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High-Order Output-Based Adaptive Simulations of
Turbulent Flow in Two Dimensions

Marco A. Ceze*and Krzysztof J. Fidkowski'
Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109, USA

We present output-based high-order adaptive results for several benchmark two-
dimensional turbulent-flow simulations. The discretization is a high-order discon-
tinuous Galerkin (DG) finite element method, and the equations solved are com-
pressible Navier-Stokes, Reynolds-averaged with a modified version of the Spalart-
Allmaras (SA) one-equation model. We study mesh refinement requirements through
automated output-based adaptation in which a discrete adjoint solution associated
with an output, e.g. the drag coefficient, weights a fine-space residual and automat-
ically selects the elements that need more resolution. The roles of high-order and
mesh anisotropy are also investigated. Finally, we investigate differences between
two mesh refinement strategies: hanging-node refinement of structured meshes ver-
sus metric-based remeshing of unstructured triangles.

I. Introduction

Although improvements in computing capabilities have made advanced computational fluid
dynamics techniques such as large-eddy simulation (LES) possible for a range of applications, the
Reynolds-averaged Navier-Stokes equations remain an invaluable tool routinely used in analysis and
design. Compared to LES, RANS simulations are much cheaper because they can take advantage
of anisotropic (stretched) computational elements that reduce the degrees-of-freedom required to
accurately resolve thin boundary and shear layers. This advantage is not always easy to realize,
in particular for high-order methods that require curved elements, which are difficult to keep from
tangling /inverting when stretched.

High-order methods for RANS suffer from additional debate and scrutiny: RANS solutions of-
ten possess singular features that do not lend themselves to high-order approximation, and RANS
modeling errors are generally viewed as dominant compared to numerical resolution (discretization)
errors that high-order would address. Regarding the latter point, our position is that both mod-
eling and numerical errors need to be estimated and controlled through methods appropriate for
each error. For instance, modeling errors may be addressed through an uncertainty quantification
study, and this study may require simulations with different model parameter settings but low
discretization errors to isolate the effects of the parameters on the model.

Regarding the former point of RANS solutions containing singular features, these features can
be isolated with a proper mesh adaptation technique: most flowfields will still possess large smooth
regions where high-order will be advantageous.! In particular, output-based methods?™® offer a
systematic approach for identifying regions of the domain that require more resolution for the
prediction of scalar outputs of interest. These methods also return error estimates that can improve
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robustness of solution verification and uncertainty quantification studies. It is for these reasons that
we consider output-based methods in the present study.

In this paper, we apply a high-order adaptive solution technique to several test cases modeled
with the two-dimensional Reynolds-averaged Navier-Stokes (RANS) equations, closed with a recent
modification of the Spalart-Allmaras (SA) one-equation model.® Many previous works have inves-
tigated the RANS-SA equations, including in a high-order adaptive setting.m’” 1% The majority of
the latter work has focused on demonstrating benefits of adaptive refinement and/or high-order
over uniform or heuristic refinement for such flows. These comparisons have been done in solely
structured and solely unstructured settings. The present work distinguishes itself in that we com-
pare both structured and unstructured mesh refinement techniques, and that we consider a set of
well-defined benchmark test cases with available previous (typically second-order) data.

The remainder of this paper is organized as follows. Section IT presents the RANS-SA equations,
and Section III discusses their discretization. Sections IV and V describe the output error estima-
tion and adaptation techniques, and Section VI presents results for the several benchmark cases
considered. Section VII concludes with a summary and a discussion of possible future directions.

II. Turbulence Model

We use the Spalart-Allmaras turbulence model, modified for stability for negative values of the
turbulence working variable, 7.5 The Reynolds-averaged Navier-Stokes (RANS) equations closed
with this turbulence model read

Op + 95(puy) = 0

8t(pui) + 8j(pujui +p(5ij) = (9]‘7'1']‘ (1)
Oy (pE) + 0j(pujH) = 0j(wimij — q5)

O(pr) + Oj(pujﬂ) = %aj (e + pﬂfn)ajﬁ] + C’ﬁpajﬂajﬁ +P—-D

where p is the density, pu; is the momentum, E is the total energy, H = F +% is the total enthalpy,

p=(y—1) (pE — %pukuk) is the pressure, v is the ratio of specific heats, and i, j index the spatial
dimension, dim. The Reynolds stress, 75, is

