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A new modal-based method that captures the geometric nonlinear effects that arise

in the regime of large deformations of wing-like structures is presented. The most limit-

ing factors of the modal approach are the linear force-displacement relationship and the

representation of the nodal displacement field based on normal modes. The proposed ex-

tension includes stiffness terms that cubically depend on the generalized coordinates. The

structural deformation is calculated not only by normal modes but also by higher order

mode components that account for the foreshortening effect at beam-type structures. The

approach is applied to a cantilever slender wing. Static and dynamic results are presented

together with results from a commercial finite element solver and from the UM/NAST
aeroelastic solver from the University of Michigan. The numerical study highlights the

capability of the new approach to capture nonlinear effects while keeping the simplicity of

the modal approach.

I. Introduction

T
here is a significant interest in the development of future passenger transport aircraft with lower emis-
sions and higher fuel efficiency. One of the key design features that supports achieving such goals is

longer span wings, where induced drag is reduced. As the span increases along with the wing’s aspect
ratio, it leads to higher flexibility. This geometric effect becomes inevitable as light, high performance struc-
tural construction is used. The geometric nonlinear behavior on high-aspect-ratio wings can also be found
in high-performance sailplanes and high-altitude long-endurance unmanned aerial vehicles. The increased
structural flexibility is advantageous when dealing with external disturbances, such as gust encounters, due
to the reduced rigid body acceleration. But it brings several challenges related to the modeling, analysis, and
design for loads, aeroelastic stability, and flight dynamics and controls. It is critical that the geometrically
nonlinear structural nature of the vehicle be taken into account in the earliest phases of design.1

Industry-standard aeroelastic simulation frameworks are typically based on a modal description of the
airframe where eigenvectors and corresponding eigenvalues in the frequency range of interest are used to
calculate structural deformations in a linear way. These have limited if any applicability for the problem
of geometrically nonlinear aeroelasticity, where the emphasis turns to time-domain solutions and coupled
aeroelasticity/flight dynamics analysis (due to the coupled nature of the rigid body and elastic response of the
aircraft). Geometrically-exact beam-based formulations coupled with appropriate unsteady aerodynamics
make the state of the art in solution frameworks for this type of problem.2 On the other hand, beam
formulations may not be sufficient to model complex structural details of transport aircraft wings and
the use of nonlinear FE codes for aeroelastic simulations can become very costly, especially for dynamic
simulations.
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The goal of this study is thus the development of a method that extends the classical modal approach
towards large deformations while keeping its simplicity. Furthermore, the method should not be limited to
beam type structures but should be applicable to any kind of FE models used for the dynamical modeling
of aircraft. Its intended applications are steady and dynamic load and aeroelastic analysis.

Several authors have been working on methods for the reduced order modeling (ROM) of nonlinear
structures. Mignolet and co-workers have given detailed descriptions for the derivation of static and dy-
namic nonlinear structural governing equations including quadratic and cubic stiffness coefficients. The
determination of these stiffness coefficients (the ROM parameters) is done by a series of nonlinear static FE
simulations with the full model using a commercial FE software. Their field of application ranges from plate
structures to curved beams and the modeling of a complex UAV wing.3–5

Kuether and Allen describe methods based on nonlinear normal modes (NNMs) to simplify large, com-
plex structures. NNMs basically describe the resonant frequency and response of a structure as a function
of response amplitude or energy. The idea of their method is to assemble (nonlinear) structural subcom-
ponents and determine their dynamical behaviour; the nonlinear dynamics of the assembly as a whole are
predicted based on the dynamics of the subcomponents.6, 7 Two substructuring methods that can be used in
conjunction with detailed finite element models are presented by Kuether,6 where the second one is based on
creating a reduced order model of a structure by applying a series of static loads to a nonlinear FE model.
Quadratic and cubic stiffness terms are used to consider nonlinear force displacement behaviour and coupling
of individual modes.

As will be shown, the kinematically nonlinear displacement field present in large deformations of wing-like
structures can be reconstructed by shape functions of higher order. The method of quadratic components
was successfully applied by Segalman and Dohrmann to improve the kinematical and dynamical description
of rotating structures (beams) undergoing large displacements.8, 9 This method is also used by van Zyl for
the calculation of T-Tail flutter, where quadratic mode components enhance the description of kinematic
relations at horizontal and vertical tail planes.10, 11 In the approach presented, the concept of higher-
order modes is further developed to better reconstruct nonlinear, large displacements. Higher-order stiffness
coefficients (derived here from a higher-order strain energy formulation) are also used to represent a nonlinear
force-displacement behaviour.

II. Derivation of the Method

Compared to the classical modal approach, the proposed method is based upon the following extensions:

• Quadratic and cubic stiffness terms account for a nonlinear force-displacement relationship

• The reconstruction of the geometrically nonlinear displacement field is based on higher-order mode
components

• The generalized forces are assumed to be a function of the state of deformation

• Inertia and stiffness terms in the dynamic formulation depend on the state of structural deformation
and its rate

These extensions are discussed in details in the following subsections, where both the static and dynamic
formulations are presented.

