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Accurate aircraft fuel burn evaluation requires performing a detailed mission analysis covering the
entire mission, from takeoff to landing. This process is computationally expensive, as it requires up to
millions of aerodynamic performance evaluations, and thus it is advantageous to use surrogate models
as approximations of the actual aerodynamic models. Training surrogate models is challenging due
to the high nonlinearity of the aerodynamic performance functions in the transonic regime. Conven-
tional surrogate models, such as radial basis function and kriging, are deemed insufficient to model
these functions accurately. To address this issue, we explore several ways to improve the predictive
performance of surrogate models. First, we employ an adaptive sampling algorithm in addition to the
more traditional space-filling algorithm. Second, we improve the kriging performance by including
gradient information in the interpolation (gradient-enhanced kriging), as well as by introducing a
known trend in the global model component (kriging with a trend). Lastly, we propose a mixture of
experts approach, which is derived based on the divide-and-conquer principle. In this last approach,
we use multiple surrogate models as local experts to approximate different parts of the input space,
using machine learning techniques to infer about the function profile to automatically partition the
input space. These various surrogate models are tested using aerodynamic data for conventional and
unconventional aircraft configurations. We then perform a surrogate-based mission analysis using
the selected surrogate models. Our results show that the proposed mixture of experts approach can
significantly improve the predictive performance when approximating the aerodynamic performance.
For example, a mixture of five gradient-enhanced kriging models (with adaptive sampling) achieves
5% approximation error with around 100 samples, whereas the adaptive sampling fails to converge
when training a global model. However, when we have a simple function profile, using a global model
is more efficient than a mixture of experts, due to the added computational complexity in the latter.

1. Introduction

Fuel efficiency and fuel economy have increasingly become the key drivers in aircraft performance evaluation and
design process [1, 2]. Evaluating aircraft fuel burn accurately is not an easy task, considering the complex physics
involved in aircraft operation. Moreover, other factors, such as atmospherics conditions and engine performance,
contribute to the evaluation as well, making the computation even more complex. Such a detailed computation,
when performed in an optimization process (which requires many iterations, sometimes hundreds, prior to reaching
optimality), can be computationally intractable. Some common approaches typically involve simplification of physics
or the mission profile. The classical Brequet range equation is a popular example of such an approach [3, 4, 5]. Other
simplified models include using fuel fraction [5], analytical, and empirical models [6]. These simplifications and
assumptions reduce the computational time, albeit at the expense of accuracy.

Recent work has shown that surrogate models can significantly reduce the required computational cost to perform
detailed fuel burn computation in an optimization problem setting. Surrogate models, or metamodels, are commonly
used as simpler approximations of the physical systems to reduce the cost of computationally intensive analysis and
optimization tasks [7, 8, 9]. Surrogate models have previously been shown to assist various optimization procedures in
aerospace engineering. Chung and Alonso [10, 11] used a gradient-enhanced kriging method in a supersonic business
jet design optimization, Toal and Keane [12] used a cokriging method to perform a multipoint drag minimization,
Zimmermann and Gortz [13] developed and used a POD-subspace restricted least squares model for solving the gov-
erning fluid flow equations, and Amsallem et al. [14] performed offline precomputations to construct fluid reduced
order bases (ROB) and structural reduced order models (ROM) database for aeroelastic computations. In the con-
text of mission analysis, Koko [15] used a Lagrangian interpolation as a surrogate to model the aecrodynamic forces
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at different points along the flight mission of interest in a trajectory optimization problem aiming to minimize fuel
consumption of morphing wingtip devices. The authors have previously used kriging models to approximate the
aerodynamic data required in a detailed mission analysis procedure, to give an accurate estimation of the amount of
fuel burned during a mission. This approach significantly reduces the required number of aerodynamic performance
evaluations from millions to the number of samples required to build the kriging models, thus enabling the integration
of mission analysis in aerostructural optimization cases. Using this surrogate-based mission analysis procedure, a
new strategy was derived to formulate multi-point design optimization problems to maximize the aircraft performance
over a large number of different missions [16]. This strategy was demonstrated in a fuel burn minimization problem
for a long-range wide-body aircraft configuration, where only the cruise portion was modeled in detail. A similar
approach was demonstrated in a direct operating cost (DOC) minimization problem for a 100-passenger regional jet
configurations [17]. In the latter work, a shorter range mission was considered, in which the cruise portion was no
longer the only dominant mission segment. The contribution from other segments to the amount of fuel burned, in
particular the climb segments, was as significant and therefore needed to be considered. The surrogate model training
was consequently more challenging when the input space was larger, since it needed to model the high drag gradient
region outside the cruise regime. Further challenges may arise when we consider other unconventional configurations.
For example, a blended wing body (BWB) configuration exhibits more correlation between drag and trim, causing
more nonlinearity in drag profile with respect to the tail angle dimension [18].

Before we can perform more complicated surrogate-based mission analyses in optimizations, it is imperative to
have reliable surrogate models that can approximate the aircraft performance over the entire flight operating regime
(from takeoff to landing) of the various mission profiles considered. The modeling techniques are ideally flexible
to be used with different aircraft configurations (conventional and unconventional), for both short and long range
missions. Improving the accuracy of surrogate models, however, is not straightforward. Adding more samples as
training data is a classical way to improve the surrogate modeling accuracy in sample-based surrogate models such
as regression models, kriging, and radial basis function (RBF). However, more training samples means more function
evaluations using the actual model, which can be computationally expensive especially when high-fidelity models are
used. When new surrogate models need to be constructed at each optimization iteration, the computational cost can
become prohibitive. In addition, care must be taken as adding too many samples can lead to overfitting in regression
models [19], and increase the computational burden in constructing interpolation models such as kriging (as the size of
the linear system of equations grows) [20, 21]. Thus, we need to find the right balance between accuracy and efficiency.
Also, since the mission analysis is to be used in aerostructural optimizations using gradient-based optimizers (due to
the large number of design variables and constraints considered), it is critical to have continuous surrogate models.

In this work, we explore and analyze the performance of various surrogate models in the context of performing
surrogate-based mission analysis. Based on our specific requirements, which will be discussed later, we select some
techniques that are suitable for our purpose, which narrows down to kriging and RBF models. Some variants of kriging
models will also be considered here, including primarily those that allow incorporating some “extra knowledge” to
further fine tune the models to follow the actual profile. The first is the gradient-enhanced kriging (GEK) model,
which incorporates gradient information at sample points so the surrogate model can have better approximations
of the curvature around the sample points, and thus better function approximation overall. GEK is a very well-
established technique and has been shown to improve kriging performance; see, [10, 11, 21, 22, 23], for example, for
some aerospace applications of GEK. Second, we have the “kriging with a trend” model, where we specify the basis
functions for the global model of kriging [24]. Instead of using the commonly used low-order polynomials, we select
the basis functions based on the system physics, e.g., by setting a quadratic trend in a certain direction. This second
approach has been demonstrated in a previous work by the authors [17]. Third, we propose to use multiple surrogate
models in the input space, instead of just a single global model. The main rationale is that we let each local surrogate
model to perform well in a smaller subset of the input space, instead of forcing one model to approximate the entire
terrain, which might have contrasting profiles across the input space (e.g., when it exhibits high nonlinearity only in a
certain part of the input space). The first important question to answer is thus, how do we partition the input space?
We consider using machine learning algorithms to “learn” the input space based on the available training data. We
will use and compare the performance of these surrogate models in approximating the aerodynamic lift and moment
coefficients of two aircraft configurations, conventional and unconventional. A surrogate-based mission analysis will
then be performed using the selected models as a demonstration.

We start the remainder of this paper by describing the surrogate-based mission analysis procedure in Section II.
In Section 111, we first discuss the surrogate modeling classification, to select the techniques that are suitable for our
purpose. We then explain the details of the selected techniques, namely kriging and RBF models, and their comparison.
Our proposed mixture of experts model is presented in Section I'V. The description of our case studies are given in
Section V. We then discuss our results and findings in Section VI, followed by the conclusion in Section VII.
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II. Surrogate-based Mission Analysis

The classical Breguet range equation is commonly used to compute the amount of fuel burn during flight [3, 4, 5].
This widely used range equation was derived and published independently in 1920 by Coffin [25] and later in 1923
by Breguet [26]. This equation has since become a basic model describing the physics of aircraft, encompassing
the three dominant disciplines within an aircraft system: engine (by the thrust specific fuel consumption or TSFC),
aerodynamics (by the lift to drag ratio, L/D), and structural technologies (by the structural weight). This equation,
however, is only applicable under the assumption that TSFC, L/D, and flight speed are constant. One important
implication is that the takeoff, climb, and descent segments are not properly modeled by this equation [27]. Simple
fuel fractions (the ratio of the aircraft total weight at the end of a flight segment to the weight at the start of the
same segment) are typically used to compute the amount of fuel burned in flight segments other than cruise. See,
for example, Roskam [5] for values of suggested fuel-fractions corresponding to several mission phases for various
aircraft types. Lee and Chatterji [28] presented the approximation functions for total fuel burn in climb, cruise,
and descent phases. To compute fuel burn during climb, they applied a climb fuel increment factor, which was
defined as the additional fuel required to climb the same distance as it was for cruise, normalized with respect to the
takeoff weight [29]. Henderson et al. [30] presented an object-oriented aircraft conceptual design toolbox, pyACDT,
which analyzed a given mission profile to estimate the mission fuel burn and point performance parameters. The
Breguet range equation was used to calculate the cruise range. This toolbox uses a potential flow panel method for
its aerodynamic module. The Program for Aircraft Synthesis Studies (PASS), created by Desktop Aeronautics, Inc.,
is a conceptual design tool which evaluates all aspects of mission performance [31]. This software package can
incorporate several analyses, including linear aerodynamic models for lift and inviscid drag, sonic boom prediction for
supersonic cases, weight and center of gravity estimation, and full mission analysis. These rapid analyses are coupled
with optimization tools (gradient or non-gradient based) to perform aircraft design optimizations.

The fuel burn computations mentioned above are done with simplificatons of the aircraft performance and mission
profile, resulting in inaccurate prediction of the total aircraft fuel burn. For example, the constant L/D, TSFC, and
flight speed assumed in the Breguet range equation do not reflect the actual aircraft operation, as their values vary
across the flight operating points in the mission profile. Moreover, most fuel burn computation focuses more on the
cruise portion, which is critical for long range missions, but not necessarily so for shorter range missions. For shorter
range missions, the climb segments will contribute significantly to the total fuel consumption as well. For a more
accurate fuel burn computation, performing a detailed mission analysis that include all phases in the mission profile
is thus necessary. Instead of using the Brequet range equation, the range equation now needs to be evaluated via a
numerical integration procedure. However, performing a detailed mission analysis is computationally expensive due
to the many performance evaluations required in the procedure. The computational issue is further exacerbated when
we use the mission analysis in optimizations, which are typically done iteratively, or uncertainty quantifications (e.g.,
using the Monte Carlo method), which require multiple function evaluations.

We now describe the mission analysis procedure to compute the fuel weight Wk, range R, and mission time ¢ by
numerically integrating a given mission profile. This mission analysis procedure has also been used in the previous
work by the authors [17]. As inputs we have the mission profile parameters (such as altitude and Mach number for
cruise segments; flight speed, initial and final altitudes for climb and descent segments), the initial takeoff weight,
and the final zero fuel weight (ZFW) for each mission. The weight, mission segment range and time are then solved
iteratively using an all-at-once approach. Using this approach, a set of residual equations, R, is set up using the
endpoint weights of each segment as states. The residual is set to zero to determine the characteristics for the entire
mission profile. Each segment can then be analyzed independently, based only on the current states of the system. To
set up the residual equations, we need to match the endpoint weights of two adjacent segments: Wy, — W;. , = 0,
where j = 1, ..., Ny, denotes the segment index; W; and W denote the segment’s initial and final weight, respectively.
Similarly, at the boundaries, W;, = Wro and Wsteg = Wyr, where Wro and WyE refer to the takeoff and zero fuel
weights. We then use a Newton—Krylov algorithm to solve the nonlinear system. This forces the weights of the various
segments to be consistent with each other, providing a valid and continuous mission profile.