1 1
Tij = 2(,& + ,ut)EZ-j, €ij = 5(6116] + Ojuz) — §8kuk5U
w1 is the laminar dynamic viscosity, obtained using Sutherland’s law,

o (TN (Tt + T 2)
M = [ref Tror T+ 1T, )

where T is the temperature, and the eddy viscosity, g, is

1:77 pr—
0 7<0 Jo Bt X

NI

{ pifo >0 %
Ht =

The heat flux, ¢;, is given by
g = (k+ k)OiT, k= Cplu,/Pr’ ky = Cpﬂt/PTt

The production term, P, is

p_ cbls’pﬁ x>0
cnSpr x <0
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where the modified vorticity S is written as

S +§ g > _CUQS ~

2 T G —

54 Slapdtens) g g W22
(Cvg - QCUQ)S - S

1 X
fv2—1 1_'_va1- (3)

U
1

In Equation 3, S = /2€2;;€;; is the vorticity magnitude (summation implied on i, j), and Q;; =
%(@-vj — 0jv;) is the vorticity tensor. d is the distance to the closest wall. The destruction term,
D, is given by

w1 f '0—52 x>0 14 5.\
wlhJw® 15 = +c v
D= El2 ) fw:g<6 %3) ’ 9:T+Cw2(7”6_7”)7 r==55
pU g+ Sk2d?
—Cwl—y X <0
d
Finally, the coefficient f, in Eqn. 1 is 1 for positive 7 and
Cn1 + X3
fn=—"—=35, when x <0. (4)
Cnl — X
Relevant closure coefficients are
1
cp1 = 0.1355 Cywl = C% + + G2 o1 = 7.1
K o
cpr = 0.622 cw2 = 0.3 k = 041
o = 2/3 Cw3 = 2 Pry = 09
Chl — 16 Cy2 = 0.7 Cyp3 = 0.9
III. Discretization
We discretize Eqn. 1 using a discontinuous Galerkin (DG) finite element method.”!! Defining

the state vector as u = [p, pu;, pE, pv]T, we write Eqn. 1 in compact conservative form,
du+ V- F(u,Vu) + S(u,Vu) = 0, (5)

where F is the combined inviscid /viscous flux vector, and S is the source term associated with
the turbulence closure equation. We approximate the state as uy, € Vj,, where V;, is the space of
element-wise discontinuous polynomials of order p*. Multiplying Eqn. 5 by test functions v, € Vy,
integrating by parts on each element, and using the Roe!'? convective flux and the second form of
Bassi and Rebay (BR2)!3 for the viscous treatment, we obtain the following semilinear form:

Rp(up,vi) = 0. (6)

Note in Eqn. 1 and Eqn. 5 that the RANS source term depends on the gradient of the state.
For the present work we use an adjoint-inconsistent treatment in which the gradient is taken
pointwise directly from the polynomial solution approximation, without consideration of interface
jump contributions. Much of the DG discretization is standard; the sections below outline a few
practical details.

“this order may change from element to element in p-refinement
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ITII.A. Wall distance calculation

The wall distance, d(Z), required in the SA model is approximated on each element by a polynomial
of the same order, p, as the solution. The procedure for calculating d(Z) is brute force: Lagrange
interpolating polynomials are used, and at each node associated with a Lagrange polynomial in
every element, the wall distance is calculated. This calculation considers all of the boundary faces
associated with the walls in the domain. The distance to each boundary node is calculated to pre-
select the closest boundary faces. For each of these boundary faces, which are high-order/curved,
the wall distance is estimated by calculating the minimum distances to a set of facets obtained
by subdividing the high-order face into 2(Q + 1) linear segments. Although this distance function
calculation could be made more efficient, its cost is negligible compared to the flow solution.

ITII.B. Symmetry boundary conditions

Several test cases in the results call for symmetry boundary conditions. In the continuous limit,
symmetry requires vanishing normal state derivatives. A finite-dimensional solution will generally
violate these requirements pointwise, so that we enforce the BCs weakly. This enforcement involves
transforming the state and gradient, similarly to methods in previous works,'® though we construct
a state/gradient on the boundary instead of employing a ghost cell. Starting with the state, we
require that at a symmetry boundary all vectors in the state (e.g. a velocity) have their normal
components zeroed out. This results in a linear transformation from the interior (u™) to the
boundary (u®) state vector, which reads u? = Aut. A is the identity matrix for all states except
the momentum, which transforms as (pv)? = V(pv)*, where V. = I — 7 ® i = 6;; — nyn;. 7 is the
outward-pointing normal, and I = ¢;; is the dim x dim identity matrix.

