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A reduced-order model for unsteady aerodynamic calculations across a range of Mach regimes based on linear

convolution and a nonlinear correction factor is developed. Separate investigations are conducted for the sub-, trans-,

and supersonicMach regimes, andoverall good results are seenwhen reduced-ordermodel results are comparedwith

full-order computational-fluid-dynamics solutions, though the reduced-order model errors tend to decrease as the

Mach number increases. To assist reduced-order model construction, the method-of-segments simplified model has

been created and tested throughout these same Mach regimes. Finally, a practical example of the reduced-order

model’s applicability is presented by following a single test case from subsonic up through supersonic flight.

Nomenclature

Cd = drag coefficient
Cl = lift coefficient
Cm = moment coefficient
di = modal amplitude of ith mode
f�t� = arbitrary input
fc = correction factor
H�t� = unit step response
k = reduced frequency
Msim = freestream Mach number of test case simulation
Mstep = freestream Mach number used for step response com-

putation
Nsamp = number of kriging surface sampling points
yconv = uncorrected linear reduced-order model found via

convolution
ycorr = corrected reduced-order model response
ylin = steady linear response of a certain modal deformation
ynonlin = steady nonlinear response of a certain modal defor-

mation
α = angle of attack
δ = correction factor numerical offset value
_η = modal velocity
ω = natural frequency, rad∕s

I. Introduction

T HE flight envelope for aerospace vehicles will often encompass
a range of Mach regimes, thus adding distinct challenges to the

development of these vehicles versus those that will fly in much
smaller envelopes. For example, for hypersonic vehicles, many of
these challenges stem from the tight coupling of vehicle components,
including the aerodynamic, structural, and heating loads, engine, and
other factors at hypersonic speeds. Designing a controllable vehicle
at hypersonic conditions is a hard problem, but neglecting to consider
the performance of the vehicle at other, lower flight speeds may lead
to controllability issues before attaining hypersonic flight. Because of

this, it is vital to consider early on in the design process the con-
trollability of the vehicle, when modifications can still be made with
relative ease. In [1], a reduced-order model (ROM) of super/hyper-
sonic unsteady aerodynamics has been created to integrate within a
full six-degree-of-freedom hypersonic-vehicle controls-simulation
framework. Results obtained from this model have compared fav-
orably with full-order solutions at hypersonic speeds. The reduced-
order modeling methodology has been chosen due to its combination
of accuracy and computational efficiency. As in other ROMs, the
model extracts data from a limited number of upfront full-order com-
putational fluid dynamics (CFD) simulations and uses those data to
constructmodels that run in a computationally efficientmanner, up to
several orders of magnitude faster than the full-order solutions.
However, the controllability of an aerospace vehicle cannot be

assessed solely by considering its response at its highest-speedMach
regime.During the course of a single flight, the vehiclewill take off in
the subsonic Mach regime and accelerate through the transonic and
supersonic regimes on the way up to its maximum velocity. Each of
these regimes presents modeling challenges that must be accounted
for in the aerodynamic model, a sampling of which are shown in
Fig. 1. When conducting a controls simulation, it is desirable to use
only one single aerodynamic model throughout the course of the
entire simulation. This avoids the inevitable computational expense
of switching one model out for another at various times during the
simulation as well as the potential for increased model errors and
mismatches at the applicability boundaries of the individual models
when one model needs to be swapped out for another one. Thus, a
single aerodynamic model allows for a single representative form of
the aerodynamic loads to be used, thereby increasing the efficiency of
the entire simulation.
In this research, a convolution type of ROM [2,3] is selected due to

the ease of implementation within the CFD code framework as well
as the fact that it has previously been shown to perform well in
aerodynamic modeling applications. Convolution methods take
advantage of Duhamel’s integral to combine a system’s unit step or
impulse response with some arbitrary motion to calculate a quantity
of interest for a linear system. Along with Volterra series [4,5], which
is the nonlinear analog of convolution with the addition of higher-
order nonlinear terms, convolution-based methods have a rich
literature in terms of development and application to unsteady
aerodynamics. Early efforts to apply the Volterra series to aero-
dynamic problems include Baumann et al. [6], who used Volterra
series to compute aircraft flying quality parameters. In his Ph.D.
thesis, Silva [2] developed a method to calculate the unsteady
aerodynamic loads on a transonic airfoil using first- and second-order
Volterra series kernels obtained from CFD simulations. Then, a
framework was developed to transform the step/impulse responses
into a state-space reduced-order model of the system, in which a
certain output is a function of current and past system state variables
and system inputs; from this state-space representation, flutter results
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could be obtained [7]. In this framework, each elasticmode shapewas
considered separately, and so separate simulations needed to be
conducted for each individual mode shape. This issue can become
problematic when the number of mode shapes increases. To remedy
this problem, Silva [8] developed amethod for the construction of the
state-space system that permits the excitation of multiple mode
shapes in the course of a single CFD simulation, thus increasing
the computational efficiency by decoupling the number of CFD
simulations from the number of mode shapes under consideration.
Kim [9] and Kim et al. [10] have also researched methods to reduce
the number of CFD simulations through the use of a single composite
input composed of multiple system inputs for state-space system
construction. Gaitonde and Jones [11] developed a method for
computing a continuous ROMbased on CFD impulse responses, and
Allen et al. [12] validated the model against full-order solutions for
flutter boundary predictions for a two-dimensional airfoil/control-
surface combination. Singh and Baeder [13] computed indicial
responses to changes in angle of attack for a three-dimensional wing
and then used the solutions to build numerical databases.
As discussed previously, it is desirable for aROM to bevalid across

a range of flight conditions and not only in some narrow range
of Mach numbers or other parameters. Thus, research has been
conducted to investigate this issue for convolution/Volterra type of
ROMs. Lind et al. [14] used Volterra kernels from wind-tunnel test
data to compute state-space systems at several different flight
conditions, to which a model was then fitted to permit the calculation
of quantities of interest away from the specific flight conditions of the
test data. Prazenica et al. [15] extrapolatedVolterra kernels calculated
using flight-test data at certain flight conditions to other, different
flight conditions, resulting in a ROM valid for varying parameters.
Omran and Newman [16] used interpolation of Volterra series
submodels constructed at specific flight conditions to build global
piecewise Volterra kernels valid over a much larger range of flight
conditions. In another work, the same authors [17] used a nonlinear
parameter-varying approach consisting of local Volterramodels to be
able to account for strong nonlinearities over multiple aircraft flight
regions. Other efforts have investigated the numerical integration of
the state-space system itself. Silva [18] created a ROM valid over a
range of velocities by changing the numerical integration time step.
Skujins and Cesnik [1] focus on the development of the model

and how it overcomes the limitations inherent to convolution-type
ROMs presented in the literature as well as its specific application
to the hypersonic regime. This paper focuses on the application of
the model to the sub-, trans-, and supersonic Mach regimes. To start
with, the narrowMach-number region aroundMach 1, encompassing
the transonic regime, is considered. This regime is characterized by
the appearance and motion of shock waves as portions of the flow
reach Mach 1, thereby creating nonlinear flowfields and hence
further challenges when modeling the aerodynamic loads. Accurate
modeling here is important due to the various aeroelastic and
aerodynamic phenomena encountered, including the flutter transonic
dip as well as a significant increase in the drag as flight speed nears
Mach 1. Next, theMach range of interest is zoomed out to encompass
portions of the sub- and supersonic regimes. Finally, a more practical
example of ROMusage is given by considering one example test case
from subsonic up through supersonic flight.

II. Reduced-Order Model Formulation

The reduced-order modeling methodology used in this research is
described in detail in [1], and the ROM framework is displayed in
Fig. 2. The ROM itself combines linear convolution with a nonlinear

correction factor, which accounts for large geometric deformations as
well as flight conditions other than the specific set where the ROM
is constructed. A summary of the ROM highlights is presented here,
and the reader is referred to [1] for a more-detailed description.

