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Nomenclature

b plate span (450mm)

c plate chord (75mm)

d plate spacing

h oscillation amplitude

h0 normalized oscillation amplitude (=h/c)

ρ fluid density (1000kg/m3)

I. Introduction

Classical,1–5 and recent6–11 expositions of aerodynamic force history of unsteady incom-

pressible problems segregate the forces into those due to the relative acceleration between

the body immersed in a fluid, and everything else. Loads due to acceleration are referred

to as inertial, noncirculatory, or apparent (or added) mass, since their cause is imputed to

acceleration of a volume of bulk-fluid of some density (hence, inertia), to causes other than

circulation, or to what mathematically looks like a slug of fluid moving with the accelerating

body, respectively. The everything else lumps together forces due to bound or shed circula-

tion, forces due to flow separation, and viscous traction. Ultimately all aerodynamic loads

are from integration of pressure distribution and viscous traction, so the distinction into
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circulatory and noncirculatory loads is somewhat artificial. However, it is a useful artifice

because the noncirculatory loads are asserted to be independent of geometric details such as

sharp trailing edges supporting a Kutta condition, or dynamic conditions such as Reynolds

number. Further, one seeks to understand how unsteady a given unsteady problem really is,

and this can be beheld from the ratio of circulatory to noncirculatory forces. If circulatory

and noncirculatory force histories can be superimposed, this supports an argument for linear

superposition and hence for linearity. This would be particularly curious if the noncircula-

tory forces are the same in attached and in separated flows, for example for a flat plate with

strong vortex shedding from its edges, and one without.

The simplest classical unsteady incompressible problem is that of a thin rigid flat plate

oscillating harmonically in a direction normal to its chord . By taking the unsteady Bernoulli

equation without gravity and body forces

p = −ρ
(
∂φ

∂t
+
u2θ
2

)
(1)

and integrating over a circle with diameter c, we get the pressure force.

F ′p = −ρ
∫ 2π

0

(
∂φ

∂t
+
u2θ
2

)
dθ = d∂φ

∂t
=
∂u

∂t
cosθce = −ρπc

2

4

∂u

∂t
(2)

If the cylinder is conformally mapped to a flat plate, the result in Equation 2 does not change.

Thus, the constant of force proportional to acceleration of a flat plate body is equivalent to

a circle of fluid encompassing the chord. Of course, the plates motion produces an unsteady

pressure field propagating everywhere in the fluid, with intensity decreasing in going away

from the plate. That the force happens to be equal to that of accelerating cylindrical mass

of fluid around the plate is a convenient heuristic, and not an essential description of nature.

But it has emerged as an appealing colloquial term, and we follow such treatment here.

In unsteady fluid mechanics force models, the fluid acceleratory term is derived from

integrating the velocity potential in all of the fluid surrounding the body, assuming potential

flow. High-rate, large excursion motions produce massive separation and palpably violate

the potential flow assumption. For cases such as pitching and plunging airfoils, one finds

unsteady potential-flow models to be remarkably successful regardless of motion frequency

and up to motion amplitudes of appreciable fraction of airfoil chord. Granlund et al.11 ob-

served independence of circulatory force from variation in the non-circulatory for a plate

pitching from 0 to 90 degrees at the onset of the motion. However, the force after motion

cessation at 90 degrees is different. We examine to what extent similar success of theoretical

models with assumptions belied by observed reality nevertheless yield predictions fitting the

observed data.
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One asks immediately regarding linear superposition: in the simplest such case, suppose

that we have two plates adjacent to each other, some distance apart. Can the above solu-

tion for one plate, be superimposed to that of the second, for a combined solution? The

immediate answer is no. Consider the schematic in Figure 1 where two plates are positioned

far apart on the same chord line. Acceleration of one plate normal to the chord induces an

acceleration of the surrounding fluid. Since the plates are far apart, the fluid acceleration of

one has minimal effect on the other, and vice versa and thus the total force by both plates

are the sum of the individual added mass multiplied by the acceleration.

If both plates are joined together producing a 2c chord plate, the pressure field from an

acceleration of the plate now produces an equivalent added mass of twice that of the indi-

vidual plates together, since the constant in Equation 2 is dependent on the chord squared.

For the intermediate case of where the two plates are separated, but in close proximity to

each other, the acceleration of fluid from one plate should now affect the other and the

resulting equivalent added mass be somewhere in between the two aforementioned extrema.

The question is how the combined added mass as a function of chord separation looks like,

and whether it is affected by fluid viscosity, as the potential flow derivation is inviscid.

