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Abstract

The Recovery-based Discontinuous Galerkin (RDG) discretization has been shown to be the
most accurate among contemporary DG schemes for diffusion on a Cartesian grid. It achieves the
order of accuracy 3𝑝+2 for even 𝑝 and 3𝑝+1 for odd 𝑝, where 𝑝 is the order of the polynomial basis.
However, the overall performance of a Navier–Stokes simulation, using RDG for viscous terms, is
limited to 2𝑝+ 1 due to the DG discretization for advection. We describe two different approaches
to improve the accuracy of the DG discretization for advection. The first option is able to reach a
maximal order of 4𝑝+ 3, albeit utilizing an enlarged computational stencil. The second one attains
3𝑝 + 1 without enlarging the stencil. It is also computationally cheaper owing to the lower-order
reconstruction.

I. Introduction

Discontinuous Galerkin (DG) methods combine advantages of finite volume (FV) and finite
element (FE) approaches into a single framework. The Galerkin formulation, borrowed from the
FE methodology, produces a high-order accurate and compact-stencil scheme with several advan-
tages over high-order FV and finite difference (FD) methods, such as their portability to complex
geometries, scalability in parallel architecture and relatively simple extension to high order. The
discontinuous nature of the basis functions in each cell introduces means for adding numerical dis-
sipation in the convective terms, such that, unlike traditional FE schemes, discontinuous solutions
can be captured in a stable fashion. The DG method was originally introduced for solving the
steady-state neutron transport equation on triangular meshes,1 and later analyzed.2–5 The intro-
duction of the Runge-Kutta DG (RKDG) method by Cockburn and Shu6–9 made this approach
appealing for time-dependent convection-dominated problems. The RKDG method was shown to
be well-suited to handle shocks through the use of slope limiters in one and two dimensions, on
rectangular and triangular meshes. Similar to FV schemes, DG methods use Riemann solvers
to determine the inter-cell flux and thus introduce the appropriate amount of dissipation at the
discontinuities.

However, the main difficulty preventing a simple extension to solving diffusive terms (i.e.,
second-order derivatives or differences), such as in the Navier-Stokes equations, is the fact that
derivatives are undefined at cell interfaces due to the discontinuity in the basis functions between
neighboring cells. Two main approaches have been followed in the past: one in which gradient
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Figure 1: Recovery in one dimension for a piecewise-linear discretization (𝑝 = 1) on two adjacent intervals (−1, 0) and
(0, 1). Shown are, from left to right, the original sin initial value 𝑈(𝑥) (dashed), its piecewise-linear projection 𝑢(𝑥) (thin and
solid), together with 𝑈(𝑥), and the cubic recovered function 𝑓(𝑥) (thick and solid) together with 𝑢(𝑥) and 𝑈(𝑥). All three
distributions yield the same value when taking their inner product with either test function on either interval, making them
indistinguishable in the weak sense.

information is provided and which is stabilized by interior penalty terms or artificial diffusion with
adjustable parameters; and another more recent based on the idea of recovery of the underlying
function over neighboring cells. With the former, interior penalty methods have been used for
elliptic and parabolic problems.10–12 Another class of methods treat the second-order partial dif-
ferential equations as a system of first-order equations.13–16 Such methods have been used to solve
for diffusive terms, but there is no consistent methodology and adjustable parameters are required.

In recovery,17–21 the discontinuity at the interface is removed in the weak sense by a local
polynomial required to satisfy moments with the original solution in the elements that span the
interface. A typical one-dimensional example is shown in Figure (1). The smooth recovered function
is used to compute the necessary function values and derivatives at the interface. The resulting
recovery-based discontinuous Galerkin method (RDG) is proved to be stable.17 Utilizing a 𝑝-order
elemental tensor-product polynomial basis, RDG has been demonstrated to achieve the order 3𝑝+2
or 3𝑝 + 1 for 𝑝 even or odd, respectively,17 on a Cartesian grid. Huynh22 shows that RDG is the
most accurate, as well as have the most favorable stability restriction, in a comparison study of all
contemporary DG schemes for diffusion. The result is robust: it holds in any number of dimensions,
for linear as well as nonlinear equations, with or without mixed derivatives. Lo18,23 was the first to
show the optimal accuracy for a 2-D diffusion-shear operator and for the 2-D Navier-Stokes terms;
Johnsen et al.24–26 showed it for 3-D turbulence calculations.