A. Linear Convolution

The linear response of a system to an arbitrary input can be found
by combining the system’s unit step response with the derivative of
the arbitrary input f�t� through the use of Duhamel’s integral,
displayed as follows in a continuous-time sense [2,19]:

y�t� � f�0�H�t� �
Z
t

0

df

dt
�τ�H�t − τ� dτ (1)

where H�t� is the response of the system to a step input. The step
input is zero up through some initial time t0 and then 1 for every time
step thereafter. In a discrete-time sense, which is the form used in a
CFD framework, the integral and step input are as follows [2]:

y�n� � f�0�H�n� �
Xn
k�0
�u�n� − u�n − 1��H�n − k� (2)

Discrete Unit Step:

ustep�n� � 0; n < 0 ustep�n� � 1; n ≥ 1 (3)

Duhamel’s integral can also be written in terms of the system’s unit
impulse response, but the improvement of results with the step input
is observed and had already been noted by Raveh [20]. In general,
convolution can be thought of as a summation of scaled and shifted
step/impulse responses. It is this superposition of responses to find
the final response that makes convolution a linear concept. The final
result after the implementation of the convolution process is the linear
ROMresponse denoted as yconv. In thiswork, these step responses are
computed by conducting CFD runs in which a step input is given to a
specific mode shape of the geometry under consideration.

B. Nonlinear Correction Factor

Initial tests showed that the linear ROMwill generally decrease in
accuracy as the flight conditions and input amplitudes move away
from those used for the step responses, demonstrating the need for
some sort of correction term. To obtain the nonlinear corrected ROM
response ycorr, a correction factor fc is introduced. This quantity is
defined as the ratio between the steady linear (ylin) and nonlinear
(ynonlin) responses of a certain configuration due to the modal defor-
mations and flight conditions at a particular instant in time, that is,

fc ≡
ynonlin
ylin

(4)

Fig. 1 Sample hypersonic vehicle flight regimes.

Fig. 2 Overall ROM framework.
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To calculate ynonlin, allmodal input amplitudes are given to the system
simultaneously. The solution is allowed to run until a final steady
value is reached; this solution is taken to be ynonlin. To find ylin, each
modal amplitude is input to the system separately and allowed to
reach a steady value. ylin is then computed by summing the individual
solution values. Skujins and Cesnik [1] provide further details on the
procedures for calculating both ylin and ynonlin.
For a purely linear system, the correction factor value will be 1. In

certain situations, the individual responses used for ylin calculations
will sum to be equal to or very close to zero, resulting in a ylin value
approaching zero and hence an fc value approaching infinity. For
these situations, the definition is modified by the addition of an offset
term δ:

fc �
ynonlin � δ

ylin � δ
(5)

Note that δ is placed in the numerator as well as the denominator such
that a linear system will still have a correction factor value of 1.
With this correction factor definition in place, the corrected ROM

value ycorr is calculated by

ycorr � �fc�yconv �
�
ynonlin
ylin

�
yconv (6)

If an offset term is used, the definition becomes

ycorr � fc�yconv � δ� − δ (7)

This leads to the basic correction factor assumption that the ratio of
the steady response values at a particular time step t will be equal to
the ratio of unsteady response values at that particular time step,
namely

ynonlin
ylin

����
t

� ycorr
yconv

����
t

(8)

The errors between the ROM and full-order CFD simulation results
will characterize the validity of this assumption, as conditions
resulting in larger ROM errors will show likely areas where this
assumption breaks down.
Now that the correction factor has been defined, the challenge is to

find its value over the entire parameter space, which in this work
consists of modal amplitudes andMach number. To do so, individual
correction factor CFD runs are conducted to find the value ynonlin at
those particular points. Then, with these ynonlin values in hand, the
correction factor at each of those points is calculated. Finally, a
kriging [21,22] surface is constructed with these sampling point

values, which permits the correction factor value at any point in the
parameter space to be obtained.

C. Sampling Point Determination

To determine the best number and location of the correction factor
kriging surface sampling points, simplified models are used for this
process, which is shown in Fig. 3. First, an initial number of sampling
points is selected using Latin hypercube sampling [23]. Then, rather
than using CFD, the simplified model is used to calculate ynonlin at
each of these points. Next, a kriging surface is constructed, and an
additional point is placed at the location of the surface’s maximum
error location. The surface is reconstructed, the maximum error is
recomputed, and the process continues until some user-defined
stopping criterion has been met. Note that the simplified models are
used here due to the fact that the computational time to complete this
process using CFD would be large because the sampling points after
the initial Latin hypercube values are determined in a sequential
nature and thus cannot be computed in parallel, i.e., the (i� 1)th
sampling point cannot be determined until the maximum error for the
kriging surface with i points has been calculated.

1. Simplified Model Selection

The selection of the specific simplified model does tend to be
flight-regime specific. In [1], piston theorywas chosen for the studies
in the super/hypersonic Mach regimes. However, the lower-speed
flight regimes in this work are outside of piston theory’s applicability
boundaries. Thus, some other model needs to be selected. To fulfill
this need, the method of segments has been developed and is
presented next.

2. Method of Segments

The method of segments (MoS) is a simplified model that has
been been created to efficiently calculate correction factor values
at locations throughout the parameter space without requiring a
separate CFD run at each of the locations. The basic idea is that, when
thewing is in an elastically deformed position, it can be approximated
as a series of chordwise-rigid segments along the span that are at
different angles of attack, as shown in Fig. 4.
Because the correction factor methodology relies on the steady-

state coefficients after a certain modal deformation has been input,
the lift and drag at each of the chordwise segments along the span are
found through the use of steady rigid CFD simulations conducted at
varying angles of attack andMach numbers. Although the individual
segments will also undergo a plunge motion in addition to pitching
motion during elastic deformations, these plunge motions are
neglected here due to the steadiness of the CFD solutions being
found. The specific steps to the method, shown graphically in Fig. 5,
are as follows:

Fig. 3 Sampling point determination methodology.
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1) Divide thewing into chordwise segments along the span, which
are assumed to be rigid in the chordwise direction (e.g., the AGARD
445.6 wing has been divided into 11 of these chordwise-rigid
segments).
2)Conduct steady, rigidCFD runs throughout the parameter space,

which consists of Mach number and angle of attack. Note that one
CFD run herewill consist of finding the steady solution for one rigid-
body angle of attack at a specificMach number. From this run, the lift
and drag for each segment at those conditions is tracked. Thus, one
CFD run provides information regarding all of the segments. The
parameter space dimensionality will remain at two regardless of how
many modes are being considered. Because of this, the total number
of runs remains relatively low, and steady runs are computationally
cheaper than unsteady ones.
3) Track the lift and drag forces as well as the pitching moment on

each of the chordwise segments, taking into consideration the
spanwise width of each segment. Construct separate kriging surfaces
for the force and moment quantities at each of the segments. Steps 1–
3 are all performed upfront, before the ROM simulations.
4) For a certain wing deformation at a particular time step in a

simulation, calculate the local angle of attack at each wing segment.
5) Pick the lift, drag, and moment off the kriging surfaces for each

segment corresponding to the specific Mach number and local angle
of attack; sum them together to find the lift, drag, and moment for the
entire wing.
6) Calculate the coefficients for thewing. These values can then be

used to formulate the correction factor for that particular set of
parameters.
The accuracy of MoS is the subject of several investigations

presented later in this paper.

D. Reduced-Order Model Process

The overall ROM process is shown graphically in Fig. 2. To begin
with, two separate sets of inputs are given to the ROM. The first are

the structural mode shapes of the vehicle or geometry under
consideration. These mode shapes are used for both types of CFD
runs for model construction. The first type is the modal step input
runs, inwhich the step response for eachmode shape is found through
an individual CFD simulation. The second type ofCFD runs are those
used for correction factor computations. Because themode shapes are
known a priori, all CFD runs can be completed upfront; thus, once the
model has been constructed, the full-order solutions are removed
from the ROM loop, allowing the model to run orders of magnitude
faster than if the full-order solutions were still required during the
simulation.
The next inputs are the modal amplitudes and flight conditions,

given at each time step during the simulation; the ithmodal amplitude
di is given in terms of multiples of the unit step input amplitude used
for linear convolution. These modal amplitudes are convolved with
themodal step input runs to give the linear, uncorrected ROM results.
Then, the nonlinear correction factor is added to give the final,
correctedROMresults. In this work, the outputs are the time-accurate
coefficients; however, other quantities, such as the generalized
aerodynamic forces (GAFs), could be used as well with the exact
same ROM framework.

E. Reduced-Order Model Variations

To assess both the ROM methodology itself as well as the full
potential of MoS, four different ROM variations have been
constructed, as shown in Table 1. Rather than simply being limited to
sampling point determination, two of these ROMs use MoS to
directly compute the correction factor values used for the ROM. The
first ROM, denoted from here on as ROM A, takes advantage of the
relative computational efficiency of MoS by directly calculating
the MoS correction factor value at each time step throughout the
simulation without the computation of any correction factor kriging
surfaces. Thus, this ROM eliminates any uncertainties based on the
kriging surface fit of the data. The secondMoS-based ROM, denoted

Fig. 5 Method-of-segments process.