II.A. Static formulation

The derivation of the static governing equations involves two steps: First, a higher order formulation for
the internal strain energy of the structure is given. Second, the geometrically nonlinear displacement field is
reconstructed.

II.A.1. Higher-order strain energy formulation

The total potential energy of an elastic body U consists of the sum of the total strain energy U and the
potential energy of the applied loads V . Furthermore, the total potential energy of the system is a constant.
This statement is expressed as:12

π = U + V = const. (1)
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Assuming linear elastic material behaviour (Hooke’s law), and neglecting the influence of temperature, the
total strain energy U in the body is given as the following integral (here and what follows, the Einstein
notation is used):

U =
1

2

∫

V

τijǫij dv (i, j = 1, 2, 3) , (2)

where τij and ǫij are the stress and strain component pairs, respectively. The work done by the applied
loads V can be expressed as:

V =

∫

V

Bi ui dv +

∫

S

T
(ν)
i ui ds , (3)

where Bi represents the components of the applied body forces, ui the components of the displacement field,

and T
(ν)
i denotes the traction vector applied on the body surface. Tractions on the boundary can be related

to stresses via Cauchy’s formula:12

T
(ν)
i = τijνj , (4)

with ν as the unit outward normal vector.
Introducing a variation of both the total strain energy and the external work yields:

δπ = δ(U + V ) =

∫

V

τij δǫij dv −

∫

V

Bi δui dv −

∫

S

T
(ν)
i δui ds . (5)

Invoking the Principle of Minimum Total Potential Energy, one gets:

δπ = 0 (6)

Therefore, the variation of the total strain energy equals the negative variation of the external work:

δU = −δV (7)

Introducing a discretization of the structure by finite elements withN nodes, the work of the external forces is
reduced to discrete nodal loads (forces and moments) denoted as Pi multiplied by generalized displacements
(nodal translations and rotations) denoted as ∆i. The total potential energy can then be given as follows:

π = U −

N
∑

k=1

Pk ∆k (8)

Taking the first variation of this expression leads to Castigliano’s first theorem which states that the partial
derivative of the strain energy U with respect to an arbitrary displacement ∆i at a point (i) equals the force
Pi at this point in the direction of the displacement:

∂U

∂∆i

= Pi (i = 1, . . . , N) (9)

The theorem similarly holds for nonlinear force-displacement relationships and can be generalized by the
introduction of generalized displacements q and generalized forces Q:12

∂U

∂qi

= Qi (10)

Now a vector ψ that contains discrete displacements for every node of the structure is defined as a linear
combination in the following way:

ψ ≡

m
∑

i=1

si a
i (11)

where
ai = (∆1, . . . ,∆N)T (12)

contains constant (and for now arbitrary) displacements for each node and si denotes a scalar value. The
upper bound of the summation in Eq.(11), m, is equal to the number of generalized coordinates of the final
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governing equation that is to be derived in the following sections. Now the total strain energy, Eq.(2), is
assumed to be a nonlinear and continuously differentiable function of the externally applied displacements
ψ, which are a function of the scalar value si only, and expanded in a Taylor series centered at zero (since
the internal energy is zero for zero deformation):

U(s) =

m
∑

i=1

∂U

∂si

si

+
1

2!

m
∑

i=1

m
∑

j=1

∂2U

∂si ∂sj

si sj

+
1

3!

m
∑

i=1

m
∑

j=1

m
∑

k=1

∂3U

∂si ∂sj ∂sk

si sj sk

+
1

4!

m
∑

i=1

m
∑

j=1

m
∑

k=1

m
∑

l=1

∂4U

∂si ∂sj ∂sk ∂sl

si sj sk sl + h.o.t. , (13)

where: s ≡ (s1, s2, . . . , sm)T .

Differentiation of the strain energy defined in Eq.(13) yields the governing equation that comprises
quadratic and cubic stiffness dependencies and accounts for a nonlinear force-deformation behaviour. The

term 1
2!

∑m
i=1

∑m
j=1

∂2U
∂si ∂sj

is comparable to the linear stiffness matrix. The Taylor series is carried out up

to the fourth order so to capture up to cubic nonlinearities on the stiffness.

In general and supplementary to a deformation field as the one given by ψ, two approaches are possible
in order to “excite” the structure considered and to identify the nonlinear force-displacement relations:

1. A deformation field can be imposed onto the structure degrees of freedom. A nonlinear static FE simu-
lation is used to solve for the unknown forces at each grid point as a result of the applied deformations.

2. A force field can be imposed onto the structure. A nonlinear static FE simulation provides the corre-
sponding deformation field.