The state gradient transformation must account for possibly nonzero normal velocity com-
ponents. We first consider a hypothetical ghost state (u™) and gradient (Vu™), obtained by
reflecting the velocity about the symmetry line. Specifically, u~ = Bu™, where B is an iden-
tity matrix for all states except the momentum, which transforms as (pv)~ = W (p?d)", where
W =1-2n®1mn = d;;j — 2n;n;. Note that B = 2A — I and that W = 2V — I. Differentiating
the expression for u™ in space gives the gradient, which we must reflect by applying W, so that
Vu~ = BVutW?. Finally, we obtain the gradient at the boundary, Vu®, by averaging the interior
and exterior gradients — this is consistent with what would happen in the viscous flux calculation
if there were actually a symmetrical mesh on the other side of the symmetry line. So we have

v’ = % (Vut +Vu) = % (Vu® + BVu™W’) = - (Vut + 2A —)Vu' 2V" - 1))

1
2
= Vur 4+ AVu (VT — 1) - Vu'V = Vu™i @ i + AVu™ (I — 271 ® 71).

ITI.C. Scaling of ©

The SA working variable, &, will generally be orders of magnitude smaller than the other state
components. Scaling or “non-dimensionalization” of 7 is used to make the stored values of & closer
to the other state components, which helps during the discrete linear solves and when using finite
residual convergence tolerances. Instead of pr we store pi/, given by

~ pv

)
RSAloo

where kg4 is a scaling factor, typically O(vV Re), and poo is the free-stream laminar dynamic
viscosity. In addition, the SA U equation is divided by kg pico-
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ITII.D. Implicit Solver

The system of nonlinear equations that forms the primal problem is solved using Newton’s method
with pseudo-transient continuation'® for improved robustness. Two versions of the solver are con-
sidered: (1) A relatively aggressive Courant-Friedrichs-Lewy (CFL) number evolution strategy in
which the CFL grows by a factor of 2 after each full Newton update, in combination with incomplete
Newton updates when certain physical quantities (e.g. density and pressure) change too drastically;
and (2) a more moderate CFL evolution strategy in which the increase factor is 1.2, but in which
the physical quantity changes are not limited; rather the line search prevents the residual from
growing too quickly and no update is taken if physical constraints are violated. Both strategies are
found to perform similarly for the present test cases. The linear systems at each Newton iteration
are solved with an element-line preconditioned'” GMRES solver.

IV. Output Error Estimation
Choosing a basis for the test space in Eqn. 6 gives a discrete system of nonlinear equations,
R(U) =0, (7)

where U and R, both in RY are, respectively, the state and residual vectors. For a scalar output,
J(U), we define the discrete adjoint vector, ¥ € RY, as the sensitivity of J to perturbations in
R.> The adjoint satisfies the following linear equation,

T T
<8R> v (a‘]> o, (8)
ou ou

We use the adjoint to estimate the error in an output when computing on a finite-dimensional
approximation space. Without access to infinite resolution, estimating the true numerical error in
an output is practically out of reach for general nonlinear problems. We thus restrict ourselves to
estimating the output error between two finite-dimensional spaces: a coarse approximation space
(Vi) on which we calculate the state and output, and a fine space (V},, obtained by incrementing

the approximation order by 1) relative to which we estimate the error. We would like to measure
the output error in the coarse solution relative to the fine space,

output error: §J = Jy(Ug) — Jp(Uy). (9)

We assume that the fine approximation space contains the coarse approximation space, so that
the following lossless state injection is possible, UhH = IhH Upy, where IhH is the coarse-to-fine state
injection (prolongation) operator. On the fine space, the exact solution Uj, € RV would give us zero
fine-space residuals, Ry, (Uy,) = 0. However, the state injected from the coarse space will generally
not be a fine space solution and hence will not give us zero fine-space residuals, Rh(UhH ) # 0.
Instead, the injected coarse state solves a perturbed fine-space problem, Ry, (U}) — Rh(UhH ) =0.
As this is just the fine-space problem with a residual perturbation, the fine-space adjoint, Wy,
tells us to expect an output perturbation given by the inner product between the adjoint and the
residual perturbation,

6J ~ —WIR,(UH), (10)

This derivation assumes small perturbations in the state when the output or equations are nonlinear.
Note that this error estimate does not require the fine-space primal solution, Uy,.
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V. Mesh Adaptation

The adjoint-weighted residual error estimate in Eqn. 10 can be localized to the elements by
keeping track of the contributions from each fine-space element, indexed by k below,

Ju(Un) = Jo(Up) = —¥[Ru(Uf) = > ¥fRu(UF)
k
= € = |‘I’£thk(UhH) s

where the subscript k indicates restriction to element k£, and the adaptive indicator €; is obtained
by taking the absolute value of the elemental contributions. This indicator then drives mesh
adaptation, the goal of which is to reduce the output error. We consider two adaptation strategies,
as outlined below.

