
Integrator resetting for enforcing constraints in

aircraft flight control systems

Kevin McDonough∗ Ilya Kolmanovsky †

The University of Michigan, Ann Arbor, MI, 48109, USA

This paper proposes a constraint enforcement scheme based on resetting integrator
states in controllers employing integral action. Safe sets of initial conditions for closed-
loop systems with integral controllers are examined. It is shown that by appropriately
choosing the integral states, the response of the system can satisfy constraints for a much
larger set of plant initial conditions. A technique based on a solution of a constrained
optimization problem is proposed for resetting the integrator state. Simulation results
of applying this control scheme to aircraft longitudinal and lateral control are reported.
In addition, we consider another application of safe sets for the system with resettable
integrator states to plan constraint admissible transitions between aircraft trim points.

Nomenclature

O∞ A safe set with an LQ control scheme
I∞ A safe set with an LQ-I control scheme
∆z Deviation of a variable z from nominal value
U longitudinal component of aircraft airspeed in feet per second
α angle of attack in radians
q pitch rate in radians per second
θ pitch angle in radians
β sideslip angle in radians
p roll rate in radians per second
r yaw rate in radians per second
φ roll angle in radians
γ flight path angle in radians
h aircraft altitude in feet
δe elevator angle in radians
δT throttle position in percent throttle
δr rudder angle in radians
δa aileron angle in radians
X vector of plant states in nonlinear model
x vector of plant states of linearized model about a specific equilibrium
xI vector of controller states of linearized model about a specific equilibrium
x̄ vector of closed-loop plant and controller states of linearized model about a specific equilibrium

I. Introduction

Dynamic controllers are frequently used in aircraft flight applications. The states of such controllers can
be reset in order to enforce pointwise-in-time state and control constraints. In particular, the integrator state
in the basic Linear Quadratic-Integral (LQ-I) control scheme5 can be reset to guarantee that constraints are
satisfied. In this paper, we apply this integrator reset approach to discrete-time, linear aircraft models for
both the longitudinal and lateral dynamics.
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For a set of constraints, a safe set is defined as the set of all initial conditions such that the ensuing
closed-loop trajectory of the system does not violate the constraints. Such a set is positively-invariant.11,12

Previous work on safe sets examined initial conditions of longitudinal and lateral aircraft models in the loop
with an LQ feedback controller.7 In the current work, we investigate the same models augmented with
LQ-I controllers and demonstrate that the set of plant states for which the closed-loop response satisfies the
constraints can be enlarged if the possibility of resetting the integrator is taken into account.

We also propose a control scheme for resetting the integrator based on constrained minimization of
a Lyapunov function. Our integrator reset scheme is different from the feed-forward command governor
described in Kolmanovsky and Sun.3 In that work, feed-forward reset is used to improve performance while
adhering to constraints. In our case, we reset the integrator states to improve performance and ensure
constraint adherence.

Virtual reset absorbers have been proposed in Bupp et al1 (see also Haddad et al2). In that work, the
closed-loop system energy is reduced through the reset of specific parameters such as the states of a dynamic
compensator. However, that work does not consider constraints.

This paper is organized as follows. Section II presents the background and describes the integrator state
reset approach. Section III presents the aircraft model and demonstrates the increase in constrained domain
of attraction of the closed-loop system if the integrator state can be reset. This section also illustrates the
use of safe sets to plan safe transitions between trim conditions of the aircraft model. Section IV ends the
paper with concluding remarks.

II. Problem Statement and Development

In this section, the closed-loop system model, the definition of a safe set, and the method for integrator
state reset are presented.

A. Dynamic System

Consider the following discrete-time linear system, representing the closed-loop dynamics of a plant with an
LQ-I controller,

x(k + 1) = Ax(k) +Bu(k),

xI(k + 1) = CIx(k) + xI(k), (1)

u(k) = −Kx(k)−KIxI(k),

where x ∈ Rn, xI ∈ Rm, u ∈ Rp, and A, B, CI , K, and KI are matrices of appropriate size. This system
can be written in closed-loop form as

x̄(k + 1) = Āx̄(k), (2)

where

Ā =

[
A−BK −BKI

CI I

]
, (3)

and

x̄(k) =

[
x(k)

xI(k)

]
. (4)

B. Safe Sets

A safe set is the set of all initial conditions for (2)-(4) for which the ensuing closed-loop trajectory will not
violate constraints imposed on the system. Since (2)-(4) is a closed-loop system, the imposed constraints on
the system outputs can reflect either state or control constraints.