In the present work, we pursue experimental assessment of the noncirculatory solution

for the problem in Figure 1, by varying the gap between the two plates from zero (a single

plate of chord 2c) to 1 (two places of chord c, with gap of 1c). We also consider the case of

nonzero free stream parallel to the plates. Questions include:

1. How well does the single-plate theoretical solution comport with measurement, for the

baseline case?

2. How does the above degrade as motion amplitude is no longer small, violating the

assumptions of the theory and evidently introducing appreciable circulatory effects

(vortex shedding from the plate edges)?

3. Does nonzero free-stream leave the theoretical solution unaffected, again for very small

and not so small amplitudes (in the latter there is presumably a bound circulation due

to effective angle of attack of a plunging plate in nonzero free stream)?

4. How does the loading for two plates adjacent to each other vary with the gap between

them?

5. Is the noncirculatory force indeed quadratic with the motion frequency?
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Figure 1: Two wall-to-wall carbon fiber flat plates mounted horizontally in the test section
(left) and schematic of the setup with definition of variables (right).

II. Experimental Setup

Experiments are conducted at the U.S Air Force Research Lab, Aerospace Systems Di-

rectorate Horizontal Free-Surface Water Tunnel. The tunnel is fitted with a three-degree of

freedom electric motion rig, controlled via a Galil DMC-4040 motion controller from pre-

programmed scripts achieving < 0.1mm linear- and < 0.2◦ angular position error. Two

vertical linear motors move the test article linearly normal to the test section free-stream

direction (that is, in plunge). A third linear motor, mounted horizontally above the test

section, produces streamwise displacement. The three in concert allow for a third degree of

freedom, rotation or pitch about an axis parallel to the test articles span, with pivot point

arbitrarily selectable.

Two carbon-fiber flat plates with 75mm chord, 3mm thickness and 0.45m span are po-

sitioned coplanar, with a coupler piece connecting to the load cell shown in Figure 1. The

gap between the plate tips and the test section sidewalls is ≈ 1mm. Chordwise spacing d

between the plates is taken as 0.1c, 0.2c, 0.5c and 1c, by mounting the respective coupler

piece. A case of single plate of chord 2c serves as baseline. The sinusoidal amplitude of

the oscillation of the plates is varied 0.01 < h0 < 0.05. The higher range of amplitude is

expected to produce appreciable vortex shedding, and one of our aims is to ascertain how

this shedding mediates the theoretical potential-flow apparent-mass solution. In addition to

twin-plate cases in quiescent fluid, a single 75mm chord plate is also tested at 45◦ angle of

attack in freestream and oscillated normal to the plate in order to investigate the linearity

and superpositionability of the apparent mass in bluff-body shedding.

According to Brennen,14 proximity of a free surface to an accelerating body, lesser than

4 times the body dimension will cause an increase in apparent mass with acceleration of the
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fluid. A distance between a free surface and a body of less than the body dimension will

cause a decrease in apparent mass. Since the plates are oscillated at the centerline of the

test section with exactly 4 chords to either the test section bottom wall and the free surface,

it is expected that any boundary effects are minimized.

Figure 2: Typical motion kinematics, measured at the linear motor encoder-tape: 1Hz 0.05c
amplitude motion (left), and the complementary case, 9Hz 0.01c amplitude motion (right);
position (top row) and acceleration (bottom row). A- and B- are front and rear vertical
motor plunge rods visible in top of Figure 1.

We first characterize the imposed kinematics, since the theoretical model assumes a per-

fect sinusoid. Figure 1 show the linear vertical electric motor positions (A is front and B

is rear in the top of Figure 1) and acceleration as the twice differentiated position signal

with an 11 point moving average filter before each differentiation. Position and acceleration

are normalized to 1. Both sets of curves curves show that position and acceleration are

followed accurately and to the same magnitude as the prescribed motion. The low frequency

motion has slight jitter at the acceleration peaks which is attenuated below observable as

the frequency is increased. Overall though, there is no evidence of deviation from prescribed

motion that can cause unexpected results from acceleration of the flat plates in fluid.

Force measurements were with an ATI Nano25 IP68 6-component balance, sampled at

1kHz and low- pass filtered at 34Hz in hardware, and then at 50x of the motion frequency

using a 4th order Chebychev II low-pass filter in Matlab. The data is synchronized exter-
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Figure 3: Results of mechanical strike-test of the plate coupler piece, recorded at the load cell,
with the linear motors energized but not moving; temporal-history (left) and FFT (right).

nally via a trigger pulse from the DMC-4040 motion controller at motion. All motions are

repeated for fifty cycles, with the first three not included in averaging.

