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As part of a larger effort on data-driven turbulence modeling, this paper investigates machine learning
models in their capability to reconstruct the functional forms of spatially distributed quantities extracted from
high fidelity simulation and experimental data. Such datasets typically involve very high dimensional feature
spaces with sparsely populated and noisy data. A new multiscale Gaussian process regression technique is de-
scribed and is compared to ‘conventional’ Gaussian process regression and artificial neural networks. All these
techniques are applied to the reconstruction of functions arising from Bayesian inference applied to turbulent
channel flow and bypass transition. The efficiency, accuracy and effectiveness of each learning algorithm as
well as factors that influence their output is assessed. The results highlight the potential of machine learning
as an enabling tool in data-driven turbulence modeling.

I. Introduction

Turbulence is prevalent in almost every flow problem of practical interest. Although the governing equations of
turbulent flow are well-known, the presence of a wide range of time and length scales present significant challenges
in direct simulation, requiring prohibitively expensive mesh and time step resolutions. As a result, much effort has
been directed towards the modeling of turbulent flow, with the Reynolds Averaged Navier–Stokes (RANS) equations
being the most popular option because of their feasibility in high Reynolds number flows and complex geometries.
The resources required to use Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) for these types
of flows are often not readily available, despite continued rapid advances in computational technology. It is, however,
well-recognized that RANS models are less accurate than desired in many situations, especially those that involve
separation, transition, secondary flows, etc. Our belief is that data from LES, DNS and experiments can be leveraged
in a comprehensive manner to improve RANS models.

This work is part of a larger effort to improve closure models1–3 in which inverse modeling is used to infer the
functional forms of modeling discrepancies and machine learning (ML) is used to reconstruct the information from
the inference process into modeling terms to be used in a predictive setting. In this paper, we focus on the latter aspect
and explore existing and newly-developed machine learning techniques for use in turbulence modeling. Traditionally,
alterations made to RANS models are based on a combination of theory, empirical reasoning and calibration using a
limited set of flows. Over the past decade, there has been progress made in incorporating machine learning into this
process. Yarlanki et al.5 used ML to estimate optimal values for calibration constants in the k − ω model. Milano
and Koumoutsakos6 used it to perform model reduction on LES simulations of turbulent flow over a flat plate. Finally,
Sarghini et al.7 performed a procedure similar to what will be described in this paper, but applied to the improvement
of LES subgrid-scale models. In related work, Tracey et al. performed a detailed investigation of the capability of
neural networks to reconstruct known functions in the Spalart Allmaras4 turbulence model and demonstrated that it is
indeed possible to replace analytical representations by machine-learned routines in a production CFD solver.

The goal of our approach is not to calibrate existing constants in RANS models, nor to introduce new constants.
Rather, it is to introduce new terms to the model equations. These terms that can vary spatially and temporally, and
comprehensively alter the equations to produce more accurate results, and are learned directly from data. The terms
will have no analytical forms, but rather forms defined by the ML method and the data used to derive them.
∗Graduate Research Assistant, Department of Aerospace Engineering, 1320 Beal Avenue, Ann Arbor, MI 48109-2140.
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Overview of the data-driven approach

The overall procedure, which is explained in Refs. 1, 2 is as follows: To begin, data is obtained from LES, DNS,
or experiment. Then, a modified version of the model equation, one that includes a term (or terms) to be inferred
is devised. In general, this new term is adjusted to improve RANS solver performance according to some metric.
The adjustable term in the RANS model can be determined using, say, a Bayesian inversion process. It must again
be emphasized that the goal is to explore the impact of spatio-temporal modifications in the model, and not just
parameteric modifications. This adjustable term is then reconstructed into a function form (over features that will be
accessible by a predictive RANS solver) using ML. During a predictive process, the solver will query the function
whenever the turbulence model is computed. A schematic of this general procedure can be found in Figure 1.

Data
G

RANS turbulence
 model

adjustment term
α

data

Training data for
machine learning

α, Q

Learned 
function
α = f(Q)

Adjusted
RANS turbulence

 model

Mean flow
 solver

Inverse problem RANS solver Machine learning

Querying

Data-driven RANS solver

Figure 1: Process for building a data-driven RANS solver. Gdata is a performance measure. LES, DNS, and experi-
mental data may all be used for the first step. Q is a set of flow features used to learn α.