The constraints are given by
ȳ(k) ∈ YI = {ȳ : Ḡȳ ≤ f̄}, (5)

where ȳ(k) = C̄x̄(k) is the output of (2). The safe set is defined as

I∞ = {x̄(0) ∈ Rn+m : ȳ(k) = C̄Ākx̄(0) ∈ YI ,∀k ≥ 0}. (6)
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Note that I∞ contains safe combinations of the initial conditions for the plant states (the x(0) terms) and
for the integrator states (the xI(0) terms). Since constraints (5) are affine, and assuming hereafter that YI
is compact with 0 ∈ int YI , Ā is asymptotically stable, and (Ā, C̄) is an observable pair, it follows that I∞
is a convex polytope.8

C. Resetting the Integrator State

Since xI is the controller state, it can be reset to enforce the constraints and simultaneously reduce the
closed-loop energy of the system.

A natural selection for a cost function representing closed-loop energy is a Lyapunov function of the form

V (x̄(k)) = x̄T (k)P̄ x̄(k) (7)

where P̄ = P̄T > 0 and is the solution to the following discrete-time Lyapunov equation,

ĀT P̄ Ā− P̄ +QL = 0, (8)

with QL = QT
L > 0.

The value of xdesI (k) for the system (2) is found as a constrained minimizer of (7). That is, at a time
instant k,

xdesI (k) = arg min
xI(k)

x̄(k)T P̄ x̄(k), (9)

subject to x̄(k) ∈ I∞.

The ability to reset the integrator state online is dependent upon the computing capabilities of the
onboard microcontroller to be able to solve the quadratic programming problem (9) online or to store and
use its offline-generated explicit solution. The explicit solution can be generated using multi-parametric
programming techniques.

When resetting the integrator state according to (9), and assuming the closed-loop system is asymptoti-
cally stable, the stability of the origin of the closed-loop system is maintained.

Proposition: Suppose a feasible solution of (9) exists at k = 0. Then, a feasible solution also exists
at all future time instants k > 0, the constraints (5) are satisfied, and x̄(k) → 0 as k → ∞. The origin
of the closed-loop system with reset is asymptotically stable with the constrained domain of attraction
ProjxI∞ × Rm.

Proof : Suppose x̄(k − 1) ∈ I∞ is the state at the time instant (k − 1) after reset, where k ≥ 1. Let
x̄∗(k) = Āx̄(k − 1). By positive invariance properties8 of I∞, x̄∗(k) ∈ I∞ and (9) has a feasible solution,
namely x̄∗(k), at time instant k.

The optimal solution is x̄(k) and, using (7) and (8),

V (x̄(k)) ≤ V (x̄∗(k)) ≤ V (x̄(k − 1))− x̄T(k − 1)QLx̄(k − 1).

Thus for N > 1,

N∑
k=1

x̄T(k − 1)QLx̄(k − 1) ≤
N∑

k=1

(V (x̄(k − 1))− V (x̄(k))) ≤ V (x̄(0)). (10)

Since QL > 0, x̄(k) → 0 as k → ∞. The Lyapunov stability also follows from (10). At k = 0,
x(0) ∈ ProjxI∞ implies that a feasible x̄I(0) exists. Hence the domain of attraction is ProjxI∞ × Rm. �

To compare the constrained domains of attraction with and without integrator reset, we define the set

O∞ = I∞
⋂
{(x, xI) : xI = 0}. (11)

Clearly, O∞ ⊂ I∞.
Note that various modifications of the above scheme can be proposed. In particular, the reset can happen

at any time instant or at as many time instances as desired after the initial reset.
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III. Aircraft Examples