We are interested in utilizing RDG in DNS simulations, e.g., compressible isotropic turbulence
and Taylor–Green vortex that were presented in 24. Owing to the simplicity in computational
domains, a Cartesian grid is sufficient, plus it brings out the best in RDG. However, the current
overall accuracy of the simulations is seriously impaired by the DG discretization for the advection
terms due to its lower order of accuracy (2𝑝 + 1 comparing to 3𝑝 + 2/3𝑝 + 1 of RDG). To benefit
fully from RDG, improvement to the advection discretization has to be made.

This paper is organized as follows. In Section II, we present our concepts of improving advection
discretization. Methodology of Von Neumann analysis and obtained results are shown in Section III.
Our conclusions are presented in Section IV, together with further developments.
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Figure 2: Stencils of flux computation at an arbitrary interface.

II. Concepts of Improving DG Discretization for Advection

We start out by enhancing performance of DG discretization for the one-dimensional linear
scalar advection equation

𝜕𝑡𝑢 + 𝜕𝑥𝐹 (𝑢) = 0, (1)

where 𝐹 (𝑢) = 𝑎𝑢 and advection speed 𝑎 is assumed to be positive without loss of generality. The
flux at an arbitrary interface 𝑗+1/2 is calculated by upwinding from the left and right values of 𝑢
at that interface, 𝑢𝐿 and 𝑢𝑅 respectively. In the basic DG scheme for advection, they are calculated
from the numerical representations 𝑢𝑗(𝑥) and 𝑢𝑗+1(𝑥) as shown schematically in Figure (2a). The
resulted scheme achieves the order of accuracy 2𝑝 + 1. The overall computational stencil to evolve
solution in cell 𝑗 contains three cells: 𝑗 − 1, 𝑗 and 𝑗 + 1.

To make improvement upon the accuracy within the upwinding framework, we have to raise
the polynomial order of the numerical representations from which 𝑢𝐿 and 𝑢𝑅 are calculated. The
higher-order representations �̂�𝑗+1/2,𝐿(𝑥) and �̂�𝑗+1/2,𝑅(𝑥) will be reconstructed from available data
in the vicinity of the interested interface. This is the standard technique employed in high-resolution
FV methods, such as MUSCL.27 This technique has been used successfully in DG+MUSCL26 to
gain one extra order of accuracy quickly and cheaply. Below, we will present two different systematic
approaches to attain our goal of having comparable accuracy with that of RDG: cell-centered and
interface-centered reconstructions.

II.A. Cell-centered reconstruction

In this approach, the higher-order polynomial representation �̂�𝑗+1/2,𝐿(𝑥) is reconstructed using
data from three cells 𝑗− 1, 𝑗 and 𝑗 + 1. Similarly, the reconstruction of �̂�𝑗+1/2,𝑅(𝑥) uses data from
three cells 𝑗, 𝑗 + 1 and 𝑗 + 2. Then the required interface values 𝑢𝐿 and 𝑢𝑅 are calculated from
those as illustrated in Figure (2b). Repeating the same procedure at interface 𝑗−1/2 will show
that indeed �̂�𝑗−1/2,𝑅(𝑥) is identical to �̂�𝑗+1/2,𝐿(𝑥). Thus, there is one enhanced representation �̂�𝑗
that is unique to cell 𝑗; the reconstruction is therefore called cell-centered.

The reconstructed �̂� is required to be indistinguishable from the original 𝑢𝑗−1, 𝑢𝑗 and 𝑢𝑗+1 in
the weak sense, that is,∫︁ 𝑥𝑗−1/2

𝑥𝑗−3/2

(𝑣𝑘)𝑗−1 �̂�𝑗 𝑑𝑥 =

∫︁ 𝑥𝑗−1/2

𝑥𝑗−3/2

(𝑣𝑘)𝑗−1 𝑢𝑗−1 𝑑𝑥, 𝑘 = 0, ...,𝐾𝑗−1, (2)∫︁ 𝑥𝑗+1/2

𝑥𝑗−1/2

(𝑣𝑘)𝑗 �̂�𝑗 𝑑𝑥 =

∫︁ 𝑥𝑗+1/2

𝑥𝑗−1/2

(𝑣𝑘)𝑗 𝑢𝑗 𝑑𝑥, 𝑘 = 0, ..., 𝑝, (3)∫︁ 𝑥𝑗+3/2

𝑥𝑗+1/2

(𝑣𝑘)𝑗+1 �̂�𝑗 𝑑𝑥 =

∫︁ 𝑥𝑗+3/2

𝑥𝑗+1/2

(𝑣𝑘)𝑗+1 𝑢𝑗+1 𝑑𝑥, 𝑘 = 0, ...,𝐾𝑗+1. (4)
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To satisfy these equations, �̂� must contain 𝐾𝑗−1 + 𝑝 + 𝐾𝑗+1 + 3 degrees of freedom to form a
polynomial of degree 𝑝 = 𝐾𝑗−1 + 𝑝 + 𝐾𝑗+1 + 2, defined on the domain