Fig. 4 AGARD wing divided into segments.
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ROM B, is created by first generating an initial number of sampling
points in the Mach number-modal amplitude parameter space via
Latin hypercube sampling. Using MoS, the correction factor at each
of these points is found, and a kriging surface is computed. Next, the
sampling point procedure from [1] is implemented by finding the
location of the surface’s maximum error through the use of the built-
in MATLAB predictor function [22]. Then, an additional point is
placed at this location, the surface is recomputed, and the maximum
error is recalculated. Thewhole process is repeated until the stopping
criterion is met. ROM A can be thought of as the limit of ROM B if
infinite sampling points are used. Figures 6 and 7 show schematics
highlighting the differences between ROMs A and B.
The next ROM considered here, ROM C, is calculated using the

same sampling points as in ROMB, but the correction factor values at
each point are computed using individual direct CFD simulations
rather thanMoS. Its schematic is shown in Fig. 8 and differs from that
of ROMB by replacingMoS block with CFD simulations. Note that,
in actuality, ROM C consists of fewer sampling points than ROM B.
This is due to CFD code limitations because some of the runs at
higher modal deformations ran into numerical issues and thus did not
produce results. Finally, ROM D consists of the linear ROM yconv
found using linear convolution and superposition.

F. Selection of Step Response

One final item that needs to be discussed is the selection of the step
response to use for yconv when calculating the ROM response. In
reality, one will not have an unlimited number of step responses to
choose from; thus, in general, the Mach number of the simulation,
Msim, will not be equal to the Mach number of the step response,
Mstep. The results sections provide several studies of this problem,
investigating ROM errors as Msim moves away from Mstep. Two
methods have been developed for finding the best final ROM
response in the presence of multipleMstep values, shown graphically
in Fig. 9. Method 1 uses a weighted average of the two ROM
responses computed using the next higher and next lower Mstep

values. Method 2 simply uses the ROM response computed from the
closest value ofMstep to that particular value ofMsim. Note that, for
cases whereMstep � Msim, the methods are identical. Figures 10 and
11 show block diagrams for methods 1 and 2, respectively, outlining
how they would be implemented in a full simulation framework. For
method 1, the weighted average of two ROM responses is passed
back to the simulation framework, whereas for method 2, the
response from the closestMstep is passed back. Note that among the
main differences in the methods is the fact that two ROM
computations are necessary for method 1 because individual ROM
responses must be calculated at each of two Mstep values, whereas
only one such calculation is necessary for method 2.

III. Numerical Studies Overview

The ROM methodology in the subsonic through supersonic
regimes is assessed by comparing ROM results with full-order CFD
simulations consisting of prescribed sinusoidal modal oscillations of
each mode of interest in a particular problem. To begin with, specific
focus is given to the Mach number range from 0.9 to 1.1, which
encompasses the transonic regime near Mach 1. For cases near
Mach 1, mixed sub- and supersonic flow is present, which adds
nonlinearities to the flowfield. Then, theMach range is zoomed out to
encompass separate subsonic and supersonic Mach ranges, from
Mach 0.3 to 0.9 and 1.1 to 3.0, respectively. The final set of results
shows a more practical application of the ROM, investigating the
ROM’s errors over a single test case from Mach 0.3 up through 3.0,
including the transonic regime. Finally, a discussion about ROM
computational cost is included. Before the results are shown and
discussed, however, the geometry, CFD solver, and errormetrics used
in this work are described.

A. AGARD 445.6 Wing

The geometry upon which these test cases are performed is the
AGARD 445.6 wing [24], which has been used in wind-tunnel
aeroelastic tests as well as for computational aeroelastic studies
[20,25–28]. A structured CFD grid has been obtained from NASA

Table 1 ROM variations

ROM fc calculation Comment

A MoS Direct calculation of fc at each time step using MoS
B MoS/kriging Points placed at location of maximum surface error
C CFD/kriging Mostly the same sampling points as ROM B
D N/A Linear ROM yconv

Fig. 6 Schematic for ROM A.

Fig. 7 Schematic for ROM B.

Fig. 8 Schematic for ROM C. Fig. 9 Diagram for ROM calculation methods.
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Langley Research Center and has dimensions of 65 × 193 × 41, with
the i direction being along the span, j direction along the chord, and k
direction normal to thewing surface. Figure 12 shows the grid as well
as a zoomed-in figure of the wing itself. Oscillations of the first three
elastic mode shapes of the wing are considered. These mode shapes,
shown in Fig. 13, are the same that have been used in other studies as
well [29,30]. Note that, for each mode shape, the unit step input
corresponds to amaximumwing deflection of just around 0.1%of the
span (3.5% of the root thickness).
The AGARD 445.6 wing has a very thin cross-sectional geometry,

with a maximum root thickness of about 4%. Because of this, the
onset of transonic effects, signaled by the presence of mixed sub- and

supersonic flow, will be delayed until very close to Mach 1 in
comparison with other, thicker airfoils. Evidence of mixed flow can
be found by looking at the pressure contours over the wing because
the transonic shockwaveswill cause pressure rises along the chord of
the wing. Figure 14 shows the nondimensional pressure and Mach-
number contours along the top half of thewing in steady flow atMach
0.9889 and zero angle of attack; note that the pressure values of
Fig. 14a are nondimensionalized in such away thatp∞ � 1∕γ, where
γ is the ratio of specific heats and equals 1.4. The presence of a shock
on the airfoil can be seen from the sharp pressure increase in the
chordwise direction along all spanwise stations of the wing, along
with the corresponding decrease from supersonic to subsonic Mach

Fig. 10 Block diagram for method 1 implementation.

Fig. 11 Block diagram for method 2 implementation.

Fig. 12 AGARD 445.6 wing.
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numbers for this inviscid solution. To fully assess the ROM as the
Mach number approaches 1, results are obtained from simulations
both from within this relatively narrow band of transonic effects,
which are first seen typically forMach numbers as low as around 0.98
and from a wider range of values from Mach 0.9 to 1.1.
An additional note needs to be given regarding the performance of

the ROM for situations with transonic flow and moving shocks. For
other geometries, these transonic effects will be observed in a wider
Mach range than the AGARD 445.6 wing, and so it is important to
consider how these nonlinearities affect the ROM. Moving shocks
create significant nonlinearities in localized regions of a wing.
However, when these nonlinear pressure distributions are integrated
over the entire wing to find the force and moment coefficients, the
nonlinearities are softened to a degree. It is not the goal of the ROM to
determine the exact shock location on the airfoil or the exact pressure
distribution, rather the integrated force and moment quantities.

B. Computational-Fluid-Dynamics Reference Solutions

TheCFD code used in this study is CFL3Dv6, developed at NASA
Langley [31]. The code is capable of solving theEuler/Navier–Stokes
equations for both steady and unsteady flows on two- and three-
dimensional structured grids and has mesh-deformation capability.
For the unsteady simulations, the CFD code inputs are modal
deformations, in the form of step inputs or sinusoidal inputs, de-
pending on the type of run being conducted. Grid velocities are
derived from these modal inputs. For example, if a step input of
amplitude a is given to a particular mode at time step n0 and Δt is
the time step being used, the grid velocities _η are calculated as
[30,31]

_η�n� �
�

a
Δt for n � n0
0 for n ≠ n0

(9)

Fig. 13 AGARD 445.6 wing mode shapes.

Fig. 14 Contours on AGARD 445.6 wing, Mach 0.9889, α � 0.
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The response quantities are the lift, drag, and moment coefficients,
though the generalized aerodynamic forces (GAFs) could also be
chosen.All of these quantities are directly output by theCFL3Dcode.

C. Error Metric

The error metric used to judge the accuracy of the ROM is the L1

error. First, the mean absolute difference between the ROM and CFD
results at each time step is found, and this difference is normalized by
the range spanned by the CFD results. For a simulation over N time
steps, it yields

L1error �
1
N

P
N
i�1�jyROM;i − yCFD;ij�

max�yCFD� −min�yCFD�
× 100% (10)

where yROM;i and yCFD;i are the respective ROM and CFD response
values found at time step i, and the denominator represents the
difference between themaximumandminimumvalues found over all
time steps of the ROM response.