The following aircraft examples are generated using the NASA generic transport model (GTM).13 The
trim condition for which all of the following results are calculated is, h0 = 800 ft, U0 = 118.15 fps (70 knots),
β0 = 0 rad, γ0 = 0 rad, and ψ̇0 = 0 rad/s. The lateral continuous-time linear model at this trim condition is

∆̇β

∆̇p

∆̇r

∆̇φ

 =


−0.5229 0.0861 −0.9852 0.2374

−90.5885 −6.2736 2.0861 0

29.1873 −0.4833 −1.4043 0

0 1 0.0857 0




∆β

∆p

∆r

∆φ

 +


−0.0002 0.0031

−0.9174 0.2321

−0.0523 −0.4436

0 0


[

∆δa

∆δr

]
, (12)

and the longitudinal model is given by
∆̇U

∆̇α

∆̇q

∆̇θ

 =


−0.0665 −11.4608 0.1439 −32.1740

−0.0035 −2.4714 0.9514 0

−0.0090 −43.9070 −3.4738 0

0 0 1 0




∆U

∆α

∆q

∆θ

 +


−0.0435 0.1424

−0.0043 −0.0001

−0.7662 0.0192

0 0


[

∆δe

∆δT

]
. (13)

Discrete-time models are generated with a time step of Ts = 0.1 seconds. For the lateral model,

Clat
I =

[
0 0 0 1

]
, (14)

and for the longitudinal model, the integrator is applied to the error in flight path angle, γ = −α+ θ, thus

Clon
I =

[
0 −1 0 1

]
. (15)

The weighting matrices in the LQ-I problem were chosen as Qlat = diag[100 100 100 100 1], Rlat =
diag[100 100], Qlon = diag[100 100 100 100 100], and Rlon = diag[100 100]. Also, we chose QL = I in (8).

The constraints for the lateral linearized system in (5) are

−0.2618 ≤ ∆β ≤ 0.2618,

−0.2618 ≤ ∆p ≤ 0.2618,

−0.2618 ≤ ∆r ≤ 0.2618, (16)

−1.0472 ≤ ∆φ ≤ 1.0472,

−0.5236 ≤ ∆δa ≤ 0.5236,

−0.5236 ≤ ∆δr ≤ 0.5236,

where ∆β, ∆φ, ∆δr, and ∆δa are in rad and ∆p and ∆r is in rad
s . The constraints for the longitudinal

linearized system used are

−20 ≤ ∆U ≤ 20,

−0.0987 ≤ ∆α ≤ 0.1456,

−0.2618 ≤ ∆q ≤ 0.2618, (17)

−0.6981 ≤ ∆θ ≤ 0.6981,

−0.5236 ≤ ∆δe ≤ 0.5236,

−20 ≤ ∆δT ≤ 20,

where ∆U is in ft
s , ∆α, ∆θ and ∆δe are in rad, ∆q is in rad

s , and ∆δT is in percent throttle.
The constraints (16)-(17) are intended to reflect both actual plant and controller state constraints as

well as constraints which ensure that the linearized model remains accurate. Note that these constraints are
specific to the chosen trim condition.
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A. Resetting the integrator state initially to ensure state membership within I∞

The results presented in this section demonstrate that through resetting the integrator state, constraint
admissible transitions from a larger set of plant states are possible, i.e., the constrained domain of attraction
is enlarged. The initial conditions were originally selected as x̄(0)lat = [0, 0.15, 0.2, 0.50, 0]T and x̄(0)lon =
[4, 0.05, 0.1, 0.05, 0]T with both the lateral and longitudinal integrator states set to 0. The method
described in section II is used to calculate new values for the integrator state at k = 0 as xIlat = −11.9959
and xIlon = 5.0534. The integrator state is only reset initially in the simulations featured in this subsection.
Because O∞ and I∞ for these examples are, respectively, four and five dimensional polytopes, here and
thereafter projections of these polytopes onto two dimensions are used to convey the relevant information.

The results are reported in Figures 1-3. In Figure 1, a projection of I∞ is displayed in blue and a
projection of O∞ is displayed in purple. The green dashed line shows the closed-loop state trajectory of the
system with xI(0) = 0 for the lateral dynamics while the solid red line shows the trajectory with the reset
initial integrator state. Note the trajectory exiting the projection of I∞ is indicative of violation of at least
one of the constraints.

