diffusion term has been discretized
in the form of a first-order hyperbolic system, which is equivalent to the diffusion equation in the steady
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Figure 5. Numerical results for BDF2. Time accuracy on
the left and the number of sub-iterations on the right.
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Figure 6. Numerical results for BDF3. Time accuracy on
the left and the number of sub-iterations on the right.

state. Construction of active flux schemes for diffusion is then straightforward since the scheme developed for
hyperbolic systems is directly applicable. A steady-state solver is constructed based on explicit pseudo-time
stepping. Numerical results show that third-order accuracy is obtained for both the solution and the gradient
in the steady state. Unsteady schemes are then constructed by the backward-difference formulas, where the
steady solver is used to reduce the unsteady residual by two orders of magnitude over each physical time step.
Numerical results demonstrate that formal third-order accuracy can be achieved and highly accurate unsteady
solutions can be obtained on irregular grids.

Future work will focus on the extension to the advection-diffusion equation and the development of implicit
steady solvers. A straightforward extension is possible by the unified hyperbolic formulation for the advection-
diffusion equation as in Ref.6. However, such a unified formulation is not yet possible for the compressible Navier-
Stokes equations. To enable the extension to the compressible Navier-Stokes equations, a separate treatment of
the advective and diffusive terms will be required as proposed in Ref.7. Also, there is an alternative approach
to the source term discretization based on the divergence formulation of source terms proposed in Ref.15, which
may turn out to further simplify the algorithm. In this study, an explicit sub-iteration has been employed,
but it may be inefficient for advection-diffusion problems on stretched grids. An implicit solver is expected to
improve the efficiency, and should be developed.
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Figure 7. Unsteady solution at t = 8.0. ∆t = 0.05 and 24
cells.
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Figure 8. Unsteady solution at t = 8.25. ∆t = 0.05 and 24
cells.
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Figure 9. Unsteady solution at t = 8.5. ∆t = 0.05 and 24
cells.
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Figure 10. Unsteady solution at t = 8.75. ∆t = 0.05 and 24
cells.
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