This paper will introduce different machine learning techniques and examine the efficacy of each method in the
context of turbulence and transition modeling examples.

II. Machine Learning

We use supervised learning techniques, the goal of which is to predict an output y given a vector of inputs q. This
is also referred to as regression, since both the input and the output are continuous variables.12 In this instance, the
output y is the factor α (the inferred modeling term or function), and the inputs are q = [q1 q2 · · · qM ]. These inputs
are chosen from a number of possibilities through hill-climbing feature selection,13 an algorithm that appends inputs
to the usable set q until increasing the size of q no longer improves the performancea when fitting y.

Given a set of outputs Y and its corresponding set of inputs Q, it is customary12 to divide them into training, vali-
dation, and test sets (Qtrain,Ytrain), (Qval,Yval), and (Qtest,Ytest). A ML algorithm is first applied to the training
set to obtain f , where f(q) ≈ y. Then, the error on the validation set can be used to adjust any hyperparameters the
ML algorithm may possess. In this work, the normalised sum of squared errors (SSE) is used for neural networks:

SSE =
||Y − f(Q)||2

||Y||2
(1)

Through cross-validation,12 hyperparameters that minimise the validation SSE are determined. For Gaussian pro-
cesses, a different metric for error is used, but the cross-validation is the same. Finally, the SSE of the test set is used
to compare the performances of different ML algorithms. Sometimes, the complete dataset (Q,Y) is too large to be
used in training at once, not to mention slow for injection purposes. However, since the optimal hyperparameters are
found in a way that takes advantage of all available data, randomly choosing a smaller subset of data for training the
model that will feed into the RANS solver can be sufficient. In this work, the complete available datasets are used.
The inputs are scaled to [0, 1] before being used as training data. Three ML approaches are explored: neural networks
(NNs), Gaussian processes (GPs), and multiscale Gaussian processes (MGPs), an extension to GPs. Details on how
each approach develops f(q) are presented in the next sections.

aThe performance metric used in the current work for input selection is the normalised squared error on the validation set.
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II.A. Neural Networks

A standard feed-forward neural network12 (NN) is used. The NN operates by constructing linear combinations of
inputs and transforming them through nonlinear activation functions. The process is repeated once for each hidden
layer in the network, until the output layer is reached. Figure 2 presents a sample NN. For this sample network, the
values of the hidden nodes z1,1 through z1,H1

would be constructed as

z1,j = a(1)

(
3∑
i=1

w
(1)
ij qi

)
(2)

where a(1) and w(1)
ij are the activation function and weights associated with the first hidden layer, respectively. Simi-

larly, the second layer of hidden nodes is constructed as

z2,j = a(2)

(
H1∑
i=1

w
(2)
ij z1,i

)
(3)

Finally, the output is

f(q) = a(3)

(
H2∑
i=1

w
(3)
ij z2,i

)
≈ y (4)

Given training data, error backpropagation algorithms12 are used to find w(n)
ij .

...
...

q1

q2

q3

y

z1,1

z1,H1

z2,1

z2,H2

Figure 2: Network diagram for a feed-forward NN with three inputs, two hidden layers, and one output.

One main advantage of NNs over GPs is efficiency. Once the weights are found, computing f(Qtest) depends only
on the number of hidden nodes, and not on the (typically high) volume of training data. Hyperparameters of the NN
method include the number of hidden layers, the number of nodes in each hidden layer, and the forms of the activation
functions. In the current work, the open-source Fast Artificial Neural Network (FANN) library14 is used for training
and for integration with the RANS solver.

II.B. Gaussian Processes

In contrast, the advantage of Gaussian Processes (GPs) is adaptability. Whereas NNs ultimately depend on combi-
nations of predetermined basis functions, GPs are able to construct a basis that suits the the problem, so to speak.
A second advantage is that, if the output y is known to noisy, i.e. generated by adding ideally Gaussian noise with
variance λ to an original function y0,

y(q) = y0(q) +N (0, λ) (5)

obtaining the variance of the ML output f , σ2
f , becomes very straightforward. This is useful when λ is known, for

example, from the resulting distribution of the inverse problem or even from experimental data. Even without that
information, λ and σ2

f can be estimated. The variances are especially useful for producing error bounds on functions
that incorporate the GP, the RANS solver being one such function. Doing the same for NNs is less intuitive.