[︀
𝑥𝑗−3/2, 𝑥𝑗+3/2

]︀
. Basis

functions (𝑣𝑘)𝑗−1, (𝑣𝑘)𝑗 and (𝑣𝑘)𝑗+1 define specific moments of the original solutions (𝑢𝑗−1, 𝑢𝑗 ,
𝑢𝑗+1) that �̂� has to preserve on their corresponding cells.

In theory, values of 𝐾𝑗−1 and 𝐾𝑗+1 can be different that leads to a bias reconstruction. In the
context of linear scalar advection, one can argue for using upwind-bias reconstruction by utilizing
more data from the left cell than from the right one (𝐾𝑗−1 > 𝐾𝑗+1). For a system of advection
equations, however, the wave structure at the interface is more complex with both left- and right-
traveling waves. It is thus better not to favor any direction at this reconstruction step; from now
on we take 𝐾𝑗−1 = 𝐾𝑗+1 = 𝐾. The reader may find this particular scheme familiar; it is indeed
the 𝑃𝑁𝑃𝑀 method invented by Dumbser.28–30

Based on the number of moments from cells 𝑗 − 1 and 𝑗 + 1 to be preserved in �̂�𝑗 , we have
considered two options for the reconstruction.

1. Full reconstruction. All 𝑝 + 1 moments from each neighbor is preserved, i.e. 𝐾 = 𝑝, making
�̂�𝑗 a polynomial of degree 3𝑝 + 2. We anticipate that the order-of-accuracy will increase to
4𝑝 + 3, comparing to 2𝑝 + 1 of the basic scheme; the difference is precisely the amount of
additional information taken from the neighbors. In the terminology of the 𝑃𝑁𝑃𝑀 method,
this option corresponds to the 𝑃𝑝𝑃3𝑝+2 scheme. This option is called ccf# which denotes
cell-centered full reconstruction at 𝑝 = #. Interchangeably, the term ccf might be used to
indicate this scheme in a generic case.

2. Partial reconstruction. The previous option is an overkill as the accuracy of RDG for diffusion
is only 3𝑝 + 2/3𝑝 + 1 for even/odd value of 𝑝. We expect to match the accuracy of RDG
more closely by using only a subset of available neighbor information. Specifically, we choose
to preserve 𝑝+2

2 or 𝑝+1
2 moments (for 𝑝 even or odd, respectively) from each neighbor cell to

achieve the accuracy of 3𝑝 + 3/3𝑝 + 2, making �̂�𝑗 a polynomial of degree 2𝑝 + 2/2𝑝 + 1. In
the 𝑃𝑁𝑃𝑀 terminology, this option corresponds to 𝑁 = 𝑝 and 𝑀 = 2𝑝 + 2/2𝑝 + 1. However,
this is not strictly a 𝑃𝑁𝑃𝑀 as formulated by Dumbser et al.,28–30 in which �̂�𝑗 is required to
always preserve all available moments of 𝑢𝑗−1, 𝑢𝑗 , and 𝑢𝑗+1 on their respective domains. This

generates 3𝑝+ 3 conditions while, by construction, �̂�𝑝
′

𝑗 has only 2𝑝+ 3 degrees-of-freedom for
even 𝑝 and 2𝑝 + 2 for odd 𝑝, leading to a overdetermined system that has to be solved by
least-square. Our approach is therefore simpler and sufficiently accurate still. By the same
token, this option is denoted ccp# to indicate cell-centered partial reconstruction at 𝑝 = #,
or ccp for the generic case.

One apparent disadvantage of the cell-centered reconstruction is the enlarged five-cell overall
stencil, even though the stencil stays unchanged regardless of 𝑝 value. It is highly preferable to
retain the original compact 3-cell stencil while improving the discretization. We will present our
ideas for this matter in the next subsection.