In this work, the second approach was chosen due to the fact that the imposition of a forced field turned
out to be more reliable than the imposition of a deformation field in a nonlinear structural solution. The
question arises what “shape” the force field should have. In the preceding formulas, nodal coordinates
were used. The goal of this work is to obtain a governing equation based on generalized coordinates with
corresponding shape functions (eigenmodes in the linear case). In the following, the natural (in vacuo)
eigenvalues and corresponding eigenvectors (mode shapes) of the structure are assumed to be available.
Using one eigenvector, a physical force field (denoted as F i) can be defined in the following way:

Fi = Kφ
i qi , (14)

where K denotes the nodal stiffness matrix of the structure, qi a scaling factor (for now), and φi denotes the
column vector of one of the natural eigenvectors of the structure. Applying this force field in a nonlinear FE
simulation, the resulting nodal displacements ui of the structure are a function of the scaling parameter qi.
Using a “small” value for qi (which yields small deformations), results in a deformation field that qualitatively
equals the mode shape φi used. Increasing the value of qi in the nonlinear simulation at some point results
in a deformation field that contains significant differences to the linear deformation field. This can be seen
considerably if, e.g., the first bending mode shape is used as φi. The linear part of the deformation field
consists of pure transverse displacements, whereas for large values of qi in-plane motions become evident.
For beam structures, this is known as the foreshortening effect. In summary, the following are the reasons
for a force field (and especially one that is chosen according to Eq. 14) to “excite” the nonlinearities in a
FE simulation:

1. Imposing a force field onto the structure and solving for the displacements in a nonlinear static FE
simulation is easier than a imposing a displacement field and solving for the forces.
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2. The force field according to Eq.(14) yields a deformation field that equals the eigenvector φi for the
linear case (small values of qi).

3. In the nonlinear case (large qi), nonlinear contributions in both the strain energy and the deformation
field are excited.

For the nonlinear energy part, it is further considered in the following. If the structure is loaded by the force
field defined in Eq.(14), the strain energy can be seen as a function of the scaling parameter qi (the nodal
stiffness matrix and the eigenvector are constants). The Taylor series expansion of the internal strain energy
as function of the scaling parameters q is then given by:

U(q) =
1

2!

m
∑

i=1

m
∑

j=1

∂2U

∂qi ∂qj
qi qj

+
1

3!

m
∑

i=1

m
∑

j=1

m
∑

k=1

∂3U

∂qi ∂qj ∂qk
qi qj qk

+
1

4!

m
∑

i=1

m
∑

j=1

m
∑

k=1

m
∑

l=1

∂4U

∂qi ∂qj ∂qk ∂ql
qi qj qk ql + h.o.t. (15)

(16)

The term
∑m

i=1
∂U
∂qi

qi is omitted since no energy contribution as a linear function of qi exists. Using Cas-
tigliano’s first theorem again and applying a differentiation with respect to q centered at zero yields the
governing equation of the structure as a function of q:

∂U

∂qp
=

m
∑

i=1

∂2U

∂qi ∂qp
qi

+
1

2!

m
∑

i=1

m
∑

j=1

∂3U

∂qi ∂qj ∂qp
qi qj

+
1

3!

m
∑

i=1

m
∑

j=1

m
∑

k=1

∂4U

∂qi ∂qj ∂qk ∂qp
qi qj qk + h.o.t. (17)

The following definitions are introduced:

pGi
1 ≡

m
∑

i=1

∂2U

∂qi ∂qp

∣

∣

∣

∣

∣

q=0

(18)

pG
ij
2 ≡

1

2!

m
∑

i=1

m
∑

j=1

∂3U

∂qi ∂qj ∂qp

∣

∣

∣

∣

∣

∣

q=0

(19)

pG
ijk
3 ≡

1

3!

m
∑

i=1

m
∑

j=1

m
∑

k=1

∂4U

∂qi ∂qj ∂qk ∂qp

∣

∣

∣

∣

∣

∣

q=0

(20)

The idea of the proposed method is to take the pGn stiffness matrices as generalized stiffnesses and the
q as generalized coordinates. In this way, the following equation in the pseudo-generalized coordinates is
obtained and used as the basis for the method:

pGi
1 qi + pG

ij
2 qiqj + pG

ijk
3 qiqjqk = Qp (p = 1, . . . ,m) (21)

Here the summation convention is used again. The stiffness parameters Gn can be determined by polynomial
fitting or numerical differentiation, as described below. In this example, a commercial finite element code was
used for the modeling of the structure that provides the strain energy as part of the solution. A comparison
at a typical beam model shows that the parameter Gi

1 matches the eigenvalue of the corresponding mode
shape that is obtained from a real eigenvalue analysis. In this way, the linear case (structural governing
equation in modal coordinates with linear terms only) is recovered by neglecting the terms of higher order in
Eq.(21). The remaining issue is how the corresponding (linear and higher order) eigenvectors can be obtained.
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II.A.2. Higher-order deformation reconstruction

The second extension is the reconstruction of the geometrically nonlinear displacement field. As mentioned
above, the nonlinear static FE analysis excites nonlinear terms in the strain energy, but also a nonlinear
displacement field. This nonlinear displacement field is analyzed as described below.