The amount of fuel burned during startup, taxi, takeoff, and landing is computed using the fuel fraction method,
where Wy = (1 — ) W;, with ( referring to the fuel fraction value. The numerical integration to compute the fuel
burn for the climb, cruise, and descent segments is derived from the range equation. With the TSFC (c7) defined as
the weight of fuel burned per unit time per unit thrust (IV/s), we can compute the rate of reduction of aircraft weight as
dW/dt = —crT, where W and T denote aircraft weight and thrust, respectively. Using this relation and the generic
integral equation for range, R = ftif Vdt, the numerical integrations for range are given below. The subscripts ¢ and f
in the integration limits correspond to the initial and final values, respectively. For the cruise segment, the integration
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is done with respect to weight,

Wy
R= —LdW (1)
W; CTT

whereas for the climb and descent segments, the range equation is integrated over the change in altitude,

f
n_ / Vcosvdh @)

where h and ~ denote the altitude and the flight path angle. The rate of climb, RC, is derived from the equation of
motion, Ty, cos (¢ + a) — D — Wsiny = (W/g) (dV/dt), and that RC = V sin~. The symbol T,, denotes the
available thrust, D denotes drag, and g is the gravitational acceleration. The thrust inclination angle is denoted by ¢
(typicaly assumed to be zero [32]), and « refers to the angle of attack. With small angle approximations, this equation
yields

(Tw—D)V

wlirra) o

We have the information of flight speed and altitude for each segment interval from the mission specification. TSFC is
a property of the aircraft engine, which is assumed constant in this work. We then need to compute 7' to evaluate (1)
and (2), which we can find once we know D. We can evaluate drag upon determining « and tail rotation angle, 7,
which satisfy the lift (e.g., level flight, L = W, for cruise) and trim (C; = 0) constraints simultaneously. These two
angles can be found by solving a Newton search algorithm. This procedure computes the mission range given the fuel
weight (Wro — Wzp). When the mission range is specified, we perform a secant algorithm to find the corresponding
fuel weight, Wr,;. Following this procedure, the required number of aerodynamic performance evaluations would be
equal to the product of the number of missions, number of secant iterations, number of iterations to solve the residual
equations, number of integration intervals, and number of Newton iterations to solve for the angles. This analysis
would require millions of aerodynamic solutions, which would be computationally prohibitive. Surrogate models
are thus built to approximate the aerodynamic force and moment coefficients (C, Cp, and Cjy) to be used in the
mission analysis computation. When a sample-based surrogate modeling technique is used, the required number of
aerodynamic performance evaluation calls is reduced to the number of samples used to build the surrogates, making
the procedure computationally tractable.

The surrogate-based mission analysis procedure described here allows us to perform mission optimizations, where
we set some parameters (e.g., cruise Mach number and altitude) as design variables; aerostructural optimizations
(e.g., to minimize fuel burn or DOC) with an accurate fuel burn computation; and coupled mission and aerostructural
optimizations. To obtain meaningful results from these optimizations, however, we first need to have reliable and
accurate surrogate models.

RC =

III. Surrogate Modeling Techniques

Surrogate models use mathematical models to provide simpler approximations of physical systems, to reduce
the computational expenses of analyses and optimizations [7, 8, 9]. Essentially, surrogate models are used as low-
cost substitutes for exact evaluations in the computational task [33]. These approximation models are also known as
metamodels [7], or models of models [20, 34]. To select the suitable surrogate models for our surrogate-based mission
analysis procedure, we first discuss the available surrogate modeling techniques.

Eldred et al. [35] classified the surrogate models into three categories: data-fits, reduced-order models, and hi-
erarchical models. The derivation of data-fit models typically involves interpolation or regression of data gener-
ated by solving the full physical system at a set of sample points, which can be generated through various sampling
techniques [36]. Some popular examples of models belonging to this category include polynomial regression, krig-
ing [37, 38, 39], projection pursuit regression [40], and RBF [41]. Reduced-order models approximate the relationships
between system inputs and outputs, while reducing the order of the original system. The approximation is obtained
by projecting the original model onto a basis that spans a space of lower dimension. An overview of model reduction
methods is provided by Antoulas [42]. The reduced space basis can be computed using a number of different methods,
including Krylov-subspace methods [43], approximate balanced truncation [44, 45], and proper orthogonal decompo-
sition (POD) [46, 47, 48, 49]. Hierarchical models are also called multifidelity or variable-fidelity models [50, 51].
The derivation of low-fidelity models is typically problem-dependent, such as by using the same high-fidelity models
but with a higher residual tolerance [40], a coarser grid [52, 53], or simpler engineering models that simplify the
physics [54, 55].
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The reduced-order and hierarchical surrogate models can be classified as physics-base approaches, since they
exploit and simplify the governing equations [56]. These models are thus considered as intrusive methods. The data-
fit surrogate models, on the other hand, belong to the black-box approach category, where the derivations are only based
on the inputs and outputs of the high-fidelity models, without necessarily knowing the underlying governing equations
(non-intrusive methods). Black-box models typically approximate a function at a point in the Ngz-dimensional input
space xo € RY¢ based on the available N, sample information, including the sample locations x, € R¥:*Na and
values y, € RVs,

y(XO) %?Q(XO,XS,YS,(X)~ “4)

The symbol ¢ denotes a vector of model parameters, i.e., the undetermined coefficients that are typically derived based
on the available training sample set.

Black-box surrogate models can be further categorized into local, multipoint, and global models based on the
data points used in the model construction [57]. Local surrogate models approximate the actual functions around a
single data point, such as Taylor approximation and intervening variables. These models are only valid in the vicinity
of that particular point. Multipoint models use more than one data point, typically two, in the model constructions.
Some examples of this model category include two-point exponential approximation (TPEA) and two-point adaptive
nonlinear approximation (TANA). Global models, on the other hand, produce approximation models that are valid
over the entire input space of interest, thus having a broader applicability than the former two models. Readers should
be familiar with some examples of global surrogate models, such as polynomial regression, multivariate adaptive
regression splines (MARS), support vector machine (SVM), artificial neural network (ANN), kriging, and RBF.

Based on the derivation technique, the black-box models can be categorized into regression and interpolation.
Regression models are derived in a least-squares sense, which do not necessarily reproduce the exact function values
at training sample locations X,

y(x)=g(x)+te = y(x)#7(xs) (3)

The symbol e represents the random independent and identically distributed (i.i.d.) error component in the data. One
popular example of regression models is the polynomial response surface,

g(x) =f"(x) 83, (6)

where f (x) = [f1 (%), f2 (x),..., fn; (x)}T is a vector of Ny basis functions and 3 = [S1, B2, .., Bn, ] is a vector
of the undetermined coefficients. A one-dimensional quadratic polynomial regression, for example, has the following
set of basis function f (z) = [1, x, xQ]. Since regression models are derived in a least-squares sense, they are more
suitable to approximate functions with inherent random error, such as measurement data. When the training data are
from deterministic computer experiments, the premise that the error between regression models and data are i.i.d. is
false [58]. The term computer experiments refers to numerical codes that mimic some relevant physical phenomena.
A computer experiment is deterministic when repeated experiments with the same input settings return exactly the
same outputs [59]. In other words, no measurement (random) error component is involved. To approximate computer
experiment data, interpolation models are thus more appropriate since they can reproduce the function values at sample
locations exactly,

7 (xs) =y (xs) (N

Kriging and RBF models belong to the interpolation model category, whereas other global black-box surrogate models
(MARS, SVM, ANN) are regression models. Constructing and using black-box surrogate models involve the following
components,

1. Data generation (sampling): these data are interchangeably called sample data, observational data (in statistics
community), and training data (in machine learning community). These data contain the sample locations, X,
and the corresponding function values y;.

S = {Xsiuysl}izl,z...,Ns ®)

2. Model structure selection and parameter estimation: these attributes are specific to the selected surrogate mod-
eling technique. For example, we need to select the correlation function and estimate its parameters when using
kriging models.

3. Model assessment: this procedure typically aims to evaluate the goodness of fit for regression models (due to
the i.i.d. error component as shown in (5)) and the approximation accuracy at untested data.
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A surrogate model can be parametric or nonparametric, depending on how the approximation functions express
the input-output relations [57]. A parametric model no longer uses the training data once the model parameters
or undetermined coefficients are derived. The polynomial regression described above is one popular example of
parametric models. While models belonging to this category are relatively simple, they have limited utility when the
actual input-output relationship is complex. A nonparametric model, on the other hand, still uses the training sample
data in making prediction at new points, even after the set of undetermined coefficients has been estimated from the
data. SVM, ANN, and RBF models belong to this category.

A survey of various sampling plans, also referred to as a design of experiments, can be found in [60, 61]. When
building surrogate models on unknown landscapes, a sampling plan that is uniform, irregular, and space-filling is
favorable [58]. The random Monte Carlo simulation (MCS) method is a very popular choice in industry, mainly due
to its simplicity [61]. Another popular choice is the latin hypercube sampling (LHS) plan [62], as its projections onto
each variable axis are uniform. Since there are not any specific guidelines to determine the “appropriate” sampling size
a priori, sequential and adaptive sampling plans have become more popular recently. The new points (infill points) are
selected based on some infill criteria to improve the model’s predictive capability. There are mainly two categories,
namely exploitation and exploration [58]. The exploitation criteria are used mostly in surrogate-based optimization
(i.e., when surrogate models are used to approximate the objective function), to help finding the optimum point. Some
examples include the minimizing the predictor approach and the trust-region method. The exploration criteria aim to
“fill the gaps” between existing sample points to ensure that the samples are evenly distributed spatially. This category
consists of sequential space-filling sampling plans such as Sobol’ [63] and Halton sampling sequence [64], as well
as an adaptive approach that locates infill points with the highest estimated error (e.g., using the kriging variance or
MSE as a metric). In general, maximizing variance when adding samples tends to maximize the intersite distances
(D-optimality) [65].

We need to validate the models before using them as surrogates in computationally-intensive analyses and opti-
mizations, lest they will render the results invalid and meaningless. Meckesheimer et al. [34] presented an overview of
the cross-validation method. In the p-fold cross validation approach, the sample set is first divided into p subsets. Then,
we reconstruct the metamodel p times, by omitting one of the subsets each time, to compute the approximation errors.
When each subset contains only one sample point, this procedure is called the leave-one-out cross-validation [66].
However, the cross-validation approach tends to be more biased towards over-represented regions. Due to this lim-
itation, a more reliable model validation approach that employs additional test points to compute the approximation
errors is preferred [61]. One of the most commonly used error measure is the root mean square error (RMSE),

m

= S g
RMSE = | — 3 (y: —3:)°, ©)

i=1

where m denotes the number of validation (test) points. The normalized RMSE is also often used, especially when
the function value varies a lot in the input space of interests. In this error measure, each error component, (y; — §;), is
normalized with respect to its actual value, y;, before computing RMSE, to give us the relative approximation error.

In this work, we want to use surrogate models to approximate the aerodynamic force and moment coefficients
with data obtained from solving aerodynamic models, which are essentially deterministic computer experiments. The
surrogate models need to be globally accurate, i.e., to cover the entire input space of interest. With these two con-
siderations, we consider only global and interpolative models, which narrows down our options to kriging and RBF
models. These two models are described in more details below.