Results from a mechanical strike-test by tapping the plate with a metal rod and recording

the frequency is shown in Figure 3. The decaying ringing force signal is from the lowest eigen-

frequency on the plate setup in water. The frequency content reveals that the eigenfrequency

is 15.5Hz, which is well above the highest forced oscillation frequency of 9Hz. However, below

the eigenfrequency, the amplitude is still slightly frequency dependent. With the knowledge

that the response is proportional to frequency squared in this region,13 the polynomial

1 + 0.01f 2 (3)

fits the amplitude-frequency response in Figure 3 and is used to correct the force amplitude

data.

In Figure 4 the linearity in dynamic response of the loadcell is tested by oscillating a

0.468kg steel disc attached to the loadcell in air to simulate the apparent mass of a plate in

water. Force signal amplitude is normalized by the mass times acceleration as to produce a

linear relationship with frequency squared.

An additional effect we have to consider is the entire span of the plate does not exhibit

uniform motion, but instead has slight aeroelastic flutter. High-speed photogrammetry at

500fps with a PCO DiMax camera of the plate tip at a forced oscillation motion of 0.02c

amplitude, 9Hz motion in Figure 5 reveal a < 110% tip deflection, where 100% is the forced
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Figure 4: Sinusoidal oscillation of a 0.468kg mass in air at two different amplitudes. Force
signal amplitude is normalized by the expected force amplitude.

Figure 5: High-speed photogrammetry at 500Hz of the plate tip during a 0.02c amplitude,
9Hz forced oscillation motion. Top- (left) and bottom of the motion (right).

amplitude. To investigate this small aerolastic phenomena on the error in measurement of

apparent mass, we treat the plate as a cantilevered beam, clamped at the centerline, with a

uniformly distributed load in Figure 6.

Figure 6: Schematic drawing of a cantilevered plate, clamped at mid-span, oscillated verti-
cally at h0c amplitude with the tip deflecting an extra δh0c.
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The deflection δh0c at a spanwise location x is given by

δh0c =
w

24EI

(
x4 − 4(b/2)3x+ 3(b/2)4

)
(4)

and the maximum defection at the tip (x = (b/2)) from photogrammetry.

δh0c|max =
w(b/2)4

8EI
= 0.1h0c (5)

Since apparent mass is proportional to plate amplitude, we use the average aerolastic deflec-

tion of the plate as the additional apparent mass.

δh0,avg =
1

b/2

w

24EI

∫ b/2)

0

x4 − 4(b/2)3x+ 3(b/2)4dx =
1

3

w(b/2)4

8EI

4

5
=

4

15
0.1h0c = 0.0266h0c

(6)

III. Results

The theoretical force amplitude on a plate with span b and chord c, oscillated sinusoidally

at an amplitude h with frequency f is

Fa = −ρπbc
2

4

∂u

∂t
= ρπbc2h0cπ

2f 2sin(2πft) = ρπ3bc3h0f
2sin(2πft) (7)

The amplitude of the force signal is normalized by the apparent mass of two single plates

such as the force signal is proportional to the oscillation frequency squared f 2.

F̂ = F̂m/π
3bc3h0 (8)

Figure 7 shows the registered force amplitude of a sinusoidal signal from varying the

chord-wise spacing of two plates, the oscillation amplitude and frequency against twice the

theoretical value of added mass for one plate. One can observe that for plate spacing = 0.5c

(bottom right in Figure 7, the registered force amplitude is independent of spacing and os-

cillation amplitude and follows the linear theoretical prediction well. When decreasing the

plate spacing to d = 0.25c (mid right), the curves show a non-linear behavior with an in-

creasing force amplitude for higher frequencies. There is no dependency of normalized force

on oscillation amplitude until the plate spacing is decreased to d = 0.1c (top right). Here

the non-linear behavior with frequency is exacerbated further and the oscillation amplitude

of h0 = 0.05c deviates from the other curves. It is noted that the oscillation amplitude of

h0 = 0.05c displaces the edge of the plate the same as the d = 0.1c edge-to-edge gap.
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Figure 7: Normalized sinusoidal force amplitude as function of frequency2 with varying
oscillation amplitude (left column) and varying plate spacing (right column). Dashed black
curve is theoretical slope = 1 for two individual plates.
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When observing the effect of different plate gaps d for the same oscillation amplitude h0

in the left column of Figure 7, we can observe a monotonic increasing deviation in slope from

the theoretical slope of 1 when the plate gap is reduced. For larger amplitudes (h0 = 0.05c

and 0.025c in bottom and mid subfigure respectively), the normalized force amplitude slope

is closer to the theoretical and for the smaller amplitude of h0 = 0.01c (top left). However,

the slope deviates faster as the gap is reduced to d = 0.1c. At a d = 0.1c gap oscillated

at h0 = 0.05c amplitude, the force amplitude for the two plates is close to the slope of the

no-gap which is is twice that of the theoretical value for two individual plates.

