
A Constrained Markov Decision Process Framework for
Flight Safety Assessment and Management

Sweewarman Balachandran∗ and Ella M. Atkins†

University of Michigan, Ann Arbor, MI 48109

Loss of Control is the most common contributing factor to aviation accidents. Flight Safety Assessment and
Management (FSAM) is a high level automation aid to further reduce risk due to loss of control. Nominally,
FSAM serves as a loss-of-control watchdog. When off-nominal conditions conducive to loss of control are en-
countered, FSAM issues appropriate warnings and resilient control overrides to ensure safe operation of the
aircraft. This paper describes a framework for modeling FSAM as a Constrained Markov Decision Process
where constraints represent flight envelope boundaries and decisions represent control mode overrides or no-
operation (continue monitoring without action). The decisions made by FSAM are based on an optimal policy
that minimizes a cumulative cost that penalizes high risk flight conditions which contribute to loss of control.
Using this CMDP framework we develop policies that prevent loss of control during takeoff. We also illus-
trate the advantages of using the CMDP approach over a more conventional (unconstrained) MDP approach.
[Errata: 05/17/2016 - New equation numbers added. Typological errors in (15) - (22) were fixed]

Nomenclature

EA Envelope-Aware
EA-FMS Envelope-Aware Flight Management System
FSAM Flight Safety Assessment and Management
LOC Loss of Control
MPD Markov Decision Process
CMDP Constrained Markov Decision Process
α, β Angle of attack, side slip angle
φ, θ, ψ Roll, pitch and yaw angles
X Longitudinal position on the runway
H Altitude
V True airspeed
δe, δa, δr,T Elevator, aileron, rudder and thrust control inputs
P Pilot control mode
AP Safety autopilot control mode
Θ Dynamic pitch
S MDP states
A MDP actions
R MDP rewards
P MDP transition probability tensor
λ MDP discount factor
T Abstraction map

I. Introduction

Loss of Control (LOC) is one of the fundamental causes of aviation accidents. LOC can be attributed to factors
such as inappropriate pilot response, hazardous weather conditions, malfunctioning systems and more.1–3 Often, LOC
is a result of complex interactions between two or more of these contributing factors.

In our previous publications,4–6 we proposed the Envelope Aware Flight Management System (EA-FMS) that
supports LOC prediction, prevention, and recovery through an integrated suite of adaptive algorithms7,8. The Flight
Safety Assessment and Management (FSAM) module of the EA-FMS is responsible for real time assessment of LOC
risk and activation of LOC warnings and resilient control override of the flight crew or nominal automation in each
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phase of flight (i.e. takeoff, climb, cruise, descent and landing). We developed an FSAM module for the takeoff

phase of flight. A manually constructed resilient control override strategy prevented LOC during takeoff and was
implemented using a deterministic Moore Machine framework.

A deterministic Moore Machine FSAM formulation requires a domain expert to manually construct the finite state
machines that enable resilient control overrides to prevent LOC. Subsequently, hardware and software systems would
undergo a rigorous verification and validation process to ensure they satisfy functional, performance, and safety re-
quirements.9–11 The FSAM module developed using the deterministic approach must also be verified and validated to
ensure that it satisfies requirements and enables the aircraft to remain within the safe operating envelope using tradi-
tional software certification methods10. However, if the system enters an unsafe state that violates a given requirement,
the initial system design has to be modified accordingly. This iterative process is called model checking11–13 and is
carried out until all requirements imposed on the system are satisfied. The model checking process is tractable when
the system under consideration has a small number of states. The complexity of the model checking process increases
with the increase in the dimensionality of the system state space, making it increasingly difficult to test all possible
executions of the system to ensure that the probability of entering an unsafe state remains below a designated threshold.

In this paper, we present a novel approach to resilient control that ensures that the probability of entering an unsafe
state remains below an acceptable threshold. In the context of FSAM, we use a Constrained Markov Decision Process
(CMDP)14 to construct an optimal policy that selects the appropriate control authority in situations where unacceptable
risk is encountered with a default operating mode. The policy generated using a CMDP is less prone to error when
compared to a manually constructed strategy for resilient control override. Furthermore, the policy generation process
is less labor-intensive. For example, in a conventional MDP formulation, the decision maker would have to verify
the resulting MDP policy to ensure that it prevented the system from reaching unsafe states. However, these unsafe
states can be specified as constraints in the CMDP framework and hence the resulting policy is guaranteed to satisfy
the safety properties imposed on the system. The CMDP formulation applied to FSAM can be prohibitively complex.
However, we manage this complexity by decomposing the overall MDP to smaller MDPs that address LOC with
respect to each phase of flight; takeoff, climb, cruise, approach and landing.