A GP assumes that the output function at the training points, Ytrain, is drawn from the distribution

Ytrain ∼ N (0,Φ + λI) (6)
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Φ is a matrix of covariances between training points. The mean of the distribution is unknown, so it is set to zero.
The noise of the output is added to the covariance between training points because they are assumed independent. The
current work employs a radial basis function (RBF)15,16 kernel for computing GP covariance:

Φ(m,n) = φ(qm,qn) = e−
||qm−qn||2

h2 (7)

where qm, qn are points from Qtrain. Since the covariance matrix must be populated by computing the value of the
the kernel function between all possible pairs of training points, it is evident that, unlike for NNs, computing the output
of a GP depends on the size of the training set. Also, note that points that are closer in input space are assumed to be
more correlated, and points that are further, less.

Now, given a test point qtest, the corresponding f(qtest) can be defined via a conditional probability distribution,
p(f |Ytrain). The mean of this distribution is the predicted value of f given the training points, and the variance is σ2

f .
Using standard probability formulae for conditional distributions, it is found that

p(f |Ytrain) ∼ N (φT (Φ + λI)−1Ytrain, 1 + λ− φT (Φ + λI)−1φ) (8)

and hence, both the expected value and variance of f are obtained:

f = φT (Φ + λI)−1Ytrain (9)

σ2
f = 1 + λ− φT (Φ + λI)−1φ (10)

φ is a vector whose elements are φ(qtrain,i,qtest), with qtrain,i being the ith data point in Qtrain. Given the form of
the kernel function, the value of f will be closer to the values of ytrain for which qtrain is close to qtest.

In cases where λ is supplied, σ2
f can be found directly. If there is a different λ assigned to each ytrain, the scalar

λ may be replaced by the vector Λ consisting of all the individual variances at the training points, and the rest of
the equations would still hold. In cases where λ is unknown, it can be estimated by maximising the log marginal
likelihood (LML):

log p(Ytrain|Qtrain, h, λ) = −1

2
log |Φ + λ| − 1

2
Ytrain(Φ + λ)−1Ytrain −

N

2
log(2π) (11)

where N is the number of training points. The LML measures the probability that an estimate of the hyperparameters
h and λ would yield a distribution that produces Ytrain when sampled at Qtrain, so maximising it would mean finding
the most suitable values for h and λ. For GPs, the LML is used in lieu of the SSE.

II.C. Multiscale GPs

We are developing a Multiscale Gaussian process (MGP) method17 in which the RBF in Eq. (7) is altered to

φ(qm,qn) = e
− ||qm−qn||2

h2
n (12)

where each training point qn is now assigned an individual hn. The aim is to ensure accuracy in situations where the
parameter space contains regions that are sparsely populated and densely populated. For example, if training points
are highly clustered in one region of input space, it may be desirable to assign these points smaller values hn, so that
the region is finely resolved. Alternatively, it could be reasonable to choose a single point and give it a larger hn, so
that it can represent the entire region and reduce computational cost by eliminating the need to compute the kernel
function at all the other nearby points. Conversely, if a region of the input space has few training points, they could be
assigned larger hn as well to compensate for the sparsity. MGP is useful for the task at hand because the regression
is in a high dimensional parameter space which will be differentially populated by data from simulation grids. Hence,
the training data is expected to have regions of varying input density. This will be shown to be the case in the next
section.

Assigning a different hn to each training point is a challenging task; MGP streamlines the procedure by reducing
the choice of possible hns to a finite number, the number of ‘scales’ K, which may be freely chosen. For example, if
K = 2, training points will either have one of two possible values for hn, or have none assigned (to be clarified later).

Given Qtrain, hns are assigned through the multiscale clustering algorithm below.

1. The hyperparameters h0 and r are supplied. For the first scale, initialise k = 1.
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2. For current scale k, hk = h0r
k−1 is computed. (r is set to be greater than 1, so that hk decreases with increasing

k.)

3. Choose a point from Qtrain at random. Assign hk to this point, and add the point to the set of cluster centres for
the current scale, Qk. Remove it from original set Qtrain.