For example, consider the mathematical model of a simple pendulum (as illustrated in Fig. 1). The
kinematic relations in a Cartesian frame of reference are given by:

v = sin(ϕ)L; u = cos(ϕ)L (22)

Assuming small values for the amplitude ϕ of the pendulum, the small-angle approximation is used to

u

y

z

L

v

v=u=1,

ϕ

ϕu=k   ²

ϕ

x

Figure 1. Kinematic relations on a simple pendulum, linear and parabolic approximation of the vertical tip displacement

simplify the analytical calculation of the pendulum’s motion. This simplification makes use of the Taylor
series expansion of the sine and cosine functions:

sin(ϕ) = ϕ−

ϕ3

3!
+
ϕ5

5!
+ h.o.t. (23)

cos(ϕ) = 1 −

ϕ2

2!
+
ϕ4

4!
+ h.o.t. (24)

An extension of the small-angle approximation would consider the next terms of both the sine and cosine
functions. The Method of the quadratic components applies this idea in structural dynamics, where the
quadratic term of the Taylor series expansion of the cosine function is considered. This concept, which was
introduced by Segalman and Dohrmann to analyze rotating flexible structures, provides a simple but efficient
method to satisfy kinematic constraints up to second order.8, 9, 13 Another field of application in aeronautical
engineering is the calculation of T-Tail flutter, where quadratic mode components are used to improve the
description of kinematic relations at horizontal and vertical tail planes.10, 11 A simplified illustration of the
higher-order kinematic terms for the pendulum example is also shown in Fig. 1.

In the context of this work, the nodal deformation field as a result of a nonlinear mapping of the force
field defined in Eq.(14) is expanded in a Taylor series centered at zero which is truncated after the fourth
term:

u(q) =

m
∑

i=1

∂u

∂qi
qi (25)

+
1

2!

m
∑

i=1

m
∑

j=1

∂2u

∂qi∂qj
qi qj (26)

+
1

3!

m
∑

i=1

m
∑

j=1

m
∑

k=1

∂3u

∂qi∂qj∂qk
qi qj qk (27)

+
1

4!

m
∑

i=1

m
∑

j=1

m
∑

k=1

m
∑

l=1

∂4u

∂qi∂qj∂qk∂ql
qi qj qkql + h.o.t. (28)

The matrix u contains three columns for the displacements in x, y, and z directions for each node of the
structure. The constant term is omitted here. Partial differentiation of the displacement field defined in
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this way with respect to the generalized coordinates and substitution similar as defined above for the strain
energy yields:

pΦ =
∂u

∂qp
= pΦ0 + pΦi

1 qi + pΦij
2 qiqj + pΦijk

3 qiqjqk (29)

The term pΦ0 can be seen as the equivalent of the structure’s normal modes.

II.A.3. Derivation of the generalized forces and final governing equation

Considering Eq.(21), the forcing term of the structure’s governing equation consists of the generalized force
Qp. In the linear case it is calculated as the product of the transposed of the eigenvalues and the discrete force
field acting on the structure nodes. Applying the principle of virtual work and the Taylor series expansion
of the higher order mode components results in an extension of the generalized forces. For simplicity, the
approach described by van Zyl is followed and only the linear and the quadratic mode shape components
are considered for the virtual work:11

δV = δuTf , (30)

where f denotes an arbitrary nodal force field. Expansion of the virtual physical displacements δu using the
linear and the quadratic mode shapes yields:

δV = δqT
p

(

pΦ0
T + pΦi

1

T
qi

)

f (31)

Thus the generalized forces are given as:

Qp = pΦ0
T
f + pΦi

1

T
f qi (32)

Combining Eq.(21) and (32) yields:

(pGi
1 −

pΦi
1

T
f ) qi + pG

ij
2 qi qj + pG

ijk
3 qi qj qk = pΦ0

T
f (33)

Eq.(33) is the static governing equation of the proposed method. Compared to the classical modal approach,
it can be seen that the pGi

1 term, which actually contains the eigenvalues of the linear, uncoupled system,
is amended by the product of the transposed of the quadratic mode component matrix and the force field.
This additional stiffness parameter is proportional to the force field applied to the structure and induces a
coupling of the otherwise (in the linear sense) uncoupled eigenvectors. A nonzero value of the pG

ij
2 term

indicates a non-isotropic structural behaviour. A force field applied to such a structure results in a softening
or hardening in the corresponding direction of deformation, and a hardening or softening if the sign of the
force field changes.

Following the solution of Eq.(33) by a nonlinear equation system solver, the nodal deformation field is
reconstructed as function of the generalized coordinates q:

u(q) = pΦ0 qp + pΦi
1 qpqi + pΦij

2 qpqiqj + pΦijk
3 qpqiqjqk , (34)

where the sum is taken again over repeated indices.