The rest of the paper is organized as follows. Section II provides the necessary background for MDPs. In Section
III we illustrate a conventional MDP framework for developing an optimal policy for FSAM for the takeoff phase. In
Section IV, we develop a mechanism that enables us to incorporate hard constraints into the MDP framework. Section
V illustrates the optimal policy generation for FSAM using the CMDP framework. We also discuss the benefits of
using a CMDP framework over a conventional MDP. Section VI provides conclusions and describes potential future
research directions.

II. Background

A discrete-time fully observable MDP15,16 is represented as a tuple (S,A,P,R), where S represents a finite set of
all possible states of the system. A represents a finite set of actions that can be executed. P : S ×A × S → [0, 1]
represents the transition probabilities associated with transitions from a given state to another state by executing an
action. R : S × A → R represents a reward function that assigns a finite number to each state-action pair. The
actions an ∈ A at each decision epoch are chosen such that they maximize the expected cumulative discounted reward
function of the form

V(Sn) = E
[ ∞∑

n=0

λnR(Sn,An)
]

(1)

Here, Sn is the current state,An is the action selected at the current state. λ ∈ (0, 1] is a discount factor that emphasizes
short term rewards. The optimal policy is then defined as the mapping π where

π : S → A

Eqn 1 can be maximized and subsequently the optimal policy can be found using value iteration, policy iteration
or a linear programming algorithm15,16.
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III. An MDP Formulation for Safe Takeoff

In this section, we first present a simple MDP formulation that enables us to avoid LOC risk during takeoff. We
then motivate the necessity for a constrained MDP formulation with the help of an example.

LOC is often a result of complex interactions between aircraft dynamics, inappropriate control inputs (both pilot
and automation), improper configuration, and adverse weather phenomena. Thus, to address the problem of LOC,
a decision maker must consider all contributing factors to LOC risk. An MDP to assess and act to preserve flight
safety needs to consider the following features as part of its state formulation: aircraft dynamics and control, aircraft
configuration and health, operator-related features and environmental features. The actions should represent override,
warn and no-operation (monitor) directives.

A. State Representation

In this paper, we consider an FSAM capability focused on preventing LOC during takeoff. LOC during takeoff

is attributed to several factors such as improper rejected takeoff procedures, poor directional control, inappropriate
rotation techniques, runway overruns, etc. In this paper, we focus attention on a particular takeoff LOC factor: inap-
propriate rotation techniques. Consequently, we consider only the aircraft dynamics and control state feature as part
of our MDP state formulation. This MDP state has the following form:

S = {Si} i = 1, ..., n

where Si is defined as

Si = [V, X,Θ,H,M] (2)

Here V is the airspeed, X is the longitudinal position of the aircraft on the runway and Θ is the dynamic pitch of the
aircraft17. Θ is defined as θ + q where θ is the pitch attitude of the aircraft and q is pitch angular rate. H is the altitude
of the aircraft. M is the control mode of the aircraft. State features V, X,Θ,H can each take a range of values in R and
M ∈ {P, AP} where P denotes that the pilot is in control and AP denotes that the autopilot is in control.

Since FSAM is primarily a passive system that issues override directives only when LOC conditions are encoun-
tered, the MDP formulation has two actions; no-operation (NOOP) and override (OVRD):

A = {NOOP,OVRD}

Here NOOP denotes no-operation where FSAM simply monitors the operation of the aircraft and does not interfere
with ongoing actions of the flight crew and nominal autopilot. OVRD denotes an action where FSAM overrides the
current control authority with another control authority which can appropriately handle a situation with high LOC risk.