V.A. Hanging-Node Quadrilateral Refinement

The first adaptation strategy used in this work is hanging-node refinement of an initially struc-
tured quadrilateral mesh.? 1118 In this strategy, a fixed fraction, f72¢, of elements with the highest
error indicators is flagged for refinement. For the present results, we only consider isotropic refine-
ment in which each quadrilateral is subdivided uniformly into four quadrilaterals, as illustrated in
Figure 1. This refinement is done in each element’s reference space by employing the reference-
to-global coordinate mapping in calculating the refined elements’ geometry node coordinates. The
refined elements inherit the same geometry approximation order and quadrature rules as the parent
coarse element. When curved boundary representations are employed, new nodes introduced on
the boundary are snapped to the geometry — this perturbation is usually very small for high-order
curved elements on the boundary, as these already approximate the geometry with high fidelity.
Elements created in a hanging-node refinement can be marked for h-refinement again in subsequent
adaptation iterations. In this case, neighbors will be cut to keep one level of refinement difference
between adjacent cells, as illustrated in Figure 1.

Figure 1. Hanging-node adaptation for a quadrilateral mesh, with a maximum of one level of refinement
separating two elements. The shaded element on the left is marked for isotropic refinement, and the dashed
lines on the right indicate the additional new edges formed.

V.B. Metric-Based Unstructured Remeshing

The second adaptation strategy used in this work is an unstructured metric-based remeshing ap-
proach on triangles, similar to that presented in previous work.'” The idea in this strategy is to,
at every adaptation iteration, create a new mesh using the current mesh and the error indicator.
During remeshing, the current mesh serves as a background mesh on which the desired metric field
is prescribed. The program used for the remeshing is the bi-dimensional anisotropic mesh generator
(BAMG).20

The first step is a calculation of the current metric field, computed as the grid-implied metric
on each element k,

Mg = (L Jf) ™, (11)
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where J,, € R4mxdim jg the Jacobian of the geometric mapping of the reference element to element
k. The eigenvalues of the metric are the inverse squares of the principal stretching magnitudes,
and the eigenvectors are the principal stretching directions. For curved elements, J; is evaluated
at the centroid of the element.

We assume a fixed-growth refinement strategy in which the number of elements desired on the
refined mesh is N/ = f8ovthNe where feo%th > 1 is the growth fraction and N€ is the current
number of elements. We relate the growth in elements to an error reduction factor through an
a priori estimate. In particular, we sum the error indicators on the current mesh to obtain a
conservative estimate of the current global error,

=) €. (12)
k

Assuming that, with adaptive refinement, the global error decreases at a rate of r (with h
N-Y dim) “wwe calculate the global error estimate on the refined mesh as

NC T/dlm
e‘f = eC <]\ff> . (13)

We would like the error to be equidistributed on the fine mesh, which means that every fine space
element should have an error of ef /N f. We now apply the a priori estimate to each element, and
we assume that for anisotropic elements the error depends on the shortest principal length, hy. The

resulting a priori relationship is
f R\
e c 1
Nk—=7 =€ | 7~ s (14)
N (h‘f>

where nj is the number (not necessarily an integer) of refined elements per current element k, h{ /hS§
are the shortest principal lengths on the refined /current meshes, and 7y, is a possibly element-specific
error convergence rate. We estimate the number of fine elements for coarse element k as

2

ns hg (h'f) AR]

np=—+-2== b (15)
W \nl) AR;

where AR/ /AR® are the desired/current aspect ratios on element k. Substituting Eqn. 15 into
Eqn. 14, we obtain an expression for the scaling of the shortest principal stretching length,

ﬂ: |:€flA]%C:|l/(rk+dim)
h§ Ny €¢ ARS

The desired aspect ratio on each element is calculated heuristically from the Hessian (second deriva-
tive matrix) of the Mach number scalar field.?"2?2 While only strictly applicable to linear approxi-
mations, we have found that the directions obtained from the Hessian correlate well with directions
obtained from approaches that use higher-order derivatives.'® More sophisticated approaches, such
as sampling refinement strategies,'” will be investigated in future work.

For the a priori convergence rates in the present work, we use r = rp, = p + 1, where p is the
solution approximation order. An exception is “outlier” elements: those whose error indicator €y is
larger than 5 standard deviations from the mean error. On these elements, we assume a first-order
rate, rp = 1.
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VI. Results

VI.A. Flat Plate, Rey, =5 x 10%, (L =1), M = 0.2

The first case we consider is turbulent flow over a flat plate. The geometry and boundary conditions
for this case are set according to NASA’s turbulence modeling resource website (Figure 2(a)). The
inflow and farfield values for the eddy viscosity are set to 3 times the value of the laminar viscosity,
as this value corresponds to a fully turbulent simulation. The laminar viscosity is calculated using
Sutherland’s law (Eqn. 2) with 75 = 110K and T = 300K. Figure 2(b) shows the initial mesh
used for this case.