II.B. Dynamic formulation

The dynamic formulation is obtained by adding inertia terms to Eq.(33). Velocity-dependent forces (damp-
ing) are neglected here for simplicity. The governing equation is then given as:

M q̈i +
(

pGi
1 −

pΦi
1

T
f

)

qi + pG
ij
2 qi qj + pG

ijk
3 qi qj qk = pΦ0

T
f , (35)

with M denoting the generalized mass matrix. In general, the mass matrix could be extended by considering
higher order mode componets for the kinetic energy. This would yield a generalized mass which is function
of the generalized coordinates and the generalized velocity of the system. This extension is considered as a
topic of further research and not applied here.
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II.C. Evaluation of the derivatives

Both the nonlinear strain energy and the nonlinear deformation field are differentiated with respect to the
scaling parameter q to calculate the stiffness terms pGn and the mode components pΦn. The extraction of
these derivatives is involved. Several methods are applicable, essentially those used for numerical differen-
tiation by finite differences. Formulas for the numerical evaluation of the components pΦi

0 and pΦij
1 based

on finite differencing are given in Dohrmann and Segalman.8, 9 Expressions for the higher (third and fourth)
order derivatives can be derived from Taylor series expansions.

The disadvantage of finite differences is the strong dependence on the stepping parameter that is used
as well as the large effort which is involved in the implementation if expressions with higher order accuracy
are desired. In this work, another approach was used for the evaluation of the energy and deformation field
derivatives.

Applying the force field as defined in Eq.(14) from a nonlinear static FE simulation results in a corre-
sponding value for the strain energy. Enhancing this equation and expressing it as polynomial function of
two variables of degree four yields:

Fij =

4
∑

t=1

(sa
i φ

i + sb
j φ

j)t , (a, b = 1, . . . , η) , (i, j = 1, . . . ,m) , (36)

where the parameters sa
i and sb

j , which correspond to elements of the vector s defined in Eq.(13), can be

seen as the scaling factors of two natural eigenvectors of the structure (φi and φj) that can be combined
in this way. Therefore, a number of η2 force fields is obtained for each combination of i and j. These force
fields are applied in a series of nonlinear static FE simulations and η2 values for the strain energy or the
deformation field are obtained. These solutions are collected in a vector bi,j :

bij =
[

N1(s
1
i , s

1
j) . . . Nη∗η(sη

i , s
η
j )

]T
, (37)

where Ni represents a nonlinear operator mapping the force field to a displacement field. A matrix A can
be defined that contains the values that were chosen for the parameters sa

i and sa
j in its a-th row, i.e.,

Aa =

4
∑

t=1

(sa
i + sa

j )t (38)

This matrix contains 14 columns since the polynomial defined in Eq.(36) contains 14 terms. Using the matrix
A and the vector b, a linear system with η2 equations can be defined:

Ax = b (39)

where the solution vector x contains 14 unknown coefficients which are to be determined.
The system of equations in Eq.(39) may be overdetermined, depending on the number of scaling param-

eters η that are used for the nonlinear FE simulations. A solution is found by calculating the pseudo-inverse
of matrix A. This corresponds to an optimization problem, where the polynomial defined in Eq.(36) that
depicts a surface in two dimensions is fitted into the solutions of the vector b by minimizing an error norm.
Higher precision can easily be obtained by the use of more points, meaning a higher value for η. Once the
vector of coefficients, x, is determined, the derivatives are easily obtained by differentiation of the polynomial
defined in Eq.(36). Coupled derivatives are evaluated in a similar way. The dependence of the derivatives of
the strain energy and the deformation field on the value of η is shown in the sections below for a representative
beam type structure. It must be mentioned that by using a polynomial which is a function of two variables,
only two modes can be coupled. The cubic stiffness matrix and the fourth order mode component defined
in Eq.(33) contains mixed partial derivatives with respect to three variables and thus a coupling of three
modes can be considered. For simplicity, only two modes are taken into account in the formulation presented
here. An upgrade to three coupled modes by an expansion of the polynomial in Eq.(36) is straightforward,
but the cost for the evaluation of all derivatives increases. Both the strain energy and the deformation field
that are obtained from one FE simulation can be differentiated simultaneously with respect to the scaling
parameters si and sj . Due to Schwartz’s exchange theorem the matrices containing the mixed derivatives
are symmetric.8
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III. Numerical Studies

The results of selected static and dynamic, as well as of static aeroelastic coupled simulations obtained
with the described approach are presented in the following sections. Furthermore, the test case presented
in the following sections was modelled with University of Michigan’s UM/NAST solver. This toolbox pro-
vides excellent reference data in terms of nonlinear structural dynamics and coupled aeroelastic simulations.14

The test case consists of a highly flexible beam model with a length of 16 meters to resemble a slender
generic aircraft wing. It is discretized by 32 beam finite elements and 33 nodes. The moments of inertia
vary quadratically along the beam axis. This setup was used to obtain bending deformations with constant
curvature for typical aerodynamic loadings. Discrete mass elements with prescribed mass moments of inertia
were used at each structural node to tune the dynamic structural behaviour. The layout of the model is shown
in Fig. 2. Displacements of node 33 (outermost node) will be used to show the behaviour of the beam and
the method for dynamic loadings. For all simulations with the proposed method, only seven selected mode

BEAM element #1 (Node1−Node2)

y

z

x

(0.35, 0., 0.)Node 1 (clamped)
(0.35, 16., 0.)