The state representation for the MDP consists of the continuous-valued states (V, X,Θ,H) and discrete valued states
M. The MDP requires a discrete abstraction of continuous-valued variables. With knowledge of the takeoff dynamics
and aircraft envelopes for the takeoff phase, we develop the following abstraction maps:

T1 : = V × X → S (3)
T2 : = Θ × H → G (4)
T3 : = S ×G → Q (5)

Here, abstraction map T1 transforms continuous states V and X to discrete states in set S = {s1, ..., s17} as shown
in Fig 1. Fig 1 indicates the performance envelopes for a given runway length (field length)4. For example, an aircraft
operating at the maximum field limit weight will accelerate from rest along the solid green curve, lift off and reach V2
speed will overshoot the runway. Consequently, any trajectory to the left of this green curve will end up overshooting
the runway before reaching the V2 speed. Similarly, the dashed pink lines indicate the points in V − X space at which
a rejected takeoff can be safely initiated and the aircraft can be stopped by the end of the runway. Consequently, any
rejected takeoff initiated to the right of the dashed pink curve will overshoot the runway before the aircraft can fully
stop.

Abstraction map T2 abstracts continuous states Θ and H to discrete states in set G = {g1, . . . , g8} (see Fig 2).
Abstraction map T3 maps discrete state S and G to discrete states in set Q = {q1, . . . , q136}. Thus, the state q1 denotes
the tuple (s1, g1) which in turn denotes the set of states in the velocity (V) - position (X) space represented by partition
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1 in Fig 1 and the set of states with dynamic pitch (Θ) - altitude (H) space represented by partition 1 in Fig 2. Table 1
illustrates abstraction map T3.
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Figure 1. V-X envelope partitions
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Figure 2. Θ − H envelope partitions

After applying the above abstraction maps, the MDP state space described by (2) reduces to

Si = [q,M] (6)

where q ∈ Q.

B. Reward formulation

The above abstractions enable us to identify the safe and unsafe flight envelope regions. For example, the partitions
indicated in green in Fig 1 are states that ensure that the aircraft has sufficient acceleration to lift off and reach the

4
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Table 1. State space indexing

Q (S ,G)
q1 (s1, g1)
q2 (s2, g1)
q3 (s3, g1)
...

...

q8 (s1, g2)
...

...

q136 (s17, g8)

appropriate performance speeds for the climb out phase. The partitions in red indicate states that characterize improper
longitudinal acceleration during ground roll which could lead to runway overruns. Similarly, the red partition in Fig
2 characterize over-rotation which could result in a tail strike. Consequently, this compact representation of the state
space enables us to formulate the reward function so that we can penalize states that are unsafe and reward states that
are safe. The following MDP reward function is proposed:

R(S i,A j) = α1R1(Si,A j) + α2R2(Si,A j) + α3R3(Si,A j) + α4R4(Si,A j)

where

R1(Si,A j) =

−1 i f M = P and A j = OVRD
0 else

(7)

R2(Si,A j) =

−1 i f M = AP and A j = NOOP
0 else

(8)

R3(Si,A j) =

−1 s ≤ 3 and g = 3
0 else

(9)

R3(Si,A j) =

−1 g = 4
0 else

(10)

We note here that the Ri’s are normalized. The term R1 penalizes an override action. This prevents FSAM from issuing
unnecessary override directives. The term R2 penalizes staying in autopilot control over multiple state transitions. This
encourages an MDP policy that transfers control back to the pilot when the aircraft is deemed to be inside the safe
envelope. The term R3 penalizes premature rotations and R4 penalizes over-rotations that can lead to tail strikes during
the rotation stage. αi > 0 are weights that enable us to emphasize different components of the reward function.

C. Estimation of Transition Probabilities

Equations of motion for the takeoff phase developed in a previous publication5 are used to simulate trajectories
of the takeoff phase. Mathematical models of human pilot behavior are used to model the inputs of the pilot during
takeoff10,18. An autopilot controller that is capable of preventing a tail strike during takeoff is used as the override
controller. A transition probability model that describes the probability of transition between the various states un-
der different control authorities (pilot/autopilot) is obtained using Monte Carlo simulations with the above takeoff

simulation framework.
We first obtain the optimal policy for the above unconstrained MDP using a simple value iteration algorithm. For

this illustration, the following values of αi were chosen; α1 = 5, α2 = 50, α3 = 1 and α4 = 10. The directed graph
in Fig 3 illustrates the optimal policy and the evolution of the states as a result of applying this policy. Each node
represents a state (as described by Eqn (6)) and the edges represent the transitions as a result of selecting the optimal
policy action (NOOP/OVRD) . The probability of transition is also indicated on the edges.