Flat Plate Boundary Conditions,
M=0.2, Re_= 5 million (L=1}, T,,, =540 R

farfield Riemann BC
> ||~ PUP=1.02828, 0B 10
05 k- TUT, = 1.008, el
0.5 L 1 qugmlt, from interior IleUhrEnr\:lueannU“r“EE
symmetry adiabatic solid wall
or N
: start of plate at x=0
| T S SN SN TN TR N N SN Y SN T SN SN SN TN S MY WY SO A S S T
0% 0 0.5 T 15 2
X

(a) Boundary conditions for the flat plate case (b) Initial mesh for the flat plate case

Figure 2. Flat plate: initial mesh and boundary conditions.

We initialize the flow with uniform conditions at M = 0.2 and solve the discretized equations
with p = 2 to a residual tolerance of 10~%. The output of interest is the total drag on the plate, and
at each step of the hanging-node adaptation we select f2¢ = 10% of the elements with the largest
error indicators and refine them isotropically. We present a code-to-code comparison in Figure
3(a) of our simulation to the results from CFL3D and FUN3D, provided by NASA’s turbulence
modeling group. Note that the small difference in the computed drag is due to consistently lower
shear stresses shown in Figure 3(b). We observe very good agreement in the turbulent viscosity
distribution, Figure 3(c), with just a small discrepancy at the outer edge of the boundary layer.

-3

3 10
29710 6 0.025
.55
2.88f S s o CFL3D 0.02}
S £ o FUN3D
S @
8 286 g4s A p=2 0015}
=
8 g 4 -
o 284 B -
2 g5 0.0
= ]
° £ 3t
2.82r -E 0.005f
2.5r
28 ‘ ‘ ‘ ‘ ) ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘
0 0.005  0.01 0.015  0.02 0.025  0.03 0 05 1 15 2 0 50 100 150 200 250
h = (dof)%® x along the flat plate mu/mu,
(a) Drag convergence (b) Shear stress coefficient (¢) Turbulent/laminar viscosity ratio

Figure 3. Flat plate: drag convergence and comparison of skin-friction coefficient and turbulent viscosity
distributions (at z = 0.97 on the flat plate).

Figure 4 shows the final hanging-node adapted mesh for this case. Note that the adaptive
procedure targets the outer edge of the turbulent boundary layer where there is a rapid variation
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of eddy viscosity. The component of the drag adjoint correspondent to the SA variable shows large
negative values at the leading edge of the turbulent boundary layer (Figure 4(b)).

0.06

0.0003 St | | [

|__ABE | .

EddyViscosity: 5E-06 2E-05 3.5E-05 5E-05 6.5E-05

Drag_Adjoint_TurbNutil: -2.8 -2.2 -1.6 -1 -0.4
0.00025 “ ‘
|

l

0.05

0.04 0.0002

>0.03 0.00015
0.02 0.0001
il an
0.01 5E-05
0 8.01 0 0.01 0.02
X
(a) Eddy viscosity contours (b) Leading edge zoom

Figure 4. Flat plate: final drag-adapted mesh and field contours of eddy viscosity.

VI.B. Smooth Bump, Re =3 x 10%, M = 0.2

This is another verification case from the NASA turbulence modeling resource group. Reynolds
number Rey = 3 x 106 (L = 1) flow is simulated in a channel with a bump on the bottom wall.
Symmetry boundary conditions are used for the top and bottom of the channel, with the exception
of x € [0,1.5] on the bottom boundary, where an adiabatic wall boundary condition is applied. A
static pressure is imposed at the right (outflow) boundary, and total temperature, total pressure,
and angle of attack (zero) are prescribed at the inflow. Total/stagnation quantities are computed
using a Mach number of M = 0.2. The dynamic viscosity is computed using Sutherland’s law,
Eqn. 2, with Ty = 110K and Tef = 300K . The inflow turbulence eddy viscosity, p; is set to 3 times
the laminar viscosity.

/ \
— 1
/ \
(a) Initial quadrilateral mesh (b) Initial triangular mesh

Figure 5. Smooth bump: Initial meshes for hanging-node (quad) and unstructured (tri) metric-based adapta-
tion.