4. Repeat the previous step, except instead of choosing from Qtrain, choose only from points in Qtrain that are at
least hk away from any of the centres in Qk in terms of Euclidean distance, i.e. ||qm − qn|| > hk. Continue
to repeat until no more points may be chosen, i.e. until every point in Qtrain is within hk distance of a centre in
Qk.

5. Repeat from Step 2 for the next scale k = k + 1, up to K scales in total.

This algorithm may be performed until Qtrain is empty, but an advantage of stopping prematurely at a low value
of K is that the new training set, now defined to be the union of the Qks and corresponding Yks for all k from 1 to K,
is much smaller than Qtrain. Points that have not been selected as cluster centres and do not have an h assigned after
K iterations of the algorithm are not used for training. For large Qtrain, this significantly speeds up the regression
process.

Once the new training set and the corresponding hs are found, regression may be performed in the same manner as
described in Eq. (10). The output noise λ is still random and independent of the covariance between training points,
so the LML can still be used to optimise hyperparameters; nothing is changed except the training set and the kernel
matrix Φ. In addition to h0 and r, the number of scales K is also a hyperparameter for MGP.

II.D. 1-D Example

The goal of this simple numerical example is to demonstrate the capabilities of the methods described above, as well
as to offer a graphical explanation of the inner workings of MGP. Here, the output is taken to be a noisy sine function
y = sin(8πq) + N (0, 0.1), with q limited to [0, 1]. Two cases are tested: the first with training values for q chosen
from a uniform distribution, and the second with q clustered around 0.1, 0.5, and 0.9. 300 training points are used in
each case.

Before comparing the different methods, it is useful to explain the MGP algorithm using this example, and thereby
show why it is useful. Figures 3 and 4 illustrate the process of selecting cluster centres for the uniform and clustered
input cases, with non-optimal hyperparameters. In each figure, the leftmost plot shows the cluster centres chosen with
hk = h1, the middle plot centres with h2, and the rightmost centres with h3. Since hk decreases with k, more centres
are chosen with increasing k because they are not constrained to be as far apart from each other. The centres are
randomly chosen, so they are not evenly distributed across the domain, but the spacing between them is fairly regular.
With these sample parameters, approximately 50 centres cumulative are selected across these three scales, and the rest
of the training points are disregarded. This means the size of the training dataset has effectively been reduced from
300 to 50. The consequent increase in speed is very important when coupling a ML model to a RANS solver, since
numerous test points must be evaluated per iteration of the flow solver.

Following this graphical example, the optimal hyperparameters for each method are found, and the results of
testing on the optimised ML methods are summarised in Table 1. For the clustered case, MGP used only 20 cluster
centres out of 300 original training points to achieve this result. Visually, the results do not look very different from
each other, as seen in Figures 5 and 6. On a final note, Figure 7 shows that optimal parameters selected through
maximising the LML are also near optimal according to the test error, validating the use of LML for hyperparameter
optimisation.

Table 1: Normalised test errors for ML methods, defined as ||Ytest−f(Qtest)||/||Ytest||. 1000 uniformly spaced test
points on [0, 1] were used. Time is test time in seconds. Training time is part of preprocessing and thus less relevant.

NN GP MGP
Error Error Time Error Time

Uniform input 0.0513 0.0257 9.9× 10−3 0.0407 1.8× 10−3

Clustered input 0.1185 0.0516 1.2× 10−2 0.0716 4.2× 10−3
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Figure 3: Clustering produced by MGP for uniform distribution of inputs. Left to right: scale k = 1, k = 2, and
k = 3. Black crosses are cluster centres selected at each scale. Surrounding each cluster centre is a colour-coded
group of training points, signifying points that were within hk of the cluster centre at the time of its selection. h0 = 4,
r = 2.
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Figure 4: Clustering produced by MGP for clustered distribution of inputs. Left to right: scale k = 1, k = 2, and
k = 3. Black crosses are cluster centres selected at each scale. Surrounding each cluster centre is a colour-coded
group of training points within hk of the centre. h0 = 4, r = 2 as before.