A. Radial Basis Function Model

RBF is a nonparametric black-box surrogate model which emulates complicated design landscapes using a weighted
sum of simple functions,

Nc
7 (x0, %, ys,0) = Vg w =Y wit) ([x0 — i) (10)

i=1

The function % (||-]|) is the kernel function, centered at c;, ¢ = 1,..., N.. The notation ||| denotes a Euclidean
distance, d. Typically, the training sample points are used as the centers, thus ¢ = x4 and N, = N,. The vector of
undetermined coefficients, w, is determined by solving the following system of linear equations,

Uw =ys;,. (11

The notation W refers to the gram matrix, where V;; = (Hxsi — xsj| ), i.e., the kernel function evaluated at the
Euclidean distance between the i and j™ samples. RBF belongs to the class of generalized linear models, as it is
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linear in terms of the weights w. The main difference between RBF and the standard polynomial regression response
surface is in the choice of basis functions, where RBF models use kernel functions as the basis functions. Some
commonly used kernel functions are listed in Table 1 below.

Kernel function \ é (d) | Typical 6 |
Thin-plate splines d*logd —
Inverse multi-quadric 1/4/(1+ 6d?) 1
Inverse multi-quadratic 1/ (1 + 9d2) 1
Cubic d? =
Square-exponential (Gaussian) exp [70d2] 1

Table 1: Kernel functions for RBF models.

Following the conventions for the surrogate model expression (4), the model parameters o include the basis func-
tion weights w and the hyperparameters for the basis functions, 6. In this RBF formulation (10), the dependence on
the sample values, y, is implicit in w.

B. Kriging Model

The kriging surrogate model was initially developed in the field of geostatistics by Danie G. Krige (after whom the
method is named) in 1951 [67]. The term “kriging” was first coined by Matheron in 1963 [68], who was also the first to
formulate kriging mathematically. When first derived in the geostatistics field, kriging was used to model continuous
and uniquely defined functions relating numbers (e.g., measurement data) to a domain of geographic coordinates (in
one-, two-, or three-dimensional domains) [69]. The foundation of using kriging models in the design and analysis of
computer experiments (DACE) was first developed by Sacks et al. [39], where points in the input space are analogous
to the spatial (geographical) coordinates.

In kriging models, we assume that the deterministic response y (x) is a realization of a stochastic process Y (x) [38,
39],

Ny
Y(x)=> i) B+2Zx)=f"(x)8+2(x). (12)
k=1

The first term is a generalized linear model that determines the trend of the kriging model, which looks similar to
that of the standard regression model (5). The notations used in the global model are as previously defined. The
critical difference between the two models lies in the stochastic component. For the kriging model, instead of the i.i.d.
assumption, the stochastic component Z (x) is treated as the realization of a stationary Gaussian random function with
zero expected value, E [Z (x)] = 0, and covariance

Cov[Z (xi),Z (x;)] = 0°R (xi,%j) , (13)

where R (-) denotes the correlation function with R (0) = 1. Therefore, kriging models give exact prediction at
sample points, with increasing error variance as we go further from these sample points. In other words, in kriging
models the data are assumed to be exact but the function is a realization of a Gaussian process [70]. This second
term is called the localized deviation [60], bias, or the systematic departure from the linear model [38]. A stationary
correlation function is typically assumed in kriging models, where the correlation between any two points in the input
space, y (x;) and y (x;), depends only on the difference vector Ax = x; — x;, thus R (x;,%;) = R (x; — x;). Under
this stationarity assumption, the prior distribution for y at the sample set S within the input space does not change
if S is shifted within the space. The derivation of kriging models follows the theory of regionalized variables, which
is a special statistical theory that explicitly considers spatial properties, and uses random variables to model spatial
functions [69]. This theory is very general since it neglects the physical nature of the phenomenon under study [71].
For higher-dimensional problems, the correlation function in a kriging model typically satisfies the product corre-
lation rule, where the correlation function can be expressed as a product of stationary, one-dimensional correlations,

N
Ri; (6,d) = ﬁ R(6®,d)). (14)
k=1

The vector of correlation parameters is denoted as 8 = {9(’“)} , k = 1,...Ng4. The notation d%c) is the distance

*® _ 0

between two points in the k™ dimension, :

These correlation parameters (kriging hyperparameters) are
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also referred to as length scales or distance weights, and are typically found via the maximum likelihood estimation
(MLE) approach. Large 6 values correspond to weak spatial correlation, whereas small values correspond to strong
spatial correlation [72]. When each variable has a distinct physical meaning, it makes sense to use an anisotropic
correlation function, i.e., having different #*) values in different dimensions. In that case, we have more flexibility in
the modeling, but at the expense of a more complex MLE [65, 73].

The correlation functions can be classified into those that exhibit a linear behavior near the origin (R (0,d) « d
for small d), and those that exhibit a parabolic behavior (R (6,d) d?) [73]. The latter is more suitable when the
underlying function is continuously differentiable. The commonly used correlation functions for these two categories
are tabulated below. For simplicity, the superscripts and subscripts are dropped from the correlation function expres-
sions. The exponential and hole-effect models are more typically used in hydrologic applications, and the latter is only

Linear ‘ Parabolic
Exponential | R (6,d) = exp (—0d) Gaussian R(6,d) = exp (—0d?)
Linear R(#,d) =max[0,1 — 6d] Cubsic spline | R (6,d) =
Spherical | R(6,d) =1 — 1.5 + 0.5¢3 1-6(0d)% + 6 (0d)° 0d <05
where £ = min [1, 6d] 2(1 — 6d)® 0.5<6d<1
Hole-effect | R(0,d) = o2 (1 — 6d) exp (—0d) 0 0d > 1

Table 2: Correlation function classification for kriging models

suitable for one-dimensional processes [74]. When deemed necessary, we can model the random measurement error
in data by adding the nugget-effect model in the correlation function,

0 d>0

Co d=0 (15

R(0,d) = Cyé (d) = {
where C is the nugget variance. In addition to modeling random error, this model can also represent microvariabil-
ity, i.e., variability at a scale smaller than the separation distance between the closest measurement points. The term
“nugget” comes from mining, where the concentration of a mineral or the ore grade varies in a practically discontinu-
ous fashion due to the presence of nuggets at the sampling points [74].

When the global model is assumed known, kriging model produces the best linear predictor (BLP). When the
known global model is a constant, we have a simple kriging [75]. On the other hand, when the global model is unknown
and thus needs to be derived, the model is referred to as the best linear unbiased predictor (BLUP). When a constant
global model is assumed, a BLUP model is called ordinary kriging, whereas when a set of basis functions is used
(typically low-order polynomials, e.g., linear or quadratic), it is referred to as universal kriging [75] or kriging with a
trend [24]. Ordinary kriging models are more popular and commonly used, as the a priori knowledge of the trends
in the data is typically unknown [58]. While BLP is a non-parametric model, BLUP is a semi-parametric model. The
linear regression in the global model component forms the parametric part, whereas the stochastic component forms
the non-parametric part [76].

The kriging derivation as a BLUP model, which is based on the mean squared error (MSE) minimization, and its
Bayesian interpretation are presented next. Kriging as a BLP model can be derived in a similar manner, by ommitting
the unbiasedness constraint.

1. Kriging Derivation: MSE Minimization

Kriging approximation method belongs to the class of generalized linear model [57], where we can express its predic-
tion at an arbitrary evaluation point xg as a linear combination of the sample data y,, with weights ¢ (xg),

§ (x0) = ¢’ (x0) ys- (16)

For conciseness, we will drop x;, ys, a from ¢ (-) (4) in the subsequent discussion. To derive the optimum c (xg), we
minimize the MSE of the approximation,

MSE [j (x0)] = E |:(CT (x0)ys — Y (xo))Q} : (17)

subject to the unbiasedness constraint, E [¢” (x0)ys| = E[Y (xq)], where E[-] denotes an expected value. The
unbiasedness constraint gives the following relation, F ¢ (xo) = f (xg), where F, € RY:*"s is the basis function
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matrix corresponding to sample data, with (F),, = fi (xs,). By expanding the MSE expression (17), and using the
unbiasedness constraint, covariance function (13), and the basic relations for the variance and covariance functions,
we obtain the following expression,

MSE [j (x0)] = B[ (7 (x0))"] = 2B [T (x0) ¥ (x0)] +E[¥* (x0)]
2 [1+c” (x0) Rsc (x0) — 2¢” (x0) r (x5, %0)] -

(18)

R, is the correlation matrix of samples, where (R.) S R (xsj — xsi) and r (x5,X0) is the correlation vector
between the evaluation point and the samples.
We now transform the MSE minimization problem formulated above into an unconstrained one using a Lagrange
multiplier A as shown below,
minimize £ (c (x0)) = o> [1 + ¢ (x0) Rsc (x0) — 2¢7 (x0) r (xs, xo)] + AT (FSTC (x0) — £ (Xo)) (19)

c(xo0)

The minimum is achieved when the optimality condition, df (c (x¢)) /dc (x¢) = 0, is satisfied. We then have the
following system of equation,

R, F,| |c(x0)| |r(xs,%0)

{Ff o} [ AT fxo) | @0)
Solving this equation, we obtain the expression for kriging model,

§(x0) = £7 (x0) B+ 17 (x,,x0) R; (v, — FuB) . @D

where the generalized least squares estimate of the undetermined coefficients for the global model can be expressed
as,
3= (F'R.F.) " (FTR;'y.). (22)

The MSE of § (x¢) is obtained by substituting (20) to (18),

-1
MSE [§ (x0)] = 0% |1 — [r(xs,%x0) f(x0)] [?f ]-‘;s] [r (t‘x(i;O);O)H ] (23)

This MSE, or the kriging variance, represents the model uncertainty in predicting the function value at xg. This
quantity is helpful in assessing the model, and can be used in an adaptive sampling approach, as will be demonstrated
in this work.

2. Bayesian Interpretation of Kriging

The Bayesian interpretation of kriging as the BLUP is presented here. While in general the kriging derivation via
the MSE minimization approach and Bayesian approach do not yield the same expression for the estimators, they are
identical when the prior dstribution of Z (x) is Gaussian and the undetermined coefficients for the global model 3 has
a diffuse, or noninformative, prior, as we will show here. For more details on the Bayesian interpretation of kriging
models, readers are referred to some previous works [38, 65, 77, 78, 79, 80].

The general kriging equation shown in (12) is now treated as the Bayesian prior on the true response functions.
Let us assume that the prior distribution of Z () is Gaussian with expected value zero and covariance function as
previously described (13). The prior mean value of this random function Y (x) is thus f7 (x) 3. Let us also assume
that 3 has a prior Gaussian distribution, 3 ~ N (b, 7'22), where b, 72, and ¥ denote the corresponding prior mean,
variance, and correlation matrix, respectively. We can then do a Bayesian update using the information contained in

the training sample set and compute the posterior probability, P (3 |ys) ~ N B 1), which is also a Gaussian as we

use a conjugate prior. Here we apply the Bayes’ rule, P (3,ys) = P (B |ys) P (ys), where the joint probability can

be expressed as
R, O
P(/BaYS) NN (|:I']‘l‘38:| ’ |:U 0 7_22:|> . (24)

In the above equation, i is the expected value of the samples, which is F;3 for the kriging model (12). Solving for
the posterior distribution, we obtain the posterior mean 3 and covariance X for the undetermined coefficients of the
global model,

~ 1

B=3[FloR;'y, +77°27'b], E=[FloR]'F,+7 227" . (25)
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Similarly, the posterior distribution of the random function Y (x) at an evaluation point x( can also be derived
following the same Bayesian update approach. We can then use the posterior mean, E [Y (X¢) |ys], as the expression
for a kriging predictor, ~

§(x0) =17 (x5,%0) R 'y + 2" B, (26)

where a = f (x9) — FT R !r (x4, X0), and the variance is given as
Var[Y (xo) lys] = 02 (1 — 7 (x4, %0) R, 'r (x5,%0)) + a’Xa. 27

The predictive (posterior) distribution is no longer stationary. In general, the variance is greater as the point xg is
further away from the training samples. When we have a diffuse prior, i.e., 72 — oo,

B—pB and £ [FTV,F,] ™, (28)

where @ is the global model coefficients derived through the MSE minimization procedure (22), and V¢ denotes
the covariance matrix of the samples, 02R,. The kriging predictor, § (xg), now agrees with the one previously
derived based on the MSE minimization approach (21), and so does the kriging variance or MSE (23). The deriva-
tion of the BLP model can be done similarly as the one presented here, but without the unbiasedness constraint.
The BLP model has the same expression for the predictor, § (xg), while the variance is reduced to MSE [§ (x¢)] =
o? [1 — 17 (x4, %x0) Ry 1r (xs, Xo)].