Note that I∞ is substantially larger than O∞. Note also that by resetting the integrator state, the
trajectory does not violate the constraints unlike the trajectory with the integral state set to zero. By
resetting the integrator state, a previously unsafe closed-loop response is now made safe.

Figures 2 and 3 show the trajectories of both the lateral and longitudinal closed-loop systems, respectively,
projected onto the planes of each plant state with the respective integrator state. In these Figures, I∞ is in
blue. Note that without the initial integrator state reset, the trajectory can exit I∞, indicating violation of
at least one of the constraints.

B. Repeatedly resetting the integrator state

The previous subsection described the benefit of resetting the integrator state at time instant k = 0. This
section demonstrates the benefit of resetting the integrator at each time step. The time step used in the
simulations is Ts = 0.1 sec and the initial conditions at k = 0 are the same as those used in the previous
section. Figures 4 and 5 show examples of the trajectories relative to O∞ and I∞ similar to what was
presented in Figure 1, however, the solid red line represents the trajectory with the repeatedly reset integrator
state where as the dashed green line represents the trajectory with the integrator state only initially reset.

Figures 6 and 7 are similar to Figures 2 and 3 in that they show the difference between the two methods
with respect to projections of I∞ on the plant and integrator states. Note that for each plot, the trajectory
resulting from repeated resets of the integral state produces a shorter path through the projected space.

Figures 8-11 show the state and control convergence, excluding the integrator state, for the different
trajectories. Note that in each of these four figures, by resetting the integrator state at each time step, the
states and control inputs converge more quickly to the origin. Note that the initial condition used for these
simulations is an element of I∞ but not an element of O∞.

C. Constraint admissible flight planning via I∞

In this subsection, we demonstrate that the safe sets, I∞, can be exploited for constraint admissible flight
planning. Towards this end, we consider their application to a longitudinal aircraft dynamics model. Note
that a longitudinal trim condition is uniquely defined by prescribing an airspeed, U0, flight path angle, γ0,
and altitude, h0. The basic approach is similar to references [7, 9, 10], however, distinguished by the use of
I∞ sets in delineating constraint admissible transitions.

Let X denote the absolute aircraft plant state and let Xi
eq represent a set of trim points (the so called

virtual net) that can be commanded to the aircraft fight control system. The two trim points Xi−
eq and Xi+

eq

are connected if Xi−
eq −Xi+

eq ∈ int ProjxI
i+
∞ . The constrained aircraft flight planning problem then reduces

to a graph search to identify a sequence of connected trim points leading from the initial trim state to the
final trim state.

The execution of the flight path proceeds as follows. Let i(k) ∈ {1, · · ·N} designate the index of the
currently commanded trim point. Suppose the operation is currently with the trim point index, i(k) = i−,
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i.e., the commanded trim point is Xi−
eq . At a time instant, k, we check if the condition[

X(k)−Xi+
eq

xI(k)

]
∈ Ii+∞ , (18)

where i+ = min{i− + 1, N}, can be satisfied by a selection of the integrator state, xI(k) ∈ Rm. If a feasible
solution exists, then the switch i(k) = i+ is made, resulting in an update to the current trim condition and
feedback control gains, while the integrator state is appropriately reset to the feasible value thereby found.
We note that I∞ sets used in the above procedure are based on local (linearized) models at various trim
points. Approaches to account for the effects of nonlinearities will be considered in the future work.

The following example illustrates this procedure. The desired transition is from an initial trim condition
of h00 = 800 ft, U0

0 = 151.90 fps (90 knots), and γ00 = 0.0873 rad (5 deg) to hN0 = 800 ft, UN
0 = 151.90 fps (90

knots), and γN0 = −0.0873 rad (−5 deg). This transition is not allowed initially due to imposed constraints.
However, if intermediate trim points are added with γ10 = 0.0698 rad (4 deg), γ20 = −0.0524 rad (3 deg),
γ30 = 0.0349 rad (2 deg), γ40 = 0.0175 rad (1 deg), γ50 = 0 rad (0 deg), γ60 = −0.0175 rad, γ70 = −0.0349 rad,
γ80 = −0.0524 rad, and γ90 = −0.0698 rad, thus N = 10, this allows for the desired transition to occur with
a constraint admissible trajectory.