III. Application to RANS

III.A. Channel Flow

This test case, explained in detail in Ref. 1, involves turbulent channel flow using the Wilcox k− ω turbulence model,
where k and ω are computed through the following transport equations:

Dk

Dt
= Pk − β∗ωk +

∂

∂xj

[
(ν + σkνt)

∂k

∂xj

]
(13)

Dω

Dt
= γ

ω

k
Pk − βω2 +

∂

∂xj

[
(ν + σωνt)

∂ω

∂xj

]
(14)

β∗, γ, β, σk, and σω are constants, and the production term Pk is

Pk = τij
∂ui
∂xj

(15)
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Figure 5: Uniform distribution testing results for all methods. Black line is the original function, black dots are training
points with noise added. Blue line is the ML output. For GP and MGP, shaded red regions indicate confidence intervals
of ±1σ.
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Figure 6: Clustered distribution testing results for all methods. Black line is the original function, black dots are
training points. Blue line is the ML output. For GP and MGP, red regions are confidence intervals of ±1σ. There
are noticeable divergences from the true function, especially near maxima and minima, compared to the uniformly
distributed training point case.

The 1-D channel is a stepping stone from testing ML methods on basic analytical functions. It will be shown that ML
works well for this case, and therefore may be extensible to more complex cases.

Recalling the framework from Figure 1, a function α must be introduced. In the case of the 1-D channel, the
equation for turbulent kinetic energy, Eq. (13), is modified to be:

Dk

Dt
= αPk − β∗ωk +

∂

∂xj

[
(ν + σkνt)

∂k

∂xj

]
(16)

α is a function of space and its role is to account for deficiencies in the turbulence model. DNS data is taken as exact,
and α is found so that the velocity profile u produced by using αPk in place of Pk would match the DNS velocity
profile.

α is found by solving an inverse problem, for which the method of Bayesian inversion was chosen10,.11 Bayesian
inversion produces the maximum a posteriori solution, which is to be reconstructed using machine learning.

Data from five different Reynolds numbers are used: Reτ = 180, 550, 950, 2000, 4200, each with approximately
150 data points in the wall-normal direction. Only points within the inner and log layers are considered in this exercise.
After some deliberation, it was decided that the parameters used for ML, that is, q, would consist of Sk/ε, d

√
k/ν,
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Figure 7: Tradeoffs in speed and accuracy for MGP. Blue are for equally-spaced hyperparameters, orange are optimal
parameters from maximising LML for different values of number of scales K. Black is GP for comparison. The error
rises very sharply as time decreases.

Pk/ε, and y+. d is defined as the normal coordinate divided by channel half-width, y/h, and Pk is the production
terms in the k − ω equations. The first three parameters are completely local, while y+ depends on wall shear.

In Figure 8, α is plotted as a function of these parameters. For the most part, α is multi-valued near the wall
and single-valued near the centreline. Also, as is typical, there are more data points near the wall than far. Both
multi-valuedness and sparsity of data can present difficulties for ML.

Instead of choosing training and testing points randomly as in the analytical example in the previous section, the
Reτ = 2000 case was set aside for testing, and the other four cases were used for training. The tradeoff between
accuracy and speed for MGP is depicted in Figure 9, where once again the optimal hyperparameters yield results near
the pareto front. Note that GP is also plotted in the same figure, and appears to be a better choice if speed is not a
concern.

The test results are plotted in Figures 10 and 12, and errors listed in Table 2. The near-wall estimates are accurate
but have high variance. This variance is close to the estimated input variance λ, which is higher for MGP than for GP
because the former uses fewer points and hence can be less certain of what lies between them. Both figures suggest
that the learning is less accurate near the centreline, especially for MGP. This suggests that the sparsity of training
points hinders it severely, which seems counterintuitive because MGP is supposed to take precisely this into account.
Figure 11 helps shed some light on this. As evidenced by the speed of the method, MGP summarises the available
training points with a handful of cluster centres, chosen near-randomly. In the figure, it can be seen that, for the first
two scales, fewer centres lie near the centreline. Conceptually, if the first centre is chosen near the wall, the next will be
by default further from the wall despite the sparsity, because taking the first centre near the wall excludes all the other
near-wall points from being the next centre. However, as seen in Figure 8 and 11, the training points are distributed so
that some points far from the wall can be excluded as well. Hence, for the first few scales, points that are far from the
wall are poorly represented. As hk decreases, more of them are selected as centres, but they are unable to accurately
represent the region near the centreline because hk is small, but the variation in α is larger. To mitigate this effect, one
may choose a small h0. However, for higher values of k, hk may grow too small to be effective. This method requires
fine tuning of the scaling factor for hk, r, but the example is simple enough that GP should prove to be superior in any
case.