In the derivation presented above, the model assumes that the prior variance o2, the family and parameters of the
correlation function, R (-), are known. Typically, the designers will determine the correlation function, and apply the
empirical Bayes approach to find the parameters to be most consistent with the observed data [38, 65], in particular by
employing the MLE approach. Consistent with our assumption that Z (-) is Gaussian, the likelihood function can be
expressed as,

1 1
L(B,0% Rlys) = —3 [Ns log 27 + Nylogo® +log [Ra| + — (vs ~ FuB) Ry (ys = Fof)|  (29)

Setting OL (,8, o2, R’ y s) /08 = 0, we recover B at the stationary point, By g = ,@, where the subscript MLE denotes
the corresponding MLE solution. Setting 0L (5 02, R| ys) /da? = 0 yields the maximum likelihood solution for the
prior variance,

Fue = (ve~F.B) R (.- F.5) (30)

Some correlation functions have tunable parameters 0 that still need to be determined. Since there is no closed-form
solution for these optimum parameters, we solve for 8 by performing a constrained iterative search. In this work, we
employ the Hooke-Jeeves pattern search method [81].

3. Gradient-enhanced Kriging

A gradient-enhanced kriging model (GEK) interpolates gradient information, in addition to the function value, at
each sample location, thus achieving a first-order-consistency requirement, in addition to the zeroth-order-consistency
achieved by gradient-free kriging [21]. Depending on how the gradient information is used, there are two types of
GEK, namely the indirect GEK and direct GEK. The former uses the gradient information to generate new samples
around the available samples via a Taylor series expansion around those samples,

Oy (x;
Y (XN, tik) =y (xi) + b (x )Aﬂf(k)- (31)
Ox (k)

In the direct GEK approach, the gradients are now directly included in the formulation as additional observations or
sample data, as shown below,

B 9y (x1) 9y (x1) 9y (x1) Iy (x2) dy (xn,)
ys = y(xl)ay(XQ)a"'ay(XNS)a (9.73(1) ) (9.7(2) 7"'78x(Nd)7 83:(1) PR 833(Nd)

(32)

This method requires augmenting the correlation matrix with its derivative terms, which considerably increases the
order of the correlation matrix to Ng (Ng + 1) from kriging’s N,. Consequently, the computational cost to build and
use GEK models is higher than that of the original kriging models. See, for example, [21, 82, 83], for more details on
the formulations and uses of GEK.
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C. Kriging Compared to RBF

There is no clear consensus as to which of the kriging and RBF surrogate models has a better predictive performance.
Wang and Shan [61] claimed that RBF is a compromise between kriging models and polynomial regressions, as it
can interpolate the sample points (generally more accurate than polynomial regressions) and at the same time easier
to construct than kriging models. Forrester and Keane [58] argued that kriging is the least assuming method, which
provides a greater flexibility in the modeling. The flexibility comes mainly due to the parameters in the covariance
function; however, it comes at the expense of the estimation of hyperparameters [76]. Jin et al. [20], on the other
hand, concluded that RBF has the best performance overall in terms of accuracy, robustness (the most robust model is
the one that is the least problem-dependent), efficiency (the amount of computational effort required for the surrogate
model construction), transparency (the capability to provide information on model sensitivity to input variables and
the inter-variable interactions), and conceptual sensitivity (ease of implementation). The comparison was performed
with 13 analytical problems and one vehicle handling problem, with varying non-linearity, scale (dimensionality),
and smoothness. With the varying opinions regarding the two models, it is safe to conclude that their predictive
performance is essentially problem-dependent.

We can also analyze and compare the two models mathematically. Consider an ordinary kriging model (21) with
a constant global model, B. Rearranging the equation, we obtain

R v 1TR;! 1
U(x0) = [ +r’ (Xs,%0) KI - 11TR_611) R Ys} (33)
wo ‘I’g

where 1 is a vector of ones, as the basis function vector. Comparing the above expression to (10), we can see that an
ordinary kriging model is reduced to RBF with an offset (wq) [76]. The corresponding kriging model, however, has a
greater flexibility as we can estimate the hyperparameters, 8, via MLE. The RBF hyperparameters, on the other hand,
are fixed by users. Moreover, kriging models typically use anisotropic correlation functions (i.e., those that satisfy the
product correlation rule), with different length scales in different dimensions, further increasing the model flexibility.

IV. Mixture of Experts

Black-box surrogate model training seeks to find the “best” model parameters by applying the empirical Bayes
approach, which relies on the available data (observations), instead of the physical nature of the phenomenon. For
example, in kriging model training we obtain the global model coefficients (B), variance (c2), and the correlation
parameters (0). This global fitting can potentially cause a limited modeling flexibility and the resulting model might be
inadequate when there is hetereogeneity in the function profile, i.e., when the function complexity is input-dependent.
For instance, the stationary covariance structure in the Gaussian process could be restrictive, as the model does not
account for some areas of the input space having more activities than others [58]. This is not a serious problem in
surrogate-based optimization, but it can pose a problem when building a globally accurate model, which is our current
goal. This consideration motivates using multiple models instead of one global model [84].

There has been a growing interest in using multiple surrogates, either by combination or selection, instead of
a single model in isolation [70]. Combining models in some way has been shown to improve the approximation
performance of the surrogates [19]. For example, in committees we take the average of predictions from different
trained models. Viana et al. [70] proposed using cross-validation error in both model selection and combination.
When multiple surrogates are present, we can either select one with the lowest cross-validation error, or to use the
cross-validation errors to create a weighted surrogate by minimizing the integrated square error. Decision tree models
use a sequence of binary selections to select one model as the predictor. In this setting, different models are responsible
for making prediction in different regions of input space, thus the selection is a function of input variables. When a
probabilistic framework is used for combining models (instead of the hard split in the decision tree models), we
have a mixture of experts. Different from the model combination and selection approaches mentioned above, in
Bayesian model averaging we assume that there is only one model responsible for generating the whole data set, with
a probability distribution across models reflecting the uncertainty as to which model that is. As the size of the data
increases, the posterior probability will focus on just one model, and the rest will be discarded.

In this work, we propose a mixture of experts procedure based on the divide-and-conquer approach. The basic
idea is to have several surrogate models to be responsible for different parts of the input space, to enable modeling the
heterogenous complexity in the function profile. In the proposed approach, the prediction at an evaluation point X
is modeled as a linear superposition, or weighted combination, of the local experts, §, (xo), k = 1,..., K, where K
denotes the total number of local experts in the mixture. The weight or mixing proportion, denoted as 7y, (xq), is a
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function of the evaluation point location in the input space. This mixture of experts can then be expressed as

K

§(x0) = Y ™k (x0) Gk (o), with 0<7g(xo) <1 and » mp(x0) = 1. (34)
k=1 k

This mixture of experts can be considered as a hierarchical model, by introducing an unobservable latent indicator
variable zx (xo) [84]. The discrete latent variables “assign” data points to specific components (local experts) in
the mixture. The K-dimensional binary random variable z;, (x¢) is a 1-of-K encoding where z, (x¢) € {0,1} and
>k 2k (x0) = 1. The surrogate model prediction can then be modeled as

9 (x0)| 2x = 1 ~ Gk (X0) , (35)

or in other words, the k™ local model is active when z;, = 1. The mixing coefficient will then be a function of the
distribution of zy, i.e., T (X¢) is a function of p (2, (x¢) = 1).

Each expert ¢y, (Xo) is constructed based on samples taken in the input subregion it is responsible for. With
less complexity to be modeled within each local region, fewer samples are required to construct the local surrogate
models, compared to when a single global model is used to approximate the entire range of the input space. With
this “distributed approach,” the computational cost required to build and use the surrogate models will consequently
be reduced. For example, the correlation matrix for the ordinary kriging model is O (N f) in size and its inversion
is O (N f) in cost. Even when the total number of samples used are the same for the global model and the mixture
of experts model, the total computational expense will be less with the divide-and-conquer approach. When the job
is distributed to local experts, we can disregard the correlation between samples that belong to different subregions.
Moreover, each local expert is free to select the best model parameters to better reflect the characteristics of the
underlying function in the input subregion it is responsible for (e.g., by having different length scales, 6, for each local
kriging model). In short, this divide-and-conquer approach allows us to distribute a complex task into multiple simpler
tasks.

Given the overview of the proposed mixture of experts approach, we now need to derive the following two impor-
tant elements: (1) the procedure to divide the input space to appropriate subregions for the local experts, and (2) the
expression for the mixing proportion, 7, (Xxo). These procedures are described next.

A. Input Space Partitioning

Depending on whether the input space is already split when the local models are trained, Masoudnia and Ebrahim-
pour [85] classified the mixture of experts approaches into two categories below:

1. Mixture of implicitly localized experts (MILE): this approach reflects the more conventional mixture of experts
as proposed by Jacobs et al. [86]. In this approach, the input space partitioning is decided by the gating network
stochastically during training. Some popular works on MILE in the literature include mixtures of Gaussian
processes [87], infinite mixtures of Gaussian process experts [88], and conditional mixtures of linear regres-
sions [89, 90, 91]

2. Mixture of explicitly localized experts (MELE): in this approach, the input space partitioning is done explicitly
by clustering before training the local experts. With this approach, designers have more flexibility to choose the
clustering methods for their problems.

In general, MILE is more complicated and costly to train than MELE, owing to the interdependence between the input
space partitioning and local expert training. In this work, we will consider only the MELE approach.

With some prior knowledge on the function profile, the designers can rely on engineering judgment to partition
the input space spatially. This is the simplest approach, but lacks quantitative rigor. Nguyen-Tuong et al. [92] used a
distance-based measure in partitioning the training data, assuming the same kernel width for all local kriging models.
Another alternative is to partition the input space based on a certain criterion which better reflects the function profile,
such as the function value or the gradient, which we adopt in our proposed procedure. In this approach, however, a set
of training data (7") are required for the clustering procedure. Depending on the information contained in the training
data, there are two types of learning algorithms:

1. Supervised clustering algorithm: in this learning algorithm, the training data are labeled, i.e., we know which
cluster each of them belongs to. The training algorithm derives the general expression to cluster unknown
(new) data, such as in the least-squares classification, Fisher’s linear classifier, logistic regression, and Gaussian
classifier [19].
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2. Unsupervised clustering algorithm: the training data for this category are unlabeled. The goal of this algorithm is
to find the hidden structure in the data, or to discover groups of similar examples within the data. An expression
is then derived to cluster unknown data based on the learned pattern. Some algorithms belonging to this category
include the classical K-means clustering [93, 94, 95], and the Gaussian mixture models [96].