II.B. Interface-centered reconstruction

To keep the overall stencil unchanged from three cells, the calculation for flux at interface 𝑗+1/2
should involve only data from its direct neighbors as shown in Figure (2a). The reconstruction of
�̂�𝑗+1/2,𝐿(𝑥) and �̂�𝑗+1/2,𝑅(𝑥) therefore uses information only from cells 𝑗 and 𝑗 + 1. Similarly, that
of �̂�𝑗−1/2,𝐿(𝑥) and �̂�𝑗−1/2,𝑅(𝑥) contains information only form cells 𝑗 − 1 and 𝑗. Now defined on
the domain of cell 𝑗, there are two different enhanced representations, �̂�𝑗−1/2,𝑅 and �̂�𝑗+1/2,𝐿, that
strictly associates with interfaces 𝑗−1/2 and 𝑗+1/2, respectively. In other words, they are centered
at their corresponding interfaces, thus the name interface-centered reconstruction is used.
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(b) Binary Reconstruction (icb1[0])

Figure 3: Illustration of the down-projection and binary reconstructions for 𝑝 = 1. The recovered function 𝑓 (solid thick
black line) and the piecewise-linear representations 𝑢 (solid thin black line) are carried over from Figure (1). Note that �̂�(𝑥)
(solid thin magenta line) from both down-projection and binary reconstructions are discontinuous across 𝑥 = 0 interface as
expected.

Our first idea is to reuse the recovered function 𝑓(𝑥) that is already calculated for the diffu-
sion discretization. As shown in Figure (1), 𝑓 is centered at the interface of interested and its
reconstruction involves only two direct neighbor cells. However, to directly use 𝑓𝑗+2/2 for flux
calculation at interface 𝑗+1/2 is essentially similar to central discretization, which has undesired
stability property for advection problem.31 To create �̂�𝑗+1/2,𝐿 and �̂�𝑗+1/2,𝑅 that are discontinuous
at 𝑥𝑗+1/2, 𝑓 is down projected to two lower-order polynomials defined on cells 𝑗 and 𝑗 + 1. Recall
that 𝑓 is a polynomial of degree 2𝑝+1; it can be down projected to polynomials of degrees 𝑝, where
𝑝 + 1 ≤ 𝑝 ≤ 2𝑝. ∫︁ 𝑥𝑗+1/2

𝑥𝑗−1/2

(𝑣𝑘)𝑗 �̂�𝑗+1/2,𝐿𝑑𝑥 =

∫︁ 𝑥𝑗+1/2

𝑥𝑗−1/2

(𝑣𝑘)𝑗 𝑓𝑗+1/2𝑑𝑥, 𝑘 = 0, ..., 𝑝, (5)∫︁ 𝑥𝑗+3/2

𝑥𝑗+1/2

(𝑣𝑘)𝑗+1 �̂�𝑗+1/2,𝑅 𝑑𝑥 =

∫︁ 𝑥𝑗+3/2

𝑥𝑗+1/2

(𝑣𝑘)𝑗+1 𝑓𝑗+1/2 𝑑𝑥, 𝑘 = 0, ..., 𝑝. (6)

The recovered function 𝑓 is not down projected to polynomials of degree 𝑝 because it results in 𝑢𝑗
and 𝑢𝑗+1, which form the basic scheme.

Resulted schemes will be called icd#1[−#2] standing for interface-centered down projection at
𝑝 = #1; its generic name is icd. The number between the square brackets, #2, denotes the reduc-
tion amount in polynomial degree of 𝑢𝑗+1/2,𝐿/𝑅 comparing to 𝑓 . For example, scheme icd1[−1]

has 𝑓 down projected to polynomials of one-degree less, i.e., 𝑢𝑗+1/2,𝐿/𝑅 are 2𝑝th-order polynomials.
Figure (3a) illustrates two enhanced representations, �̂�0,𝐿 and �̂�0,𝑅, associated with interface 𝑥 = 0
of scheme icd1[−1], for 𝑝 = 1 discretization; the recovered function 𝑓 and the piecewise-linear
representations are carried over from example in Figure (1).

We expect that the central scheme resulted from direct usage of 𝑓 achieve the order

(2𝑝 + 1) + (𝑝 + 1) = 3𝑝 + 2.

The order of accuracy of an arbitrary icd#1[−#2] scheme will then be 3𝑝+ 2−#2, and the only
viable scheme is icd#1[−1]. It matches RDG scheme for odd 𝑝 but achieves one-order lower when
𝑝 is even.