Node 33

Figure 2. 16m beam FE model, 33 Nodes, clamping at Node 1

shapes were used. Thus the higher order stiffness matrices and mode components (G and Φ, respectively)
were calculated for these modes. The selected modes were found to be sufficient to obtain convergence in
terms of the static deformation field; also the computational effort is reduced when considering less modes
especially for the dynamic simulations. The values of pGi

1 and pΦi
1 reconstructed with the method described

in subsection II.C are very close to the corresponding values from the natural eigenvalues of the beam.
Table 1 lists the types and frequencies of the ten lowest mode shapes of the beam model obtained from
the finite element modal analysis. Additionally, the eigenvalues from the reconstruction method are given
for the seven selected modes. The second, third, and fourth in-plane bending mode were omitted, since
their contribution to a deformation from a typical aerodynamic loading was expected to be negligible. For

Table 1. Eigenvalues of the ten lowest modes of the beam model; values were obtained from a FE analysis and from a
polynomial reconstruction method.

Mode Type of mode Eigenvalue FE analysis [Hz] Eigenvalue reconstructed [Hz]

1 first bending 0.595 0.595

2 first bending in-plane 1.190 1.190

3 second bending 2.705 2.705

4 second bending in-plane 5.407 -

5 third bending 6.956 6.956

6 fourth bending 13.358 13.358

7 third bending in-plane 13.893 -

8 fifth bending 21.908 21.908

9 fourth bending in-plane 26.651 -

10 first torsion 27.132 27.132

isotropic structures (as is the case for this beam model) the pG
ij
2 term becomes zero. The diagonal values

of the cubic stiffness pG
ijk
3 have very small values for this model (on the order of 10−3 for the first bending

mode).
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III.A. Static simulations and validation with nonlinear data from UM/NAST

A constant tip force in the z direction was applied at the outermost node of the beam with assumed values
between 500 N and 3000 N to simulate a constant static loading. The static governing equation is nonlinear
and was solved using a root-finding algorithm with a specified start estimate. The results of this test case
are presented in Fig. 3. It must be mentioned that no follower forces and no gravity have been considered in
the static solutions. In a fully nonlinear solution sequence (considering incremental loads), the force applied
to the beam is increased stepwise and equilibrium is ensured in every step until the specified load is applied.
In the solution sequence used for the proposed method, the specified value of the force is applied always onto
the undeformed initial configuration of the beam. The inclusion of follower forces in the solution sequence is
subject to further research. The values were chosen to excite deformations of the beam beyond the limit of

y, m

z,
 m

0 2 4 6 8 10 12 14 16

0

2

4

6

8

10FE Linear
Proposed Method
UM/NAST nonlinear
Undeformed Beam

Fz

12 13 14 15 16

2.5

3

3.5

4

4.5

y,
 m

-0
.8

-0
.4

0

Figure 3. Comparison of the static displacement fields obtained by different methods for forces with values of 500,
1000, 1500, 2000, 2500, and 3000 N applied along the z direction at the end of the beam.

structural linearity. This can be seen in terms of the displacement of the beam in z and in y directions. The
linear FE solution yields too large displacements in the z direction and of course omits the displacement in
the y direction (foreshortening effect) completely. The results of the proposed method are in good agreement
with the nonlinear reference data from UM/NAST, and the displacement in the z and in the y directions
are captured well up to the tip force of 2500 N. Differences between the enhanced modal approach and
the nonlinear reference data become larger starting at the tip force of 3000 N. For this force, the bending
deformation in the z direction reaches a value of 25% of the span of the beam. An interesting point is that
the nonlinear deformation fields are “on top” of the linear one but with the foreshortening effect keeping the
beam length constant.

III.B. Dynamic simulations and validation with nonlinear data from UM/NAST

The dynamic validations of the method omitting displacement dependent mass and velocity dependent stiff-
ness terms were done in two steps. First, a constant force (as for the static simulations) was applied onto the
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y,
 m

-0.08

-0.04

0
Time t, s

z,
 m

0 5 10 15 20
0

0.5

1

1.5
FE Linear
Proposed Method
UM/NAST nonlinear

Figure 4. Time function of the displacement of the beam’s tip node for a step force of 500 N at the wingtip along the
z direction.