In the proposed approach, we need both the supervised and unsupervised clustering algorithms, for reasons that
will become clear shortly. The unsupervised learning algorithm is required when we first cluster the training data
based on the selected clustering criterion, since we have no prior knowledge on how they are split. Thus at this stage,
the partitioning will be at the y-space, i.e., the training data are partitioned based on the function values or gradient
information, without regard to their locations in the input space. When evaluating an arbitrary test point xg, however,
we first need to compute the corresponding mixing proportion, 7 (Xo), which can be computed based on the input
space (the x-space) partitioning. For this purpose, we can perform a supervised clustering algorithm, since the training
data are now already labeled upon completing the unsupervised clustering algorithm in the first stage.

For the unsupervised clustering algorithm we employ the Gaussian mixture models, by assuming that the under-
lying distribution of the data is a superposition formed by taking a linear combination of multiple Gaussian distribu-
tions [97, 98],

K
p(x) = kN (x |y, Zh), (36)
k=1

where ¢, denotes the prior probability that a point belongs to the k™ cluster, and p,, and X, are the corresponding
mean and covariance. The parameters ¢, p,, and 3, are solved iteratively via the expectation-maximization algo-
rithm, or EM algorithm [99, 100]. By labeling each sample with its corresponding cluster assignment, we can separate
the training data set into 7 — {7}, k = 1,..., K. The regularized Gaussian classifier is used as the supervised
learning algorithm. This classifier belongs to a generative approach, where we model the class conditional densi-
ties p (x |z = 1) (Gaussian in this case) together with the prior probabilities for the clusters p (z; = 1) [19]. The
parameters for both probabilities can be obtained by the maximum likelihood solutions.

B. Mixing Proportion Derivation

As mentioned, the mixing proportion is a function of the cluster posterior probability. Once the parameters in the
regularized Gaussian classifier are derived at the supervised learning algorithm step, this posterior probability can then
be computed as,
p(x[ze =1)p(2r =1)
Pz =1|x) = (37)
2p(xlz=1)p(z=1)

When there are only two clusters (X = 2), this cluster posterior probability becomes a sigmoid function, an S-shaped
curved with values ranging from 0 to 1,

1 p(zr =1|x)
p( 2k | x) o(a), where a nl—p(zk=1|x)

~ 1l+exp(—a) (38)

The cluster boundary is defined at the point where p (z; = 1|x) = 0.5. We can modify the sigmoid function by
introducing weight (w) and bias (\), o (wa + \). Altering A shifts the cluster boundary, whereas altering w changes the
slope of the S-shaped curve around the cluster boundary. Since we want to maintain the cluster boundary position, we
set A to the default value 0. Increasing w drives the sigmoid function to be closer to a step function, or p ( z = 1|x) =
{0,1} as w — oo. For cases where K > 2, we use a softmax function,

p(zr=1|x) = %, where ar =In[p(x|zr =1)p (2 =1)]. (39)

The previous discussion on the effects of adding w and A to the sigmoid function also applies to this softmax function.
In our proposed approach, we use this “modified” softmax function as the mixing proportion,

exp (way (X))
> exp (waj (x0))

Tk (X()) = (40)

We will vary w and discuss how it affects the predictive performance of the mixture of experts, which will be presented
in Section VI.
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C. Mixture of Experts Procedure

With the input space partitioning described and the mixing proportion derived above, the procedure for the proposed
mixture of experts approach is presented below,

1. Implement the Gaussian mixture model as the unsupervised learning algorithm to cluster the training data. The
designers need to decide on the clustering criterion and the number of clusters prior to performing this step.
The training data set for clustering, 7 = {X,,¥yn},,, is now partitioned into K clusters, 7, = {x,, y"}neck,

k=1,...,K, where Cy denotes the set of clustering training data indices that correspond to the k& cluster.

2. Map the clustering of training data to the clustering in the input space (x-space) by implementing the regularized
Gaussian classifier as the supervised learning algorithm.

3. Build a separate local surrogate model within each cluster, Jx (x), £ = 1,..., K. First, we need to determine
the samples to be used to build each local expert. One option is to use all points or a subset of points within each
T set, or to perform an adaptive sampling algorithm starting with a subset of 7.

4. Compute the cluster posterior probability, i.e., the probability that x belongs to the k™ cluster, using (37).
5. Compute the corresponding mixing proportion, 7 (Xo), using (40).

6. Compute the mixture of experts estimation, § (xg), following (34), using the local experts and mixing propor-
tions obtained in steps 3 and 5, respectively.

In this paper, we demonstrate this proposed mixture of experts procedure in approximating the aerodynamic force
and moment coefficients of the selected aircraft configurations. The performance is then compared to those of some
global surrogate models.

V. Problem Description

In this section we describe the two aircraft configurations considered in this study and the aerodynamic solver used
to generate the aerodynamic data. We will then provide more details on the surrogate models that we will demonstrate
and compare, as well as the selected sampling and model validation procedures.

A. Aircraft Configurations

In this paper, we test the different surrogate modeling techniques using the aerodynamic data corresponding to both
the conventional and unconventional aircraft configurations. For the conventional configuration, we use the wing-
tail configuration of the common research model (CRM) [101]. This aircraft exhibits design features typical of a
transonic, wide-body, long-range aircraft, with overall dimensions similar to those of the Boeing 777-200ER. For the
unconventional configuration, we consider a BWB configuration with the sizing parameters follow those presented
by Lyu and Martins [18]. Figure 1 shows the layouts for both aircraft configurations, and the grid to be used in the
aerodynamic solver, which is described next.

B. Aerodynamic Solver

A medium-fidelity aerodynamic solver, TriPan, is used to generate the “true”” aerodynamic force and moment coef-
ficient data in this work. This solver, which is developed by Kennedy and Martins [102, 103], uses the panel method.
TriPan calculates the aerodynamic forces and moments of inviscid, incompressible, external lifting flows on un-
structured grid using surface pressure integration, with constant source and double singularity elements. The surface
of the body is discretized with quadrilateral and triangular panels; these panels are shown on Figure 1.

C. Surrogate Models

In this paper, we aim to compare the performance of different suitable surrogate modeling techniques in approxi-
mating C'r,, Cp, Cyy (lift, drag, and pitching moment coefficients). The surrogate models are constructed in a four-
dimensional space with input variables: Mach number (M), angle of attack («), flight altitude (h), and tail rotation
angle (n). Due to the varying magnitudes of the input variables (in particular between the flight altitude and other input
variables), the input variables are scaled to be between 0 and 1 prior to constructing and using the surrogate models.
For this purpose, we consider both global models and mixture of experts models. As previously mentioned in
Section III, we consider global black-box (data-fit) surrogate models that are interpolative, i.e., kriging and RBF
models. For the RBF models, three kernel functions are used, namely the thin-plate splines, cubic, and square-
exponential (Gaussian). For the kriging models, since we know that the aerodynamic force and moment coefficients
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Figure 1: Aircraft configurations considered in this study, showing the grid used in the aecrodynamic solver.

are continuously differentiable, we consider only the correlation functions that exhibit parabolic behavior, namely the
Gaussian and cubic spline functions. Direct GEK and universal kriging models are also tested.

In a “kriging with a trend” model (universal kriging), the global model is modeled by an analytical expression,
which takes different values in space, to be the trend component [24]. Using this approach, instead of being restricted
to use low-order polynomials as the basis functions, we select the basis functions that reflect the physics of the system,
to assist the prediction. Since we know that drag coefficient profiles are expected to have a steep gradient in the high
Mach (M) and high angle of attack («) region, we can set the trend to be

[ 1/(1-M?) if a<1.0
1/}(M70l){ 0[2/(1*M2) if aa>10 ° @b

The constant numerator for a < 1.0 is used to remove the quadratic profile (with respect to «) in the low « region,
to be consistent with the C'p profile obtained from the aerodynamic solver. The basis function vector, f (x), and the
coefficient vector, 3, are thus expressed as follows,

f(x)=1[1,% (M, a) (42)

B =[5,/ 43)

Thus at an evaluation point xg = [My, ag, ho, 1], the kriging equation can be expressed as

§(x0) = Bo + Bt (Mo, o) + 1 (%5, %0)" R [ys — Bo — utp (Mo, )] - 44)

The basis function coefficients, 5, and 3, are obtained using (22). These specified basis functions are shown to
significantly improve the accuracy of kriging models in the high drag gradient area. The additional computational cost
in the kriging construction and use with the nonconstant global model is very minimal, in fact it is barely noticeable.

For the mixture of experts models, we follow the procedure presented in Section IV. Ordinary kriging and GEK
models with adaptive sampling are used as the local surrogates. The numbers of clustering training data are 100 for
the two-dimensional test cases, and 500 for the four-dimensional test cases.

The Halton sampling sequence, which is a space-filling low-discrepancy method [64], is used to generate training
samples to construct the surrogate models, as well as to generate the clustering training data for constructing the
mixture of experts. The discrepancy in this case is the departure of the sampling points from a uniform distribution,
thus ensuring an even distribution of samples over the input space. Moreover, Halton sample generation is done in an
incremental fashion, meaning when we increase the size of training samples (/V,), we reuse the points from the smaller
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sample set. With this incremental sampling, we can compare the surrogate modeling performance with different sizes
of sample set more fairly, compared to other sampling method like LHS, which generates a new set of samples for
each sample set size.

For the ordinary kriging and GEK models, we also use the adaptive sampling procedure following the “exploita-
tion” infill criterion. At each iteration, we select a point with the maximum index of dispersion, or variance-to-mean
ratio (VMR), D = o2 / i, of the kriging prediction as the next sample. Using the maximum VMR instead of the more
commonly used maximum variance criterion takes into account the varying magnitudes of kriging predictions at dif-
ferent parts of the input space. To start this procedure, a few initial points are required; in this work, we use 15 Halton
points for the global models, and the first 15 points in each clustering data set T, for the mixture of experts approach.
The adaptive sampling procedure is terminated when the convergence criterion is achieved (maximum VMR < toler-
ance), or when the specified maximum number of samples (sampling budget) is reached. For simplicity, we select the
next sample out of a set of 10000 candidate points, which are distributed uniformly in the input space. Note that no
actual function evaluations are required to compute the VMR values at those points, since the o2 and y of the kriging
prediction come out naturally from the kriging derivation and can be expressed analytically (see Section III. B). The
actual function evaluation is only required at the selected sample location, to update the sample set S. The reason why
we do so is because running a proper optimization (we tried with the particle swarm optimization method or PSO)
results in a painfully slower convergence. Thus to achieve the same level of accuracy, it will require significantly more
samples than when the sample is selected from a discrete set of candidate points.

To validate the surrogate models, we generate 10 000 truth set data with the aerodynamic solver. These data are
used to compute the normalized RMS error, with which we assess and compare the accuracy of surrogate models
tested.

VI. Results

In this section, we present and compare the results of using different surrogate modeling techniques, including the
proposed mixture of experts approach, to approximate the aerodynamic force and moment coefficients of BWB and
CRM configurations. Table 3 summarizes the various surrogate models, with their corresponding model structures and
sampling techniques, used in this study. For simplicity, “ordinary kriging” will just be referred to as “kriging” in the
subsequent result presentation and discussion.

| Model type | Kernel/correlation function | Sampling |
| Global models \
Kriging Cubic (C) Halton
Gaussian (G) Halton
Gaussian (G) Adaptive (maximum VMR)
Universal kriging | Gaussian (G) Halton
GEK Cubic (C) Halton
Gaussian (G) Halton
Gaussian (G) Adaptive (maximum VMR)
RBF Cubic (C) Halton
Gaussian (G) Halton
Thin-plate splines (TPS) Halton
Mixture of experts \
Kriging Gaussian (G) Adaptive (maximum VMR)
GEK Gaussian (G) Adaptive (maximum VMR)

Table 3: List of surrogate models used in this study and their corresponding model structures and sampling techniques.