IV. Method-of-Segments Testing

The first set of results to present is a basic test of the accuracy of the
MoS simplifiedmodel. For these tests, lift and drag coefficients found
with MoS are compared with those found with direct CFD
simulations for the same sample cases. A total of 40 test cases in each
of the Mach number ranges from 0.9 to 1.0 (denoted the subsonic
runs) and 1.0 to 1.1 (supersonic runs) is selected. The various

parameter ranges for these sample cases are shown in Table 2. The
MoS kriging surfaces themselves are computed using a total of 152
sampling points arranged in a lattice-type pattern in each of the sub-
and supersonic portions of the overall Mach-number range consi-
dered here. The tip and root segment drag force kriging surfaces are
shown in Fig. 15; the black dots represent the values found at each of
the sampling points using CFD, corresponding to step 2 in the MoS
procedure outlined previously. Table 3 shows the results of the
comparison; themeanL1 errors are under 5% for the lift coefficient in
each of sub- and supersonic ranges, whereas the drag coefficient
mean errors are under 6%. These results demonstrate the potential of
the method for use in error estimation and ROM correction factor
sampling point determination.

V. Results near Mach 1

The first results presented are those for test cases near Mach 1,
within the Mach range of 0.9–1.1. The first CFD test cases for ROM
assessment here can be divided into several different sets. The first
consists of single modal oscillation test cases and is subdivided into
amplitude and frequency tests, in which all parameters except for
amplitude and frequency, respectively, are held constant. A sense of
how the ROM errors vary with increasing values of these two
parameters is presented.
Next, the ROM is extended tomultiple modes of oscillation within

this same Mach regime. To construct the ROM, the sampling point
determination methodology along with the MoS simplified model
described previously are used here. Correction factor kriging surface
sampling point coefficient values are obtained both through direct
CFD computation as well as MoS and compared to one another to
determine the accuracy of the simplified model and thus its
applicability to the problem. Finally, full-order CFD solutions are
compared to ROMs constructed with both MoS and CFD-calculated
correction factor values.

A. Single-Mode Tests

The first set of investigations consist of characterizing the
applicability of the ROM methodology to oscillations of the first
mode only. The first items to consider are the ranges of parameters,
including Mach number, oscillation amplitude, and oscillation fre-
quency, to use during testing; these ranges are selected to be those
shown in Table 4. The corresponding kriging surfaces, shown in
Fig. 16, are constructed for the correction factors corresponding to
each of the lift, drag, and moment coefficients. Because of the
relatively large gradients around Mach 1, separate surfaces are

Table 2 Method-of-segments testing parameters

Parameter Minimum Maximum

M 0.9 1.1
d1 −60 60
d2 −40 40
d3 −40 40

Table 3 Method-of-segmentsL1 (%) errors over 40

test cases (mean/standard deviation)

Subsonic Supersonic

Cl 4.18∕2.39 4.23∕3.27
Cd 5.60∕5.20 5.90∕5.81

Fig. 15 Method-of-segments kriging surfaces, tip and root segments, Mach 1–1.1.
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constructed for sub- and supersonic Mach numbers. Also, because
the AGARD 445.6 airfoil is symmetric, negative amplitude lift and
drag coefficient values are simply the opposite of and the the same as,
respectively, those found for the corresponding positive amplitude,
thus reducing the total number of CFD runs required. A total of 81
sampling points, found using Latin hypercube sampling of the
parameter space, is used for the subsonic kriging surface, whereas 63
points are used for the supersonic surface. An offset value δ of 106 is
used. However, note that, in the plots of Fig. 16, smaller δ values are
used as indicated; this is done to emphasize the difference of the
correction factor values compared to unity.

1. Amplitude Tests

To test the accuracy of the ROM as the amplitude of oscillation
increases, sinusoidal oscillation test cases are generatedwith constant
Mach number and oscillation frequency but varying oscillation
amplitude. These tests are repeated for both Mach 0.9 and Mach 1.1.
For each test, two ROMs are constructed, one with the step input
computed atMach 0.9 (Mstep � 0.9) and the other with a step input at
Mach 1.1 (Mstep � 1.1); the oscillation frequency is ω1 � 9.6 Hz.
The results from each of the two ROMs for tests at Mach 0.9 (dashed
lines) are compared to uncorrected ROM results (solid lines)
in Fig. 17.
Figure 17 shows that, while the correction factor ROM shows

improved agreement with the CFD results for the lift and moment
coefficients, the overall errors seen for both the corrected and
uncorrected ROMs are relatively small. Also, the expected result is
observed in which the ROMs having equal step response (Mstep) and
simulation (Msim)Mach numbers generally have lesser errors, though

errors for all correction factor ROMs here are small, under 5%. One
interesting feature of Fig. 17c is the fact that the uncorrected ROM
errors for Mstep � 1.1 decrease with oscillation amplitude. For a
qualitative picture of this, consider Fig. 18, which shows the
comparisons for the moment coefficient at amplitudes of 5 (Fig. 18a)
and 100 (Fig. 18b). Initially, the stepMach number of 1.1 results in an
overprediction of peak moment coefficient values at lower ampli-
tudes. However, as the oscillation amplitudes increase, this over-
prediction lessens, resulting in lesser error values. Finally, looking at
the drag coefficient results in Fig. 17b, the uncorrectedROMdoes not
match well at all with the CFD solution data; to visualize these large
errors, a qualitative comparison of the drag ROMs at an amplitude of
100 is shown in Fig. 19, in which the uncorrected ROM peaks are
significantly smaller than those from the corrected ROM and CFD
results.
Figure 20 shows the results for the tests conducted at Mach 1.1.

The overall trends and errors are similar to those seen at Mach 0.9,
though rather than themoment coefficient, the lift coefficient shows a
decrease in error with increasing amplitude for the uncorrected ROM
results forMstep ≠ Msim.

2. Frequency Tests

To investigate the accuracy of the ROM as oscillation frequency
increases, tests are conducted at constant Mach number and
oscillation amplitude but with oscillation frequencies ranging from
ω1 (9.6 Hz) to 5ω1. As with the amplitude tests, these tests are
repeated for both Mach 0.9 and Mach 1.1, and oscillation amplitude
is held constant at 20. These parameters result in reduced frequencies
ranging from 0.06 to 0.29 forM � 0.9 and 0.05 to 0.24 forM � 1.1.
Also, for each value of Msim, results from ROMs constructed with
Mstep � 0.9 and 1.1 are given. The results, displayed in Figs. 21 and
22, show that the errors do increasewith oscillation frequency. This is
likely due to the increased unsteadiness inherent with increased
reduced frequencies combined with a steady correction factor
formulation. Also, for the most part, the ROM in cases where
Mstep � Msim performs better than the ROM in cases where
Mstep ≠ Msim. The only exception is the drag coefficient for the tests

Table 4 Single modal oscillation parameter values

Parameter Minimum Maximum

M 0.8 1.2
Amplitude −100 100

Frequency, Hz 9.6 48

Fig. 16 Kriging surfaces for mode 1.
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with Msim � 1.1, for which the ROM calculated with Mstep � 0.9
has slightly lower errors, though the errors for eachROMincrease at a
very similar rate.
For a more qualitative comparison, Fig. 23 shows the lift and drag

comparisons for the test case corresponding to a frequencyof 4ω1 and
Msim � 0.9. For the lift coefficient, each of the twoROMsmatchwell
with the CFD results. For the drag coefficient, two sources of error
can be seen. First, a slight amplitude discrepancy has developed.
Second, a phase shift is observed between the ROM and CFD
results.
To investigate this phase shift, the fast Fourier transform [32] is

computed for both the ROM and CFD results for each set of runs
shown in Table 5, and the phase difference between the two responses
is calculated. Figure 24 shows the lift, drag, and moment coefficient
results for two separate series of results conducted at Mach 0.9 and
Mach 1.1. Note that, for these tests, a single-mode ROM is used in
which the correction factor is calculated through the use of a kriging

Fig. 17 Amplitude tests, Mach 0.9.

Fig. 18 Cm results, Mach 0.9,Mstep � 1.1.

Fig. 19 ROM–CFD comparison, Mach 0.9, amplitude � 100,
Mstep � 0.9.
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Fig. 20 Amplitude tests, Mach 1.1.

Fig. 21 Frequency tests, Mach 0.9.
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surface with sampling points computed using direct CFD simu-
lations.
For each of the two sets of results, the drag coefficient shows a

greater phase difference over the range of frequencies than the lift and
moment coefficients, though this increase is more pronounced for the
Mach 0.9 tests. This shift may be the result of a slight ROM–CFD
offset in time that is being manifested as an increasing phase

difference with increasing oscillation frequency. Because of this
overall phase difference increase with frequency, when looking at a
specific test case, it is recommended to run a sample simulation at the
highest frequency expected to be encountered and evaluate how the
error fits in with the error tolerances for the problem.