Figures 12 and 13 show the state and control trajectories of this transition. Note that these Figures plot
absolute values of the states and the control. The red vertical dashed lines show at what time instants the
switch has occurred to a new trim condition. The first switch occurs at k = 0 as the aircraft begins its
transition from its initial trim of γ00 = 5 deg to the next trim of γ10 = 4 deg. Note that in these Figures, the
integrator state is reset at each time instant and this accounts for the vertical jumps in the integrator state
plot in Figure 13.

IV. Conclusions

The states of the dynamic controllers can be reset to increase the constrained domain of attraction for
the closed-loop system. While a single reset at the initial time only is sufficient to ensure constraints are
satisfied, repeated reset to minimize a measure of closed-loop energy given by a Lyapunov function can also
improve the speed of response while maintaining the closed-loop stability. In this paper, these ideas were
illustrated in the case of LQ-I controllers with integral action for the control of lateral and longitudinal
aircraft dynamics.

In principle, integrator reset techniques can be incorporated into other control architectures; the LQ-I
architecture was selected because it is well-established and frequently used in flight control applications.
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Figure 1: Projections of O∞ and I∞ onto the ∆p-∆φ plane and closed-loop trajectory of lateral dynamics
with and without integrator reset. Note that resetting the integrator state results in a trajectory that does
not violate constraints (which are projections of bounds of I∞ in this example). Also note that the projected
area of I∞ is substantially larger than O∞.
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Figure 2: Projections of I∞ onto different planes and closed-loop trajectories of the lateral dynamics with
and without integrator state reset.
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Figure 3: Projections of I∞ onto different planes and closed-loop trajectories of the longitudinal dynamics
with and without integrator state reset.
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Figure 4: Projections of O∞ and I∞ onto ∆p-∆φ plane and closed-loop trajectory of the lateral dynamics
with an initial reset of the integrator state and with repeatedly resetting the integrator state. Note that
repeatedly resetting the integrator state results in a shorter trajectory. Also note that the projected area of
I∞ is substantially larger than that of O∞.

10 of 19

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
14

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
5-

19
95

 



−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

∆U [ft/s]

∆α
 [r

ad
]

 

 
I∞

O∞

Initial Reset

Repeated Reset

Figure 5: Projections of O∞ and I∞ onto ∆u-∆α plane and closed-loop trajectory of the longitudinal
dynamics with an initial reset of the integrator state and with repeatedly reseting the integrator state. Note
that repeated resetting the integrator state results in a shorter trajectory. Also note that the projected area
of I∞ is substantially larger than that of O∞.
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Figure 6: Projections of I∞ onto different planes and closed-loop trajectories of the lateral dynamics with
an initial integrator state reset and with repeatedly resetting the integrator state.
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Figure 7: Projections of I∞ onto different planes and time histories of the longitudinal dynamics with an
initial integrator state reset and with repeatedly resetting the integrator state.
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Figure 8: Comparison of the convergence of the lateral control inputs for an initial only integrator state reset
versus repeated integrator state resets.
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Repeated Reset of Integrator
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Figure 9: Comparison of the convergence of the longitudinal control inputs for an initial only integrator state
reset versus repeated integrator state resets. Note the substantially quicker response with the repeatedly
reset integrator state in the throttle case (bottom).
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Figure 10: Comparison of the convergence of the lateral plant states for an initial only integrator state reset
versus repeated integrator state resets.
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Figure 11: Comparison of the convergence of the longitudinal plant states for an initial only integrator state
reset versus repeated integrator state resets.
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Figure 12: The time histories of aircraft states as the aircraft transitions through the selected trim points.
The transitions between selected trim points occur at time instants designated by vertical dashed lines
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Figure 13: The control input, reference γ, and integrator state trajectories as the aircraft transitions through
the selected trim points. Note the vertical jumps in the integrator state (bottom right) plot indicate the
integrator state reset. The transitions between selected trim points occur at time instants designated by
vertical dashed lines.
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