We need to construct the surrogate models in a four-dimensional space to perform the surrogate-based mission
analysis. The value ranges for these input variables are tabulated in Table 4.

For illustration purposes, we first demonstrate the methods with a two-dimensional case, using data corresponding
to the BWB configuration. Next, the results corresponding to the four-dimensional cases are presented for both the
BWB and CRM configurations. We then perform the surrogate-based mission analysis using the selected surrogate
models for the CRM case.
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Input variable Lower bound Upper bound

Mach number (M) 0.15 0.90
Angle of attack () —10.0° 20.0°
Altitude (h) 0 ft 50000 ft
Tail angle () —20.0° 20.0°

Table 4: Value ranges for the surrogate models’ input variables.

A. Two-dimensional Case with BWB Configuration

For the two-dimensional case, we fix the flight altitude to 38 500 ft and the tail angle to —7.0° . For this case, we only
discuss the surrogate model performance to approximate C'p, since it exhibits more complex profile than Cy, and C)y,,
especially in the transonic region. Figure 2 shows the C', contour generated from truth set data. The entire input space
is shown in Figure 2a, where we can observe the high drag gradient at the top right corner (high M, high « region).
Due to the large value range shown in this contour plot, the lower left corner seems flat. However, when we zoom into
the region highlighted by the white rectangle, we see a quadratic profile, as shown in Figure 2b.

0.9

-
0.8

0.5
07 8.47 0.06
0.6 7.26 0.06

- 04
[ 6.06 [ 0.05

=o. =

4.85 0.05

0.4 0.3
| 43.64 | 40.04
0.3 2.44 0.04
1.23 0.2 0.03
-5 0 5 10 15 20 0.03 -10 -8 -6 -4 -2 0 2 0.03

Anale of attack Anale of attack
(a) Actual C'p contour showing the high drag gradient (b) C'p contour subset showing a much lower C'p value range

Figure 2: Drag coefficient contour exhibits different profiles in different input space regions. The white rectangle shown in the left hand side figure highlights the subset
shown in the right hand side figure.

Now we look at the performance of global models in approximating this C'p contour. We first build kriging
and GEK models with adaptive sampling, and then use the same sample size as the maximum number of Halton
samples considered. The convergence criterion used for the adaptive sampling in this case is maximum VMR <
10~°. The convergence is achieved at Ny = 77 for the kriging model, whereas the GEK model requires 36 samples.
The normalized RMS errors for different surrogate models that use no gradient information are shown in Figure 3a,
and those for GEK models are shown in Figure 3b. From both figures we can observe that the error trend is more
monotonically decreasing when adaptive sampling is used. Although using more Halton samples in general decreases
the approximation error, the convergence trend is more erratic than when we use adaptive sampling. Among the three
RBF models, the one with the thin-plate spline kernel function has the worst performance. Similar performances are
observed between kriging and RBF models where the same function is used as the correlation and kernel function
(Gaussian or cubic). Universal kriging, using the basis functions given in Section V. C, shows the best performance
when fewer samples are used, but is caught up by kriging models (with Gaussian correlation function) as more samples
are added. This result shows that adding a known trend to the kriging model does improve the predictive performance,
especially when we have a small sample budget. For the GEK models, using a cubic correlation function results in
a poor predictive performance. In fact, its performance is worse than when no gradient information is used. GEK
models require computing the second derivatives of the correlation function to assemble the extended correlation
matrix (to include the correlation between function values and gradients, as well as between gradients). While the
second derivatives of a cubic correlation function is continuous, it is only piecewise linear and thus not smooth. The
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Gaussian correlation function, on the other hand, has a smooth second derivative.
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Figure 3: The normalized RMS error plots for the two-dimensional case (BWB) show decreasing trends when adaptive sampling is used, resulting in more accurate
surrogate models. Halton sampling is used unless stated otherwise.

The approximated C'p contours of six global models are shown in Figure 4, using the maximum number of samples
shown in Figure 3. We indicate the test points with > 5% approximation errors with white dots, so we can visualize
regions within the input space where each surrogate model performs poorly. The GEK model with Gaussian correlation
function and adaptive sampling (Figure 4a) shows the best performance, both in terms of the normalized RMS error
and the error distribution. The gradient information seems to help fitting the different function characteristics in
different input space region significantly. Kriging (Figure 4b) and universal kriging (Figure 4c) models can both
follow the trend in the high drag gradient region pretty accurately, but the performance in the low « region is still
rather poor, especially for the universal kriging model. A rather similar error distribution is observed when an RBF
model with Gaussian kernel function is used (Figure 4e), though the overall normalized RMS error is significantly
higher. Choosing a different kernel function affects the RBF model performance, as seen in Figure 4d where a cubic
kernel function is used. This model shows an overall good performance, except in the regions that are close to the
input space boundary. Kriging with cubic correlation function (Figure 4f) shows a poor predictive performance in the
entire input space region, with its normalized RMS error slightly better than the RBF model with Gaussian kernel
function. Having reviewed the global model performance, we will now look into the mixture of experts results.

Before generating the mixtures of experts, we first need to determine the mixing proportions 7y (x). As mentioned
in Section IV. B, we use the modified cluster posterior probability as 7y (x) (40), where we need to specify the
weight w. In Figure 5, we show the effect of changing w on 7, (x) (top row), and on the resulting C'p approximation
contours (bottom row). For the 7 (x) plots, we use different colors to indicate the different clusters. The color
intensity within each cluster represents the 7y (x) value, where 0 < 7, (x) < 1. The lightest color corresponds to
7 (x) = 0, whereas the darkest corresponds to 7y, (x) = 1. We show three w values, 1.0 (the default value for the
original posterior probability), 2.0, and 3.0. For this demonstration, we partition the input space based on the gradient
(0Cp/OM) criterion, and use GEK models as the local experts. As we can observe from these plots, the cluster
boundary gets more clearly defined as w is increased, which increases the sigmoid function slope. When w = 1, the
region in the input space where both local experts “share responsibility” is larger. Consequently, each local expert
needs to approximate the function value beyond its local area. Since kriging (including GEK) models are not good at
extrapolation, this poor predictive performance will be reflected in the overall approximation accuracy, as shown in
Figure 5d. Increasing w decreases the areas outside the local region that each expert needs to predict, resulting in better
predictive performance as can be seen from both the error distribution plots and the overall normalized RMS errors.
Further increasing w to be above 3.0 does not affect the predictive performance of the mixture of experts model, as
shown in the error convergence plot displayed in Figure 6.

In this two-dimensional study, we consider two clustering criteria, namely the function value (C'p) and the gradient
(0Cp/OM). Both kriging and GEK models are considered as the local experts, and the samples are drawn adaptively.
The results are summarized in Figure 7, showing the total number of samples Ny and the overall normalized RMS
errors for all cases considered here. When kriging models are used as the local experts, mixture of experts offers quite
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Figure 4: The approximated C'p contours for the BWB configuration in a two-dimensional space from different global surrogate models, with the normalized RMS
errors shown inside the brackets. The test points with > 5% approximation errors are indicated by the white dots.

a significant improvement over the global model, some are achieved with fewer samples. While mixtures of two GEK
models perform slightly worse than the global model, using three and four local models result in better predictive
performance (with < 1% overall approximation error) with only slight additions of samples. Comparing between the
two clustering criteria, the overall approximation errors are of the same order for each number of clusters considered.
However, fewer samples are required when we use dCp/OM as the clustering criterion, showing that this gradient
value is a better indicator for the heterogeneity in the function profile.

The top row of Figure 8 shows the partitioning of input space (shown as the mixing proportion contour plots) with
2, 3, and 4 clusters when using C'p/OM as the clustering criterion. The Cp approximation contours with kriging
and GEK models as the local experts are also shown, with the distribution of test points with > 5% approximation
errors shown as white dots. These plots show that the mixtures of GEK models offer a notably better performance
than the kriging counterpart.

It is interesting to look at the optimum length scales (kriging hyperparameters, ) for the various local kriging
and GEK models as obtained via the MLE procedure. Table 5 shows the different optimum 6 obtained for each
local expert. Each square-bracket corresponds to the 8 of one local expert. The first number refers to the correlation
parameter in the M dimension, whereas the second number explains the correlation in the « dimension. A smaller
number indicates a stronger correlation. This “correlation” can be interpreted as how much the knowledge of function
value at one point helps to deduce the function value at another point. Therefore, a simple linear function has a strong
correlation, whereas a highly nonlinear function (e.g., a function which exhibits pronounced oscillations) has a weak
correlation. Figure 9 displays the optimum @ in the different input space partitions corresponding to the mixture of
experts with kriging models. For the low M, low « region (blue), we see a stronger correlation in the M dimension
than in the o dimension. This outcome is not surprising, as we could see in Figure 2b that Cp values do not vary much
in Mach (stronger correlation, lower #), whereas it exhibits a quadratic profile in a (weaker correlation, higher #). In
the middle region (red), we find weaker correlation in both M and « dimensions, with almost equal length scales. In
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Figure 5: The effect of changing w in computing 7% (x) (40). For the 7, (x) plots (top row), different colors correspond to different clusters. The highest color
intensity within each cluster corresponds to 75 (x) = 1 (maximum value). The overall normalized RMS errors are shown inside the brackets.

the high M, high o region (purple), the correlations are weak but it is stronger in the o dimension. The optimum
length scales in the latter partition are the closest to the ones obtained when we use a single global kriging model (see
Table 5), suggesting that this is the most dominant profile when fitting a global surrogate model. These observations
suggest that partitioning the input space lets each local expert to model the dependence between function value and
inputs separately, thus results in a better approximation model overall.

B. Four-dimensional Case with BWB Configuration

Approximating the C'p profile using surrogate models in the four-dimensional space is significantly more complicated
than in the two-dimensional space previously discussed. The BWB configuration, in particular, exhibits more corre-
lation between drag and trim, thus the drag profile becomes more nonlinear in the tail angle dimension. We will see
how this complex profile imposes challenges in fitting surrogate models that accurately predict the C'p profile in the
entire input space.

The adaptive sampling procedures performed for the global kriging and GEK models converge very slowly. We
thus set the maximum Ny to be 600 for kriging and 200 for GEK model. The convergence (or the lack thereof) of
the maximum VMR, which is the criterion used for the adaptive sampling procedure, and the normalized RMS errors
are shown in Figures 10 and 11 for the kriging and GEK model, respectively. Drawing 600 samples adaptively for
the kriging model takes almost 20 hours, yet the approximation accuracy is still really poor—the normalized RMS
error is 70%. The adaptive sampling procedure for the GEK model takes approximately 31 hours to complete. The
resulting approximation accuracy is only 50%, which is really poor. In both cases (kriging and GEK), the maximum
VMR converges erratically, though the kriging model starts showing a smoother convergence at N, > 450. However,
looking at the convergence slope, it does not seem that the approximation accuracy will greatly improve with adding
more samples.

The other global surrogate models are tested with up to 200 Halton samples, since we do not have converged
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Figure 7: Mixture of experts result summary with two clustering criteria to approximate C'p contour in a two-dimensional space for the BWB configuration.

numbers of samples with the adaptive sampling procedure. The error convergence plots are shown in Figure 12.
For the models with no gradient information, the “best” performance is achieved with universal kriging, kriging
with cubic correlation function, and RBF model with cubic kernel function, all with Halton samples. Even so, their
approximation errors are still around 80%. When gradient information is used, GEK with adaptive sampling shows the
“best” performance among the three models. GEK with cubic correlation function has the worst performance, as also
observed in the two-dimensional case. Clearly, using any of these surrogate models in any analyses or optimizations
will not give us any meaningful results.