3. Single-Mode Tests in Mixed Flow

The final item to discuss regarding the single-mode results is
the specific performance of the ROM in cases with mixed flow. To
investigate this, additional amplitude and frequency tests are con-
ducted for Mach 0.99; the other parameters for the tests are the same
as thosementioned previously. Figures 25 and 26 show the amplitude
and frequency test results, respectively, for this study; note that
Mstep � 0.99 for these cases as well. Similar trends are seen here as

Fig. 22 Frequency tests, Mach 1.1.

Fig. 23 ROM–CFD comparisons for ω � 4ω1, Mach 0.9.

Table 5 ROM phase shift test parameters

Test M Mstep d1 ωmin, rad∕s ωmax, rad∕s k range

1 0.9 0.9 20 60.3 5ωmin � 301 0.06–0.29
2 1.1 1.1 20 60.3 5ωmin � 301 0.05–0.24
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compared to the amplitude and frequency tests conducted at Mach
0.9 and 1.1. The corrected ROM errors remain small over the entire
range of amplitudes, whereas the uncorrected drag ROM results have
the largest errors by far. For the frequency tests, lift and moment
coefficient errors remain small, whereas the drag errors increase. To
obtain a more qualitative sense of the errors, consider Fig. 27, which
shows the ROM–CFD comparisons for the test cases corresponding
to the nondimensionalized frequencies of 1 and 4 in Fig. 26. In
addition to the slight phase shift as observed in previous frequency
tests, an amplitude discrepancy develops as well for increased
oscillation frequencies. However, the addition of extra kriging
surface sampling points near the maximum modal amplitude in this
run of 20 would likely help remedy this discrepancy. Overall, the
single-mode tests in the mixed-flow transonic regime show similar
results to the other Mach numbers considered.

Fig. 24 ROM–CFD phase shift.

Fig. 25 Amplitude test, Mach 0.99.

Fig. 26 Frequency test, Mach 0.99.

Fig. 27 ROM–CFD comparisons, frequency test cases, Mach 0.99.
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B. Multimodal Tests

To investigate the ROM’s applicability to multiple modes of
oscillation, the first three modes of oscillation of the AGARD 445.6
wing are considered.MoS, described previously, has been selected as
the simplified model to use to assist in ROM construction.

1. Multimodal Oscillation Results

The goals of applying theROMmethodology tomultiplemodes of
oscillation of the AGARD wing are twofold. The first goal is to
characterize the overall errors seen from the ROM, as has been the
goal of the other sets of results discussed here. The second goal is to
investigate the accuracy of a ROM constructed with the correction
factor values calculated using MoS versus a ROM constructed with
those same values computed with full CFD simulations. The
preceding section demonstrated the potential for the method to
calculate individual coefficient values, but now the challenge is to
demonstrate whether or not it can be applied to the full ROM. With
these goals in mind, the ROMs listed in Table 1 are all computed for
these tests; Table 6 lists the number of correction factor kriging
surface sampling points used for each ROM. Note that each ROM is
constructed twice, once for Mach numbers less than 1 (Mach 0.9–1)
and once for Mach numbers greater than 1 (Mach 1–1.1). All
correction factor ROMs tested here use δ � 100.
Results obtained from these four ROMs are compared to a total of

100 full-order CFD simulations with sinusoidal oscillations of the
first threemodes of theAGARD445.6wing; half of these cases are in
the subsonic portion of theMach regime (Mach 0.9–1), and half are in
the supersonic portion (Mach 1–1.1). For the subsonic test cases,
Mstep � 0.9 is used for ROM construction, whereasMstep � 1.05 is
used for the supersonic cases. Table 7 highlights the ranges of the

various parameters used for these tests. Note that the frequency range
is chosen such that the minimum value corresponds to ω1 �
60.3 rad∕s, and themaximumvalue corresponds to slightly over 5ω1.
Figure 28 shows both the L1 and L∞ drag coefficient error results

for each of the four ROMs listed in Table 1. The bars show the mean
value of each of the error metrics over all 100 runs, whereas the error
bars show the standard deviations.
For the twoMoSROMs, ROMA shows a slight improvement over

ROM B for each of the error metrics, decreasing the mean L1 error
from around 11.5 to 9.8% and the L∞ error from around 30% to just
over 27%.This is to be expected due to the fact that ROMAcalculates
the MoS correction factor value at each time step, whereas ROM B
obtains the correction factor value from a previously constructed
kriging surface. Next, ROM D clearly performs the worst, with L1

andL∞ errors of around 32 and 99%, respectively. This demonstrates
that the linear ROM is not suitable to model the drag coefficient.
Finally, ROMCperforms the best in terms of each of the errormetrics
when compared with the linear and MoS-based ROMs. For a better
illustration of these comparisons, the ROM and CFD results for a
number of specific test cases are shown in Figs. 29 and 30; the
parameters and errors for these runs are listed in Table 8.
In general, graphically speaking, two main sources of error can be

seen. Figure 29a displays the results for test 1,which has the highestL1

error for ROM C over all runs. Qualitatively, relatively large
discrepancies can be seen between each of the ROMs and the CFD
results. However, when looking at the total range spanned by the drag
coefficient response value, it is relatively small. This is further
illustrated in Fig. 29b, which shows the ROM–CFD comparisons for
test 2, which has some of the smallest error values out of all test cases.
In addition to the ROMs for that test case, the values from test 1 are
superimposed on the plot with the green lines. As can be seen, though
the errors for test 1 are larger than those for test 2, the range spanned by
the response of test 2 is much larger. This shows that some of the large
error values are due to small ranges spanned by the response quantity,
resulting in small denominators in the error metric equation [Eq. (10)]
and hence larger error values. Note that, for test 1, the unexpected
result of ROM A having a larger error than ROM B is observed. This
appears to be the result of a slight constant offset introduced by ROM
A for this particular case that has been magnified due to the small
ranges of coefficient values spanned in the simulation.
For the second source of error, consider Fig. 30, which shows test

cases having error values right around the mean. In these cases, the
largest source of error appears to be amplitude discrepancies between
the ROM and CFD results. In many situations, the predictions from
ROM C tend to overpredict peak drag coefficient values, resulting
in some error, whereas the peak comparisons for the MoS-based
ROMs vary.
In addition to the drag coefficient, lift coefficient results for these

same test cases are found as well, and the mean errors and standard
deviations can be found in Fig. 31. These results are strikingly
different from those found for the drag coefficient and show twomain
points. The first is that the errors for each of the ROMs are relatively

Table 6 ROM kriging surface sampling points

Sampling points

ROM Subsonic Supersonic

A N/A N/A
B 1011∕1011 1011
C 990∕992 992
D N/A N/A

Table 7 Parameter ranges for sinusoidal test cases,
AGARD 445.6 wing

Parameter Minimum Maximum

M 0.9 1.1
d1 −50 50
d2 −35 35
d3 −30 30
ω, rad∕s 60.3 350
k 0.05 0.29

Fig. 28 Cd error results over 100 test cases.
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small, under 6% for the meanL1 error for ROMC. The second is that
the best agreement is found between ROM D (linear) and the CFD
results, and each of the correction factor ROMs give slightly higher
errors. This suggests that, for these test cases, the linear ROM is
sufficient to model the lift response. The higher errors for the
nonlinear correction factor ROMs (A–C) likely result from the fact
that the addition of the nonlinear correction factor inherently results
in some approximation errors. When looking at quantities like the
drag coefficient, which are very nonlinear, the application of the
correction factor, despite these approximation errors, still greatly
improves the results and shows a significant decrease in error over the
linear ROM.However, when the system itself can bewell modeled as
linear, these approximation errors in the application of the nonlinear
correction factor result in a slight error overhead, thus increasing the
errors in this case over the linear model. Figure 32 shows the ROM–

CFD comparisons for test cases 3 and 4 from Table 8, in which the
improvement of results with the purely linear ROM over the
nonlinear ROMs can be seen. For ROM C, the introduction of the
correction factor generally results in a slight overprediction of peak
lift coefficient values, resulting in larger error values. The results for

the pitching moment are found to be similar in nature to the lift
coefficient results in that ROMD is a good predictor of the response.