Figure 8: Ensemble of force traces for 48 cycles of the same motion; 2Hz (left), 4Hz (mid)
and 8Hz (right), all at 0.02c amplitude.

Figure 9: Normalized sinusoidal force amplitude as function of frequency2, oscillated at three
different amplitudes and frequency 12.25 < f 2 < 30.25 Hz2.
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At ≈ 25Hz2 (≈ 5Hz), the registered force signal is sinusoidal, but with a higher har-

monic component as evident in Figure 8. For all tested cases, this harmonic is not a fixed

frequency, but scales with the motion frequency indicating a fluid-driven, rather than a struc-

tural harmonic. Figure 9 show the amplitude non-linearity for the region where force signal

harmonics are present. We observe that larger plate gap together with larger amplitude

reduces the effect of the harmonic signal. For higher frequencies > 36Hz2 (> 6Hz) and

smaller plate spacing than 0.5c, the equivalent added mass is noticeably non-constant while

the force signal returns to sinusoidal without harmonics.

A theoretical solution to two cylinders dilating and/or translating has been provided by

Wang.12 The apparent mass, per cylinder of diameter c, for two cylinders at a distance d

apart, oscillating in parallel, behaves according to Equation 9 and Figure 10 for large d.

One can observe that in the limit of d→∞, the apparent mass approaches that of a single

cylinder 1 and at the d → 0 limit it is π2

3
− 1 = 2.29 which is also according to Brennen,14

unlike 2 as expected for a twice the diameter plate/cylinder. The difference between the

analytical and experimental curves are the slope at which apparent mass for two individual

objects become gap independent.

Fp = −ρπc
2

4

∂u

∂t
4
(
d2 − 1

) ∞∑
n=1

n
1 + e−2nα

1− e−2nα
e−2nα (9)

where

α = asinh
√
d2 − 1 (10)

Figure 10: Apparent mass per cylinder when two cylinders are oscillating in parallel with a
distance d apart, normalized with the value of a single isolated cylinder.
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The Keulegan-Carpenter16 number which describes the importance of viscous effects is

given by

Kc =
UT

c
=
h0c2πf1/f

c
= 2πh0 (11)

If KC << 1, as it is for all cases tested in this paper, it is suggested that viscous effects

are not important. However, this conclusion is from a cylinder where the shedding corner

is optimally smooth. A flat plate has a much sharper corner for vortices to shed from and

a revision to the Keulegan-Carpenter prediction for different cross-section shapes may be

warranted.

A. Single plate in freestream

Figure 11: Normal force amplitude for a single plate at 45◦ angle of attack in Re = 10k
freestream, oscillated at three different amplitudes and frequency 4 < f 2 < 81 Hz2.

A single plate oriented at 45◦ angle of attack in a Re = 10k freestream is oscillated in

normal direction. Because of limitations of physical acceleration for the horizontal linear

motor, as the oscillation amplitude is increased, the maximum frequency is reduced.

The measured force has the mean drag subtracted and exhibits the same non-linear

response in apparent mass, shown in Figure 11 as the twin plates in Figure 7. The curves

for all three amplitudes break off from the theoretical linear region at f 2 ≈ 20 and then

asymptotically approach the slope of 1.5 times the apparent mass. The main difference

between the single plate in freestram and the twin plates is that the single plate exhibits

bluff-body shedding in the wake. Fage and Johanssen15 investigated the shedding frequency

of the wake for flat plates at angles of attack in freestream. With Equation 12, the shedding

frequency is 0.372Hz, or 0.138Hz2, which is more than an order of magnitude lower than
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where the experimentally obtained force curves start deviating from the theoretical slope.

Thus, it is not believed that the non-linearity of the apparent mass is directly related to

the bluff-body wake, even though the off-body vortex dynamics may still play a role in fluid

acceleration.

StFJ =
fcsin(α)

U∞
= 0.148 (12)
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