Initial structured and unstructured meshes for adaptation are shown in Figure 5. Adjoint-
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based adaptive runs are performed from these meshes using the drag force as the target output
and adaptive factors of f¢ = 0.07 and f&°"*" = 1.3. Figure 6 shows field plots of the wall
distance function and turbulent viscosity on one of the unstructured adapted meshes. Note the
heavy refinement in the boundary layer, an area to which the drag output is highly sensitive.

(a) Wall distance (b) Mach number

Figure 6. Smooth bump: wall distance and Mach number on an adapted mesh with p = 3 approximation. The
Mach number color range is 0 to 0.3.

As a code-to-code verification of the turbulence model, Figure 7 shows the pressure and skin
friction distributions compared to those of two other codes, CFL3D and FUN3D. Data for these
codes were obtained from the NASA turbulence modeling resource group. The agreement in both
of these quantities is very good — note that flow singularities at the leading and trailing edges of
the bump cause oscillations there.

8 X 10
1
7
0.8-| ——CFL3D 4 e
= ——FUN3D g 6
2 o6 —P=2 : 1 E
2 [
B 35
8 c ——CFL3D
o 2 al ——FUN3D
a g +p=2
8 T
< £3f
T =
]
2,
_ ‘ ‘ 1 ‘
0'40 0.5 1 1.5 0 0.5 1 1.5
X X
(a) Pressure coefficient (b) Skin-friction coefficient

Figure 7. Smooth bump: pressure and skin-friction coefficients for the final p = 2 drag-adapted triangular
mesh. Note sporadic pressure and skin friction spikes at the leading and trailing edges of the bump: the flow
exhibits singular behavior in these locations.

Figure 8 shows the convergence of the drag and lift coefficients with adaptive mesh refinement at
p = 2 solution approximation. In these plots, the degrees of freedom are measured as dof = N.n(p),
where N, is the number of elements and n(p) is the number of unknowns per element: n(p) = (p+1)?
for tensor-product approximation and n(p) = (p + 1)(p + 2)/2 for full-order approximation. Note
the rapid convergence of the drag and lift coefficients to their nearly asymptotic values, relative to
the second-order codes. The unstructured adaptive results show larger errors on the initial meshes
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because these are relatively under-resolved in the critical boundary layer region. However, after a
few adaptive iterations, the drag and lift “snap” to their asymptotic values.

-3

4510
’ 0.0255
4.3 —=-CFL3D |
- —o—~FUN3D 0.025
b5 —A—p=2, tri =
Q41 ——p=2, quad )
E P=29 3 0.02451
3 £
o 3
° = —=—CFL3D
3.7} | |-e-FUN3D
0.0235 —ap=2, 1l
——p=2, quad
3.5 - L ! | i ; ;
0 0.005 0.01 0.015 0.02 O'0230 0.005 0.01 0.015 0.02 0.025
h = (dof)™%® h = (dof)%®
(a) Drag coefficient (b) Lift coefficient

Figure 8. Smooth bump: drag and lift coefficient convergence comparisons for drag adaptation with p = 2,
using unstructured (tri) and hanging-node (quad) meshes.

Figures 9 and 10 show selected meshes in the adaptive refinement sequence. As expected, the
adaptive refinement targets the boundary layer region, where anisotropic elements are possible,
whereas most of the remainder of the flow is approximated with isotropic elements.

VI.C. NACA 0012, Re =6 x 105, M = 0.15

In this case we consider a NACA 0012 airfoil in Re = 6 x 10%, M = 0.15 flow. The dynamic
viscosity is computed using Sutherland’s law, Eqn. 2, with Ty = 110K and Ty = 300K. The
inflow turbulence eddy viscosity, u; is set to 3 times the laminar viscosity. Free-stream boundary
conditions are imposed at a farfield that is over 1500 chords away from the airfoil in each direction.

This case was run adaptively at p = 2 using hanging-node refinement of a structured initial
mesh, with drag as the target output and a fixed refinement fraction of f2° = .07. Figure 11 shows
the initial mesh and adapted results for & = 10°. The regions targeted for refinement include the
boundary layer, wake, and leading-edge stagnation streamline, where errors can have a large effect
on the drag output.

Figure 12 shows a comparison of pressure coefficient and skin friction distributions for o = 0°
and a = 10°. The comparison is made against data from CFL3D, and the results are in excellent
agreement: the curves are virtually on top of each other. Figure 13 shows the lift coefficient versus
angle of attack and drag polar for the adapted results. Again, excellent agreement with CFL3D
data is observed.