Due to the very poor predictive performance of all the global surrogate models considered in this study, we now
look into using mixtures of experts. The training samples to build each local expert are selected through the adaptive
sampling procedure. For this problem, the convergence is achieved when the maximum VMR < 1073, and the
maximum number of samples is set to 40 for each local expert. This adaptive sampling procedure starts with the
first 15 clustering training data assigned to the local region, 7. Similarly to the two-dimensional case, using the
gradient, 0Cp/OM, as the clustering criterion yields better performance overall with fewer samples than when Cp,
value is used. Thus, we only show the results from the former clustering criterion here, which are summarized in
Figure 13. Here we try partitioning the input space to up to seven clusters. Using kriging models as the local experts
result in an average normalized RMS error of approximately 12%, whereas using GEK models further improves it
to around 6%. The total number of samples increases as we increase the number of clusters. The approximation
error decreases slightly as we add more clusters (up to five clusters), but then it increases. The best performance for
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Figure 8: Mixing proportion and C'p approximation contours from the mixture of experts, using 8C'p /& M value as the clustering criterion for the BWB configuration.

both local model types is achieved with 5 clusters, with 10.86% approximation error for kriging and 5.33% for GEK.
These results show that applying the divide-and-conquer approach in approximating a complex function profile does
improve the predictive performance significantly. In this case, each local region gradually resembles a thin strip as we
increase the number of clusters when partitioning the input space, which becomes harder for the surrogate to model.
Figure 14 visualizes the input partitioning with 6 clusters, by plotting the mixing proportion contours (with different
colors representing different local regions) in a two-dimensional slice at 1 = 35000 ft and = 0°. The thin strips
are clearly visible in this plot. Consequently, we see a slight increase in the overall approximation error with 6 and
7 clusters. Compared to the global model training with adaptive sampling procedure that takes more than 20 hours
without achieving convergence, the training time for the mixtures of experts (including clustering, adaptive sampling,
and constructing the local experts) take less than 3 minutes when using kriging models as the local experts, and less
than 8 minutes when using GEK models. This further supports our earlier argument that the adopted distributed
approach can help reducing the computational cost to build and use the surrogate models.

22 of 37

American Institute of Aeronautics and Astronautics



Downloaded by University of Michigan - Duderstadt Center on December 13, 2017 | http://arc.aiaa.org | DOI: 10.2514/6.2014-2301

Number of clusters Length scales ()

Local experts: kriging models

1 [7.61,1.34]

2 0.08, 1.16], [6.79, 1.81]

3 [3.79, 3.56], [0.53, 1.60], [7.58, 3.06]

4 4.89, 4.60], [0.53, 1.60], [6.63, 3.01], [2.84, 3.27]

Local experts: GEK models

1 [10.38,2.0]

0.84,2.27], [9.34, 1.33]
|
]

2 [
3 [1.25,0.50], [0.84,2.27], [9.40, 2.23]
4 [1.00,0.50], [0.84,2.27], [6.33,2.54], [9.32, 4.59)]

Table 5: Local kriging and GEK models have different optimum model parameters (length scales @ = [0as, 6]) in the partitioned input space, suggesting that the
divide-and-conquer approach is better in modeling the different characteristics in the function profile.

Angle c;f attack

Figure 9: Different local kriging models have notable differences in the optimum model parameters (length scales @ = [0, 64]).

Figure 15 shows the convergence plots for the maximum VMR and normalized RMS error for each local expert in
a mixture of experts with five clusters. Each local expert is built using a GEK model. The convergence displayed in
this plot shows a stark difference from those of the global models (Figures 10 and 11). Here, the adaptive sampling
procedure within each local expert converges nicely until the convergence criterion is achieved, which translates to
a smooth convergence of the normalized RMS error. From these results, we can see that the adopted divide-and-
conquer approach overcomes the challenges of modeling a complex terrain by partitioning the input space into smaller
subregions which prove to be much easier to tackle.

Building surrogate models for C';, and C'j; are much easier than C'p, owing to their much simpler function pro-
files. Using our aerodynamic solver, Cr, and C) values are independent of the flight altitude, thus their gradients
in the altitude dimension are zero. These zero gradients impose difficulties when fitting a GEK model, thus we re-
strict the following discussion to surrogate models with no gradient information, which will prove to be sufficient in
approximating C';, and C)y.

Unlike C'p, performing the adaptive sampling procedure in building a global model results in a nice convergence,
for both the C}, and C); kriging models, as shown in Figure 16. For the C}, kriging model, the maximum VMR
decreases to below 10~* with 49 samples. The resulting surrogate model gives an overall approximation error of
1.49%. With the same convergence criterion for the adaptive sampling procedure, the C'; kriging model requires 62

23 of 37

American Institute of Aeronautics and Astronautics



Downloaded by University of Michigan - Duderstadt Center on December 13, 2017 | http://arc.aiaa.org | DOI: 10.2514/6.2014-2301

Maximum kriging VMR

10° | 1

Normalized RMSE

=
e
-

0 100 200 300 400 500 600
Number of samples

Figure 10: The slow convergence of using a global kriging model (with adaptive sampling) to approximate the complex C'p profile of the BWB configuration in a
four-dimensional space. The convergence criterion for the adaptive sampling is not achieved.

samples and achieves an overall approximation error of 1.11%. Using these “converged” numbers of samples, we now
run other global models using Halton samples, as shown in Figure 17. In both models, kriging with adaptive sampling
offers the best performance. Since Cy, and C); profiles do not exhibit any strong quadratic trends in the M and «
dimensions, the universal kriging (which is set to have the same basis functions as the ones for C'p) does not have
any advantage over the ordinary kriging models. The kriging models with cubic correlation function show rather poor
performance and convergence at N; < 35, but catch up with other kriging models afterwards. The approximation
accuracy of the three RBF models converge really slowly, and thus at the selected /N, their approximation errors are
still high.

For modeling simple profiles such as C';, and C}j;, mixtures of experts do not offer much advantage. In fact,
going from using two clusters to three clusters does not show much difference in the input space partitioning. The
mixtures of experts result summary for these two function profiles are shown in Figure 18, using C', and Cjs values
as the clustering criterion, respectively. The adaptive sampling procedure is performed for each local expert (kriging
model). From these results we can see that adding more clusters requires more total samples to build the surrogate
models, with no improvement in the approximation accuracy. Therefore, when we deal with simple function profiles,
global surrogate models are sufficient and the computational complexity associated with implementing the mixtures
of experts is not necessary and should be avoided.

C. Four-dimensional Case with CRM Configuration

The conventional CRM configuration has a simpler C'p profile than that of the BWB in the four-dimensional input
space considered here, since drag is not as strongly coupled to trim as it is in BWB. Using the same 10 000 input
variables to evaluate the truth set data, we find the minimum and maximum Cp values to be 0.006 and 1.174 for the
CRM configuration, whereas for the BWB configuration the value range is significantly larger, with a minimum of
0.009 and a maximum of 31.605. Both maximum drag values correspond to the corner cases: M = 0.9, a = 20.0°,
h = 50000 ft, n = 20.0° for CRM and M = 0.9, a = 20.0°, h = 50000 ft, n = —20.0° for BWB. Consequently,
the drag gradient corresponding to the CRM is much lower than that of BWB. We will see the effect of this simpler
profile in the predictive performance of surrogate models to approximate C'p of CRM.

In this case, surrogate models with adaptive sampling performs notably better than those with Halton sampling.
We will then only discuss about the former in this section. Figures 19 and 20 display the convergence of maximum
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Figure 11: The slow convergence of using a global GEK model (with adaptive sampling) to approximate the complex C'p profile of the BWB configuration in a
four-dimensional space. The convergence criterion for the adaptive sampling is not achieved.

VMR and normalized RMS error for both kriging and GEK models. We set the maximum number of samples to be
600 for kriging and 200 for GEK. As the plots show us, the maximum numbers of samples are reached before the
adaptive sampling procedures converge (maximum VMR < 1073). At termination, the normalized RMS errors are
14.06% and 15.69% for kriging and GEK, respectively. Another thing we can observe from the convergence plots are
the sudden spike of maximum VMR at around 240 samples for kriging and 85 for GEK, which are also reflected in the
increasing normalized RMS errors. This phenomenon is common when performing an adaptive sampling procedure
based on the maximum variance criterion. The procedure tries to “converge” a certain kriging shape by adding more
samples. However, it will reach a point where adding a sample changes the shape it needs to converge to, thus the
spike occurs. The kriging shape after the spike is typically more complicated than the one before. In other words,
there is a certain profile characteristic that is only captured by the model with “enough” samples. We have seen this
phenomenon happens in many cases, even in simpler analytical functions, and they typically converge in the end.
Having multiple spikes in the convergence plot is not uncommon either. However, when the function profile is too
complex, the procedure converges too slowly, just like the case we observe here.

We now implement the mixture of experts approach to approximate this C'p profile. Both kriging and GEK
models are considered as the local experts. The clustering criterion is the 9Cp /OM values, which is previously used
in the BWB case. An adaptive sampling procedure is performed for each local expert, where convergence is achieved
when maximum VMR < 1073, The results are summarized in Figure 21. With kriging as the local experts, we do
not see much improvement in terms of the approximation accuracy as compared to the global kriging model, with
approximation errors of around 16%. However, the adaptive sampling procedures converges for all local experts,
with a maximum total Ny of 128 (with six clusters). Using GEK models as the local experts, on the other hand,
shows a notable improvement in terms of the approximation accuracy, achieving overall normalized RMS errors of
approximately 4%. The total N, increases with more clusters. A good compromise between the approximation
accuracy and Ny is achieved with four clusters, which requires 72 samples in total and yields a 3.75% approximation
error.

Similarly to the BWB case, simple global kriging models with adaptive sampling offer good predictive perfor-
mance to approximate Cr, and Cjs of the CRM configuration. The convergence plots of the maximum VMR and
normalized RMS error are shown in Figure 22. We achieve a normalized RMS error of 2.39% with 53 samples in the
C'r, approximation, and 3.36% error with 80 samples in the C; approximation.
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Figure 12: The normalized RMS error plots show poor predictive performance by all the global surrogate models considered in approximating the C'p profile of the
BWB configuration in a four-dimensional space. Halton sampling is used unless stated otherwise.
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Figure 13: Mixture of experts result summary with 8C'p /O M clustering criterion to approximate the C'p profile of the BWB configuration.

D. Surrogate-based Mission Analysis with CRM Configuration

We now demonstrate using the derived surrogate models on the surrogate-based mission analysis procedure described
in Section II. The conventional CRM configuration is used in this demonstration, where global kriging models are used
to approximate C';, and C'y;, whereas a mixture of experts with four GEK models is selected for the C'p approximation.

Here we consider a sample mission profile as described in Table 6, which is illustrated in Figure (not to scale) 23.
In this simple case, we only assume one main profile, without any loiter and reserve profiles. The entire cruise portion
of the flight, from the initial cruise (segment 8), through the step climb (segment 9), to the final cruise (segment 10), is
done at a constant Mach number. From 10 000 ft, the climb is done at a constant knots indicated airspeed (KIAS) (seg-
ment 6), until it intercepts the desired cruise Mach number, at which point the climb is done at a constant Mach number
(segment 7). The descent is also done in a similar fashion, with a constant Mach descent (segment 11) followed by a
constant KIAS descent (segment 12). This procedure is implemented to reflect common operational procedures. The
fuel fraction values, (, used in this work are listed in Table 7, following those suggested by Roskam [5], Raymer [104],
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Figure 14: The input partitioning results in thiner strips as we increase the number of clusters, as shown here on a two-dimensional slice of the four-dimensional space,
at h = 35000 ft and 7 = 0°. As each local subregion gets thinner, training a local expert gets harder, which might increase the overall approximation
errors as we add more clusters.

and Sadraey [105]. For this mission we specify the payload to be 20 tonne and the flight range to be 3 000 nmi. The
numerical integration is performed with four intervals per segment.