In the presented tail strike case study, the chosen weights penalized staying in autopilot control more than penal-
izing an override action. Also, a tail strike state was penalized more than a premature rotation state. Consequently,
FSAM chooses to override the pilot on reaching a state beyond which the probability of entering into a tail strike is

5
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Figure 3. MDP without constraints
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very high (s6, g3). This prevents an aircraft tail strike at (s6, g4). However, as a result of the heavy penalty for staying
in autopilot control, FSAM then transfers control back to the pilot. This leads to the possibility of a tail strike at
(s7, g4) (shown in yellow). The obtained policy did not fully eliminate the possibility of a tail strike due to competing
reward terms. This can be avoided by placing a significantly larger penalty on the tail strike state, making FSAM stay
in the autopilot mode until the aircraft was free from entering a tail strike state. This method of analyzing the policy
to identify high risk states and recomputing the policy with different weighting factors to obtain the desired system
behavior can be cumbersome especially if the state space is very large.

IV. Constrained MDP formulation

The goal of this section is to construct a constrained MDP16,19 policy that enables FSAM to make risk-optimal
decisions in a given flight condition subject to upper bounds on the probability of entering a LOC risk state. The
CMDP policy aims to maximize the expected cumulative discounted reward function (1) subjected to constraints of
the form

p(S∗1|S0) ≤ p1

p(S∗2|S0) ≤ p2 (11)
...

p(S∗m|S0) ≤ pm

Here p(S∗i |S0) is the conditional probability of entering state S∗i from a given initial state S0.
The expected value or utility of state S0 when acting according to policy π is given by

V(S0)π = E
[ ∞∑

n=0

λnR(Sn,An)
]
S0

(12)

For a Markov process, Eqn (12) can be expressed as

V(S0) =

∞∑
n=0

∑
Si∈S

∑
A j∈A

λn p(Sn = Si,An = A j|S0)R(Sn = Si,An = A j)

=
∑
Si∈S

∑
A j∈A

ρ(Si,A j)πS0
R(Sn = Si,An = A j) (13)

Here ρ(Si,A j)πS0
is defined as the occupational measure of the state-action pair (Si,A j).

ρ(Si,A j)πS0
:=

∞∑
n=0

λn p(Sn = Si,An = A j|S0) (14)

The occupational measure is the discounted total probability of reaching a state Si and executing an action A j as a
result of starting in state So and acting according to policy π. The sum of the occupational measure of state Si over all
possible actionsA j ∈ A is obtained from Eqn (14) as follows∑

A j∈A

ρ(Si,A j) =
∑
A j∈A

∞∑
n=0

λn p(Si,A j|S0)

= p(S0) +
∑
Sx∈S

∑
Ay∈A

∞∑
n=1

λn−1 p(Sx,Ay|S0)p(Si|Sx,Ay)

= p(S0) +
∑
Sx∈S

∑
Ay∈A

ρ(Sx,Ay)πS0
p(Si|Sx,Ay) (15)

Here p(S0) = 1 is the probability of starting in the initial state S0. This leads to the following expression:∑
A j∈A

ρ(Si,A j) −
∑
Sx∈S

∑
Ay∈A

ρ(Sx,Ay)πs0
p(Si|Sx,Ay) = P(S0) (16)
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Eqns (13) and (16) can be expressed in their respective matrix forms as follows

V = RTρ (17)

(
[I I . . . I] − [pT

A1
pT
A2
. . . pT

An
]
)
ρ = β (18)

Here V ∈ R|S| and R, ρ ∈ R|S×A|. I ∈ R|S|×|S| is the identity matrix and pAi ∈ R
|S|×|S| is the transition probability

matrix for each action Ai ∈ A. β ∈ R|S| is the initial state distribution with β(S0) = 1 and all other states β(Si) are
zeros. Using Eqn (17) and (18), the problem of maximizing the cumulative reward (Eqn (1) ) is formulated as a linear
program (LP) as follows

maxRTρ (19)

subject to the constraints (
[I I . . . I] − [pT

A1
pT
A2
. . . pT

An
]
)
ρ = β (20)