5 of 14

American Institute of Aeronautics and Astronautics Paper AIAA-2014-3221

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
13

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
4-

32
21

 



The second idea of compact reconstruction is inspired by the recovery procedure in RDG, with
a small modification. The reconstruction for �̂�𝑗+1/2,𝐿 will now bias towards the left neighbor, cell
𝑗, indicating it might preserve more moments of 𝑢𝑗 than those of 𝑢𝑗+1,∫︁ 𝑥𝑗+1/2

𝑥𝑗−1/2

(𝑣𝑘)𝑗 �̂�𝑗+1/2,𝐿𝑑𝑥 =

∫︁ 𝑥𝑗+1/2

𝑥𝑗−1/2

(𝑣𝑘)𝑗 𝑢𝑗𝑑𝑥, 𝑘 = 0, ..., 𝑝, (7)∫︁ 𝑥𝑗+3/2

𝑥𝑗+1/2

(𝑣𝑘)𝑗+1 �̂�𝑗+1/2,𝐿 𝑑𝑥 =

∫︁ 𝑥𝑗+3/2

𝑥𝑗+1/2

(𝑣𝑘)𝑗+1 𝑢𝑗+1 𝑑𝑥, 𝑘 ∈ 𝒦, (8)

where 𝒦 is only a subset of {0, ..., 𝑝}, which are indexes of all moments of the original numerical
representations. Similarly, the reconstruction for �̂�𝑗+1/2,𝑅 biases towards 𝑢𝑗+1 of the right neighbor,∫︁ 𝑥𝑗+1/2

𝑥𝑗−1/2

(𝑣𝑘)𝑗 �̂�𝑗+1/2,𝑅𝑑𝑥 =

∫︁ 𝑥𝑗+1/2

𝑥𝑗−1/2

(𝑣𝑘)𝑗 𝑢𝑗𝑑𝑥, 𝑘 ∈ 𝒦, (9)∫︁ 𝑥𝑗+3/2

𝑥𝑗+1/2

(𝑣𝑘)𝑗+1 �̂�𝑗+1/2,𝑅 𝑑𝑥 =

∫︁ 𝑥𝑗+3/2

𝑥𝑗+1/2

(𝑣𝑘)𝑗+1 𝑢𝑗+1 𝑑𝑥, 𝑘 = 0, ..., 𝑝, (10)

The same subset 𝒦 will be used in both Eqs. (8) and (9). There are at most 𝑝 elements in 𝒦
and they are not required to be sequential. For example, 𝒦 = {0, 2} indicates that �̂�𝑗+1/2,𝐿 and

�̂�𝑗+1/2,𝑅 will only preserve the 0𝑡ℎ-order and 2𝑛𝑑-order moments of 𝑢𝑗+1 and 𝑢𝑗 respectively. All
schemes of this family will be called icb#1[#2] denoting interface-centered binary reconstruction
at 𝑝 = #1, and #2 are all elements of subset 𝒦; again, icb is used for a generic case. The enhanced
representations from scheme icb1[0] (𝑝 = 1) is displayed in Figure (3b).

In terms of order of accuracy, we expect that the binary-reconstruction schemes will achieve a
maximal order of 3𝑝 + 1 corresponding to 𝒦 has 𝑝 members. There are 𝑝 + 1 possibilities to form
distinct and orderless subsets of this type from the set {0, 1, ..., 𝑝}, leading to 𝑝 + 1 flavors of a
3𝑝 + 1-order binary-reconstruction scheme. When its number of members in 𝒦 is less than 𝑝, the
order of accuracy reduces accordingly.

All possible down-projection and binary-reconstruction schemes for 𝑝 ∈ [1, 3] are shown in Ta-
ble 1. In the next section, we use Von Neumann analysis to investigate proposed discretization
schemes for 𝑝 = 1 and 2.

III. Von Neumann Analysis

III.A. Methodology

We perform the Fourier analysis for the basic DG scheme (𝑝 = 1) for the scalar linear advection
equation (1). The DG update equations have the following general form:

𝑑𝑡

∫︁ 𝑥𝑗+1/2

𝑥𝑗−1/2

𝑣𝑗𝑢𝑗 𝑑𝑥 = −
∫︁ 𝑥𝑗+1/2

𝑥𝑗−1/2

𝑣𝑗 𝑎 𝜕𝑥𝑢𝑗 𝑑𝑥

⇒ 𝑑𝑡

∫︁ 𝑥𝑗+1/2

𝑥𝑗−1/2

𝑣𝑗𝑢𝑗 𝑑𝑥 = −𝑎
[︀
𝑣𝑗

(︀
𝑥𝑗+1/2

)︀
𝑢𝑗+1/2 − 𝑣𝑗

(︀
𝑥𝑗−1/2

)︀
𝑢𝑗−1/2

]︀
+ 𝑎

∫︁ 𝑥𝑗+1/2

𝑥𝑗−1/2

𝑢𝑗 𝜕𝑥𝑣𝑗 𝑑𝑥. (11)