2. Mixed-Flow Results

As beforewith the single-mode tests, an important item to evaluate
is theROM’s performance formultimodal oscillations in the presence
of mixed transonic flow. To do so, consider the specific test cases out
of the 100multimodal oscillation test cases that are in theMach 0.98–
1 mixed-flow transonic regime for this wing. In all, 10 cases fall into
that range. The mean L1 errors and error standard deviations of these
cases for each coefficient are shown in Table 9. The results show that
the mean drag error for these specific cases is slightly higher than for
all of the cases, whereas the lift mean error is comparable. To get a
qualitative sense of where the errors are coming from, consider
Fig. 33, which shows the ROM–CFD comparisons for the lift and
drag coefficient for a sample case, dubbed here as case T1, having a
drag error approximately that of the mean value for these mixed-flow
cases; the parameters for this run are shown in Table 10. The main
differences that can be seen between the ROM and CFD results for
each coefficient are peak discrepancies. TheROMresults overpredict

Table 8 Test case parameters and errors

Cd errors: L1∕L∞

Test M d1 d2 d3 ω1, rad∕s ω2, rad∕s ω3, rad∕s ROM A ROM B ROM C

1 0.98 −11.1 3.30 −4.20 109 289 541 36.2∕68.4 12.7∕30.3 15.9∕35.0
2 0.91 25.2 −29.2 5.80 158 274 492 5.11∕17.3 6.26∕22.9 3.63∕12.1
3 0.94 28.4 −9.00 −22.4 137 269 557 9.90∕29.1 12.0∕30.9 6.14∕25.8
4 0.96 13.4 −23.7 21.3 180 245 379 3.77∕14.0 4.58∕16.1 6.92∕29.3

Fig. 29 Example test cases, large and small Cd errors.

Fig. 30 Example test cases, mean Cd errors.
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the peak amplitude values, resulting in some error for these test cases.
Although theROMresults still show overall good agreementwith the
CFD solutions for the mixed-flowMach range, a priori knowledge of
the location of this range for a specific geometry would aid in
identifying the regions within the parameter space where nonlinear
transonic effects are prevalent. Additional correction factor sampling
points may be required to reduce errors in those locations.

VI. Subsonic and Supersonic Results

The next set of results zooms out from the narrow band of Mach
numbers around Mach 1 and examines the ROM’s applicability over
a broader range of Mach numbers and Mach regimes. The AGARD
445.6 wing would be expected to fly up through the low supersonic
Mach regime, and so the Mach numbers up to these low supersonic
values comprise the parameter space considered here. In these results,
two specific Mach number ranges are considered: Mach 0.3–0.9
(denoted the subsonic range) and Mach 1.1–3.0 (denoted the
supersonic range). For these tests, as with the previous multimodal
test cases, an offset δ value of 100 is used for ROM construction.
The test cases themselves for these results consist of defining

25 sets of modal parameters (both amplitudes and oscillation
frequencies) and conducting simulations for all of those modal
parameters at each one in a specific range of Mach numbers. The
modal parameters are obtained through Latin hypercube sampling,

and the parameter space for these runs is displayed in Table 11. A
number of different goals are accomplished through this analysis.
First, these results allow for the error of themethodology in general to
be analyzed as a function of Mach number, as the same modal
parameters will be tested at different Mach numbers. This way,
potential conclusions of the range of the ROM’s applicability can be
deduced. Next, the effect of separation between the simulation Mach
number Msim and the step response Mach number Mstep will be
examined. Third, the applicability ofMoS to theseMach regimeswill
be studied. Finally the effect ofNsamp on the results will be quantified
by comparing ROM errors with correction factor kriging surfaces
constructed with anywhere from around 100 sampling points to just
over 500 sampling points. Note that, except for the results specifically
showing these Nsamp comparisons, the maximum number of 500+
sampling points are used for the correction factor kriging surfaces.
Also, the ROM results shown here are equivalent to ROM C from
Sec. V, in which the correction factor values have been computed
directly through individual CFD simulations.

A. Drag Coefficient Results

The first plot to consider is Fig. 34, which shows the mean drag
coefficient errors over all cases in which the step response Mach
numberMstep is equal to the simulationMach numberMsim. Note that
each data point on the plot is the mean of the 25 sinusoidal test cases
conducted at that particular Mach number, and the error bars
represent one standard deviation.
Several items become apparent by looking at the plots. First, in the

subsonic Mach range, the errors decrease significantly as Mach
number increases, falling from just over 16% at Mach 0.3 to just
under 5% for Mach 0.9. Along with the mean values, the spread in
error values decreases as well, a fact that can be seen by the reduction
in standard deviationvalues.Next, after a slight decrease in error from
the Mach 1.1 value, the supersonic Mach range errors are relatively

Fig. 31 Cl error results over 100 test cases.

Fig. 32 Example test cases, Cl errors.

Table 9 Results for mixed-flow transonic cases

Coefficient L1 error, % Standard deviation, %

Cl 4.86 0.78
Cd 9.78 2.41
Cm 5.73 0.60
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constant, hovering at just around 3%. These values are, in general,
smaller than the subsonic values, again pointing to an increase in
ROM accuracy with increasing Mach number.
In practice, the values forMsim in general would not be expected to

be equal to Mstep. Because of this, it is necessary to investigate the
ROM errors for each of the simulations at a particular value ofMsim

that have been calculated using a range of Mstep values. Figure 35
displays the mean errors and standard deviations for each value of
Msim for ROMs that have been calculated at each of the values of
Mstep. For example, consider the valueMsim � 0.5. To calculate the
corresponding data point in Fig. 35a, ROMs need to be computed for
each of the 25 sinusoidal simulations conducted at Msim � 0.5 for
Mstep � � 0.3 0.5 0.7 0.9 �, which gives a total of 25 × 4 � 100
ROM–CFD comparisons. The errors from these 100 comparisons are
then used to compute the mean value and standard deviation data in
the figure.
In general, the trends seen in Fig. 35 are similar to those observed

in Fig. 34. The errors decrease with Mach number in the subsonic
range, and the supersonic errors are smaller than the subsonic errors.
A slight increase in error with Mach number is seen in the higher
Mach numbers of the supersonic range, even climbing higher than the
Msim � 1.1 error, but the overall error values remain small, with
mean values under 6% in all cases.
The last item to visualize for the drag coefficient errors is how the

errors change with Mstep. Consider Fig. 36, which shows the errors
for each value ofMsim as a function ofMstep. Each data point in this
plot is computed by calculating the mean error over all 25 runs
conducted at a specified value ofMsim using a constant value ofMstep.
For the subsonic Mach range shown in Fig. 36a, the errors remain
fairly constant for each value ofMsim over the range ofMstep. Also, as
seen previously, the errors decrease with Mach number, with all data
points for Msim � 0.9 having the smallest error at each Mstep value
and all data points atMsim � 0.3 having the largest.
However, the supersonic results in Fig. 36b show different trends.

First, all values of Msim follow the same progression of decreasing
error asMstep increases except forMsim � 1.1, which remains fairly
constant over the range. Next, the greatest value ofMsim, 3.0, has the
largest errors in general over the Mach range, except for the two
highest values of Mstep tested, where the constant value of the
Msim � 1.1 error is the largest. In general, for a specific value of
Mstep, the error decreases asMsim is reduced, which is the opposite of
what is seen in Fig. 36a. This result may be a function of how far apart
Msim andMstep become in some circumstances. The spread of Mach
values in the supersonic range tested is larger than the spread in the

subsonic range. For example, when an Mstep value of 1.1 is used to
calculate the ROM for anMsim value of 3, the difference between the
two is 1.9 Mach number units, which is over twice the entire span of
the subsonic Mach range. This would also explain the different trend
seen for Msim � 1.1. As Mstep increases, the Msim −Mstep gap is
constantly increasing. For all other cases, asMstep increases, the gap
is either decreasing or decreasing at first before increasing. This
suggests the expected result that the errors will eventually increase as
Mstep moves away fromMsim.

B. Lift Coefficient Results

The next series of results shows the lift coefficient results for these
test cases. Consider first Fig. 37, which shows the lift coefficient
errors for test cases in whichMsim � Mstep; it corresponds to Fig. 34,
which shows the drag coefficient results over the same cases. The
main item to note is that the errors for the lift coefficients are much
smaller than those for the drag, with a maximum mean error in the
subsonic range of under 3% and in the supersonic range of under
1.5%.Also, the supersonic errors are smaller than the subsonic errors,
continuing the trend seen from the drag coefficient results.
Next, consider Fig. 38, which shows the lift coefficient ROM

errors in which the ROMs at each value ofMsim have been calculated
using each of the different values of Mstep. This corresponds to the
drag coefficient results shown in Fig. 35. Unlike the drag coefficient
results, the lift coefficient errors do show a significant increase over
the errors calculated using only Msim � Mstep, increasing to
maximummean error of around 7% for the subsonic cases and 3% for
the supersonic cases. Taking a closer look at Fig. 38a, the errors are
largest for the extreme values of Msim and smallest for those in the
middle of the range. This result makes sense when looking at it in
terms of the gap between Msim and Mstep. As has been shown
previously, the ROM errors will eventually increase as Mstep

continues to move away from Msim; thus, the errors in general will
increasewith increasingMsim −Mstep gap. The values ofMsim on the
edges of the Mach range will have the largest mean values of this
Msim −Mstep gap because some of the ROMswill be calculated using
anMstep value at or near the other edge of the range. However, values
in the middle will have lower Msim −Mstep gap values due to the
central location. As a result of this, theMsim values in the middle of
the Mach range in the plot have the lowest errors.