Table 2: Normalised test errors and testing times for ML methods. Times are in seconds.

NN GP MGP
Test case Error Error Time Error Time
Re 2000 0.0215 0.0161 5.6× 10−3 0.0431 4.3× 10−3
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Figure 8: Visualisation of training data, all five cases. Note that the lines, each representing a different case, are easily
distinguishable from one another due to the sparsity of data. Blue indicates data points near the wall, yellow data
points near the centreline.

III.B. Bypass transition

Bypass transition occurs when free-stream turbulence introduces instabilities in the evolving boundary layer to become
turbulent. A class of modelling approaches use the concept of an intermittency factor, γ, to represent the fraction of
time during which turbulence is active. It is useful as a way of representing and modelling the phenomenon, but γ is
not a property that can be directly found from a DNS solution.

Ge et al.9 use the intuitive idea that γ diffuses into the boundary layer from the turbulent free-stream and transition
occurs via molecular and turbulent diffusion. To this end, they write a transport equation for γ:

Dγ

Dt
= Pγ −Dγ +

∂

∂xj

[
(σlν + σγνt)

∂γ

∂xj

]
(17)

The source term Pγ contributes to producing intermittency inside the boundary layer. The sink term Dγ ensures
that the boundary layer initially is laminar. Definitions of these terms can be found in Ref. 9.

A method that leverages the transition model would be to introduce an α that modifies Eq. (17) as follows:

Dγ

Dt
= α+

∂

∂xj

[
(σlν + σγνt)

∂γ

∂xj

]
(18)

In other words, α is used to replace the production and destruction terms entirely. Experimental wall shear stress data
from the T3 series19 is taken to be the truth and α is found through Bayesian inversion. Further details about the
problem setup can be found in Ref. 2.

The transitional flow cases, denoted T3A, T3B, and T3C1 through T3C5, are 2-D flat plates with different free
stream turbulence intensities and pressure gradients. Each case has approximately 2000 to 8000 usable data points.
Only points near the wall and with a vorticity magnitude Ω higher than a threshold value were used. The training
parameters used for learning are d2Ω/ν, γ, du/dx, du/dy, k, and ω. Figure 13 plots the training points for Case T3B
in terms of these parameters. α is high in some regions, but near zero everywhere else. The contours of α in later
figures show that this is also the case for T3A and the T3C series.
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Figure 10: Test results for α, Re = 2000.

III.B.1. Training results

Numerical results are presented in Table 3. To obtain these, all of the training points doubled as test points, hence the
errors being labelled as training errors. If a method trains well, it is likely to also have low test error, since the training
space is more densely populated than in the case of the 1-D channel.

GP and MGP both outperformed NNs, with MGP being the more accurate of the two. This is a trend seen in
Figures 15 through 24 as well. This is because GP and MGP take the training points themselves into account when
testing, whereas NNs compound the training information into a predefined number of coefficients, depending on the
number of layers and nodes. Therefore, when testing on the training points, GP and MGP have an advantage.

It is interesting to note that, while errors are low, testing times are high for MGP. This is likely due to some overhead
in the program used to produce these results, since at worst MGP uses as many of the training points as GP does, and
in most cases it uses fewer. Furthermore, Figure 14 shows that for Case T3B, the set of MGP hyperparameters used
was not optimal, should the minimisation of the test time have been the goal. It can also be seen from the figure that
the GP result does not lie on the pareto front. This is likely the case for all the transitional cases examined in this
section.

III.B.2. Test results

Previously, it was assumed that a low training error implies a potentially low test error. Here, that assumption is tested
using cases T3A, which is a flat plate, and T3C1, which has a pressure gradient. For each case, 200 randomly selected
points were set aside as test points. The rest, around 4000 points for case T3A and around 8000 for case T3C1,
were used for cross-validation. For each case, these points were divided into 24 sets, and optimal hyperparameters
were found using 23 of the sets together as training and the remaining set for validation, where validation error is
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mean, and red regions represent ±1σ. σ is very small for GP, and is only faintly visible.

the quantity that is minimised. This yields 24 sets of optimal hyperparameters, and the median of these was used for
testing. Also, all training and validation points were used for computing the test results.