Finally, Figure 14 shows the convergence of the lift and drag coefficients with adaptive refinement
for two runs: o = 0° and a = 10°. We see that drag converges faster than lift, which makes sense
as we are adapting on the drag outputs. In addition, convergence slows with increasing angle of
attack, likely because the flow-field becomes more complex — e.g. the boundary layer on the upper
surface becomes thicker and requires more resolution. In all cases, for the last several adaptive
iterations, the outputs show little variation.
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(¢) Adaptation iteration 11

Figure 9. Smooth bump: Adapted meshes generated by unstructured metric-based re-meshing and p = 2
approximation.

(a) Adaptation iteration 1

(b) Adaptation iteration 6

(¢) Adaptation iteration 11

Figure 10. Smooth bump: Adapted meshes generated by hanging-node refinement and p = 2 approximation.
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(a) Initial mesh

(b) Adapted mesh for a = 10°

(c) Mach field (0-0.4) for oo = 10°

Figure 11. NACA 0012: Initial mesh, drag-adapted mesh, and Mach contours for o = 10°.
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Figure 12. NACA 0012: Pressure and skin-friction coefficient distributions for o = 0,10°, comparing the final

adapted mesh result with data from CFL3D.
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Figure 13. NACA 0012: lift coefficient versus angle of attack and drag polar, with comparison to CFL3D data.
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Figure 14. NACA 0012: Convergence of lift and drag coefficients with adaptive mesh refinement and p = 2, for
a = 0°,10°. Comparisons with fine-mesh CFL3D data obtained from the NASA turbulence modeling resource
group.
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VI.D. NACA 0012, Re =6 x 105, M =0.15, o = 10°

In this case we consider a slight variant of the previous test case for the purpose of verification
with detailed data made available by the NASA turbulence modeling resource group. The airfoil
is still a NACA 0012, with a closed trailing edge as prescribed on the NASA website. The farfield
is approximately 500 chords away from the airfoil, but the farfield geometry is constructed to
be consistent with the farfield geometry of the grids provided on the NASA website. No vortex
correction is employed on the farfield. The website also provides detailed conditions and setup
information on the case.

This case was run adaptively at p = 2 using metric-based triangular refinement of a relatively
coarse initial mesh. Drag is chosen as the target output and a fixed growth fraction of f&rowth — 1.3
is used. Figure 15 shows the initial mesh and adapted results. The regions targeted for refinement
include the boundary layer, wake, and leading-edge stagnation streamline. Figure 16 shows a
close-up of the leading and trailing edge regions for the 12" adapted mesh.
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Figure 16. NACA 0012, o = 10°: Close-up of the leading and trailing edges for the 12th adapted mesh in a drag
refinement sequence.

Figure 17 shows the convergence of the lift and drag coefficients with adaptive refinement. We
see that both coefficients agree well with the provided data obtained from the CFL3D and FUN3D
codes. The adapted values still show variation on the finest grids, and this variation could be due
to insufficient resolution (i.e. more adaptations needed) or to an inadequate measure of anisotropy
(currently based on the Mach Hessian) during mesh optimization. Future work will investigate the
precise cause and possible mesh efficiency improvements.
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Figure 17. NACA 0012, o = 10°: Convergence of lift and drag coefficients with adaptive mesh refinement and
p = 2, compared with FUN3D and CFL3D data obtained from the NASA turbulence modeling resource group.

Finally, Figure 18 shows the pressure coefficient off the bottom surface of the airfoil trailing
edge at x = 0.999¢. This pressure coefficient was obtained from a p = 3 run on the finest adapted
p = 2 mesh. Data from the FUN3D on a sequence of grids are overlaid. As shown, the pressure
coefficient is close to the fine grid data. It is possible that the drag-adapted mesh, even at an
increased approximation order, is not ideally-suited for predicting the off-body pressure coefficient
distribution. Adapting on the lift, which would be more sensitive to such pressure errors, could
give even better results.
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Figure 18. NACA 0012, a = 10°: Pressure coefficient profiles off the bottom surface of the trailing edge, at
x = 0.999c¢.

VI.LE. NACA 4412, Re = 1.52 x 105, M = 0.09, a = 13.87°

This test case consists of a NACA 4412 airfoil at high angle of attack, a = 13.87°, at Re = 1.52x 106,
M = 0.09. The dynamic viscosity is computed using Sutherland’s law, Eqn. 2, with Ty = 110K
and Tier = 297.8K. The inflow turbulence eddy viscosity, p: is set to 3 times the laminar viscosity.
Free-stream boundary conditions are imposed at a farfield that is over 1500 chords away from the
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airfoil in each direction.