Table 10 Parameters for case T1

Parameter Value

M 0.9963
d1–3 35.3, −18.8, −10.7
ω1–3, rad∕s 75.1, 244.0, 474.7
L1 error (Cl, Cd, Cm), % 4.45, 9.43, 5.25

Fig. 33 ROM–CFD comparisons for case T1.

Table 11 Parameter ranges for subsonic/supersonic
test cases

Parameter Minimum Maximum

M (subsonic/supersonic) 0.3∕1.1 0.9∕3.0
d1 −50 50
d2 −35 35
d3 −30 30
ω, rad∕s 63 350
k (subsonic/supersonic) 0.06∕0.02 1.02∕0.28
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Fig. 34 Drag coefficient errors forMsim �Mstep.

Fig. 35 Drag coefficient errors forMsim using all values ofMstep.

Fig. 36 Drag coefficient errors as functions ofMstep.

Fig. 37 Lift coefficient errors forMsim �Mstep.
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This trend of lift coefficient errors being a function ofMsim −Mstep

gap can be further seen by examining Fig. 39, which is the lift
coefficient plot corresponding to the drag results displayed in Fig. 36.
As before, each data point corresponds to the mean error of all test
cases at a specific value ofMsim with a ROM constructed at a certain
value ofMstep. In Fig. 39a, the data point with the least error for each
of the values ofMsim is either found atMstep � Msim or, for cases in
which an exact corresponding value of Mstep is not calculated, very
close to that value. The trend continues in the supersonicMach range
for all points in Fig. 39b as well.
The trends and error values of the moment coefficient reflect those

of the lift coefficient for these test cases and thus are not pre-
sented here.

C. Effect of Kriging Surface Sampling Points

The final item to investigate is how the errors change with the
number of sampling points. Consider Fig. 40, which shows the drag
coefficient errors for each value of Msim in both the subsonic
(Fig. 40a) and supersonic (Fig. 40b) ranges as functions of the
number of sampling points used in correction factor kriging surface
construction. For this plot, the ROM–CFD comparisons at each value
ofMsim are made for each value ofMstep. For a point of reference, the
rightmost values on the plots, corresponding to over 500 sampling
points being used, are the same values as plotted in Fig. 35.
The data do not show any significant decrease in errors from the

fewest to most sampling points for the subsonic range. Slight initial
decreases are seen for the values of Msim ≤ 0.5 as the number of
sampling points increases up to around 300 before leveling off. For
the supersonic range, slight error decreases again are seen over the
sampling point range. An uptick in the errors is seen at just over 200
sampling points. One possible explanation for this is that the kriging
fit for that particular set of parameters caused some type of
undulations in the kriging surface that is not seen in reality. However,

despite that uptick, the errors for the supersonic range remain smaller
than the subsonic range in general.
Next, consider Fig. 41, which shows the lift coefficient results for

the same cases as shown in Fig. 40. For the subsonic range, the errors
are essentially constant across the sampling point values considered.
Slight initial error decreases are seen in the supersonic cases until
around 300 sampling points before the errors level off; the general
trends seen for the lift coefficient reflect those observed for the drag
coefficient for this case in each of the supersonic and subsonic Mach
ranges.

VII. Example Case over Entire Mach-Number Range

It is now important to showhow thismethodology canbepractically
applied to a specific example test case spanning a wide range ofMach
numbers. This section evaluates the ROM’s performance over the
entire span of Mach numbers that have been tested for the AGARD
445.6 wing, from Mach 0.3 to Mach 3. In doing so, the first set of
results from near Mach 1 has been integrated with these test cases. In
practice, one will not have access to an unlimited number of step
responses to use for each different value ofMsim. Thus, some method
must be chosen for how to best deal with values of Msim that fall
somewhere between the different values ofMstep.
For this section, suppose that the values ofMstep found in the first

row of Table 12 are the only values for which step responses are
available. The goal is to compute ROM results having the least error
possible for theMsim values found in the second row of Table 12. The
test cases used here are the same as those used in results presented
previously, where, for each value ofMsim, 25 separate simulations are
conducted. These 25 test cases have the same modal amplitudes and
oscillations for each value ofMsim (the parameter space is shown in
Table 11), and so the only variation among the tests at different Mach
numbers isMsim. Each data point in the following results represents
the mean L1 error value over all 25 cases.

Fig. 38 Lift coefficient errors forMsim using all values ofMstep.

Fig. 39 Lift coefficient errors as functions ofMstep.
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For each test case, the ROM is calculated using bothmethods 1 and
2, which determine the value(s) of Mstep to use when Msim ≠ Mstep

and were depicted previously in Figs. 9–11. All ROMs in this section
use kriging surface sampling points calculated directly from CFD
simulations (ROM C). The lift, drag, and moment coefficient results
of the tests are shown in Figs. 42–44, respectively, fromwhich several
important points can be gathered. First, the lift and moment results
show very similar trends in that the errors generally increase asMsim

moves away fromMstep. The exception to this is the method 1 errors
in the subsonic Mach range, which remain relatively steady between
Mstep � 0.3 and Mstep � 0.9. To see what happens when another
value ofMstep is added, consider Fig. 42b, in whichMstep � 1.7 has
been added to the list of available step responses (the results in
Fig. 42a contain only theMstep values in Table 12). As can be seen,
this greatly reduces the error in the supersonic Mach range for each
method. In terms of the methods, method 1 (weighted averages)
seems to be equal to or better thanmethod 2 inmost situations. This is
most strikingly seen in the subsonic range around Mach 0.6, where
themethod 2 error is just above 8% for the lift coefficient,whereas the
method 1 error is down to just over 2%; the corresponding moment
coefficient errors at the same location for each of the methods are
around 9% and 3%, respectively. Next, an error spike can be seen for
both the lift and moment coefficients aroundMach 1, in the transonic
regime. Even though the errors do spike, they are still relatively small
at just over 5%. Also, given the nonlinearities present within the
transonic regime, a good recommendation would be to have as many
values ofMstep as feasible within this region.
The drag coefficient results differ in trends from the other two

coefficients. Each of the two methods performs similarly throughout
the Mach range, and less sensitivity is seen to Mstep −Msim

difference. The addition of anotherMstep value of 1.7 (Fig. 43b) does
slightly improve the errors in the supersonic Mach range, though
errors were already low to begin with (∼5%). The results also show
that the ROM generally improves in accuracy with Mach number
because theMach 0.3 results show the highest errors. Finally, as with

the lift and moment coefficient results, an error spike is seen around
Mach 1 in the transonic region, though errors here remain well below
the errors at the low end of the Mach-number parameter space
aroundM � 0.3.
Overall, both methods performed reasonably well, though method

1 is shown to have generally smaller errors for the lift and moment
coefficients. For the drag, both methods perform very similarly. Thus,
the recommendation for the method of constructing ROMs for
situations where Msim ≠ Mstep is to use method 1. However, one
potential advantage of method 2 over method 1 is computational
expense. As mentioned previously, whereas method 2 only requires
the computation of one ROM response, method 1 requires the
computation of two responses to find theweighted average. In general,
the ROM is computationally cheap to compute, and thus this may not
be a significant issue. However, if a situation arises in which a very
large number of ROM responses will need to be computed, the
increased efficiency ofmethod 2may need to be considered. Finally, a
brief word must be given as to how these methods would extend to
higher-dimension flight condition parameter spaces. For example,
what happens if altitude is considered as well? In this case, method 1
could extend to be the result of a weighted function of the responses
from the nearest predetermined number of step response parameter
values within the multidimensional parameter space; further work
would be required to identify the optimal method for doing so. For
method 2, one could still find the nearest set of step response
parameter values by calculating the Euclidean distances from the
simulation parameters to the various sets of nearby step response
parameters.