Table 4 lists the test errors, while Figures 25 and 26 plot the test points against the ML estimates. The test errors
for T3A are much higher than those for T3C1, since the former had fewer training points. Examining Figure 25, it is
likely that the high errors for case T3A are due to outliers. For example, at around α = 35, MGP has captured a test
point, whereas for NN and GP, this point lies outside the range of the graph. It is also worth noting that the NN and
GP have errors of about±10, approximately the same spread pictured in Figure 15. In contrast, the spread of the MGP
results is much greater than before. This suggests that MGP was overfitting the training data in the previous section.
Comparing Figures 19 and 26 also supports this for case T3C1.

Further optimization and tuning is required to mitigate the propensity of the multi-scale GP method to overfit the
training data.

IV. Conclusion

This paper focused on the machine learning aspect of a larger framework for data-driven turbulence modeling. A
new multiscale Gaussian process regression method was presented and its performance was assessed with reference to
conventional Gaussian process (GP) regression and a neural network (NN) algorithm. Two problems were examined;
one that aims to reconstruct a multiplicative correction function arising from inversion applied to turbulent channel
flow and the other deals with an corrective source term arising from inversion applied to bypass transition. All the
machine learning methods are shown to be capable of reconstructing the spatial form of the correction terms into
functional forms operating on high dimensional feature spaces. Such a capability is immensely valuable in data driven
closure modeling in general. Though these tests cannot be considered to be representative of all turbulence modeling
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needs – and there are alternate formulations of the NN and GP algorithms – the flexibility of the multiscale method in
representing the sparsely populated feature space is evident and its increased efficiency over the GP method suggests
its viability as a candidate for functional reconstruction in closure modeling applications.
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Table 3: Normalised training errors and testing times. Times are in seconds.

NN GP MGP
Case Error Error Time Error Time
T3A 0.5547 0.1719 1.1 0.0198 1.4
T3B 0.2116 0.1010 1.4 0.0081 1.8
T3C1 0.1163 0.0490 6.1 0.0092 10.8
T3C2 0.2351 0.0931 4.7 0.0403 5.3
T3C3 0.5311 0.1511 4.8 0.0725 3.8
T3C4 0.3352 0.1262 6.7 0.0867 5.2
T3C5 0.1956 0.0490 6.0 0.0274 10.0
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Figure 15: ML test results for the difference between source and sink terms Pγ −Dγ , i.e. α, for Case T3A.

Table 4: Normalised test errors and testing times. Times are in seconds.

NN GP MGP
Case Error Error Time Error Time
T3A 1.4127 8.2442 0.076 0.5324 0.13
T3C1 0.2487 0.7474 0.20 0.1580 0.73
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Figure 16: Contours of α for Case T3A.
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Figure 17: Case T3B test results.

14 of 18

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
14

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
5-

24
60

 



x

0 0.1 0.2 0.3 0.4 0.5 0.6

y

×10 -3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-40

-30

-20

-10

0

10

20

30

40

(a) Original

x

0 0.1 0.2 0.3 0.4 0.5 0.6

y

×10 -3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-40

-30

-20

-10

0

10

20

30

40

(b) NN

x

0 0.1 0.2 0.3 0.4 0.5 0.6

y

×10 -3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-40

-30

-20

-10

0

10

20

30

40

(c) GP

x

0 0.1 0.2 0.3 0.4 0.5 0.6

y

×10 -3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-40

-30

-20

-10

0

10

20

30

40

(d) MGP

Figure 18: Contours for Case T3B.
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Figure 19: T3C1 test results.
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Figure 20: Contours for Case T3C1.
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Figure 21: Test results for Case T3C2.
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Figure 22: Test results for Case T3C3.
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Figure 23: Test results for Case T3C4.
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Figure 24: Test results for Case T3C5.
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Figure 25: Case T3A results for 200 randomly selected test points not used in training.
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Figure 26: Case T3C1 results for 200 test points not used in training.
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