Time t, s

z,
 m

0 5 10 15 20
0

1

2

3
FE Linear
Proposed Method
UM/NAST nonlinear

y,
 m

-0.3

-0.2

-0.1

0

Figure 5. Time function of the displacement of the beam’s tip node for a step force of 1000 N at the wingtip along the
z direction.

outermost node of the beam and the dynamic governing equation was solved numerically. This was done us-
ing an implicit multistep backward differentiation (BDF) scheme with variable time step size. No structural
damping, no follower forces, and no gravity were considered. The force was chosen to excite deformations
with pronounced nonlinearities. Step function loads of 500 N and 1000 N along the z direction were applied
at the outermost node of the beam. The tip response from these simulations are shown in Figs. 4 and 5 for
the respective force. As for the static simulations, the displacements of the proposed method are in good
agreement with the nonlinear reference data from UM/NAST, both in the z and the y directions. How-
ever, the linear and the enhanced modal approach yield a slightly lower frequency than the results from the
UM/NAST solver. This can be explained by the fact that in the nonlinear solution sequence of UM/NAST,
forces are applied at the current (deformed) configuration. As the bending deformation of the beam reaches
larger values, the force on the tip can be split up into a component acting perpendicular to the beam and

11 of 16

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
14

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
5-

01
76

 



a component acting in the longitudinal axis of the beam. The second component slightly stiffens the beam
and thus increases the frequency of the beam’s oscillation. For the proposed method, the forces are always
applied at the undeformed configuration and thus this stiffening effect is not captured.

Next, a sinusoidal tip force of 1000 N with a frequency of 0.8 Hz was applied at the outermost node of
the beam model to evaluate its dynamic response. As before, an implicit BDF scheme was used to solve the
dynamic governing equation. No structural damping, no follower forces, and no gravity were considered in
all solvers. The initial conditions for the generalized displacements and the generalized velocities were set
to zero. The results are given in Fig. 6 in terms of the displacement in the z and in the y directions of the
outermost node. It can be seen that all solutions yield comparable results for the displacements in the z

y,
 m

-0.6

-0.4

-0.2

0
Time t, s

z,
 m

0 5 10 15 20-4

-2

0

2

4 FE Linear
Proposed Method
UM/NAST nonlinear

Figure 6. Comparison of the dynamic displacement field obtained by different methods for a sinusoidal tip force applied
at the end of the beam. Force amplitude = 1000 N, frequency = 0.8 Hz.

directions. Slight differences occur at the largest values (about 4 meters) for the linear FE results, which
gives too high deformations (comparable to the static results). As for the static case, the deformation in the
y direction is reflected by the proposed method even though smaller differences occur. The effect of frequency
reduction in the results of the proposed method is less pronounced here due to the fact that the force is
not constant anymore but varies with time and thus the time-dependent maximum of the force not always
coincides with the maximum deformation of the outermost node. To further evaluate the dynamic behaviour
of the method at slightly higher frequencies, two more dynamic simulations are presented with tip forces of
2000 N and frequencies of 1.0 Hz and 2.0 Hz, respectively. The results are shown in Figs. 7 and 8. Despite a
good overall agreement between the UM/NAST results and the results of the proposed method, differences
occur both for the deformation in the z and in the y direction for the 1.0 Hz test case. The 2.0 Hz test case
shows maximum tip deflections in z direction of only 1.2 meters (which is in the linear regime) and exposes
larger differences between the methods. It must be mentioned that the results of the proposed method were
calculated including only five bending modes and that for this test case the deformations include higher
frequency components, as can be seen in Fig. 8. Further simulations including more bending modes with
higher frequencies could yield better results for the proposed method with this test case.

III.C. Static aeroelastic simulations and validation with UM/NAST results

For the enhanced modal approach, a vortex-lattice solver was used that provides the aerodynamic forces. The
solver is implemented such that the aerodynamic panels can undergo any kind of translation and rotation
due to elastic deformations. The linear potential equations are solved for the circulation at each panel given
a prescribed downwash at each panel’s collocation point. The force produced by each panel is calculated
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Time t, s
z,

 m
0 5 10 15 20-4

-2

0

2

4 FE Linear
Proposed Method
UM/NAST nonlinear

y,
 m

-0.6

-0.4

-0.2

0

Figure 7. Comparison of the unsteady displacement field obtained by different methods for a sinusoidal tip force applied
at the end of the beam. Force amplitude = 2000 N, frequency = 1.0 Hz.

y,
 m

-0.15

-0.1

-0.05

0

Time t, s

z,
 m

0 5 10 15

-1

-0.5

0

0.5

1 FE Linear
Proposed Method
UM/NAST nonlinear

Figure 8. Comparison of the unsteady displacement field obtained by different methods for a sinusoidal tip force applied
at the end of the beam. Force amplitude = 2000 N, frequency = 2.0 Hz.

based on the current geometry of the panel, the circulation and the onflow conditions (velocity and fluid
density).