Solution in an arbitrary cell 𝑗 is represented by a polynomial of degree one,

𝑢𝑗(𝑥) =
1∑︁

𝛼=0

𝑎
(𝛼)
𝑗 𝜑

(𝛼)
𝑗 (𝑥) = 𝑎

(0)
𝑗 𝜑

(0)
𝑗 + 𝑎

(1)
𝑗 𝜑

(1)
𝑗 = 𝑎

(0)
𝑗 + 𝑎

(1)
𝑗 (2𝜉 − 1), (12)

where the local spatial variable 𝜉 ∈ [0, 1] relates to the global coordinate by

𝜉 =
𝑥− 𝑥𝑗
∆𝑥𝑗

− 1

2
;
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Table 1: Down-projection and binary-reconstruction schemes.

𝑝 Down Projection Binary Reconstruction

𝑝 Scheme names 𝑝 𝒦 Scheme names

1 2 icd1[−1] 2 {0} icb1[0]

{1} icb1[1]

2 4 icd2[−1] 4 {0, 1} icb2[0, 1]

{0, 2} icb2[0, 2]

{1, 2} icb2[1, 2]

3 icd2[−2] 3 {0} icb2[0]

{1} icb2[1]

{2} icb2[2]

3 6 icd3[−1] 6 {0, 1, 2} icb3[0, 1, 2]

{0, 1, 3} icb3[0, 1, 3]

{0, 2, 3} icb3[0, 2, 3]

{1, 2, 3} icb3[1, 2, 3]

5 icd3[−2] 5 {0, 1} icb3[0, 1]

{0, 2} icb3[0, 2]

{0, 3} icb3[0, 3]

{1, 2} icb3[1, 2]

{1, 3} icb3[1, 3]

{2, 3} icb3[2, 3]

4 icd3[−3] 4 {0} icb3[0]

{1} icb3[1]

{2} icb3[2]

{3} icb3[3]

subscript 𝑗 in ∆𝑥𝑗 will be subsequently omitted because the analysis is performed on a uniform
grid.

The upwind values at the left and right interfaces are:

𝑢𝑗−1/2 = 𝑢𝑗−1

(︀
𝑥𝑗−1/2

)︀
= 𝑎

(0)
𝑗−1 + 𝑎

(1)
𝑗−1,

𝑢𝑗+1/2 = 𝑢𝑗
(︀
𝑥𝑗+1/2

)︀
= 𝑎

(0)
𝑗 + 𝑎

(1)
𝑗 .

Substituting those to Eqn. (11) together with 𝑣
(1)
𝑗 = 1 and 𝑣

(2)
𝑗 = 2𝜉 − 1, we obtain the following

∆𝑥

𝑎

𝜕

𝜕𝑡

[︃
𝑎
(0)
𝑗

𝑎
(1)
𝑗

]︃
=

[︃
−1 + 𝑇−1 −1 + 𝑇−1

3
(︀
1− 𝑇−1

)︀
−3

(︀
1 + 𝑇−1

)︀
]︃

⏟  ⏞  
𝑀(𝑇 )

[︃
𝑎
(0)
𝑗

𝑎
(1)
𝑗

]︃
; (13)

here 𝑇 represents forward translation by one cell, 𝑇𝑎
(𝛼)
𝑗 = 𝑎

(𝛼)
𝑗+1 and 𝑇−1𝑎

(𝛼)
𝑗 = 𝑎

(𝛼)
𝑗−1. We determine
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the Fourier transform of the matrix operator 𝑀(𝑇 ) by substituting 𝑇 for its Fourier transform 𝑒𝑖𝛽,

�̂� (𝛽) =

[︃
−1 + 𝑒−𝑖𝛽 −1 + 𝑒−𝑖𝛽

3
(︀
1− 𝑒−𝑖𝛽

)︀
−3

(︀
1 + 𝑒−𝑖𝛽

)︀
]︃

; (14)

the Taylor-series expansions of its two eigenvalues are

𝜆1 = −6 + 3 𝑖𝛽 + 𝑂
(︀
𝛽2

)︀
, (15)

𝜆2 = −𝑖𝛽 − 𝑖𝛽4

72
+ 𝑂

(︀
𝛽5

)︀
. (16)

Matrix �̂�(𝛽) is an approximation of the exact differential operator in Fourier mode, which is

𝜆exact = −𝑖 𝛽.