Fig. 40 Cd errors as function of number of sampling points.

Fig. 41 Cl errors as function of number of sampling points.

Table 12 Mach values for example case

Parameter Values

Mstep 0.3, 0.9, 1.05, 1.1, 3.0
Msim 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.7, 2.0, 2.5, 3.0
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Amention needs to bemade about the potential applicability of the
ROM to the extreme low endof the subsonic regime, belowMach0.3.
One factor that would determine how low the ROM should gowould
be the takeoff speed of the vehicle. While on the ground, vibrations
from the wheels, ground effects, special takeoff configurations, and
other factors would all influence the dynamics and aerodynamics of
the vehicle, thus complicating the analysis. For a point of reference,
the takeoff speed of the SR-71 Blackbird is right around 200 kt [33],
corresponding to a Mach number of 0.3 assuming 70°F ambient
temperature. If the ROM is desired to be applied for these low Mach
numbers, the ROM errors would be expected to increase with
decreasing Mach number.

VIII. Computational Savings

Finally, a quantification of the computational time savings needs to
be given between the ROM and full-order CFD simulations. The

unsteady sinusoidal CFD simulations were computed using 16 total
processors on the NASA Pleiades Supercomputer consisting of Intel
Xeon E5-2670, X5670, and X5675 processors with at least 2.6 GHz
processor speed.‡ Conversely, the ROM simulations for the same
cases were conducted on a desktop computer with a 2.66 GHz Intel
Core 2 CPUwith 3 GB of RAM. Figure 45a shows a logarithmic plot
of the comparative times between the ROM and CFD runs over a
range of Mach numbers; note that the ROM simulation time is per
coefficient, and the CFD CPU time is the total time of all processors.
Each data point represents the mean value over the same 25 test cases
conducted in the previous section at that particular Mach number.
Figure 45b shows the ratio between the CFD time and the times for
each of the ROMs to quantify the improvements. The results show a

Fig. 42 Lift coefficient results over entire Mach range.

Fig. 43 Drag coefficient results over entire Mach range.

Fig. 44 Moment coefficient results over entire Mach range.

‡Data available online at http://www.nas.nasa.gov/hecc/resources/pleiades
.html [retrieved 15 August 2014].
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roughly three order-of-magnitude decrease in computational cost for
the ROMs over the full CFD simulations. Note that the ROM values
are the time it takes to run after all upfront computations have been
completed. For ROM C, these upfront costs consist of individual
CFD runs for each correction factor kriging surface sampling point,
whereas for ROMs A and B, these upfront costs only included the
steady CFD runs for MoS calculations. Also, between the two MoS
ROMs, ROMA has a higher computational cost than ROMB due to
the fact that direct calculation of the correction factor takes place at
each time step rather than just picking the value off of a kriging
surface. Last, note thatmultiple ROMcomputationswill be necessary
to calculate more than one coefficient, and so the computational
reduction will be slightly decreased if additional coefficients are
calculated. However, for more complex geometries, the CPU time for
the full CFD simulations will inevitably increase with the number of
grid points, whereas this will have no effect on the ROM solutions.
Additionally, it could be possible to find more efficient convolution
algorithms, which would improve the computational time of the
ROM, making the computational savings even greater.
The preceding discussion compares the ROM and CFD

computational time results assuming that the ROM has already
been constructed. However, in deciding whether or not to use the
ROMmethodology (versus the full-order CFD solutions themselves)
for a particular problem, the upfront computational cost of the
required CFD solutions for ROM construction must be taken into
consideration. For example, for the AGARD 445.6 geometry, if only
a limited number of full-order simulations would need to be
conducted to analyze a certain problem, then it would be much more
efficient to simply conduct the full-order CFD simulations rather than
go through the ROM construction process because the full-order
solutions themselves are not overly computationally expensive in a
relative sense for this geometry. However, as the number of
simulations to be conducted increases, as in an aeroelastic simulation
framework, then the benefits of using the ROM begin to overshadow
the brute-force method of direct computation of the full-order
solutions. An additional item to take into consideration is the
coupling with other codes and analyses. For example, the structural
analysis may be performed using a finite-element type of code.
Information will need to be passed to the structural analysis from the
aerodynamic analysis and vice versa. If theCFD code is incompatible
with the other components of the aeroelastic analysis, then the full-
order solutions will not be able to be used for the overall simulation.
For each individual problem, given the CPU time and component

compatibility requirements, the number of simulations that will need
to be conducted, and other factors, the cost/benefit analysis of using
the ROM versus full-order solutions will be different.
As an example of the ROM construction computational cost,

consider the ROM constructed for the subsonic Mach regime from
M � 0.3 to 0.9. For this ROM, a total of 515 CFD correction factor
kriging surface sampling points were computed, along with 77
steady-state runs for MoS calculations and 12 different individual
modal step input runs for convolution. The total CPU time for these
runs is on the order of 107 s. However, due to parallelization of the
CFL3D computations, the actual run time is much less because each
simulation is parallelized into 15 separate processors. Table 13
summarizes the relative time requirements, as percentage of total
ROM construction CPU time, for each of the necessary types of CFD
simulations as applied to the subsonic ROM. As seen in the table, the
CFD correction factor sampling point runs account for just over 95%
of this total computational time. However, the MoS CFD com-
putations accounted for only around 3.6% of the total CPU time, and
so using these runs to limit the number of correction factor sampling
points can play a significant role in reducing ROM construction
expense. For thisMach regime, rather than using a quantifiable error-
based stopping criterion for sampling point determination, separate
ROMs were constructed using anywhere from 100 to 500 sampling
points, as described previously. The tests showed that, for the most
part, using only around 100 sampling points would have been
sufficient for this ROM, and doing sowould have eliminated the need
for around 80% of the correction factor CFD runs, significantly
reducing the time needed for ROM construction. A quantifiable
stopping criterion which captures the sufficiency of the ∼100
sampling points using the computationally inexpensive MoS thus is
extremely useful to have.

IX. Conclusions

A reduced-order modeling methodology for use in a hypersonic
vehicle controls simulation framework has been applied to the sub-,
trans-, and supersonicMach regimes. This is necessary due to the fact
that hypersonic vehicles will accelerate through these Mach regimes
on the way up to hypersonic flight. In a controls framework, it is
important to be able to use a single aerodynamic model for all
calculations regardless of the specific flight conditions because this
increases the efficiency of the simulation by avoiding the added
computational expense of switching one model out for another at
various points throughout the simulation. Separate investigations
have been conducted comparing ROM results with full-order CFD
simulations in the sub-, trans-, and supersonic Mach regimes. Also,
the method-of-segments simplified model has been developed to
assist in ROM construction. Finally, a single test case has been
followed from low subsonic up to supersonic flight to give a more
practical picture of how the ROM can be used in practice. The major
conclusions are as follows.
1) For tests with a single mode of oscillation, the ROM

methodology in general workswell. The ROMerrors remain small as

Table 13 Relative CPU time for CFD simulations
used for ROM construction

CFD run type CPU time (% of total)

Steady 0.3
Steps 0.9
MoS 3.6
Correction factor 95.2

Fig. 45 ROM–CFD CPU time comparisons.
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oscillation amplitude increases with other variables being held
constant. However, the drag coefficient errors do increase with
oscillation frequency at a larger rate than in the hypersonic regime, an
effect that is an artifact of a phase shift between the ROM and CFD
results that develops at higher oscillation frequencies.
2) The ROM methodology works well over the range of multi-

modal oscillation test cases near Mach 1 considered here, having a
mean drag coefficientL1 error of just over 7%. The other coefficients
show generally less errors than the drag.
3) Errors generally decrease with increasing Mach number in both

the subsonic and supersonic regimes for the drag coefficient results.
The highest errors are generally seen at Mach 0.3. Because of these
increasing errors, the reduced frequencies/Mach numbers at this end
of the parameter space form a general boundary of where the ROM
can be expected to be applicable.
4)MoS generally performs better in the supersonic regime than the

subsonic regime due to the smaller reduced frequency values here.
5) Increasing the number of kriging surface sampling points in

most cases does not significantly affect the accuracy of the results,
showing that a sufficient number of points has been reached.
6) For cases in which Msim ≠ Mstep, using a method of weighted

averages of ROMs computed from neighboring values of Mstep

successfully reduces the ROM errors, though the method of using the
nearestMstep value also works well in certain situations.
7) For the AGARD 445.6 wing, computational savings of well

over two orders of magnitude are achieved by using the ROM over
full-order CFD solutions.
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