The force transfer from the aerodynamic panels onto the structural grid is done via the transposed of the
coupling matrix. The coupling matrix itself is build from radial basis functions, a similar approach is used
in commercial aeroelastic codes.15 Transforming aerodynamic forces into equivalent forces on the beam’s
nodes requires the calculation of forces and moments. In this case, another approach was used to avoid
the calculation of moments. A so-called coupling model was built which uses rigid-bar elements that are
connected to a beam node at one side each. The other end of the rigid-bar elements are used as coupling

points to where the aerodynamic forces are transferred. The rigid-bar elements were included in the modal
analysis of the beam and in the reconstruction of the higher-order mode components. Thus the beam model
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was enhanced into a “volume model” with the result that no moments have to be calculated and the common
coupling matrix approach can be used for the force transfer.

Still using the 16-meters-span, one meter chord wing example, the aerodynamic grid is discretized by 64
panels in the spanwise and 16 panels in the chordwise directions. A layout of the aerodynamic grid together
with the beam’s reference axis is shown in Fig. 9. The coupling approach described using a coupling model
based on rigid-bar elements is depicted in Fig. 10. The onflow velocity was fixed to 40 m/s, the reference

x, m
0

1

y, m

0

4

8

12

16

X
Y

Z

Figure 9. VL grid discretized by panels with the beam model’s reference axis used for the static coupling simulations.

X

Y

Z

VL panel

Coupling point

RBE2 element

Beam structure
Node 33

Figure 10. Depiction of the coupling approach: Aerodynamic forces are transformed onto the structure’s coupling
points and then transferred implicitly to the beam’s nodes via rigid-bar elements.

density of the fluid (air) is 1.225 kg/m3. To obtain deformations of the coupled aeroelastic system ranging
from the linear to the nonlinear regime, the root angle of attack (AoA) was varied within the range of
one to five degrees in steps of one degree. UM/NAST uses a strip-theory aerodynamic model. However,
UM/NAST enables the correction of the static force produced by each strip by considering a weighting factor
that accounts for wingtip effects. The correction factors for UM/NAST were taken from the lift distribution
given by the vortex-lattice solver for the rigid wing. This correction method results in identical aerodynamic
forces for the vortex-lattice and the UM/NAST aerodynamic solvers for the undeformed wing.

Results of the static coupling simulations are shown in Fig. 11 in terms of the bending deformations of
the beam. For this test case, results from Nastran SOL144 solution sequence (static aeroelastic) are also
presented. The level of difficulty is increased for these simulations compared to the static simulations with a
constant force in the z direction, since the forces on the nodes now have contributions along the y direction as
well. The bending deformation from the proposed method agrees well with the results form UM/NAST. At
higher angles of attack, the difference between the linear and the nonlinear solutions becomes larger and the
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beam tends to have a reduced deformation in the UM/NAST results. This can be seen as realistic, since the
forces are always applied onto the undeformed structure (in the linear and the enhanced modal approach),
but the enhanced modal approach considers the “in-plane” force due to the quadratic mode component.

y, m

z,
 m

0 4 8 12 16

0

0.5

1

1.5

2

2.5

3

3.5

Nastran SOL144
VL+FE Linear
VL+Proposed Method
UM/NAST nonlinear
Undeformed Beam

AoA=1°

2°

3°

4°

5°

12 13 14 15 16
1.5

2

2.5

3

3.5

Figure 11. Comparison of static coupling results calculated by the proposed method coupled with a vortex-lattice
solver and by UM/NAST.

IV. Concluding Remarks

A method was presented that enhances the classical modal approach used in structural dynamics and
aeroelastic applications towards large geometric deformations. The goal was to obtain a method that can
be applied to any kind of FE model (such as the modal approach) and considers nonlinearities in the force-
displacement relationships and in the deformation field. It must be mentioned that this method is supposed
to be used for (slender) wing-like structures rather than for short plates. The derivation of the method
is based on the assumption that both the strain energy and the displacement field of the structure due to
typical loadings contain pronounced higher order terms. These higher order terms have to be evaluated for the
system considered. Based on these terms, nonlinear static and dynamic governing equations were obtained in
which the generalized stiffnesses are depending on the forces applied to the structure. In principle, additional
higher-order mode components could be used for an even better reconstruction of the nodal displacement
field. The proposed method was applied to a beam-type structural model resembling a generic slender wing.
The static and dynamic results showed that the proposed method can acceptably reflect the geometrically
nonlinear deformation field which occurs at large bending deformations up to values of approximately 25 % of
the beam’s length. Static aeroelastic simulations show that the method surpasses the linear modal approach
by considering lateral forces in the solution which arise from inclined panels due to the deformation of the
wing.

However, different issues with the method require further studies. Mainly the question regarding how
a displacement and velocity dependent generalized mass matrix can improve the dynamic results. The
inclusion of follower-type forces and an incremental load solution approach will be done as next steps.
Further aeroelastic simulations with the method will be done with the focus on dynamic excitations due to
gust encounter. Also more complex models such as wingboxes discretized by plate-type FE elements will be
simulated with this approach.
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