Eqn. (16) shows that it is represented by 𝜆2 with an accuracy of third order. This eigenvalue is
thus called “good” or “consistent” eigenvalue (see19), denoted by 𝜆con.

In analyzing the improved schemes presented in Section II, the form of the update equations is
still Eqn. (11). The interface upwind values are instead calculated as

𝑢𝑗−1/2 = �̂�𝑗−1/2,𝐿

(︀
𝑥𝑗−1/2

)︀
,

𝑢𝑗+1/2 = �̂�𝑗+1/2,𝐿

(︀
𝑥𝑗+1/2

)︀
;

the integral term stays unchanged. Results we obtain will be presented in the next section.

III.B. Results and discussion

Information contained in the “consistent” eigenvalues of �̂�(𝛽) for 𝑝 = 1 and 𝑝 = 2 are listed in
Tables 2 and 3, respectively. They confirm values of the order of accuracy that were predicted
earlier in Section II. At least the context of a scalar linear advection equation,

∙ ccf is (4𝑝 + 3)𝑡ℎ order;

∙ ccp achieve the order 3𝑝 + 3 or 3𝑝 + 2 for 𝑝 even or odd, respectively (note: this scheme is
scalable);

∙ both icd and icb families of schemes have the highest order of 3𝑝 + 1.

The loci of all 𝑝 + 1 eigenvalues of each scheme are shown in Figs. 4 and 5.
At 𝑝 = 1, all schemes would have no stability issue except for the down-projection enhancement.

Its eigenvalues lie entirely on the positive-real half plane; to the best of our knowledge, there is no
implicit or explicit time-integration scheme that can stabilize that scheme.

The cell-centered full-reconstruction and partial-reconstruction schemes also have their eigen-
values stayed strictly on the negative-real half plane at 𝑝 = 2, as shown in Figure (5).

At first glance, Figure (5) indicates that schemes icd2[−1] of the icd family might be useful.
Scheme icd2[−2], besides having suboptimal order of accuracy, its eigenvalues show that it is
also unstable. Figure (6), however, shows that eigenvalues of icd2[−1] does not lie strictly on the
negative-real half plane either. Their incursion into the positive side is small enough to be covered by
an explicit SSP Runge–Kutta 3-stage (RK3) or 4-stage (RK4) time-integration schemes. For a very
small value of CFL number, however, neither of them is able to stabilize icd2[−1] completely. In
the vicinity of the origin, eigenvalues of RK3 and RK4 stay tangent to the imaginary axis, therefore
the “spikes” in the locus of icd2[−1] will eventually lie outside. A positive value for the lower
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Table 2: Results from Von Neumann analysis for 𝑝=1

Scheme ooaa Taylor-series expansion of 𝜆con

basicb 3 −𝑖𝛽 − 𝛽4

72
+ 𝑂

(︀
𝛽5

)︀

ccf1 7 −𝑖𝛽 − 𝛽8

19 600
+ 𝑂

(︀
𝛽9

)︀
ccp1 5 −𝑖𝛽 − 11𝛽6

7 200
+ 𝑂

(︀
𝛽7

)︀

icd1[−1] 4 −𝑖𝛽 +
𝑖𝛽5

180
+

𝛽6

108
+ 𝑂

(︀
𝛽7

)︀

icb1[0] 4 −𝑖𝛽 +
𝑖𝛽5

180
− 𝛽6

288
+ 𝑂

(︀
𝛽7

)︀
icb1[1] 4 −𝑖𝛽 +

𝑖𝛽5

180
− 𝛽6

432
+ 𝑂

(︀
𝛽7

)︀
a Order of accuracy
b Basic DG discretization for advection

limit of CFL number show that the scheme will eventually become unstable if the advection part
is updated explicitly in an advection–diffusion simulation. Due to this limited stability and the
significant variation in behavior of member schemes, icd does not seem to be a viable option.

For 𝑝 = 2 case, all three icb2[0]/icb2[1]/icb2[2] schemes are stable but their accuracy
is suboptimal. The most accurate members of this family (icb2[0, 1]/icb2[0, 2]/icb2[1, 2]),
however, do have the aforementioned positive lower-limit for CFL number. Figure (6) shows that
they have similar positive-side incursions to that of icd2[−1], albeit several times smaller. Owing
to this improvement and the consistent variations between lower-order and higher-order members
regarding stability property, the icb family is worth further exploration.