Segment Altitude Speed Range Time  Fuel Burn
ft Mach/kt nmi min (kg)
1 Startup - - - - 2187.03
2 Taxi - - - - 2165.16
3 Takeoff - - - - 1071.75
4  Climb 1500 — 10000 150 KIAS — 250 KIAS 27.98 8.41 1991.40
5  Cruise 10000 — 10000 250 KIAS — 310 KIAS 4.90 0.94 221.66
6  Climb 10000 — 23 731 310 KIAS 39.00 6.10 1390.84
7  Climb 23731 — 30000 MO0.72 13.39 1.87 493.59
8  Cruise 30000 MO0.72 1396.12 197.10  24504.12
9 Climb 30000 — 32000 MO0.72 4.24 0.60 141.83
10 Cruise 32000 MO0.72 1396.12 198.83  22594.45
11 Descent 32000 — 23731 MO0.72 15.55 2.19 254.53
12 Descent 23731 — 10000 310 KIAS 27.75 4.13 510.54
13 Cruise 10000 310 KTAS — 250 KIAS 42.34 7.70 759.84
14 Descent 10000 — 1500 250 KIAS — 150 KIAS 32.61 8.66 664.77
15 Landing - - - - 1597.52
Mission Total 3000.0 436.54 60 549

Table 6: Mission profile parameters and the mission analysis results (range, time, and fuel burn for each segment).

The drag coefficients approximated by kriging models are only inviscid drag coefficients. To obtain the total
drag coefficient, we add a constant viscous drag coefficient of 0.0136. This viscous drag is pre-computed based
on a flat-plate turbulent skin friction estimate with form factor corrections. In this simple case study, we assume
a constant TSFC (0.53 1b/(Ibf - h)), instead of using an engine model. We use a weight and balance model with
four components, namely the mission payload (20 tonne), fixed weight (100.9 tonne), wings (37.2 tonne), and fuel
weight, which depends on the mission analysis. These component weights and moments gives an estimate of the
entire aircraft’s weight, as well as the nominal, forward, and aft center of gravity (CG) locations. During the mission
analysis, the weight and CG locations of these components can be individually updated, giving a more accurate picture
of the aircraft’s weight and balance as fuel is decremented in the integration. The mission analysis results, including
the range, time, and the amount of fuel burned for each segment, are also listed in Table 6.
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Figure 15: The convergence plots for the maximum VMR and normalized RMS error for each local expert (GEK), with the input space partitioned into 5 clusters, when
approximating the C'p profile of the BWB configuration in a four-dimensional space.

Segment Startup Taxi Takeoff Landing
Fuel fraction, 0.01 0.01 0.005 0.01

Table 7: Fuel fraction values.

Solving this mission requires a total of 6.6 millions of function evaluations. This number comes from the product
of the number of secant iteration to obtain the desired range, number of residual equations in the mission analysis,
number of numerical integration intervals, and the number of Newton search algorithm (stabilized with a backtracking
line search algorithm) performed at each interval to find o and 7. This mission analysis would be computationally in-
tractable should we use an aerodynamic solver for each function evaluation. Table 8 shows a significant computational
gain when we use surrogate models instead of the actual aerodynamic performance evalution (O (104) faster when we
use a mixture of experts and O (106) faster with a global kriging/GEK model). The computational expense of using

TriPan solver Mixture of experts Kriging/GEK
35 0.001 s 2x107%s

Table 8: Computational time for one function evaluation using one processor.

an aerodynamic solver would be exacerbated when we consider multiple missions, use higher-fidelity models, e.g.,
by solving the Euler or the Reynolds-averaged Navier Stokes (RANS) equations, or a coupled aerostructural model.
Performing an optimization with such a high computational cost would be very challenging, if not impossible.

In Figure 24, we visualize the distribution of points in the four-dimensional surrogate model input space that
are evaluated during the mission analysis. In this scatterplot matrix, the four-dimensional space is deconstructed
into its various two-dimensional projections. Instead of showing all the 6.6 millions points, here we only show the
evaluation points after the Newton search algorithms converge (i.e., only the points where C'p’s are evaluated), which
amount to around 40 thousands points. For the future work, we can use such information to improve the sample
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Figure 16: The convergence plots for the maximum VMR and normalized RMS error for kriging model with adaptive sampling to approximate C'z, and C'ps profiles
of the BWB configuration in a four-dimensional space.
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Figure 17: The convergence plots for the normalized RMS errors for global models (with no gradient information) to approximate C'r, and Cas profiles of the BWB
configuration in a four-dimensional space.

selection in the surrogate model training, to concentrate the samples around the areas where they are used in the
mission analysis. We need to take note, however, that the evaluation point distribution would cover larger areas if we
include the points evaluated during the Newton search algorithm, or when we perform mission optimizations where
some mission parameters (e.g., cruise Mach number and altitude) are now design variables and varied throughout the
optimization procedure. With a better sampling strategy, we believe that the predictive performance of the surrogate
models can be improved. Ideally, we want to have the same set of sample locations for all C,, Cp, and C; surrogate
models, to reduce the number of actual function evaluations required to build the models.

VII. Conclusion

The predictive performance of various surrogate models in approximating aerodynamic force and moment coef-
ficients for the conventional (CRM) and unconventional (BWB) configurations have been presented and compared.
These surrogate models are to be used in a surrogate-based mission analysis to compute fuel burn of a flight mission
in detail, which can be employed in mission and aerostructural optimizations. For this purpose, we need globally
accurate surrogate models to approximate Cy,, Cp, and C}; in a four-dimensional space of Mach number, angle of
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Figure 19: Using a global kriging model with adaptive sampling to approximate the C'p profile of the CRM configuration in a four-dimensional space results in 14.06 %
approximation error, though the convergence criterion for the adaptive sampling procedure is still not achieved.

attack, flight altitude, and tail rotation angle. In addition to using the well-established kriging and RBF techniques to
build the global models, we propose a mixture of experts approach, which adopts the divide-and-conquer principle. In
this approach, different local experts are responsible for modeling the different subregions in the input space. Their
predictions are then combined, weighted by input-dependent mixing proportions, to yield the final prediction. To gen-
erate the training data used in constructing the surrogate models, an adaptive sampling procedure is also performed,
in addition to the fixed Halton sequence sampling. To validate the models, we generate truth set data and compute the
normalized RMS errors.

Our results suggest that the surrogate model performance is problem-dependent. Even with the same surrogate
modeling technique, different model structures and parameters perform differently when applied to different problems.
For example, the Gaussian correlation function performs better than the cubic one when modeling Cp in a two-
dimensional space (for both kriging and RBF models), whereas the reverse is true when the input space is four-
dimensional. In Section III. C, we show that a kriging model can be reduced to an RBF model when we simplify
the global model and model hyperparameters. In our two-dimensional case study, we observe that kriging and RBF
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Figure 20: Using a global GEK model with adaptive sampling to approximate the C'p profile of the CRM configuration in a four-dimensional space results in 15.69%
approximation error, though the convergence criterion for the adaptive sampling procedure is still not achieved.

models exhibit similar performance when the same kernel/correlation function is used (cubic or Gaussian). This
result suggests that for simple problems, RBF might be the better choice since it is simpler to construct than kriging,
while yielding similar performance. Adding a known trend in the kriging model (universal kriging) has been shown
to improve modeling efficiency, i.e., it requires fewer samples to achieve the same level of accuracy as the ordinary
kriging. Results from GEK models show that interpolating the gradients in addition to function values at sample points
does improve the predictive performance significantly. However, it comes at a higher computational cost, as we require
the gradient computation. An efficient adjoint method [106, 107] needs to be used when computing gradients of high-
fidelity models. The size of the linear system of equations to be solved is also inevitably larger. The adaptive sampling
procedure helps improving the accuracy of surrogate models; however, the convergence could be very slow in some
cases, in particular when modeling complex profiles. Therefore, with smaller sample budget, a simple space-filling
sampling technique seems to be a better option.

While the global surrogate models perform well in the two-dimensional case and in modeling C';, and Cy; in the
four-dimensional cases, they prove to be insufficient to model the complex profile of C'p in a four-dimensional space,
in particular with the unconventional BWB configuration. Significant improvements are observed when we use the
proposed mixture of experts approach. The divide-and-conquer approach overcomes the challenges of modeling a
complex terrain by partitioning the input space into smaller subregions, each with a simpler profile to model. For the
four-dimensional case with BWB configuration, this approach achieves a 5.33% approximation error with a mixture
of 5 GEK models (103 samples), and 10.86% when kriging models are used as the local experts (176 samples). On the
other hand, the adaptive sampling procedures for the global kriging and GEK models fail to converge yielding 70%
and 50% approximation errors at termination. Moreover, the distributed approach in the mixture of experts notably
helps reducing the computational cost to build and use the surrogate models. The training times for the global kriging
and GEK models (with adaptive sampling) are 20 and 30 hours (and yet they still fail to converge); these numbers are
reduced to 3 and 8 minutes when using the mixtures of experts. In these case studies, each local expert in the mixtures
finds different optimum model parameters, which shows that by partitioning the input space, each local expert models
the dependence between function value and inputs separately, yielding a better approximation overall. While in our
case studies the same model type is used for all local experts, the proposed mixture of experts approach offers the
flexibility of using different models types, e.g., using RBF models in simpler subregions and GEK models to model
more complex terrains. The derived mixing proportions can still be used in such a case. The advantages of using the
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Figure 22: The convergence plots for the maximum VMR and normalized RMS error for kriging model with adaptive sampling to approximate C'z, and Cps profiles
of the CRM configuration in a four-dimensional space.

mixture of experts approach comes with added computational complexity and more parameters to tune, such as the
number of clusters and the clustering criterion. Applying the principle of parsimony, it is wise to use simple global
models whenever sufficient, to avoid the unnecessary complexity that is inherent in the mixture of experts approach.

We demonstrated using the derived surrogate models in the surrogate-based mission analysis for the CRM con-
figuration, where we use a mixture of experts to approximate Cp, and kriging models to approximate Cr, and Cjs
(with adaptive sampling). Using this detailed fuel burn computation procedure, solving one mission requires 6.6 mil-
lions function evaluations, which would be computationally prohibitive without using surrogate models. With our
approach, the number of aerodynamic performance evaluations is dramatically reduced to the number of samples re-
quired to build the surrogate models (including the clustering training data should mixtures of experts are used). When
we use this mission analysis procedure in an optimization problem, we can fix the sample locations. Therefore, the
clustering algorithm and the adaptive sampling procedure only need to be performed once, prior to the optimization.
At each optimization iteration, we draw samples only at the predetermined sample locations.
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Figure 23: Typical mission profile for a long-range configuration.

As the next step, we need to assess how the surrogate models’ levels of accuracy translate to the accuracy in the fuel
burn computation with the mission analysis. This information could in turn guide us in the surrogate model selection
and training, to achieve the desired accuracy in the optimization results. We will also look into improving the sample
selection by using the information on the distribution of points in the input space that are evaluated in the mission
analysis procedure. We believe that focusing the sample distribution around this important area could further improve
the accuracy of surrogate models, while reducing the number of samples required to train them.
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