This case was run adaptively using hanging-node refinement of a structured initial mesh, with
drag as the target output and a fixed refinement fraction of f2¢ = .07. Figure 19 shows the Mach
number contours, an adapted mesh, wall distance contours, and the xz-momentum component of
the drag adjoint. The regions targeted for refinement include the boundary layer and wake, but
also a large portion of the mesh in front of the airfoil, on the leading-edge stagnation streamline
— note that the adjoint exhibits rapid variation in this area, indicating that error sources near the
stagnation streamline can have a large effect on the drag output.

(a) Mach contours (0-0.25) and line probe (b) Adapted mesh

(c) Wall distance contours (0-0.5) (d) z-Momentum drag adjoint

Figure 19. NACA 4412: Mesh and field plots from adaptive simulation results.

Figure 20 shows velocity profiles along line probes extending roughly normal to the wall at
several locations on the aft portion of the airfoil upper surface. The mesh used for this comparison
was the final p = 2 adapted mesh (after 10 adaptive iterations), uniformly refined and with order
increased to p = 3 (a total of 140880 degrees of freedom). Experimental data are available at points
on these lines, as are data from other codes, including CFL3D; in this work, we focus on code-to-
code verification. Compared with CFL3D the horizontal and vertical velocities along the lines are
very close. The agreement is not exact, and the small differences could be due to variants in the
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SA turbulence model or to numerical errors. Note that while our data came from meshes adapted
to reduce the numerical error, only numerical errors affecting the drag output were targeted, so
that the velocity profiles could potentially not yet be converged.
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(a) Horizontal velocity profiles (b) Vertical velocity profiles

Figure 20. NACA 4412: Velocity profile comparisons for several wall-normal line probes on the aft portion of
the airfoil upper surface. “xflow” (the present code) data are obtained from a simulation on the final adapted
p = 2 mesh, uniformly refined and at order p = 3. CFL3D data are obtained from the NASA turbulence
modeling resource group.

Figure 21 shows the convergence of the drag and lift coefficients with adaptive refinement.
Though we only adapt on drag, lift is a similar output and exhibits good convergence too. We
see that the drag converges rapidly with indiscernible variations past h = .01, or 10000 degrees of
freedom for both p = 1 and p = 2 approximation. The lift takes a little longer, in part because of
higher sensitivity of the lift to refinement at the trailing edge and because we do not specifically
target the lift. For the drag, since we use an adjoint-based method, we have an output error
estimate (the adjoint-weighted residual) at each adaptive iteration. We can use this error estimate
to correct the drag — these corrected outputs are also shown in Figure 21. As we converge the
adjoint solution to high precision on the fine space, we obtain excellent error corrections: even with
p = 1 approximation, the corrected drag varies little after about 5000 degrees of freedom.

VII. Conclusions

We present a high-order output-based adaptive solution technique for the RANS equations
closed with a recent variant of the Spalart-Allmaras model, “SA-neg”. We use discontinuous finite
elements for the discretization and present key practical details relevant to the implementation.
The results compare two variants of the high-order adaptive solution technique to each other and
to standard second-order techniques in terms of accuracy versus degrees-of-freedom. Isotropic
quadrilateral-element adaptation using hanging-nodes and an anisotropic initial mesh is found to
yield similar asymptotic results compared to metric-based unstructured mesh refinement. Using
the easy-to-generate isotropic unstructured initial meshes considered, the unstructured adaptation
produced larger errors on the first adaptive iterations compared to hanging-node refinement with a
more meticulously tailored initial structured mesh. This result is expected given the higher-quality
of the initial structured meshes. The ability of the unstructured method to automatically “snap”
to the RANS mesh from an initially-isotropic mesh is a desirable capability, though it requires
robustness of the solver to under-resolution.
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Figure 21. NACA 4412: Convergence of lift and drag coefficients with adaptive mesh refinement for p =1 and
p = 2. Note, “corrected” results refer to subtracting the adjoint-weighted residual error estimate from the
measured output. Comparisons with fine-mesh CFL3D and FUN3D data obtained from the NASA turbulence
modeling resource group.

Relative to uniform refinement at second order, high-order adaptation is found to yield faster
convergence — the adaptive runs often quickly snap (close) to the correct solution in a few steps.
This comparison does not take into account the computational cost of the error estimation and
adaptation, which is primarily that of the fine-space adjoint solve. However, even though the
fine space involves an order increment, because the adjoint problem is linear whereas the RANS
equations are highly non-linear, the adjoint cost is less than (at most ~ 25%) that of the primal
for all cases considered. A topic for future studies, however, is a reduction in the cost of the primal
solve, which for our implementation is likely larger than that of the second-order methods for a
given error level.
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