IV. Conclusions and future developments

We have presented two different approaches to improving accuracy of the DG method for ad-
vection using upwind flux. Our goal is to match the accuracy level of the RDG method, which will
be used to discretize the viscous terms of the Navier–Stokes equations.

In the first approach named cell-centered reconstruction, a unique enhanced representation is
reconstructed for each computational cell. The computation uses data from its two left and right
neighbor cells. Therefore, the stencil for flux calculation is enlarged from 2 cells of the basic DG
discretization to 4 cells, leading to a unfavorable five-cell overall stencil. The order of accuracy for
full reconstruction option (ccf) is as high as 4𝑝 + 3, and that of the less-accurate version partial
reconstruction (ccp) is 3𝑝+ 3 or 3𝑝+ 2 for 𝑝 even or odd. The former version is the familiar 𝑃𝑁𝑃𝑀

method, but the latter is slightly different. Von Neumann analysis indicate that both options have
good stability property.

Our desire for a compact overall stencil leads to the invention of interface-centered reconstruction
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Table 3: Results from Von Neumann analysis for 𝑝=2

Scheme ooaa Taylor-series expansion of 𝜆con

basicb 5 −𝑖𝛽 − 𝛽6

7 200
+ 𝑂

(︀
𝛽7

)︀

ccf2 11 −𝑖𝛽 − 𝛽12

426 888 000
+ 𝑂

(︀
𝛽13

)︀
ccp2 9 −𝑖𝛽 − 103𝛽10

457 228 800
+ 𝑂

(︀
𝛽11

)︀

icd2[−1] 7 −𝑖𝛽 +
𝛽8

793 800
+ 𝑂

(︀
𝛽9

)︀
icd2[−2] 6 −𝑖𝛽 − 𝑖𝛽7

34 650
+ 𝑂

(︀
𝛽8

)︀

icb2[0, 1] 7 −𝑖𝛽 +
𝛽8

120 960
+ 𝑂

(︀
𝛽9

)︀
icb2[0, 2] 7 −𝑖𝛽 +

13𝛽8

1 058 400
+ 𝑂

(︀
𝛽9

)︀
icb2[1, 2] 7 −𝑖𝛽 +

𝛽8

66 150
+ 𝑂

(︀
𝛽9

)︀
icb2[0] 6 −𝑖𝛽 +

17 𝑖𝛽7

403 200
+ 𝑂

(︀
𝛽8

)︀
icb2[1] 6 −𝑖𝛽 +

29 𝑖𝛽7

604 800
+ 𝑂

(︀
𝛽8

)︀
icb2[2] 6 −𝑖𝛽 +

𝑖𝛽7

16 800
+ 𝑂

(︀
𝛽8

)︀
a Order of accuracy
b Basic DG discretization for advection

approach. Now there are multiple higher-order surrogates for the original numerical representation
in a cell, as many as number of interfaces. These enhance representations are generally not the same.
Each of the surrogates centers at the associated interface and it is reconstructed using information
only from the two cells abutting that interface. The flux-calculation stencil remains two cells and
the overall stencil contains 3 cells. This approach leads to two distinct families of schemes: the
down-projection reconstruction denoted by icd, and the binary reconstruction denoted by icb.
The most accurate members in both families achieve the order 3𝑝+ 1. They both have unfavorable
stability property; the situation of the icd family is more severe and we deem it is not worthwhile
to explore it further.

For future developments, we will explore options to stabilize the most accurate icb schemes by,
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Figure 4: Eigenvalues for 𝑝 = 1.

e.g., artificial dissipation, while still maintain the order 3𝑝 + 1. Another direction is to investigate
issues of accuracy and stability when simulating nonlinear equations such as the Euler system.
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Figure 5: Eigenvalues for 𝑝 = 2. Note that all starred (⋆) schemes have sub-optimal order of accuracy, see Table 3.

12 of 14

American Institute of Aeronautics and Astronautics Paper AIAA-2014-3221

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
13

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
4-

32
21

 



-0.001 0.000 0.001 0.002 0.003 0.004 0.005

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ReHΛL

Im
HΛ

L

basic

icd2@-1D

icb2@0,1D

icb2@0,2D

icb2@1,2D

Figure 6: Eigenvalues of few schemes in the vicinity of the imaginary axis, at 𝑝 = 2.
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