ρ ≥ 0

Note that the solution to Eqn (19) and (20) corresponds to the MDP without constraints (Eqn (1)). The additional
constraints imposed by Eqn (11) are expressed as constraints on the occupational measures. For example, consider the
constraint

p(Si|S0) ≤ pi

The above constraint can be expressed as ∑
A j∈A

p(Si,A j|S0) ≤ pi

∞∑
n=0

λn
∑
A j∈A

p(Sn = Si,An = A j|S0) ≤
∞∑

n=0

λn pi (21)

∑
A j∈A

ρ(Si,A j) ≤
∞∑

n=0

λn pi (22)

∑
A j∈A

ρ(Si,A j) ≤
1

1 − λ
pi

ēTρ ≤
1

1 − λ
pi (23)

Here ē is a vector of zeros with ones in the positions corresponding to the occupational measures of state Si. Eqn (19),
(20) and (23) comprise the LP formulation for the constrained MDP or CMDP14,16. The optimal action for each state
Si is obtained from the occupational measures as follows

p(A j|Si) =
ρ(Si,A j)πS0∑
A j ρ(Si,A j)πS0

V. CMDP for Takeoff

In this section we apply the above CMDP formulation to re-construct a resilient control override strategy for the
LOC case illustrated in Section III and illustrate that the CMDP enables us to obtain a policy that guarantees that the
probability of entering a tail strike state remains below a selected threshold.

Without loss of generality, we impose the following probability constraint on the tail strike state [(s7, g4), P]

p
(
[(s7, g4), P]|[(s1, g1), P]

)
= 0 (24)

i.e. the probability of entering the tail strike state (s7, g4), starting from the initial state (s1, g1), with the pilot in control
(P) is zero. Eqn (24) can be expressed as constraints on the occupational measures of state [(s7, g4), P] as illustrated
in Eqn (23);

ēTρ = 0 (25)
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We can now solve the constrained MDP using the linear program described by Eqns (19)-(23). The resulting policy
is shown in Fig 4. It can be seen that the new policy has no risk of tail strike (i.e. no (s7, g4) state). FSAM reliably
overrides to prevent tail strike. Control is then transferred back to the pilot only after the aircraft no longer has the risk
of a tail strike.
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Figure 4. MDP with constraints
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Fig 5 illustrates three takeoff scenarios with tail strike risk. We note here that the pilot is modeled as a human
pilot transfer function18 and is setup to apply excessive nose up elevator input during rotation to simulate a tail strike
scenario. The red lines indicate the aircraft response to the excessive rotation command without FSAM augmentation.
The momentary flattening of the pitch response (in red) at around 12 seconds indicates a tail strike. The blue lines
indicate the response of the aircraft with the augmentation of the FSAM policy constructed in Section III using the
unconstrained MDP (see Fig 3). Here, as illustrated previously (see Fig 3) , FSAM overrides the pilot when it detects
the excessive rotation input at around 10 seconds, but this MDP policy reverts control back to the pilot. Subsequently,
the continued application of the excessive nose up elevator input results in a tail strike. The green lines indicate the
aircraft’s response to the MDP policy that was constructed using the CMDP approach described in Section V. Here,
FSAM reverts control to the pilot only when there is no risk due to tail strikes (see Fig 4). Thus, from the pitch
response (in green) it is evident that the aircraft does not encounter a tail strike.
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Figure 5. Tail strike scenarios with MDP and CMDP policies. No FSAM augmentation (red), FSAM with MDP policy (blue), FSAM with
CMDP policy (green)
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VI. Conclusions

FSAM is a decision making aid that can potentially reduce the risk due to LOC. In this paper, we have illustrated
the application of a Constrained Markov Decision Process to construct resilient override strategies that ensure that the
probability of entering an unsafe state is below an acceptable threshold. We have also illustrated a simple application
of the CMDP to prevent LOC risk due to inappropriate rotation procedures that could lead to tail strikes. As a
future research direction, we aim to analyze in detail the CMDP framework with additional case studies and results.
Properties such as scalability of the CMDP approach and the worst case computation time as a function of state-space
and action space size will also be characterized.
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